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Second Hankel determinant for a class of analytic functions
defined by Komatu integral operator

Ram N. Mohapatra and Trailokya Panigrahi∗

Abstract. In this paper, the authors obtain an upper bound of second Hankel determinant for a

new class of analytic functions defined through the Komatu integral operator. Our result extends

the corresponding previously known results.

1. Introduction

Let A be the class of functions analytic in the open unit disk U := {z ∈ C : |z| < 1}
and A0 be the family of functions f in A given by the normalized power series

f(z) = z +

∞∑
n=2

anz
n (z ∈ U). (1.1)

Let S denote the class of all functions in A0 which are univalent in U. A function
f(z) ∈ A0 is said to be in the class S∗(β), starlike functions of order β (cf. [27])
in U if it satisfies

<
{
zf ′(z)

f(z)

}
> β (0 ≤ β < 1; z ∈ U). (1.2)

Further, a function f(z) ∈ A0 is said to be in the class CV(β), convex function of
order β (cf. [27]) in U if it satisfies

<
{

1 +
zf ′′(z)

f ′(z)

}
> β (0 ≤ β < 1, z ∈ U). (1.3)

In particular, S∗(0) = S∗ and CV(0) = CV are the familiar classes of starlike and
convex functions in U (cf. [7]).

Komatu [18] introduced a certain integral operator Lδa defined by

Lδaf(z) =
aδ

Γ(δ)

∫ 1

0

ta−2
(
log

1

t

)δ−1
f(zt)dt (z ∈ U; a > 0; δ ≥ 0; f ∈ A0).

(1.4)
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Thus, if f(z) ∈ A0 is of the form (1.1), then it is clear from (1.4) that

Lδaf(z) = z +

∞∑
n=2

(
a

a+ n− 1

)δ
anz

n (z ∈ U; a > 0; δ ≥ 0). (1.5)

The operator Lδa unifies several previously studied operators. Namely;

• L0
af(z) = f(z)

• L1
1f(z) = A[f ](z) known as Alexander operator [1]

• L1
2f(z) = L[f ](z) known as Libera operator [19]

• L1
c+1f(z) = Lc[f ](z) called generalized Libera operator or Bernardi operator

[6]

• for a = 1 and δ = k (k is any integer), the multiplier transformation Lk1f(z) =
Ikf(z) was studied by Flett [10] and Sălăgeăn [28] (also, see [3, 4])

• for a = 1 and δ = −k (k ∈ N0 = {0, 1, 2, ...}), the differential operator
L−k1 = Dkf(z) was studied by Sălăgeăn [28];

• for a = 2 and δ = k (k is an integer), the operator Lk2f(z) = Lkf(z) was
studied by Uralegaddi and Somanatha [30];

• for a = 2, the multiplier transformation Lδ2f(z) = Iδf(z) was studied by
Jung et al. [16].

Now, we introduce a new subclass of analytic functions by making use of the
Komatu integral operator Lδa as follows:

Definition 1.1. A function f ∈ A0 is said to be in the class Rδa(λ) if it satisfies
the inequality

<

{
z
(
λz(Lδaf(z))′ + (1− λ)Lδaf(z)

)′
λz(Lδaf(z))′ + (1− λ)Lδaf(z)

}
> 0 (z ∈ U; a > 0, δ ≥ 0, 0 ≤ λ ≤ 1).

(1.6)

Note that, by taking λ = 0, δ = 0 and λ = 1, δ = 0 in the relation (1.6), the
class Rδa(λ) reduces to classes S∗ and CV respectively.

Definition 1.2 ([26]). For a function f ∈ A0 given by (1.1) and q ∈ N :=
{1, 2, 3, ...}, the q th Hankel determinant denoted by Hq(n) is defined as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q
. . . .
. . . .
. . . .

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
(a1 = 1).
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A classical theorem of Fekete and Szegö [9] considered the Hankel determinant
of f ∈ S for q = 2 and n = 1,

H2(1) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ .
Then, they further generalized the functional |a3−µa22|, where µ is real and f ∈ S
. In this paper, we consider the Hankel determinant for the case q = 2 and n = 2,

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = |a2a4 − a23|.

For a given family F of the functions in A0, the sharp upper bound for the
nonlinear functional |H2(2)| is popularly known as the second Hankel determinant.

Janteng et al. [15] (also, see [13]) have considered the functional |a2a4 − a23|
and found the sharp bound for the function f in the subclass R of S, consisting
of functions whose derivative has a positive real part. They have shown that if
f ∈ R, then |a2a4 − a23| ≤ 4

9 .

Further, Janteng et al. [14] also obtained sharp bounds for Hankel determi-
nant for functions in certain familiar subclasses of S namely; starlike and convex
functions denoted by S∗ and C respectively. They have shown that if f ∈ S∗, then
|a2a4 − a23| ≤ 1 and if f ∈ C, then |a2a4 − a23| ≤ 1

8 .

Recently, Murugusundaramoorthy and Magesh [25] have obtained the sharp
upper bound for the functional |a2a4 − a23| for the function f ∈ R(α), where

R(α) =

{
f(z) ∈ A0 : <

{
(1− α)

f(z)

z
+ αf ′(z)

}
> 0, α > 0, z ∈ U

}
.

Recently, Kaharudin et al. [17] have obtained the upper bound of the second
Hankel determinant |a2a4 − a23| for the functions in the class Gk(α, δ) defined as

<
{
eiα

f(z)

g′(z)

}
> δ (z ∈ U)

where |α| ≤ π; cosα − δ > 0; g(z) is convex function and g′(z) = 1
1−z . For some

more recent work on second Hankel determinant see [2, 5, 8, 11, 12, 22, 23, 24, 29].
Motivated by the aforementioned works, in this paper, we find an upper bound
for the functional |a2a4 − a23| for the functions f belongs to the class Rδa(λ). We
generalize the results of Janteng et al. [13].

2. Preliminaries

Let P be the family of all functions p ∈ A satisfying p(0) = 1 and <{p(z)} > 0,
(z ∈ U).

We need the following lemmas for our present investigation:
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Lemma 2.1 (see [7]). Let the function p ∈ P be given by the series

p(z) = 1 + c1z + c2z
2 + · · · (z ∈ U). (2.1)

Then, the sharp estimate

|ck| ≤ 2 (k ∈ N) (2.2)

holds.

Lemma 2.2 (cf. [20], also see [21]). Let the function p ∈ P be given by the series
(2.1). Then

2c2 = c21 + x(4− c21) (2.3)

for some x, |x| ≤ 1 and

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z (2.4)

for some z, |z| ≤ 1.

3. Main Results

Unless otherwise mentioned, we assume throughout the sequel that a > 0, δ ≥ 0,
0 ≤ λ ≤ 1.

Theorem 3.1. Let the function f ∈ A0, given by (1.1) be in the class Rδa(λ).
Then

|a2a4 − a23| ≤
[

(a+ 1)(a+ 3)

a2

]δ
1

(1 + λ)(1 + 3λ)
. (3.1)

Proof. Let the function f(z) ∈ A0 represented by (1.1) be in the class Rδa(λ). By
geometric interpretation, there exists a function p ∈ P given by (2.1) such that

z
(
λz(Lδaf(z))′ + (1− λ)Lδaf(z)

)′
λz(Lδaf(z))′ + (1− λ)Lδaf(z)

= p(z). (3.2)

Comparing the coefficients, we get

(1 + λ)

(
a

a+ 1

)δ
a2 = c1 , (3.3)

(1 + 2λ)

(
a

a+ 2

)δ
a3 =

c21 + c2
2

, (3.4)

and

(1 + 3λ)

(
a

a+ 3

)δ
a4 =

2c3 + 3c1c2 + c31
6

. (3.5)
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Taking the values of a2, a3 and a4 from (3.3), (3.4) and (3.5) we have

|a2a4 − a23| = H(a, λ, δ)

∣∣∣∣4c1c3 + 6c21c2 + 2c41

− (a+ 2)2δ

(a+ 1)(a+ 3)
δ

(1 + 3λ)(1 + λ)

(1 + 2λ)2
(3c41 + 3c22 + 6c21c2)

∣∣∣∣ (3.6)

= H(a, λ, δ)

∣∣∣∣4c1c3 + 6c21c2 + 2c41 − q(3c41 + 3c22 + 6c21c2)

∣∣∣∣
= H(a, λ, δ)

∣∣∣∣4c1c3 + 6(1− q)c21c2 + (2− 3q)c41 − 3qc22

∣∣∣∣ (3.7)

where, for convenience

H(a, λ, δ) =
(a+ 1)δ(a+ 3)δ

12a2δ(1 + λ)(1 + 3λ)
(3.8)

and

q(a, λ, δ) =
(a+ 2)2δ(1 + 3λ)(1 + λ)

(a+ 1)δ(a+ 3)δ(1 + 2λ)2
= q (say). (3.9)

Since q ∈ [ 89 , 1] for 0 ≤ λ ≤ 1, δ = 0, the equation (3.6) can be written as

|a2a4 − a23| = H(a, λ, δ)|e1c1c3 + e2c
2
1c2 + e3c

4
1 + e4c

2
2|, (3.10)

where

e1 = 4; e2 = 6(1− q); e3 = 2− 3q; e4 = −3q . (3.11)

Since the functions p(z) and p(eiθz) (θ ∈ R) are members of the class P simul-
taneously, we assume without loss of generality that c1 > 0. For convenience of
notation, we take c1 = c (c ∈ [0, 2] see (2.2)). Using (2.3) and (2.4) in (3.10), we
have

|a2a4 − a23| =
H(a, λ, δ)

4

∣∣∣∣c4(e1 +2e2 +4e3 +e4) + 2c2x(4− c2)(e1+e2+e4)

+ (4− c2)x2
(
(4− c2)e4 − e1c2

)
+ 2ce1(4− c2)(1− |x|2)z

∣∣∣∣ (3.12)

Upon substitute the values of e1, e2, e3 and e4 from (3.11) in resulting equation
(3.12), we obtain

|a2a4 − a23| =
H(a, λ, δ)

4

∣∣∣∣− (27q − 24)c4 + 2c2(10− 9q)x(4− c2)

− (4− c2)x2(4c2 + 3q(4− c2)) + 8c(4− c2)(1− |x|2)z

∣∣∣∣ (3.13)
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An application of triangle inequality and replacement of |x| by ρ give

|a2a4 − a23| ≤
H(a, λ, δ)

4

[
(27q − 24)c4 + 8c(4− c2) + 2ρc2(4− c2)(10− 9q)

+ ρ2(4− c2)
{

4c2 + 3q(4− c2)− 8c
} ]

=G(c, ρ)(say), (0 ≤ c ≤ 2, 0 ≤ ρ ≤ 1). (3.14)

Next, we maximize the function G(c, ρ) on the closed square [0, 2]× [0, 1]. Since

∂G

∂ρ
=
H(a, λ, δ)

4

[
2c2(4− c2)(10− 9q) + 2ρ(4− c2)(4c2 + 3q(4− c2)− 8c)

]
, (3.15)

for 0 < c < 2 and 0 < ρ < 1, we have ∂G
∂ρ > 0. Thus, G(c, ρ) is an increasing

function of ρ, which implies that G(c, ρ) cannot have maximum in the interior of
the closed rectangle [0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2],

max
0≤ρ≤1

G(c, 1) = F (c) (say),

where,

F (c) = 12H(a, λ, δ)

[
− (1− q)c4 + 2(1− q)c2 + q

]
. (3.16)

Now, we have
F ′(c) = 48cH(a, λ, δ)[−(1− q)c2 + (1− q)].

Setting F ′(c) = 0 we obtain that c = 0, − 1, 1. Since

F ′′(c) = −48H(a, λ, δ)
[
3(1− q)c2 − (1− q)

]
and c ∈ [0, 2], we find that F has a maximum value at c = 1. Thus, the upper
bound for (3.14) corresponds to ρ = 1 and c = 1. Hence

|a2a4 − a23| ≤ 12H(a, λ, δ) =
[(a+ 1)(a+ 3)]δ

a2δ(1 + λ)(1 + 3λ)
.

This completes the proof of Theorem 3.1.

Remark 3.2. Taking δ = 0, λ = 0 and δ = 0, λ = 1 we get the result due to
Janteng et al. [14] as in the following corollary.

Corollary 3.3. (i) If f ∈ S∗, then

|a2a4 − a23| ≤ 1.

(ii) If f ∈ CV, then
|a2a4 − a23| ≤

1

8
.
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