Second Hankel determinant for a class of analytic functions defined by Komatu integral operator

Ram N. Mohapatra and Trailokya Panigrahi*

Abstract

In this paper, the authors obtain an upper bound of second Hankel determinant for a new class of analytic functions defined through the Komatu integral operator. Our result extends the corresponding previously known results.

1. Introduction

Let \mathcal{A} be the class of functions analytic in the open unit disk $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$ and \mathcal{A}_{0} be the family of functions f in \mathcal{A} given by the normalized power series

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} denote the class of all functions in \mathcal{A}_{0} which are univalent in \mathbb{U}. A function $f(z) \in \mathcal{A}_{0}$ is said to be in the class $\mathcal{S}^{*}(\beta)$, starlike functions of order β (cf. [27]) in \mathbb{U} if it satisfies

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \quad(0 \leq \beta<1 ; z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

Further, a function $f(z) \in \mathcal{A}_{0}$ is said to be in the class $\mathcal{C} \mathcal{V}(\beta)$, convex function of order β (cf. [27]) in \mathbb{U} if it satisfies

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta \quad(0 \leq \beta<1, z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

In particular, $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{C V}(0)=\mathcal{C V}$ are the familiar classes of starlike and convex functions in \mathbb{U} (cf. [7]).

Komatu [18] introduced a certain integral operator \mathcal{L}_{a}^{δ} defined by

$$
\begin{equation*}
\mathcal{L}_{a}^{\delta} f(z)=\frac{a^{\delta}}{\Gamma(\delta)} \int_{0}^{1} t^{a-2}\left(\log \frac{1}{t}\right)^{\delta-1} f(z t) d t \quad\left(z \in \mathbb{U} ; a>0 ; \delta \geq 0 ; f \in \mathcal{A}_{0}\right) \tag{1.4}
\end{equation*}
$$

[^0]Thus, if $f(z) \in \mathcal{A}_{0}$ is of the form (1.1), then it is clear from (1.4) that

$$
\begin{equation*}
\mathcal{L}_{a}^{\delta} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{a}{a+n-1}\right)^{\delta} a_{n} z^{n} \quad(z \in \mathbb{U} ; a>0 ; \delta \geq 0) \tag{1.5}
\end{equation*}
$$

The operator \mathcal{L}_{a}^{δ} unifies several previously studied operators. Namely;

- $\mathcal{L}_{a}^{0} f(z)=f(z)$
- $\mathcal{L}_{1}^{1} f(z)=A[f](z)$ known as Alexander operator [1]
- $\mathcal{L}_{2}^{1} f(z)=\mathcal{L}[f](z)$ known as Libera operator [19]
- $\mathcal{L}_{c+1}^{1} f(z)=\mathcal{L}_{c}[f](z)$ called generalized Libera operator or Bernardi operator [6]
- for $a=1$ and $\delta=k$ (k is any integer), the multiplier transformation $\mathcal{L}_{1}^{k} f(z)=$ $\mathcal{I}^{k} f(z)$ was studied by Flett [10] and Sălăgeăn [28] (also, see [3, 4])
- for $a=1$ and $\delta=-k \quad\left(k \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right)$, the differential operator $\mathcal{L}_{1}^{-k}=\mathcal{D}^{k} f(z)$ was studied by Sălăgeăn [28];
- for $a=2$ and $\delta=k \quad(k$ is an integer $)$, the operator $\mathcal{L}_{2}^{k} f(z)=\mathcal{L}^{k} f(z)$ was studied by Uralegaddi and Somanatha [30];
- for $a=2$, the multiplier transformation $\mathcal{L}_{2}^{\delta} f(z)=\mathcal{I}^{\delta} f(z)$ was studied by Jung et al. [16].

Now, we introduce a new subclass of analytic functions by making use of the Komatu integral operator \mathcal{L}_{a}^{δ} as follows:

Definition 1.1. A function $f \in \mathcal{A}_{0}$ is said to be in the class $\mathcal{R}_{a}^{\delta}(\lambda)$ if it satisfies the inequality

$$
\begin{equation*}
\Re\left\{\frac{z\left(\lambda z\left(\mathcal{L}_{a}^{\delta} f(z)\right)^{\prime}+(1-\lambda) \mathcal{L}_{a}^{\delta} f(z)\right)^{\prime}}{\lambda z\left(\mathcal{L}_{a}^{\delta} f(z)\right)^{\prime}+(1-\lambda) \mathcal{L}_{a}^{\delta} f(z)}\right\}>0 \quad(z \in \mathbb{U} ; a>0, \delta \geq 0,0 \leq \lambda \leq 1) \tag{1.6}
\end{equation*}
$$

Note that, by taking $\lambda=0, \delta=0$ and $\lambda=1, \delta=0$ in the relation (1.6), the class $\mathcal{R}_{a}^{\delta}(\lambda)$ reduces to classes \mathcal{S}^{*} and $\mathcal{C} \mathcal{V}$ respectively.

Definition $1.2([26])$. For a function $f \in \mathcal{A}_{0}$ given by (1.1) and $q \in \mathbb{N}:=$ $\{1,2,3, \ldots\}$, the q th Hankel determinant denoted by $H_{q}(n)$ is defined as

$$
H_{q}(n)=\left|\begin{array}{cccl}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} \cdots & a_{n+q} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right|\left(a_{1}=1\right)
$$

A classical theorem of Fekete and Szegö [9] considered the Hankel determinant of $f \in \mathcal{S}$ for $q=2$ and $n=1$,

$$
H_{2}(1)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|
$$

Then, they further generalized the functional $\left|a_{3}-\mu a_{2}^{2}\right|$, where μ is real and $f \in \mathcal{S}$. In this paper, we consider the Hankel determinant for the case $q=2$ and $n=2$,

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|=\left|a_{2} a_{4}-a_{3}^{2}\right| .
$$

For a given family \mathcal{F} of the functions in \mathcal{A}_{0}, the sharp upper bound for the nonlinear functional $\left|H_{2}(2)\right|$ is popularly known as the second Hankel determinant.

Janteng et al. [15] (also, see [13]) have considered the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ and found the sharp bound for the function f in the subclass \mathcal{R} of \mathcal{S}, consisting of functions whose derivative has a positive real part. They have shown that if $f \in \mathcal{R}$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}$.

Further, Janteng et al. [14] also obtained sharp bounds for Hankel determinant for functions in certain familiar subclasses of \mathcal{S} namely; starlike and convex functions denoted by \mathcal{S}^{*} and \mathcal{C} respectively. They have shown that if $f \in \mathcal{S}^{*}$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ and if $f \in \mathcal{C}$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}$.

Recently, Murugusundaramoorthy and Magesh [25] have obtained the sharp upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function $f \in \mathcal{R}(\alpha)$, where

$$
\mathcal{R}(\alpha)=\left\{f(z) \in \mathcal{A}_{0}: \Re\left\{(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)\right\}>0, \alpha>0, z \in \mathbb{U}\right\} .
$$

Recently, Kaharudin et al. [17] have obtained the upper bound of the second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the functions in the class $G_{k}(\alpha, \delta)$ defined as

$$
\Re\left\{e^{i \alpha} \frac{f(z)}{g^{\prime}(z)}\right\}>\delta \quad(z \in \mathbb{U})
$$

where $|\alpha| \leq \pi ; \cos \alpha-\delta>0 ; g(z)$ is convex function and $g^{\prime}(z)=\frac{1}{1-z}$. For some more recent work on second Hankel determinant see [2, 5, 8, 11, 12, 22, 23, 24, 29]. Motivated by the aforementioned works, in this paper, we find an upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the functions f belongs to the class $\mathcal{R}_{a}^{\delta}(\lambda)$. We generalize the results of Janteng et al. [13].

2. Preliminaries

Let \mathcal{P} be the family of all functions $p \in \mathcal{A}$ satisfying $p(0)=1$ and $\Re\{p(z)\}>0$, $(z \in \mathbb{U})$.

We need the following lemmas for our present investigation:

Lemma 2.1 (see [7]). Let the function $p \in \mathcal{P}$ be given by the series

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

Then, the sharp estimate

$$
\begin{equation*}
\left|c_{k}\right| \leq 2 \quad(k \in \mathbb{N}) \tag{2.2}
\end{equation*}
$$

holds.
Lemma 2.2 (cf. [20], also see [21]). Let the function $p \in \mathcal{P}$ be given by the series (2.1). Then

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{2.3}
\end{equation*}
$$

for some $x,|x| \leq 1$ and

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{2.4}
\end{equation*}
$$

for some $z,|z| \leq 1$.

3. Main Results

Unless otherwise mentioned, we assume throughout the sequel that $a>0, \delta \geq 0$, $0 \leq \lambda \leq 1$.

Theorem 3.1. Let the function $f \in \mathcal{A}_{0}$, given by (1.1) be in the class $\mathcal{R}_{a}^{\delta}(\lambda)$. Then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left[\frac{(a+1)(a+3)}{a^{2}}\right]^{\delta} \frac{1}{(1+\lambda)(1+3 \lambda)} \tag{3.1}
\end{equation*}
$$

Proof. Let the function $f(z) \in \mathcal{A}_{0}$ represented by (1.1) be in the class $\mathcal{R}_{a}^{\delta}(\lambda)$. By geometric interpretation, there exists a function $p \in \mathcal{P}$ given by (2.1) such that

$$
\begin{equation*}
\frac{z\left(\lambda z\left(\mathcal{L}_{a}^{\delta} f(z)\right)^{\prime}+(1-\lambda) \mathcal{L}_{a}^{\delta} f(z)\right)^{\prime}}{\lambda z\left(\mathcal{L}_{a}^{\delta} f(z)\right)^{\prime}+(1-\lambda) \mathcal{L}_{a}^{\delta} f(z)}=p(z) \tag{3.2}
\end{equation*}
$$

Comparing the coefficients, we get

$$
\begin{gather*}
(1+\lambda)\left(\frac{a}{a+1}\right)^{\delta} a_{2}=c_{1} \tag{3.3}\\
(1+2 \lambda)\left(\frac{a}{a+2}\right)^{\delta} a_{3}=\frac{c_{1}^{2}+c_{2}}{2}, \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
(1+3 \lambda)\left(\frac{a}{a+3}\right)^{\delta} a_{4}=\frac{2 c_{3}+3 c_{1} c_{2}+c_{1}^{3}}{6} \tag{3.5}
\end{equation*}
$$

Taking the values of a_{2}, a_{3} and a_{4} from (3.3), (3.4) and (3.5) we have

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| & =H(a, \lambda, \delta) \mid 4 c_{1} c_{3}+6 c_{1}^{2} c_{2}+2 c_{1}^{4} \\
& \left.-\frac{(a+2)^{2 \delta}}{(a+1)(a+3)^{\delta}} \frac{(1+3 \lambda)(1+\lambda)}{(1+2 \lambda)^{2}}\left(3 c_{1}^{4}+3 c_{2}^{2}+6 c_{1}^{2} c_{2}\right) \right\rvert\, \tag{3.6}\\
& =H(a, \lambda, \delta)\left|4 c_{1} c_{3}+6 c_{1}^{2} c_{2}+2 c_{1}^{4}-q\left(3 c_{1}^{4}+3 c_{2}^{2}+6 c_{1}^{2} c_{2}\right)\right| \\
& =H(a, \lambda, \delta)\left|4 c_{1} c_{3}+6(1-q) c_{1}^{2} c_{2}+(2-3 q) c_{1}^{4}-3 q c_{2}^{2}\right| \tag{3.7}
\end{align*}
$$

where, for convenience

$$
\begin{equation*}
H(a, \lambda, \delta)=\frac{(a+1)^{\delta}(a+3)^{\delta}}{12 a^{2 \delta}(1+\lambda)(1+3 \lambda)} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
q(a, \lambda, \delta)=\frac{(a+2)^{2 \delta}(1+3 \lambda)(1+\lambda)}{(a+1)^{\delta}(a+3)^{\delta}(1+2 \lambda)^{2}}=q(\text { say }) \tag{3.9}
\end{equation*}
$$

Since $q \in\left[\frac{8}{9}, 1\right]$ for $0 \leq \lambda \leq 1, \quad \delta=0$, the equation (3.6) can be written as

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=H(a, \lambda, \delta)\left|e_{1} c_{1} c_{3}+e_{2} c_{1}^{2} c_{2}+e_{3} c_{1}^{4}+e_{4} c_{2}^{2}\right| \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{1}=4 ; \quad e_{2}=6(1-q) ; \quad e_{3}=2-3 q ; \quad e_{4}=-3 q \tag{3.11}
\end{equation*}
$$

Since the functions $p(z)$ and $p\left(e^{i \theta} z\right) \quad(\theta \in \mathbb{R})$ are members of the class \mathcal{P} simultaneously, we assume without loss of generality that $c_{1}>0$. For convenience of notation, we take $c_{1}=c(c \in[0,2]$ see (2.2)). Using (2.3) and (2.4) in (3.10), we have

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \left.\frac{H(a, \lambda, \delta)}{4} \right\rvert\, c^{4}\left(e_{1}+2 e_{2}+4 e_{3}+e_{4}\right)+2 c^{2} x\left(4-c^{2}\right)\left(e_{1}+e_{2}+e_{4}\right) \\
& +\left(4-c^{2}\right) x^{2}\left(\left(4-c^{2}\right) e_{4}-e_{1} c^{2}\right)+2 c e_{1}\left(4-c^{2}\right)\left(1-|x|^{2}\right) z \mid \tag{3.12}
\end{align*}
$$

Upon substitute the values of e_{1}, e_{2}, e_{3} and e_{4} from (3.11) in resulting equation (3.12), we obtain

$$
\begin{align*}
& \left.\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{H(a, \lambda, \delta)}{4} \right\rvert\,-(27 q-24) c^{4}+2 c^{2}(10-9 q) x\left(4-c^{2}\right) \\
& \quad-\left(4-c^{2}\right) x^{2}\left(4 c^{2}+3 q\left(4-c^{2}\right)\right)+8 c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z \mid \tag{3.13}
\end{align*}
$$

An application of triangle inequality and replacement of $|x|$ by ρ give

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \frac{H(a, \lambda, \delta)}{4}\left[(27 q-24) c^{4}+8 c\left(4-c^{2}\right)+2 \rho c^{2}\left(4-c^{2}\right)(10-9 q)\right. \\
& \left.\quad+\rho^{2}\left(4-c^{2}\right)\left\{4 c^{2}+3 q\left(4-c^{2}\right)-8 c\right\}\right] \\
= & G(c, \rho)(\text { say }), \quad(0 \leq c \leq 2,0 \leq \rho \leq 1) \tag{3.14}
\end{align*}
$$

Next, we maximize the function $G(c, \rho)$ on the closed square $[0,2] \times[0,1]$. Since

$$
\begin{equation*}
\frac{\partial G}{\partial \rho}=\frac{H(a, \lambda, \delta)}{4}\left[2 c^{2}\left(4-c^{2}\right)(10-9 q)+2 \rho\left(4-c^{2}\right)\left(4 c^{2}+3 q\left(4-c^{2}\right)-8 c\right)\right] \tag{3.15}
\end{equation*}
$$

for $0<c<2$ and $0<\rho<1$, we have $\frac{\partial G}{\partial \rho}>0$. Thus, $G(c, \rho)$ is an increasing function of ρ, which implies that $G(c, \rho)$ cannot have maximum in the interior of the closed rectangle $[0,2] \times[0,1]$. Moreover, for fixed $c \in[0,2]$,

$$
\max _{0 \leq \rho \leq 1} G(c, 1)=F(c) \quad \text { (say) }
$$

where,

$$
\begin{equation*}
F(c)=12 H(a, \lambda, \delta)\left[-(1-q) c^{4}+2(1-q) c^{2}+q\right] \tag{3.16}
\end{equation*}
$$

Now, we have

$$
F^{\prime}(c)=48 c H(a, \lambda, \delta)\left[-(1-q) c^{2}+(1-q)\right]
$$

Setting $F^{\prime}(c)=0$ we obtain that $c=0,-1,1$. Since

$$
F^{\prime \prime}(c)=-48 H(a, \lambda, \delta)\left[3(1-q) c^{2}-(1-q)\right]
$$

and $c \in[0,2]$, we find that F has a maximum value at $c=1$. Thus, the upper bound for (3.14) corresponds to $\rho=1$ and $c=1$. Hence

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 12 H(a, \lambda, \delta)=\frac{[(a+1)(a+3)]^{\delta}}{a^{2 \delta}(1+\lambda)(1+3 \lambda)}
$$

This completes the proof of Theorem 3.1.
Remark 3.2. Taking $\delta=0, \lambda=0$ and $\delta=0, \lambda=1$ we get the result due to Janteng et al. [14] as in the following corollary.
Corollary 3.3. (i) If $f \in \mathcal{S}^{*}$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1
$$

(ii) If $f \in \mathcal{C} \mathcal{V}$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}
$$

Acknowledgements. The authors would like to thank the esteemed referee(s) for their careful reading, valuable suggestions and comments, which helped to improve the presentation of the paper.

References

[1] Alexander, J. W.: Function which map the interior of the unit circle upon simple regions. Ann. Math., Second Series 17(1), 12-22 (1915)
[2] Al-Refai, O., Darus, M.: Second Hankel determinant for a class of analytic functions defined by a fractional operator. European J. Scientific Res. 28(2), 234-241 (2009)
[3] Aouf, M. K.: Neighborhoods of certain classes of analytic functions with negative coefficients. Int. J. Math. Math. Sci. 2006, 1-6 (2006); Art. ID: 38258
[4] Aouf, M. K., Srivastava, H. M.: Some families of starlike functions with negative coefficients. J. Math. Anal. Appl. 203, 762-790 (1996)
[5] Bansal, D.: Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 26(1), 103-107 (2013)
[6] Bernardi, S. D.: Convex and starlike univalent functions. Trans. Amer. Math. Soc. 135, 429-446 (1969)
[7] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York (1983)
[8] El-Deeb, S. M., Aouf, M. K.: Hankel determinant defined by convolution. Annales Univ. Mariae Curie-Sklodowska, Sect. A, Math. 69(2), 47-59 (2015)
[9] Fekete, M., Szegö, G.: Eine Bemerkung über ungerade schlichte funktionen. J. London Math. Sco. 8, 85-89 (1933)
[10] Flett, T. M.: The dual of an inequality of Hardy and Littlewood and some related inequation. J. Math. Anal. Appl. 38, 746-765 (1972)
[11] Hayami, T., Owa, S.: Coefficient estimates for analytic functions concerned with Hankel determinant. An Int. J. Theor. Appl. 13(4), 367-384 (2010)
[12] Hayami, T., Owa, S.: Generalized Hankel determinant for certain classes. Int. J. Math. Anal. 4(52), 2573-2585 (2010)
[13] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has positive real part. J. Ineq. Pur and Appl. Math. 7(2) 1-5 (2006)
[14] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 1(13), 619-625 (2007)
[15] Janteng, A., Halim, S. A., Darus, M.: Estimate on the second Hankel functional for functions whsoe derivative has a positive real part. J. Quality Measurement Anal. 4, 189-195 (2008)
[16] Jung, I. B., Kim, Y. C., Srivastava, H. M.: The Hardy space of analytic function associated with certain one-paprameter families of integral operators. J. Math. Anal. Appl. 176, 138147 (1993)
[17] Kaharudin, N., Akbarally, A., Mohamad, D., Soh, S. C.: The second Hankel determinant for the class of close-to-convex functions. European J. Scientific Res. 66(3), 421-427 (2011)
[18] Komatu, Y.: On analytic prolongation of a family of operators. Mathematica (Cluj) 32(55), 141-145 (1990)
[19] Libera, R. J.: Some classes of regular univalent functions. Proc. Amer. Math. Soc. 16, 755-758 (1965)
[20] Libera, R. J., Zlotkiewicz, E. J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85(2), 225-230 (1982)
[21] Libera, R. J., Zlotkiewicz, E. J.: Coefficient bounds for the inverse of a function with derivative in \mathcal{P}. Proc. Amer. Math. Soc. 87(2), 251-289 (1983)
[22] Mishra, A. K., Gochhayat, P.: Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. (2008); Article ID 153280, 10 pages
[23] Mohammad, A., Darus, D.: Second Hankel determinant for a class of analytic functions defined by a linear operator. Tamkang J. Math. 43(3), 455-462 (2012)
[24] Mohamed, N., Mohamad, D., Soh, S. C.: Second Hankel determinant for certain generalized classes of analytic functions. Int. J. Math. Anal. 6(17), 807-812 (2012)
[25] Murugusundarmoorthy, G., Magesh, N.: Coefficient inequality for certain classes of analytic functions associated with Hankel determinant. Bull. Math. Anal. Appl. 1(3), 85-89 (2009)
[26] Noonan, J. W., Thomas, D. K.: On the second Hankel determinant of a really mean p-valent functions. Trans. Amer. Math. Soc. 223(2), 337-346 (1976)
[27] Robertson, M. S.: On the theory of univalent functions. Annals of Math. 37, 374-408 (1936)
[28] Sălăgeăn, G. S.: Subclasses of univalent functions. in Complex Analysis-Fifth RomanianFinish Seminar, Part I (Bucharest, 1981), 1013 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 362-372 (1983)
[29] Soh, S. C., Mohamad, D.: Coefficients bounds for certain classes of close-to-convex functions. Int. J. Math. Anal. 2(27), 1343-1351 (2008)
[30] Uralegaddi, B. A., Somanatha, C.: Certain classes of univalent functions. in: H. M. Srivastava and S. Owa (Eds.): Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 371-374 (1992)

Received: 16 August 2016/Accepted: 4 October 2019/Published online: 25 october 2019

Ram N. Mohapatra
Department of Mathematics, University of Central Florida, Orlando, FL. 32816, USA.
ram.mohapatra@ucf.edu
Trailokya Panigrahi
Department of Mathematics, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar-751024, Orissa, India.
trailokyap6@gmail.com
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

[^0]: 2010 Mathematics Subject Classification: 30C45.
 Keywords: Analytic functions, Starlike functions, Convex functions, Hankel determinant, Komatu integral operator.
 (C) The Author(s) 2019. This article is an open access publication.
 *Corresponding author.

