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A Phragmén-Lindelöf property of viscosity solutions to a
class of nonlinear parabolic equations with growth

conditions

Tilak Bhattacharya∗ and Leonardo Marazzi

Abstract. We study Phragmén-Lindelöf properties of viscosity solutions to a class of doubly

nonlinear parabolic equations in Rn×(0, T ). We include an application to some doubly nonlinear

equations. We address also the optimality of some our results.

1. Introduction

In this work, we discuss Phragmén-Lindelöf type results for a class of nonlinear
parabolic equations. This is a follow-up of the work in [3] where we stated similar
results for viscosity solutions of Trudinger’s equation in infinite strips Rn× (0, T ),
where n ≥ 2 and 0 < T < ∞. The classical references [11, 13, 14, 16] contain a
detailed discussion of the importance of this property and its connections to other
questions. The main question of interest is: under what conditions do solutions
of elliptic and parabolic equations satisfy a maximum principle on unbounded
domains? Our work considers infinite strips of Rn+1 and presents some results in
this direction. Our results apply to a fairly large class of parabolic equations and,
in many instances, appear to be optimal. Further discussion and connections to
other questions can be found in, for instance, [1, 7, 12, 14].

Many of the references, cited above, address primarily linear uniformly elliptic
and parabolic equations. Our current work, on the other hand, studies nonlinear,
possibly degenerate, parabolic equations and includes in it a certain class of dou-
bly nonlinear equations. The case of Trudinger’s equation is an instance of such
equations, see [3, 15]. Moreover, the class we study here does include some linear
uniformly parabolic equations, as examples.

Our work is in the context of viscosity solutions and it is important to point
out that [7] appears to be the earliest work done on this question for nonlinear
elliptic operators. Our work addresses similar questions for the parabolic versions
of the operators considered in [7].

We introduce notation for our discussion. Let n ≥ 2 and 0 < T < ∞. Define
RnT = Rn×(0, T ). Let g : Rn → (0,∞) and h : Rn → R be two continuous functions
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satisfying

max

(
sup
x∈Rn

| log g(x)|, sup
x∈Rn

|h(x)|
)
<∞ . (1.1)

Our motivation for the work arises from the study of viscosity solutions of
doubly nonlinear equations of the kind

H(Du,D2u)− f(u)ut = 0, in RnT , u(x, t) > 0 and u(x, 0) = g(x), ∀x in Rn,
(1.2)

where H satisfies certain homogeneity conditions and f : R+ → R+ is a non-
decreasing continuous function, see Section 2 for more details. As shown in [5], if
f satisfies certain conditions then there exists a function φ such that the change
of variable u = φ(v) transforms (1.2) to

H(Dv,D2v+Z(v)Dv⊗Dv)− vt = 0, in RnT , and v(x, 0) = φ−1(g(x)), ∀x in Rn,
(1.3)

where Z : R → R+ is a non-increasing function. As observed in [2, 5], one can
conclude a comparison principle for (1.3), and hence, for (1.2).

Consider the well-known Trudinger’s equation [2, 15]:

div(|Du|p−2Du)− (p− 1)up−2ut = 0, in RnT , and u > 0.

Writing u = ev (see [2]), we obtain an instance of (1.3), i.e.,

div(|Dv|p−2Dv) + (p− 1)|Dv|p − (p− 1)vt = 0, in RnT .

Setting H(Dw,D2w) =div(|Dw|p−2Dw), the above may be written as

H(Dv,D2v +Dv ⊗Dv)− (p− 1)vt = 0, in RnT .

A related and somewhat more general equation is

H(Du,D2u) + χ(t)|Du|σ − (p− 1)up−2ut = 0, in RnT , u > 0,

with u(x, 0) = g(x), ∀x in Rn,

where σ ≥ 0 and χ(t) is continuous on [0, T ]. Using u = ev we get that

H(Dv,D2v +Dv ⊗Dv) + χ(t)e(σ−(p−1))v|Dv|σ − (p− 1)vt = 0, in RnT ,

and v(x, 0) = log g(x), ∀x in Rn.

At this time, it is not clear to us as to how to address the above equation. Nonethe-
less, this provides motivation for addressing the following related question of study-
ing Phragmén-Lindelöf results for equations of the kind

H(Dv,D2v + Z(v)Dv ⊗Dv) + χ(t)|Dv|σ − vt = 0,

v(x, 0) = h(x), for all x in Rn. (1.4)
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Here χ and h are continuous, bounded and can have any sign. The function Z is
non-increasing and continuous.

In this work, the operators H satisfy certain monotonicity and homogeneity
conditions, see Section 2 for a more precise formulation. Our goal then is to con-
sider equations such as (1.4) and show that if v satisfies certain growth conditions,
for large |x|, then v satisfies a maximum principle. A similar conclusion then
follows for the equation in (1.2).

The role of the function Z is important. We assume that Z is non-increasing
and infs Z(s) > 0. This greatly influences our results as Z(v)Dv ⊗ Dv and
χ(t)|Dv|σ could be dueling terms and this is reflected in the nature of the im-
posed growth rates. Included in the work is also the role of the sign of χ in
deriving a maximum principle.

The second assumption we make is the following. Let e ∈ Rn denote any unit
vector, I be the n× n identity matrix and λ ∈ R be a parameter. Set

Λmin(λ) = min
|e|=1

H(e, λe⊗ e− I).

We require that Λmin(λ) > 0 for some λ > 1. As shown in Section 2, this implies
that supλ>0 Λ(λ)=∞. The p-Laplacian, the Infinity-Laplacian, the pseudo p-La-
placian and the Pucci operators all satisfy this condition, see [5, 10]. Another

operator of interest included here is as follows. Let H(X) =
∑`
i=1 µi(X), ` < n,

where X is any symmetric n × n matrix and µ1(X) ≥ µ2(X) ≥ · · · ≥ µn(X) are
its eigenvalues. Such partial scalar curvature operators are of great interest and
have been considered in many works, see [17] for a detailed discussion.

The current work, in a sense, complements the work in [6] wherein we study
the case supλ[max|e|=1H(e, λe ⊗ e + I) < ∞. As an example, the operator
H(X) =

∑n
i=m µi(X), m > 1 (see the above paragraph) is included in this work.

Another example would be |Du|2∆u−〈D|Du|2, Du〉/2. Our results in the current
work do not apply to these instances.

As shown in [6] and the current work, the behaviour of H(e, λe⊗e±I) for large
λ influences greatly the nature of the imposed growth rates. A comparison of the
main results shows that for smaller values of σ, the maximum principle discussed
in [6] appears to hold under growth rates at infinity which are greater than ones
imposed in the current work (shown to be optimal in many cases, see Section 8)
even allowing for exponential growth rates in some cases. In the current work,
however, for small σ, the minimum principle holds without requiring any lower
bound. A lower bound is needed in all instances in [6].

Another point of contrast is that, in the current work, 0 < inf Z ≤ supZ <∞
and the two bounds play an important role. In [6], Z ≥ 0 can vanish and its upper
bound does not appear to have a significant role in the work. Also, unlike the
present work, a lower bound on H(e, λe ⊗ e − I) is imposed, in some instances,
to derive a minimum principle. We should also point out that we do not address
optimality in [6]. It is not clear to us if rates greater than stated in the results
could apply.
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In both the works, the influence of the sign of χ is important and some differ-
ences are seen even here. If χ < 0 then the maximum principle in [6] holds without
any restrictions for a greater range of σ than in the current work. The converse,
however, appears to be true of the minimum principle if χ > 0, in particular, this
holds for any σ ≥ 0 in the current work. It is also to be noted that for certain
range of values of σ, the results turn out to be quite similar.

We have divided our work as follows. In Section 2, we present notation, as-
sumptions and the main results. In Sections 3 and 4, we present comparison
principles, a change of variables result and calculations for some of the auxiliary
functions. Sections 5 and 6 address the super-solutions and sub-solutions respec-
tively. Section 7 presents proofs of the main results. Finally, Section 8 addresses
the matter of optimality.

We do not address existence and uniqueness issues in this work. It would
be interesting to know if the growth rates stated in this work would imply such
results. We do address the issue of optimality of the various growth rates imposed
on the solutions, although, some of the results are partial in nature.

For additional discussion and motivation, we direct the reader to the works
[1, 7, 8, 9, 12, 14].

2. Notation, definitions, assumptions and main results

We employ the notion of viscosity solutions and sub-solutions, super-solutions and
solutions are all understood in the viscosity sense, see [5, 8] for definitions. We
use the notation usc(lsc) for upper(lower) semicontinuous functions. Throughout
this work, we assume that the functions g and h will always satisfy (1.1).

By o, we denote the origin in Rn and e denotes a unit vector in Rn. The letters
x, y will denote points in Rn. Let Sn×n be the set of all symmetric n × n real
matrices, I be the n× n identity matrix and O the n× n zero matrix.

We now state the conditions H satisfies.

Condition A (Monotonicity): The operator H : Rn×Sn → R is continuous
for any (q,X) ∈ Rn × Sn×n. We assume that

(i) H(q,X) ≤ H(q, Y ), for any q ∈ Rn and for any X, Y in Sn×n with X ≤ Y ,
(ii) H(q,O) = 0, for any q ∈ Rn. (2.1)

Clearly, for any q ∈ Rn and X ∈ Sn×n with X ≥ O, H(q,X) ≥ 0.

Condition B (Homogeneity): There is a constant k1 ≥ 0 such that for any
(q,X) ∈ Rn × Sn×n,

(i) H(θq,X) = |θ|k1H(q,X), ∀θ ∈ R, and

(ii) H(q, θX) = θH(q,X), ∀θ > 0. (2.2)

Note that if k1 = 0 then H(q,X) = H(q/θ,X),∀θ > 0. Hence, H(q,X) = H(X).
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Our results in this work can be adapted to include the case H(q, θX) =
θk2H(q,X) where k2 > 1 is a natural number such that Condition A holds. For
this work, however, we take k2 = 1.

Before stating the next condition, we introduce additional notation. For a
vector ξ ∈ Rn, we write its component form as (ξ1, ξ2, . . . , ξn). Recall that (ξ ⊗
ξ)ij = ξiξj , i, j = 1, . . . , n. Clearly, ξ ⊗ ξ ∈ Sn×n and ξ ⊗ ξ ≥ O.

Recalling that e ∈ Rn is a unit vector, define, for every λ ∈ R,

Λmin(λ) = min
e
H(e, λe⊗ e− I) and Λmax(λ) = max

e
H(e, λe⊗ e+ I). (2.3)

By Condition A, Λmin(λ) and Λmax(λ) are both non decreasing functions of λ.

Condition C(Growth at Infinity): We require that

(i) max
|e|=1

H(e,−I) < 0 < min
|e|=1

H(e, I − λe⊗ e), ∀λ < 1.

(ii) There exists a λ0 > 1 such that Λmin(λ0) = min
|e|=1

H(e, λ0e⊗ e− I) > 0. (2.4)

We require λ0 > 1 since, λe⊗ e− I ≤ O, if λ ≤ 1. See Condition A.

Remark 2.1. We state some implications of Conditions A, B and C.
By Condition A, Λmin(λ) ≥ Λmin(λ0) > 0, ∀λ ≥ λ0. By Condition B,

Λmin(λ) =

(
λ

λ0

)
min
|e|=1

H

(
e, λ0e⊗ e−

λ0

λ
I

)
≥ λΛmin(λ0)

λ0
, ∀λ ≥ λ0,

since (λ0/λ)I ≤ I. Noting that λe⊗ e− I = λ(e⊗ e− (λ)−1I), we get that

H(e, e⊗ e) ≥ Λmin(λ)

λ
≥ Λmin(λ0)

λ0
> 0 and sup

λ>0
Λmin(λ) =∞. (2.5)

Thus, (2.4) implies that (2.5) holds. If min|e|=1H(e, e ⊗ e) > 0 then by the
continuity of H, Conditions A and B, min|e|=1H(e, λ0e ⊗ e − I) > 0 for some
λ0 > 1. �

We discuss some examples of H. We record the following: for λ ∈ R, the
eigenvalues of λe⊗ e− I are (i) −1 with multiplicity n− 1, and (ii) λ− 1.

Examples of H: Let q ∈ Rn and X ∈ Sn×n. We set

Hλ = min
|e|=1

H(e, λe⊗ e− I) .

The following operators satisfy Conditions A, B and C.

(i) p-Laplacian: Define

H(q,X) = |q|p−2Tr(X) + (p− 2)|q|p−2qiqjXij , p ≥ 2,
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where Tr denotes the trace. Then Hλ = λ(p− 1)− (n+ p− 2).

(ii) Pseudo p-Laplacian: Define H(q,X) =
∑n
i=1 |qi|p−2Xii, p ≥ 2. Then

Hλ =
∑n
i=1 λ|ei|p − |ei|p−2 ≥ λnp/2−1 − n.

(iii) Infinity Laplacian: Define H(q,X) =
∑n
i,j=1 qiqjXij then Hλ = λ− 1.

(iv) Pucci Operators: Define H+(X) = αTr(X) + (1 − nα)µ1(X) and
H−(X) = αTr(X) + (1 − nα)µn(X), where 0 < α < 1/n, µ1 and µn are the
largest eigenvalue and the smallest eigenvalue of X respectively, see [10]. Then for
λ ≥ 0,

H+(λe⊗ e− I) ≥ λ[1− (n− 1)α]− 1 and H−(λe⊗ e− I) = αλ− 1.

(v) Partial Scalar Curvature: Let µ1 ≥ µ2 ≥ · · · ≥ µn be the eigenvalues

of X. Define for any 1 < ` ≤ n, H(X) =
∑`
i=1 µi(X). Hence, Hλ = λ− `, ∀λ > 0.

As an example, if for n ≥ 2, H(x) = µ1(X) + µn(X), then Hλ = λ − 2. See [17]
for more discussion and related works.

Note that Conditions A, B and C are also satisfied by operators |q|sH(q, x), s ≥
0, where H is any of the operators listed above, and are included in this work. �

For the rest of this work, we set

k = k1 + 1 and γ = k1 + 2 = k + 1. (2.6)

Also, χ : (0, T ) → R is a bounded continuous function and, for some interval
I ⊂ R, Z : I → R+ is a non-increasing continuous function. We set and require
the following.

`m = inf
s∈I

Z(s), `M = sup
s∈I

Z(s) and 0 < `m ≤ `M <∞,

αm = inf
0<t<T

χ(t), αM = sup
0<t<T

χ(t) and −∞ < αm ≤ αM <∞. (2.7)

Let h : Rn → R be bounded and continuous, see (1.1). Furthermore, we set and
impose that

µm = inf
x∈Rn

h(x), µM = sup
x∈Rn

h(x) satisfy −∞ < µm ≤ µM <∞,

Hm = min
|e|=1

H(e, e⊗ e), HM = max
|e|=1

H(e, e⊗ e) satisfy 0 < Hm ≤ HM <∞. (2.8)

We use the following notation wherever there is little possibility for confusion.
From here on, set

G(u) ≡ H(Du,D2u+ Z(u)Du⊗Du).

We now state the main results of this work. For Theorems 2.2 and 2.3, we
assume that Conditions A, B and C hold. We also note that if Z is defined on
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some interval [µ,∞) then, if need be, one can extend Z to

Z(s) =

{
`M , −∞ < s ≤ µ,
Z(s), s ≥ µ .

Theorem 2.2. (Maximum Principle) Let 0 < T <∞ and recall (2.6), (2.7) and
(2.8). Let Z : [µ,∞) → R+, for some µ ≤ infx h(x). Let u ∈ usc(RnT ), u ≥ µ,
solve

G(u) + χ(t)|Du|σ − ut ≥ 0, in RnT , and u(x, 0) ≤ h(x), ∀x ∈ Rn.

Suppose that there is δ > 0 such that

sup
0≤|x|≤R, 0≤t≤T

u(x, t) = o(Rδ), as R→∞.

The following hold.
In parts (a) and (b), we assume that either (i) k = 1 i.e., γ = 2 and δ = 2− ε,

for any fixed and small ε > 0, or (ii) k > 1 and δ = γ/k.
(a) Let σ = 0. In both (i) and (ii), we get that

sup
RnT

u(x, t) ≤ sup
x
h(x) + t(sup

t
χ(t)).

(b) Let 0 < σ ≤ γ. In both (i) and (ii), we get that

sup
RnT

u(x, t) ≤ sup
x
h(x).

(c) Let σ > γ and δ = σ/(σ − 1). Then

sup
RnT

u(x, t) ≤ sup
x
h(x), ∀k ≥ 1.

Moreover, if supt χ(t) < 0 and σ ≥ γ then the following hold for any k ≥ 1.

(d) Suppose that σ = γ.
If | supt χ(t)| > (supZ)(max|e|=1H(e, e ⊗ e)) then part (b) holds without im-

posing any upper bound.
The conclusion in part (b) holds, if | supt χ(t)| ≤ (supZ)(max|e|=1H(e, e⊗e)).

The upper bound in part (b) is needed.

(e) Let σ > γ. No upper bound is needed and

sup
RnT

u ≤ sup
x
h(x)+t

[{(supZ)(max|e|=1H(e, e⊗ e))}σ

| supt χ(t)|γ

]1/(σ−γ)

. �
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In part (e), the term χ|Du|σ dominates the term Z(u)Du⊗Du thus requiring
no upper bound. In Section 8, we show that the growth rates are optimal.

Theorem 2.3. (Minimum Principle) Let 0 < T < ∞ and recall (2.6), (2.7) and
(2.8). Suppose that Z : (−∞,∞)→ R+. Let u ∈ lsc(RnT ) solve

G(u) + χ(t)|Du|σ − ut ≤ 0, in RnT , and u(x, 0) ≥ h(x), ∀x ∈ Rn.

Then the following hold. We impose no restrictions on u in parts (a)-(c), For
parts (a)-(e), assume that inf(0,T ) χ(t) ≤ 0, see part (f) below.

(a) If σ = 0 then

inf
RnT

u(x, t) ≥ inf
x
h(x)− t| inf

t
χ(t)|.

(b) If 0 < σ < γ then

inf
RnT

u(x, t) ≥ inf
x
h(x)− t

[
| inft χ(t)|γ

((inf Z)(min|e|=1H(e, e⊗ e))σ

]1/(γ−σ)

.

(c) If σ = γ and | inft χ(t)| < (inf Z)(min|e|=1H(e, e⊗ e)) then infRnT u(x, t) ≥
µm.

For parts (d) and (e), assume that there is a δ > 0 such that

sup
0≤|x|≤R, 0≤t≤T

(−u(x, t)) = o(Rδ), as R→∞,

(d) Let σ = γ and | inft χ(t)| ≥ (inf Z)(min|e|=1H(e, e⊗ e)). Either (i) k = 1
(γ = 2) and δ = 2− ε for a fixed, small ε > 0, or (ii) k > 1 (γ > 2) and δ = γ/k,
then

inf
RnT

u(x, t) ≥ inf
x
h(x).

(e) If σ > γ and δ = σ/(σ − 1) then infRnT u(x, t) ≥ infx h(x).

(f) If inft χ(t) > 0, i.e., χ > 0 then no lower bound is needed and

u(x, t) ≥ inf
x
h(x), ∀ 0 ≤ σ <∞ . �

As seen from parts (a)-(c) and (f), the minimum principle holds, without any
restrictions, as χ|Du|σ is dominated by Z(u)Du⊗Du.

Remark 2.4. If H is quasilinear then Conditions A and B imply

H(Dw,D2w + Z(w)Dw ⊗Dw) = H(Dw,D2w) + Z(w)|Dw|γH(e, e⊗ e),
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since γ = k + 1 and σ = γ.
Take Z(s) ≡ 1. Clearly, `m = `M = 1. Set Hm = min|e|=1H(e, e ⊗ e) and

HM = max|e|=1H(e, e⊗ e).
We observe the following. If H(Dw,D2w)− wt ≥ 0 then

Hγ(w) ≡ H(Dw,D2w +Dw ⊗Dw)−Hm|Dw|γ − wt ≥ 0,

Thus, Theorem 2.2 (b) and (d) apply with χ = −Hm and |αm| = |αM | = Hm ≤
HM .

If H(Dw,D2w)− wt ≤ 0 then we take χ = −HM and

Hγ(w) ≡ H(Dw,D2w +Dw ⊗Dw)−HM |Dw|γ − wt ≤ 0.

Thus, Theorem 2.3 (d) applies as |αm| = HM ≥ Hm.
The growth rate is γ/k for both results. Clearly, our results apply to the case

of the parabolic p-Laplacian i.e., ∆pu − ut = 0, p ≥ 2 and γ/k = p/(p − 1). A
stronger result for the heat equation is obtained from Theorem 2.5 viewing it as a
case of Trudinger’s equation. �

Before stating results for a class of doubly nonlinear equations, we introduce
a change of variables, see Lemma 2.3 in [5]. See also [3].

Recall that k = k1 + 1 and γ = k1 + 2. Let f : [0,∞) → [0,∞) be a C1

increasing function. For k > 1, we assume that f1/(k−1) is a concave function. Set
η(s) = (f(s))−1/(k−1). Let F be a primitive of η i.e.,

F (τ)− F (τ0) =

∫ τ

τ0

η(s)ds, 0 ≤ τ0 ≤ τ <∞. (2.9)

Clearly, F is increasing. Let 0 < ε < 1. Either

(i) lim
ε→0+

F (1)− F (ε) <∞ or (ii) lim
ε→0+

F (1)− F (ε) =∞. (2.10)

If (2.10)(i) holds then we take τ0 = 0 and F (0) = 0 in (2.9) and define

F (τ) =

∫ τ

0

η(s)ds, τ ≥ 0. (2.11)

If (2.10)(ii) holds then F (ε)→ −∞, as ε→ 0+. We take F as

F (τ) =

∫ τ

η(s)ds, τ > 0. (2.12)

Suppose that (2.10)(i) holds then we use (2.11) and define φ by

F (φ(τ)) = τ and the domain of φ is [0,∞). (2.13)

Since F (0) = 0 and F is increasing, φ is increasing and φ(0) = 0.
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If (2.10)(ii) holds then we use F in (2.12) and define φ by

F (φ(τ)) = τ and the domain of φ is (−∞,∞). (2.14)

Clearly, φ is increasing.
Moreover, the definition of φ and (2.9) lead to{
φ′(τ) = [(f ◦ φ)(τ)]1/(k−1) and φ′′(τ)/φ′(τ) =

{
f(θ)1/(k−1)

}′∣∣∣
φ(τ)

.

Set Z(s) = Z(φ(s)) := φ′′(s)/φ′(s).
(2.15)

Since f1/(k−1) is concave and φ is increasing (2.15) shows that Z is non-increasing
in s and the domain of Z contains (0,∞). By Lemma 2.3 in [5], if u > 0 solves

H(Du,D2u)− f(u)ut ≥ (≤)0, in RnT ,

then u = φ(v) solves

H(Dv,D2v + Z(v)Dv ⊗Dv)− vt ≥ (≤)0, where Z(v) = φ′′(v)/φ′(v).

Since Z is non-increasing, a comparison principle (see Lemma 3.3 and Corollary
3.4 in Section 3) holds.

Next, (2.7) together with (2.15) implies that{
(`mθ + a)k−1 ≤ f(θ) ≤ (`Mθ + b)k−1, θ ≥ 0

Â exp(`ms)− Ā ≤ φ(s) ≤ B̂ exp(`Ms)− B̄,

for some a ≥ 0, b ≥ 0, Â > 0, B̂ > 0. Here, either Â = Ā or Ā = 0 and B̂ = B̄
or B̄ = 0. An example is f(s) = (s + h(s))k−1, s ≥ 0, where h(s) ≥ 0 and h is
concave such as sα, 0 < α < 1, log(s+ 1) and tan−1(s).

We now state the final result of the work. Some of the claims follow from
Theorems 2.2(a) and 2.3(a) with α = σ = 0. The domain of Z is either (i) (0,∞)
or [0,∞), or (ii) (−∞,∞).

Theorem 2.5. Let k ≥ 1, f : [0,∞) → [0,∞) be a C1 non-decreasing function,
and g : Rn → (0,∞) be such that 0 < infx∈Rn g(x) ≤ supx∈Rn g(x) <∞.

Recall (2.7), (2.13), (2.14) and (2.15).
(i) Let k > 1. We assume that f1/(k−1) is concave and

0 < inf
0≤s<∞

d

ds
f1/(k−1)(s) ≤ sup

0≤s<∞

d

ds
f1/(k−1)(s) <∞.

Select φ : R→ [0,∞), a C2 increasing function such that

φ′(τ) = f(φ(τ))1/(k−1).
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(a) Let u ∈ usc(RnT ), u > 0, solve

H(Du,D2u)− f(u)ut ≥ 0, in RnT and u(x, 0) ≤ g(x), ∀x ∈ Rn.

Suppose that sup|x|≤R, 0≤t≤T u(x, t) ≤ φ(o(Rγ/k)), as R→∞.
Then supRnT u(x, t) ≤ supx∈Rn g(x).

(b) Let u ∈ lsc(RnT ), u > 0, solve

H(Du,D2u)− f(u)ut ≤ 0, in RnT and u(x, 0) ≥ g(x), ∀x ∈ Rn.

Then infRnT u(x, t) ≥ infx∈Rn g(x). No lower bound is needed.

(ii) If k = 1, we take f ≡ 1 and φ(τ) = eτ . The conclusion in part (i)(a) holds pro-
vided that we assume that, for any ε > 0, sup|x|≤R, 0≤t≤T u(x, t) ≤ exp(o(R2−ε)),
as R→∞. The conclusion in part (i)(b) holds without any modifications.

We provide proofs of the main results in Section 7. Section 8 addresses opti-
mality.

3. Preliminaries

In this section, we present some calculations important for our work, a comparison
principle and a change of variable result useful for our work. Some additional
discussion about the condition in (2.4) is also included.

For definitions and a discussion of viscosity solutions, we direct the reader to
[8] and Section 2 in [3].

Recall that for some µ ∈ R, Z : [µ,∞)→ R+ is continuous, non-increasing and
(2.7) holds, i.e.,

0 < `m = inf
R
Z ≤ `M = sup

R
Z <∞. (3.1)

We present some elementary calculations. Let z ∈ Rn and r = |x− z|. For 0 <
R ≤ ∞, let BR(z) be the ball of radius R with center z. We define B∞(z) = Rn.
Also, set BRT = BR(z)× (0, T ) and PRT be its parabolic boundary.

Suppose that v(x) = v(r) is a C2 function. Set e = (e1, e2, . . . , en) where
ei = (x− z)i/r, ∀i = 1, 2, . . . , n. For x 6= z,{

Dv = v′(r)e, Dv ⊗Dv = (v′(r))2e⊗ e, and

D2v = (v′(r)/r) (I − e⊗ e) + v′′(r)e⊗ e.
(3.2)

Remark 3.1. Let κ : [0, T ] → (0,∞) be a C1 function and Z be as in (3.1).
Suppose that D ⊂ Rn+1 is a domain and (z, t) ∈ D. Let w : D → R be C1 in x
and t, in D, and C2 in x in D \ {(z, t)}. Set r = |x − z|, w(r, t) = w(x, t) and
assume that wr 6= 0 for r 6= 0 and w ≥ µ.

Using (3.2) in r > 0, we get that

G(w) = H
(
wre,

wr
r

(I − e⊗ e) +
(
wrr + Z(w)(wr)

2
)
e⊗ e

)
. (3.3)
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We recall Condition B in (2.2), (2.6) i.e, k = k1 + 1 and γ = k1 + 2, and derive
two versions for G(w) from (3.3). For the first, we factor wr from the first entry,
|wr|/r from the second. For the second version, we factor wr from the first entry
and w2

r from the second. Thus,

G(w) =
|wr|k

r
H

(
e,

wr
|wr|

(I − e⊗ e) +

(
r|wr|Z(w) +

rwrr
|wr|

)
e⊗ e

)
and

G(w) = |wr|γH
(
e,

I − e⊗ e
rwr

+

(
wrr
w2
r

+ Z(w)

)
e⊗ e

)
. (3.4)

Case (i) wr > 0: Let a be any scalar and b ≥ 0. Suppose that w(x, t) =
(a + bv(r))κ(t), where v′(r) > 0 and κ ≥ 0. The first version in (3.4) yields, in
r > 0,

G(w) =
(bv′(r)κ(t))k

r
H

(
e, I +

(
rv′′(r)

v′(r)
− 1 + bκ(t)(rv′(r))Z(w)

)
e⊗ e

)
.

(3.5)
This version will be used for small values of r.

Apply the second version in (3.4) to obtain in r > 0,

G(w) = (bv′(r)κ(t))γH

(
e,

I − e⊗ e
bκ(t)(rv′(r))

+

(
v′′(r)

bκ(t)(v′(r))2
+ Z(w)

)
e⊗ e

)
.

(3.6)
We use this version for large values of r.

In this work, we take 0 < b < 1. By factoring 1/b from the second entry in H
(in (3.6)), using Condition B and γ = k + 1, the above may be rewritten as

G(w) = bk(κ(t)v′(r))γH

(
e,

I − e⊗ e
κ(t)rv′(r)

+

(
v′′(r)

κ(t)(v′(r))2
+ bZ(w)

)
e⊗ e

)
.

(3.7)

Case (ii) wr < 0: Set w(x, t) = v(r) − κ(t), where v′(r) < 0. We use (3.4)
and argue as in part (i). We obtain

G(w) =
|v′(r)|k

r
H

(
e,

(
r|v′(r)|Z(w) + 1− rv′′(r)

v′(r)

)
e⊗ e− I

)
, r small

G(w) = |v′(r)|γH
(
e,

I − e⊗ e
rv′(r)

+

(
v′′(r)

(v′(r))2
+ Z(w)

)
e⊗ e

)
, r large. (3.8)

�

We now state a comparison principle which is a slight adaptation of Theorem
8.2 in [8]. See also Section 4 in [5].
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Let F : R+×R×Rn×Sn×n → R be continuous. Suppose that ∀X, Y ∈ Sn×n,
with X ≤ Y , F satisfies

F (t, r1, p,X) ≤ F (t, r2, p, Y ), ∀(t, p) ∈ R+ × Rn and r1 ≥ r2. (3.9)

Let Ω ⊂ Rn be a bounded domain and T > 0. Set ΩT = Ω × (0, T ) and PT its
parabolic boundary.

Lemma 3.2 (Comparison principle). Let F satisfy (3.9), ζ : [µ,∞) → R, for

some µ ∈ R, be a bounded non-increasing continuous function and f̂ : R+ → R+

be continuous. Let u ∈ usc(ΩT ∪ PT ) and v ∈ lsc(ΩT ∪ PT ) satisfy in ΩT ,

F (t, u,Du,D2u+ ζ(u)Du⊗Du)− f̂(t)ut ≥ 0 and

F (t, v,Dv,D2v + ζ(v)Dv ⊗Dv)− f̂(t)vt ≤ 0.

If inf(u, v) ≥ µ, supPT v <∞ and u ≤ v on PT then u ≤ v in ΩT . �

Lemma 3.2 leads to a comparison principle for

H(Du,D2u)− f(u)ut = 0, where u > 0.

This is shown in Lemma 2.3 in [5]. An earlier version appears in [3].
We employ a change of variables u = φ(v) for our purpose, where φ is defined

in (2.13) and (2.14). Recall from (2.15) that

Z(v) = φ′′(v)/φ′(v). (3.10)

Then Z is non-increasing and the domain of Z is (0,∞) or [0,∞), or (−∞,∞)
We state the following change of variables lemma which is a simplified version

of Lemma 2.3 in [5].

Lemma 3.3. Let H satisfy Conditions A and B, see (2.1) and (2.2) and let
f : [0,∞) → [0,∞) be a C1 increasing function. Assume that f1/(k−1) is concave
if k > 1, and f ≡ 1 if k = 1. Suppose that φ is defined either as in (2.13) or as in
(2.14).

Case (i): Let k > 1 and Z be as in (3.10). We assume that f is non-constant,
u > 0 and v = φ−1(u).

Then u ∈ usc(lsc)(ΩT ) solves H(Du,D2u)− f(u)ut ≥ (≤)0 in ΩT if and only
if v ∈ usc(lsc)(ΩT ) and

H
(
Dv,D2v + Z(v)Dv ⊗Dv

)
− vt ≥ (≤)0 in ΩT .

Case (ii): Let k = 1, i.e., k1 = 0. If f ≡ 1 and φ(τ) is any increasing
positive C2 function then the claim in (i) holds with u = φ(v). In particular, if
φ(τ) = eτ and u ∈ usc(lsc)(ΩT ), u > 0, then H(D2u) − ut ≥ (≤)0 if and only if
v ∈ usc(lsc)(ΩT ) and H(D2v +Dv ⊗Dv)− vt ≥ (≤)0.
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Corollary 3.4. (Comparison principle) Let f and φ be as described in Lemma
3.3. Suppose that u ∈ usc(ΩT ), u > 0, and v ∈ lsc(ΩT ), v > 0, satisfy

H(Du,D2u)− f(u)ut ≥ 0 and H(Dv,D2v)− f(v)vt ≥ 0 in ΩT .

If u ≤ v in PT then u ≤ v in ΩT .

Proof. We assume that k > 1. If k = 1 and f ≡ 1 then Lemma 3.2 applies directly.
For k > 1, we apply the change of variables u = φ(ū) and v = φ(v̄) and Lemma 3.3
shows that

H(Dū,D2ū+Z(ū)Dū⊗Dū)− ūt ≥ 0 and H(Dv̄,D2v̄+Z(v̄)Dv̄⊗Dv̄)− v̄t ≥ 0

in ΩT . By (2.13) and (2.14), the domain of φ is either (i) (−∞,∞), the domain
of Z is (−∞,∞) and −∞ < ū, v̄ < ∞, or (ii) [0,∞), the domain of Z is at least
(0,∞) and 0 < ū, v̄ < ∞. Since ū ≤ v̄ in PT , Lemma 3.2 implies that ū ≤ v̄ in
ΩT and the claim holds.

4. Auxiliary Functions

In this section, we construct auxiliary functions that are used in this work. Recall
that k = k1 + 1 and γ = k1 + 2 = k + 1. Through out this section, z ∈ Rn is a
fixed point and r = |x− z|. We begin with

Lemma 4.1. Let 1 < β̄ < β. For r ≥ 0, define

v(r) =

∫ rβ

0

(1 + τp)−1 dτ, where p =
β − β̄
β

.

Then:

(i) 0 < p < 1 , (ii) (1− p)β = β̄, and

(iii) min(rβ , rβ̄)/2 ≤ rβ/(1 + rβp) ≤ v(r) ≤ βmin(rβ , rβ̄)/β̄, ∀ r ≥ 0 ,

(iv) If R ≥ 1 then

(
β

2β̄

)
(rβ̄ −Rβ̄) ≤ v(r)− v(R) ≤

(
β

β̄

)
(rβ̄ −Rβ̄), ∀ r ≥ R.
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Moreover, in r > 0, we have

(v)
β

2
min(rβ−1, rβ̄−1) ≤ v′(r) =

βrβ−1

1 + rpβ
≤ βmin

(
rβ̄−1, rβ−1

)
,

(vi)
β

2
min(rβ , rβ̄) ≤ rv′(r) ≤ βmin

(
rβ̄ , rβ

)
,

(vii)
(v′(r))k

r
=

βkrkβ−γ

(1 + rpβ)k
, v′′(r) = βrβ−2

[
β − 1 + (β̄ − 1)rpβ

(1 + rpβ)2

]
,

(viii)

(
β

2

)k
min

(
rkβ−γ , rkβ̄−γ

)
≤ (v′(r))k

r
≤ βk min

(
rkβ−γ , rkβ̄−γ

)
,

(ix) β̄ − 1 ≤ rv′′(r)

v′(r)
=
β − 1 + (β̄ − 1)rpβ

1 + rpβ
≤ β − 1,

(x)
v′′(r)

(v′(r))2
=

(
β − 1

β

)
r−β +

(
β̄ − 1

β

)
r−β̄ , and

(xi)
(β̄ − 1)r−β̄

β
≤ v′′(r)

(v′(r))2
≤ 2(β − 1)r−β̄

β
, ∀ r ≥ 1.

Proof. Parts (i) and (ii) follow easily. Part (iii) is a consequence of the bounds
1 + τp ≥ τp and 1 + τp ≤ 1 + rpβ , ∀τ ≤ rβ . Part (iv) follows by noting part (ii),
that τp ≤ 1 + τp ≤ 2τp, τ ≥ 1, and writing

v(r) = v(R) +

∫ rβ

Rβ
(1 + τp)−1dτ.

Parts (v), (vi) and (viii) are easily obtained from the estimate 1 + rpβ ≥
max(1, rpβ) and noting that γ = k + 1 and β − β̄ = pβ.

To see (vii), we differentiate (v) and use (ii) to find

v′′(r) = β

[
(β − 1)rβ−2

1 + rpβ
− pβrpβ+β−2

(1 + rpβ)2

]
= βrβ−2

[
(β − 1)(1 + rpβ)− pβrpβ

(1 + rpβ)2

]
= βrβ−2

[
β − 1 + (β̄ − 1)rpβ

(1 + rpβ)2

]
.

Applying (v), (vii) and using β̄ < β, (ix) follows. To see (x) and (xi), use (ii),
(v) and (vii) to get

v′′(r)

(v′(r))2
=
β − 1 + (β̄ − 1)rpβ

βrβ
=
β − 1

βrβ
+
β̄ − 1

βrβ̄
.

Since β̄ < β, (xi) holds in r ≥ 1.

Remark 4.2. We list some consequences of Lemma 4.1. These are used in the
proofs of Theorems 2.2 and 2.3. The functions of r are C1 in x, in Rn, and C2 in
x in r > 0.
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Recall that k = k1 + 1, γ = k + 1 = k1 + 2 and σ is as in Theorems 2.2 and
2.3. Set

γ∗ = γ/k and σ∗ = σ/(σ − 1), ∀σ > 1.

We have divided our work into three cases.
Case (A) (k = 1): Take β = 2, β̄ = 2 − ε, 0 < ε < 1. From Lemma 4.1,

p = ε/2 and

v(r) =

∫ r2

0

(1 + τε/2)−1 dτ, 0 < ε < 1.

We apply Lemma 4.1 (iii), (iv), (vi), (vii), (viii), (ix) and (xi). Thus,

(iii)
min

(
r2−ε, r2

)
2

≤ v(r) ≤ 2 min(r2−ε, r2), ∀r ≥ 0,

(iv)
r2−ε −R2−ε

2
≤ v(r)− v(R) ≤ 2

(
r2−ε −R2−ε) , ∀r ≥ R ≥ 1.

Noting that γ = 2 and kβ − γ = 0, we find that, in r > 0,

(vi) 1 ≤ rv′(r)

min (r2−ε, r2)
≤ 2, (viii) min(1, r−ε) ≤ v′(r)

r
≤ 2 min(1, r−ε),

(ix) 1− ε ≤ rv′′(r)

v′(r)
≤ 1, (xi)

1− ε
2r2−ε ≤

v′′(r)

(v′(r))2
≤ 1

r2−ε , ∀r ≥ 1.

Case (B) (k > 1): Set β = β̄ = γ∗ and v(r) = rγ
∗
. Using that γ = k + 1 and

k(γ∗ − 1) = 1, we have

(vi) rv′(r) = γ∗rγ
∗
, (viii)

(v′(r))k

r
= (γ∗)

k
, (ix)

rv′′(r)

v′(r)
= γ∗ − 1 =

1

k
,

(xi)
v′′(r)

(v′(r))2
=

(
γ∗ − 1

γ∗

)
r−γ

∗
=

1

γrγ∗
.

Case (C) (k ≥ 1): Set β = γ∗ and β̄ = σ∗, where σ > γ.

Since σ > γ, we have that β > β̄. We get that

p =
β − β̄
β

=
γ(σ − 1)− kσ
γ(σ − 1)

=
σ − γ
γ(σ − 1)

> 0 and kβ − γ = 0.

Set

v(r) =

∫ rγ
∗

0

(1 + τp)−1 dτ.

We apply parts (iii), (iv), (vii), (viii), (ix) and (xi) of Lemma 4.1.
In r > 0, parts (iii) and (iv) read

(iii)
1

2
≤ v(r)

min(rγ∗ , rσ∗)
≤ γ∗

σ∗
, (iv)

γ∗

2σ∗
≤ v(r)− v(R)

rσ∗ −Rσ∗
≤ γ∗

σ∗
, ∀r > R ≥ 1.
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Next, in r > 0,

(vi)
γ∗min

(
rσ
∗
, rγ

∗)
2

≤ rv′(r) ≤ γ∗min
(
rσ
∗
, rγ

∗
)
,

(viii)

(
γ∗

2

)k
min

(
1,

1

r(σ−γ)/(σ−1)

)
≤ (v′(r))k

r
≤ (γ∗)k min

(
1,

1

r(σ−γ)/(σ−1)

)
.

The versions in (iii) and (iv) may be rewritten so that (iii) holds in r ≥ 0 and (iv)
in r ≥ R.

Since σ > γ ≥ 2 and γ∗ − 1 = 1/k, Lemma 4.1 (ix) and (xi) read

(ix)
1

σ
≤ rv′′(r)

v′(r)
≤ 1

k
, (xi)

1

γ∗σrσ∗
≤ v′′(r)

(v′(r))2
≤ 2

rσ∗
, ∀ r ≥ 1.

Since kβ − γ = 0, parts (vii) and (ix) of Lemma 4.1 imply that

lim
r→0

(v′(r))k

r
= (γ∗)k and lim

r→0

rv′′(r)

v′(r)
=

1

k
.

Some of the versions versions stated in Cases A, B and C may be rewritten so
that they hold in r ≥ 0 and in r ≥ R. �

Next, we study a second auxiliary function that is used in this work.

Lemma 4.3. Let 0 < R <∞, 0 ≤ r < R and p > 0. Set r = |x|, x ∈ Rn, define
ω = r/R and

vE(ω) = vE(r) = E

∫ ω2

0

(1− τp)−1dτ = ER2(p−1)

∫ r2

0

(R2p − sp)−1ds,

where E 6= 0. Set sgn(E) =sign of E and

Lp(ω) =
2E

1− ω2p
, ∀ 0 ≤ ω < 1.

Then (i) vE(0) = 0, sgn(vE) = sgn(E) and |vE(r)| → ∞ as r → R. Also, for
r < R, vE(r)→ 0 as R→∞.

(ii) v′E(r) =
Lp(ω)ω

R
=
Lp(ω)r

R2
, (iii) v′′E(r) =

Lp(ω)

R2

(
1 + (2p− 1)ω2p

1− ω2p

)
,

(iv)
rv′′E(r)

v′E(r)
=

1 + (2p− 1)ω2p

1− ω2p
, (v)

rv′′E(r)

v′E(r)
− 1 =

2pω2p

1− ω2p
,

(vi)
rv′′E(r)

v′E(r)
− 1 + rZ(·)|v′E(r)| = 2|E|Z(·)ω2 + 2pω2p

1− ω2p
, ∀E > 0,

(vii) 1− rv′′E(r)

v′E(r)
+ rZ(·)|v′E(r)| = 2|E|Z(·)ω2 − 2pω2p

1− ω2p
, ∀E < 0,

(viii)
|v′E(r)|k

r
=
|Lp(ω)|kωk

RkωR
=
|Lp(ω)|kωk1

Rγ
.
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Moreover, vE is C2 in x, in 0 ≤ r < R.

Proof. Parts (ii) and (iii) follow from a differentiation. The rest follow from (ii)
and (iii). In part (viii), we use r = ωR, k = k1 + 1 and γ = k1 + 2.

Remark 4.4. The sub-solutions and super-solutions in this work involve a C1

function of x and t, and C2 in x, except at x = z. See Remark 4.2. We verify that
the expressions for the operator H hold in the sense of viscosity at r = 0 and any
0 < s < T .

By Lemma 4.1, v′(r) 6= 0 in r 6= 0. Also, v(0) = v′(0) = 0. Let κ(t) ≥ 0 be a
C1 function in t ≥ 0. Recall that γ∗ = γ/k and σ∗ = σ/(σ − 1), for σ > 1.

We now refer to Remark 4.2. Note that in Case (A) and in the sub-case k = 1
of Case C, γ∗ = 2 and v is C2 everywhere.

We address k > 1 in Cases B and C, i.e., 1 < γ∗ < 2. Set r = |x| and

w(x, t) = (a+ bv(r))κ(t), where b > 0 and

v(r) =

{
rγ
∗
, β̄ = β = γ∗,∫ rγ∗

0
(1 + τp)−1dτ, β = γ∗, β̄ = σ∗.

We apply (3.5) in Remark 3.1. Taking r > 0 and setting e = x/r and w = κ(t)v(r),
we get after a slight rearrangement that

G(w) + χ(t)|Dw|σ − wt = χ(t)(κ(t))σ|bv′(r)|σ − κ′(t)(a+ bv(r))

+
(bv′(r)κ(t))k

r
H

(
e, I +

(
rv′′(r)

v′(r)
− 1 + bκ(t)(rv′(r))Z(w)

)
e⊗ e

)
.

(4.1)

From Cases (B) and (C) in Remark 4.2 rv′′(r)/v′(r)→ 1/k and (v′(r))k/r →
(γ∗)k as r → 0. It is clear that the right hand side of (4.1) may be extended
continuously to r = 0. Set the limit r → 0 of the right hand side of (4.1) as

Ĥ(0) + χ(t)L(σ)− aκ′(t), where Ĥ(0) = (γ∗bκ(t))kH (e, I − [(k − 1)/k]e⊗ e ) ,

and L(σ) = 1 if σ = 0, and L(σ) = 0 if σ 6= 0.

Note that Ĥ(0) ≥ 0 since (k − 1)/k < 1.
We show that

G(w) + χ(s)|Dw|σ − wt = Ĥ(0) + χ(s)L(σ)− aκ′(s), (4.2)

holds at points (o, s), i,e., at r = 0 and 0 < s < T , in the viscosity sense.
Let s > 0. Suppose that ψ, C1 in t and C2 in x, is such that (w − ψ)(x, t) ≤

(w − ψ)(o, s), for (x, t) near (o, s). Since w(o, s) = aκ(s), we have that

a(κ(t)− κ(s)) + bv(r)κ(t) ≤ 〈Dψ(o, s), x〉+ ψt(o, s)(t− s) + o(|x|+ |t− s|),
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as (x, t) → (o, s). Since v′(0) = 0, it follows that Dψ(o, s) = 0 and ψt(o, s) =
aκ′(s). Using that

bv(r)κ(t) ≤ 〈D2ψ(0, s)x, x〉/2 + o(|t− s|+ |x|2), as (x, t)→ (o, s),

we see that D2ψ(o, s) does not exist, since v(r) ≈ rγ∗ (γ∗ < 2) near r = 0. Thus,
w is a sub-solution.

Now, let ψ, C1 in t and C2 in x, be such that (w−ψ)(x, t) ≥ (w−ψ)(o, s), for
(x, t) near (o, s). Thus, w(x, t)−w(o, s) ≥ 〈Dψ(o, s), x〉+ ψt(o, s)(t− s) + o(|x|+
|t−s|), as (x, t)→ (o, s). Clearly, Dψ(o, s) = 0 and ψt(o, s) = aκ′(s). Since k > 1,
i.e., k1 > 0, by Condition B, H(0, X) = 0. Hence,

H
(
Dψ,D2ψ + Z(w)Dψ ⊗Dψ

)
(o, s) + χ(s)|Dψ|σ(o, s)− ψt(o, s)

≤ Ĥ(0) + χ(s)L(σ)− aκ′(s).

Thus, w is a super-solution. �

From here on, we include r = 0 in applying the expressions in (3.4), (3.5), (3.7)
and (3.8).

5. Super-solutions

In this section, we construct super-solutions for Theorem 2.2. To achieve this, we
employ the auxiliary functions discussed in Remark 4.2. For small r, (3.5) is used
and, for large r, we use (3.6). See Remark 3.1. The two situations are treated
separately.

The section has been divided into two parts: (I) 0 ≤ σ ≤ γ and (II) σ > γ.
The work in Part I is further divided into two sub-parts (i) k = 1 and (ii) k > 1.
Part (II) provides a unified treatment for k ≥ 1.

Fix z ∈ Rn and set r = |x−z|. Recall that µM = supRn h with −∞ < µM <∞.
Define

w(x, t) = µM + at+ b(1 + t)v(r), in RnT , where a ≥ 0, 0 < b < 1, (5.1)

and

∀r ≥ 0, v(r) =

∫ rβ

0

1

1 + τp
dτ or v(r) = rβ ,

for an appropriate β and p (or β̄), see Lemma 4.1.
We show that w is a super-solution for an appropriate b small enough, and an a

that may depend on b. This aids the calculation of limb→0+ a, wherever applicable.
Moreover, w is a super-solution for any 0 < b < b0 and corresponding a, where
b0 < 1 is small enough. This is important in showing the claims in Theorem 2.2.

Throughout this section β = γ/k = γ∗, see (5.1) and Remark 4.2. The quantity
β̄ varies with σ, see (5.3) below.
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To make our presentation more compact, we often use the notation

Hσ(w) := H(Dw,D2w + Z(w)Dw ⊗Dw) + χ(t)|Dw|σ − wt.

Preliminary Estimates: These will apply to both Parts I and II.
In what follows, set

αm= inf χ(t), αM = supχ(t), `m = inf
R
Z, `M = sup

R
Z, γ∗ = γ/k andσ∗ =

σ

σ − 1
.

(5.2)
We assume that 0 < `m ≤ `M <∞. In Lemma 4.1 (see also Remark 4.2) we take

β = γ∗ =

{
2, k = 1,
γ/k, k > 1,

and β̄ =


2− ε, k = 1, 0 ≤ σ ≤ γ,
γ∗, k > 1, 0 ≤ σ ≤ γ,
σ∗, k ≥ 1, γ < σ <∞.

(5.3)

Moreover, we require that for k = 1,

(i) 0 < ε < 1/8 if σ = 0, and (ii) 0 < ε <
min{1, σ}

8
if σ > 0. (5.4)

Next, we state bounds for H. Recall that k = k1 +1, γ = k+1, γ∗ = γ/k, a ≥
0 and 0 < b < 1. We use w as in (5.1) and note that w ≥ µM .

In the following the constants E, Fk and Gγ , to be defined later, are positive
and do not depend on r.

Step 1: For small r, we use (3.5) with κ(t) = 1 + t to obtain that

Hσ(w) =
[b(1 + t)v′(r)]k

r
H

(
e, I +

(
rv′′(r)

v′(r)
− 1 + b(1 + t)(rv′(r))Z(w)

)
e⊗ e

)
+χ(t)[b(1 + t)v′(r)]σ − a− bv(r). (5.5)

For large r, we use (3.6)(or (3.7)) to obtain that

Hσ(w) = bk[(1 + t)v′(r)]γH

(
e,

I − e⊗ e
(1 + t)rv′(r)

+

(
v′′(r)

(1 + t)(v′(r))2
+ bZ(w)

)
e⊗ e

)
+χ(t)(b(1 + t)v′(r))σ − a− bv(r). (5.6)

Step 2 Bounds for H: We employ Remark 4.2 and use estimates for v(r) from
(5.5) and (5.6) to obtain upper bounds for H. Let R ≥ 1, to be chosen later.

(i) 0 ≤ r ≤ R: Since `m ≤ Z(w) ≤ Z(µM ) ≤ `M (see (5.2)), define

M(b, r) = max
|e|=1

H
(
e, I + bγ∗(1 + T )`Mr

γ∗e⊗ e
)
. (5.7)
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By using Condition A (see (2.1)(i)), Condition B (see (2.2)) and that M(b, r) is
non-decreasing in r and b, we have that

0 < max
|e|=1

H(e, I) ≤M(b, r) ≤M(1, R) ≤ Rγ
∗
M(1, 1), ∀R ≥ 1.

Recall parts (vi), (viii) and (ix) of Cases A, B and C in Remark 4.2. Since
1 < γ∗ ≤ 2,

rv′ ≤ γ∗rγ
∗
,

(v′(r))k

r
≤ (γ∗)k and

rv′′(r)

v′(r)
− 1 ≤ γ∗ − 2 ≤ 0, ∀k ≥ 1. (5.8)

Applying (5.8) in (5.5) and using Condition A, we get that

H

(
e, I +

(
rv′′(r)

v′(r)
− 1 + b(1 + t)Z(w)rv′(r)

)
e⊗ e

)
≤ H

(
e, I + γ∗b(1 + T )`Mr

γ∗e⊗ e
)
.

Since 0 < b ≤ 1, using (5.7) and the bound for M(b, r) we obtain that for 0 ≤ r ≤
R,

H

(
e, I +

(
rv′′(r)

v′(r)
− 1 + b(1 + t)Z(w)rv′(r)

)
e⊗ e

)
≤ Rγ

∗
M(1, 1), ∀R ≥ 1.

(5.9)

Next we set

E = (1 + T ) and Fk = EkM(1, 1), k ≥ 1,

and use the estimate for (v′(r))k/r from (5.8) to get

[b(1 + t)v′(r)]k

r
≤ (bγ∗)k(1 + T )k = (bγ∗)kEk.

Thus, (5.2), (5.5) and (5.9) lead to the estimate

∀R ≥ 1, Hσ(w) ≤ (bγ∗)kFkR
γ∗ + αM [bEv′(r)]σ − a− bv(r), ∀r ≤ R. (5.10)

(ii) 1 ≤ R ≤ r: Recall parts (vi) and (xi) of Cases A, B and C in Remark 4.2.
Then

rv′(r) ≥


r2−ε, k = 1, 0 ≤ σ ≤ γ,
γ∗rγ

∗
, k > 1, 0 ≤ σ ≤ γ,

(γ∗/2)rσ
∗
, k ≥ 1, σ > γ.

Note that, σ∗ < γ∗ ≤ 2, if σ > γ.
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Using the above bounds and part (xi) of the Cases A, B and C, we obtain that

max

(
1

rv′(r)
,

v′′(r)

(v′(r))2

)
≤


2r−(2−ε), k = 1, 0 ≤ σ ≤ γ,
2r−γ

∗
, k > 1, 0 ≤ σ ≤ γ,

2r−σ
∗
, k ≥ 1, σ > γ.

Thus,

∀σ ≥ 0 and ∀k ≥ 1, 0 ≤ max

(
1

rv′(r)
,

v′′(r)

(v′(r))2

)
≤ 2, in r ≥ 1. (5.11)

Using Condition A and (5.11) in (5.6), we see that, in t ≥ 0 and r ≥ 1,

H

(
e,

I − e⊗ e
(1 + t)rv′(r)

+

(
v′′(r)

(1 + t)(v′(r))2
+ bZ(w)

)
e⊗ e

)
≤ H

(
e,
I − e⊗ e
rv′(r)

+

(
v′′(r)

(v′(r))2
+ bZ(w)

)
e⊗ e

)
≤ H (e, 2(I − e⊗ e) + 2e⊗ e+ bZ(w)I) ≤ H(e, (2 + `M )I), (5.12)

since 0 < b < 1 and 0 < Z ≤ `M .
Observing that H(e, 2I) = 2H(e, I) > 0, we define

M̄ = max
|e|=1

H (e, (2 + `M )I) . (5.13)

Using (5.13) in (5.12) we get

H

(
e,

I − e⊗ e
(1 + t)rv′(r)

+

(
v′′(r)

(1 + t)(v′(r))2
+ Z(w)b

)
e⊗ e

)
≤ M̄.

Set
E = 1 + T and Gγ = EγM̄, ∀ γ ≥ 2.

Use (5.2) and the above in (5.6) to get that

Hσ(w) ≤ bkGγ [v′(r)]γ + αM [bEv′(r)]σ − a− bv(r), ∀ r ≥ R ≥ 1. (5.14)

Step 3: Additional bounds: Refer to part (vi) of Cases A, B and C in Remark
4.2. In r ≥ 0,

v′(r) ≤


2 min(r1−ε, r), k = 1, 0 ≤ σ ≤ γ,
γ∗rγ

∗−1, k > 1, 0 ≤ σ ≤ γ,
γ∗min(r1/(σ−1), rγ

∗−1), k ≥ 1, σ > γ.
(5.15)

Construction of Super-Solutions:

Part I (0 ≤ σ ≤ γ): We take R ≥ 1. A value of R is determined in what follows.
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Sub-part (i) (k = 1 or k1 = 0): Let ε > 0 be as in (5.4). Also, γ = γ∗ = 2
and the interval [0, γ] = [0, 2].

Take p = ε/2; using (5.1) we get that ∀(x, t) ∈ RnT ,

w(x, t) = µM + at+ b(1 + t)v(r), where v(r) =

∫ r2

0

(1 + τε/2)−1 dτ, (5.16)

and a ≥ 0 and 0 < b < 1 are to be determined.

• Consider 0 ≤ r ≤ R. Using (5.15), we have v′(r) ≤ 2R. Employing this in
the second term on the right hand side of (5.10)(Fk = F1, γ

∗ = 2), we get

Hσ(w) ≤ 2bF1R
2 + αM (2bE)σRσ − a.

Thus, w is a super-solution in 0 ≤ r ≤ R, if

a =

{
2F1(bR2) + αM + (b/2)R2−ε, σ = 0,

2F1(bR2) + αM (2E)σ(bR)σ + (b/2)R2−ε, 0 < σ ≤ 2.
(5.17)

• Let r ≥ R. Use the estimate v′(r) ≤ 2r1−ε (see (5.15)) in (5.14) and Gγ = G2

to obtain that

Hσ(w) ≤ 4bG2r
2(1−ε) + αM (2bEr1−ε)σ − a− bv(r). (5.18)

The bound in part (iv) of Case A in Remark 4.2 reads

v(r) ≥ (r2−ε −R2−ε)/2, ∀r ≥ R ≥ 1.

Calling â = a− bR2−ε/2 ≥ 0 (see (5.17)), (5.18) yields that

Hσ(w) ≤ 4bG2r
2−2ε + αM (2bE)σrσ(1−ε) − a− b(r2−ε −R2−ε)/2

≤ 4bG2r
2−2ε + αM (2bE)σrσ(1−ε) − â− br2−ε/2. (5.19)

(a) σ = 0: Using (5.17) and that â = 2F1(bR2) +αM ≥ 0, the right hand side
in (5.19) yields

4bG2r
2−2ε + αM − â− (b/2)r2−ε ≤ br2−2ε [4G2 − rε/2] .

Let R be such that Rε = max (1, 8G2). Clearly, w is a super-solution in RnT for
any small b > 0. The choice of R and (5.17) yield that

limb→0+ a = αM if σ = 0. (5.20)
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(b) 0 < σ ≤ γ = 2: Set P = 4G2 and Q = αM (2E)σ in (5.19) to obtain that
∀r ≥ R ≥ 1,

Hσ(w) ≤ Pbr2−2ε +Qbσrσ(1−ε) − br2−ε

2
≤ br2−2ε

(
P +

bσ−1Q

r(2−σ)(1−ε) −
Rε

2

)
.

(5.21)
Noting that (2− σ)(1− ε) ≥ 0, select

R =

{
max

{
(2(1 + P ))1/ε, (2Qbσ−1)1/(2−σ)(1−ε)} , 0 < σ < 1,

max
{

1, (2P + 2Q)1/ε
}
, 1 ≤ σ ≤ 2.

(5.22)

For 1 ≤ σ ≤ 2, take r = b = 1 in the second term of (5.21).
Using (5.22) in (5.21), (5.19) shows that w is a super-solution in RnT for any

small enough b > 0.
We recall the expression for a in (5.17) and claim that a → 0 as b → 0. This

is clear for 1 ≤ σ ≤ 2 because of the choice of R in (5.22). The case of interest is
0 < σ < 1 since R → ∞ as b → 0. We show that limb→0 bR

2 = 0 and this would
imply the same of bR and bR2−ε. From (5.22), one obtains

R = Kb(σ−1)/(2−σ)(1−ε) and bR2 = K2b1+2(σ−1)/(2−σ)(1−ε),

for an appropriate K that is independent of b. A simple calculation shows that

1 +
2(σ − 1)

(2− σ)(1− ε)
=

σ(1 + ε)− 2ε

(2− σ)(1− ε)
.

From (5.4), σ(1 + ε)− 2ε > 0.
Summarizing, (5.16), (5.17) and (5.20) imply that

lim
b→0

a =

{
αM , σ = 0,
0, 0 < σ ≤ γ = 2,

for any small ε > 0. (5.23)

Sub-part (ii) (k > 1 or γ > 2): Note that γ∗ < 2. We take v(r) = rγ
∗

and

w(x, t) = µM + at+ b(1 + t)rγ
∗
, in RnT . (5.24)

Consider 0 ≤ r ≤ R. We use v′(r) = γ∗rγ
∗−1 = γ∗r1/k in (5.10) to obtain that

Hσ(w) ≤ (γ∗)kFk(bkRγ
∗
) + αM [γ∗E(bR1/k)]σ − a− bv(r).

Hence, w is super-solution in BRT if

a = (γ∗)kFk(bkRγ
∗
) + αM (γ∗E)σ(bR1/k)σ. (5.25)

Let r ≥ R. Using (5.14) and γ∗ = γ/k, we get that

Hσ(w) ≤ Gγ(bkγ∗γrγ
∗
) + αM (γ∗E)σ(br1/k)σ − a− brγ

∗
. (5.26)
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Our main focus is (5.26) as w is a super-solution in BRT by using (5.25).

We analyze separately: (1) σ = 0, (2) 0 < σ ≤ 1, and (3) 1 < σ ≤ γ. The
choice of R differs in each situation.

(1) σ = 0: Setting R = 1, (5.25) and (5.26) yield that

Hσ(w) ≤ Gγ(bkγ∗γrγ
∗
) + αM − a− brγ

∗
≤ brγ

∗ (
Gγb

k−1 − 1
)
≤ 0,

if we choose 0 < b ≤ min
(
1, (Gγγ

∗γ)−1/(k−1)
)
. Thus, w is a super-solution in RnT

for any small enough b > 0, and from (5.25)

lim
b→0

a = lim
b→0

[(γ∗)kFkb
k + αM ] = αM . (5.27)

(2) 0 < σ ≤ 1: We ignore a in the right side of (5.26) and factor brγ
∗

to obtain
that

Hσ(w) ≤ brγ
∗
[
Gγγ

∗γbk−1 +
αM (γ∗E)σbσ−1

R(γ−σ)/k
− 1

]
, ∀r ≥ R.

Noting that σ ≤ 1 < γ, we choose

b < min
[
1, (4Gγγ

∗γ)−1/(k−1)
]

and R = max
[
1,
{

4αM (γ∗E)σbσ−1
}k/(γ−σ)

]
.

Then w is a super-solution in RnT for any b > 0, small enough.

We show next that limb→0 a = 0. We recall (5.25) and note that σ/k < γ∗.
For σ = 1, R does not depend on b and hence, limb→0 a = 0.

For 0 < σ < 1, R→∞, as b→ 0. Using the choice of R in (5.25), we see that
(use γ∗ = γ/k)

bkRγ
∗
= Kbk

[
bk(σ−1)/(γ−σ)

]γ∗
= Kbk+γ(σ−1)/(γ−σ) and bR1/k = K̂b1+(σ−1)/(γ−σ),

for some K and K̂ independent of b and r. Since γ = k + 1 = k1 + 2, we see that

k +
γ(σ − 1)

γ − σ
=
k1γ + σ

γ − σ
> 0 and 1 +

σ − 1

γ − σ
=
γ − 1

γ − σ
> 0.

Thus, limb→0 a = 0.

(3) 1 < σ ≤ γ: We bound (5.26) (see also (2) above), in r ≥ R, by

Hσ(w) ≤ brγ
∗
[
Gγγ

∗γbk−1 +
αM (γ∗E)σbσ−1

R(γ−σ)/k
− 1

]
. (5.28)

Setting R = 1 in (5.28), we get from (5.26) that

Hσ(w) ≤ brγ
∗ [
Gγγ

∗γbk−1 + αM (γ∗E)σbσ−1 − 1
]
.
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Choosing 0 < b < 1, small enough, we get that w is super-solution in RnT . More-
over, using (5.25) limb→0 a = 0.

Summarizing from Sub-Parts (i) (see (5.23)) and (ii) (see (1), (2) and (3)),
we get

lim
b→0

a =

{
αM , σ = 0,
0, 0 < σ ≤ γ, ∀k ≥ 1. (5.29)

Part II σ > γ, k ≥ 1: We use Case C of Remark 4.2 and take β = γ∗ and
β̄ = σ∗ = σ/(σ − 1). Set p = (β − β̄)/β = (σ − γ)/γ(σ − 1) and

w(x, t) = µM + at+ b(1 + t)v(r), where v(r) =

∫ rγ
∗

0

1

1 + τp
dτ. (5.30)

Recall from Part I that E = 1 + T , Fk = EkM(1, 1) and Gγ = EγM̄.

• Take R ≥ 1 and consider 0 ≤ r ≤ R. We employ (5.10) i.e.,

Hσ(w) ≤ (γ∗)kFk(bkRγ
∗
) + αM [bEv′(r)]σ − a− bv(r).

Since σ > γ, using the bound v′(r) ≤ γ∗r1/(σ−1) from (5.15), we obtain that

Hσ(w) ≤ (γ∗)kFk(bkRγ
∗
) + αM (γ∗E)σ(bσRσ

∗
)− a.

Select

a = (γ∗)kFk(bkRγ
∗
) + αM (γ∗E)σ(bσRσ

∗
) + γ∗(bRσ

∗
)/(2σ∗). (5.31)

Thus, w is a super-solution in 0 ≤ r ≤ R.

• In r ≥ R, we use (5.14) i.e.,

Hσ(w) ≤ bkGγ(v′(r))γ + αM (bEv′(r))σ − (a+ bv(r)). (5.32)

From part (iv) of Case C in Remark 4.2 and (5.31) we have that

v(r) ≥ γ∗
(
rσ
∗
−Rσ

∗
)
/(2σ∗), ∀r ≥ R, and a+ bv(r) ≥ γ∗brσ

∗
/(2σ∗).

Using v′(r) ≤ γ∗r1/(σ−1) from (5.15), the lower bound for a + bv(r) stated above
and (5.31) in (5.32), we get that

Hσ(w) ≤ γ∗γGγ(bkrγ/(σ−1)) + αM (γ∗E)σbσrσ
∗
− γ∗brσ

∗

2σ∗

≤ brσ
∗
[
γ∗γGγb

k−1

R(σ−γ)/(σ−1)
+ αM (γ∗E)σbσ−1 − γ∗

2σ∗

]
. (5.33)

The second inequality holds since 1 < γ < σ and r ≥ R ≥ 1.
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If k > 1 we take R = 1 and 0 < b < b0, where b0 = b0(γ∗, σ, αM , E, Gγ) is
small enough. Hence, (5.33) implies that Hσ(w) ≤ 0. If k = 1 we take

R = max

[
1,

(
8σ∗γ∗γGγ

γ∗

) σ−1
σ−γ
]

and b ≤ min

[
1,

(
γ∗

8σ∗αM (γ∗E)σ

) 1
σ−1

]
.

(5.34)
Using these selections in (5.33), Hσ(w) ≤ 0. Thus, w is super-solution in RnT

for any small enough b > 0. Recalling (5.29) and (5.31), we see that

lim
b→0

a =

{
αM , σ = 0,
0, σ > 0,

∀k ≥ 1. (5.35)

Remark 5.1. Parts I and II apply to any χ. However, if χ < 0 and σ > γ then
the maximum principle holds without imposing any upper bound. For σ = γ the
issue is unclear. See below. �

Case σ ≥ γ and χ < 0: We provide a complete result for σ > γ. For σ = γ,
our method fails in some situations and it is not clear to us if an upper bound is
really needed.

Recall from (2.8) that

αm = inf χ, αM = supχ, `m = inf Z, `M = supZ, Hm = min
|e|=1

H(e, e⊗ e)

and HM = max
|e|=1

H(e, e⊗ e). (5.36)

The definitions of E and F used here differ from the ones used in the work
prior to Remark 5.1.

We assume αM < 0 and use Lemma 4.3. Let E > 0 and R > 0. Define

ω =
r

R
, vE(r) = vE(ω) = E

∫ ω2

0

(1− τp)−1dτ, ∀0 ≤ r < R. (5.37)

We set v(r) = vE(r); clearly, v is defined in 0 ≤ ω < 1.

Using (5.36) and parts (ii), (vi) and (viii) of Lemma 4.3, we have

Lp(ω) =
2E

1− ω2p
, v′(r) =

Lp(ω)ω

R
,

(v′(r))k

r
=
Lp(ω)kωk1

Rγ
, (5.38)

and
rv′′(r)

v′(r)
− 1 + rZ(·)|v′(r)| ≤ 2ω2

(
`ME + pω2(p−1)

1− ω2p

)
,

Sub-Case (σ = γ): Recall `M and HM from (5.36). Assume that

αM = supχ < 0 and |αM | > `MHM .
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Let µM = supRn h(x) and R > 0. Employing v(r) from (5.37), set in 0 ≤ r < R,

w̄(x, t) = µM + v(r) + Ft, (5.39)

where E, F = F (R) and p ≥ 2 are to be determined. Of importance is the limit
limR→∞ F.

Employing (3.5), (5.37), (5.38) and (5.39), we see that in 0 ≤ r < R,

Hγ(w̄) ≤ Lp(ω)kωk1

Rγ
H

(
e, I + 2ω2

(
`ME + pω2(p−1)

1− ω2p

)
e⊗ e

)
+χ

(
Lp(ω)ω

R

)γ
−F.

(5.40)
Select

E =
p2 − 2p

2`M
and Lp(ω) =

2E

1− ω2p
=

p2 − 2p

`M (1− ω2p)
. (5.41)

As 0 ≤ ω < 1 and p ≥ 2, we get that 2ω2
(
`ME + pω2(p−1)

)
≤ p2ω2 and

2ω2
(
`ME + pω2(p−1)

)
/(1− ω2p) ≤ p2ω2/(1− ω2p).

Using (5.41), we set

Jp(ω) =
p2ω2

1− ω2p
=

(
p2

p2 − 2p

)
`MLp(ω)ω2. (5.42)

From (5.40) we see that in 0 ≤ ω < 1 or in 0 ≤ r < R,

Hγ(w̄) ≤
(
Lp(ω)kωk1

Rγ

)
H (e, I + Jp (ω) e⊗ e)− |αM |

(
Lp(ω)ω

R

)γ
− F. (5.43)

Set ω0 = 1/
√

2. We consider separately: (i) 0 ≤ ω ≤ ω0, and (ii) ω0 ≤ ω < 1.
We employ (5.43) in both cases.

Observe that Jp(ω) is increasing in ω and, since p ≥ 2, we note from (5.42)
that

p2/2 ≤ Jp(ω0) ≤ p2, (5.44)

Let ε > 0 be such that |αM | > (1 + ε)`MHM . Choose p > 2, large enough (see
(5.36)) so that 

H (e, e⊗ e+ I/Jp(ω0)) ≤ (1 + ε)HM
and

p2(1 + ε)`MHM/(p2 − 2p) < |αM |.
(5.45)

Call p0 such a value of p and fix p0. Note that (5.45) continues to hold, if ω0 is
replaced by any ω ≥ ω0 and any p ≥ p0.

(i) 0 ≤ ω ≤ ω0: Set

N = N(p0) = max
|e|=1

H (e, I + Jp0(ω0)e⊗ e) .
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Recalling (5.41), (5.43) yields that

Hγ(w̄) ≤
[
Lkp0Nω

k1
0

]
/Rγ − F, ∀0 ≤ ω ≤ ω0.

Thus w̄ is a super-solution in Bω0R
T if

F =
[
Lkp0Nω

k1
0

]
/Rγ . (5.46)

(ii) ω0 ≤ ω < 1: Let p0 be as in (5.45). Note that Jp0(ω) is increasing in ω.
Factoring Jp0(ω) in (5.43) and then using (5.42) and (5.45), we obtain that

Hγ(w̄) ≤ Lp0(ω)kωk1Jp0(ω)(1 + ε)HM
Rγ

− |αM |
(
Lp0(ω)ω

R

)γ
− F

=

(
p2

0

p2
0 − 2p0

)
(1 + ε)`MHM

(
Lp0(ω)ω

R

)γ
− |αM |

(
Lp0(ω)ω

R

)γ
=

(
Lp0(ω)ω

R

)γ ((
p2

0

p2
0 − 2p0

)
(1 + ε)`MHM − |αM |

)
≤ 0.

In the last inequality, we have used γ = k + 1 = k1 + 2.
Hence, w̄ is a super-solution in any R > 0. Moreover,

lim
R→∞

F = lim
R→∞

Nωk10

R

(
Lp0(ω0)

R

)k
= 0. (5.47)

Sub-Case (σ > γ): We use the same approach. The inequality in (5.43) reads

Hσ(w̄) ≤
(
Lp(ω)kωk1

Rγ

)
H (e, I + Jp(ω)e⊗ e)− |αM |

(
Lp(ω)ω

R

)σ
− F. (5.48)

Recall from (5.41) and (5.42) that

Lp(ω) =
p2 − 2p

`M (1− ω2p)
and Jp(ω) =

p2ω2

1− ω2p
=

(
p2

p2 − 2p

)
`MLp(ω)ω2. (5.49)

Set ω0 = 1/
√

2 and consider 0 ≤ ω ≤ ω0. Then Jp(ω) ≤ Jp(ω0) and (5.48)
implies that

Hσ(w̄) ≤

(
Lp(ω0)kωk10

Rγ

)
H (e, I + Jp(ω0)e⊗ e)− |αM |

(
Lp(ω)ω

R

)σ
− F

≤

(
Lp(ω0)kωk10 Jp(ω0)

Rγ

)
H
(
e, (Jp(ω0))−1I + e⊗ e

)
− F (5.50)
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We choose p0 > 2 be such that Jp0(ω0) > 2. Set

N̂p(ω) = max
|e|=1

H(e, Jp(ω)−1I + e⊗ e).

Applying (5.49) in (5.50), we get that

Hσ(w̄) ≤
(
Lp(ω0)ω0

R

)γ (
p2`M N̂p(ω0)

p2 − 2p

)
− F, ∀p ≥ p0 and ∀ω ≤ ω0.

We select

F = Fp =

(
p2`M N̂p(ω0)

p2 − 2p

)(
Lp(ω0)ω0

R

)γ
. (5.51)

We consider ω0 ≤ ω < 1. Since, for each p ≥ p0, Jp(ω) ≥ Jp(ω0), we have that

N̂p(ω0) ≥ N̂p(ω). Disregarding F in (5.48), factoring Jp(ω) and then using (5.49)

and recalling N̂p(ω), we see that

Hσ(w̄) ≤

(
p2`M N̂p(ω0)

p2 − 2p

)(
Lp(ω)ω

R

)γ
− |αM |

(
Lp(ω)ω

R

)σ
≤
(
Lp(ω)ω

R

)γ [(
p2`M N̂p(ω0)

p2 − 2p

)
− |αM |

(
Lp(ω0)ω0

R

)σ−γ]

Choose R > 0 such that

R = Lp(ω0)ω0

(
|αM |(p2 − 2p)

p2`M N̂p(ω0)

)1/(σ−γ)

=
(p2 − 2p)ω0

1− ω2p
0

(
|αM |(p2 − 2p)

p2`M N̂p(ω0)

)1/(σ−γ)

,

(5.52)
where we have used (5.49). Thus, w̄ is a super-solution in BRT for R large enough.

From (5.52), R → ∞ if and only if p → ∞. Since, limp→∞ N̂p(ω0) = HM ,
(5.51) leads to

lim
R→∞

F = lim
p→∞

|αM |−γ/(σ−γ)

(
`M N̂p(ω0)p2

p2 − 2p

)σ/(σ−γ)

=

(
(`MHM )σ

|αM |γ

)1/(σ−γ)

.

(5.53)

6. Sub-solutions

In this section, we construct sub-solutions. It will follow from the work that if
0 ≤ σ ≤ γ then a minimum principle holds without any restrictions on the growth
rate. However, a lower bound is needed if σ > γ. Our work is quite similar to that
in Section 5.
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To achieve our goal, we use (3.4) and (3.8) in Remark 3.1. Thus, setting
w(x, t) = v(r)− κ(t) and assuming that v′(r) < 0, we get that

Hσ(w) =
|v′(r)|k

r
H

(
e,

(
r|v′(r)|Z(w) + 1− rv′′(r)

v′(r)

)
e⊗ e− I

)
+χ(t)|v′(r)|σ + κ′(t). (6.1)

We recall Condition C (see (2.4)), Remark 2.1, (2.5) and (3.1) and set

ℵ = min
|e|=1

H(e,−I), K0 =
Λmin(λ0)

λ0
`m = inf

s
Z(s) and αm = inf χ, (6.2)

where Λmin(λ) = min|e|=1H(e, λe⊗−I).
Set H(λ) = min|e|=1H(e, e ⊗ e − λ−1I). Let λ0 > 0 be large enough so that

K0 > 0. We record that

0 < `m <∞, ℵ < 0, 0 < K0 ≤ H(λ) ≤ HM , ∀λ ≥ λ0, and lim
λ→∞

H(λ) = Hm.
(6.3)

Sub-solutions. We treat separately the cases 0 ≤ σ ≤ γ and σ ≥ γ. The case
σ = γ is addressed in both the situations. Recall that µm = infRn h.

Case I 0 ≤ σ ≤ γ: Our work utilizes Lemma 4.3. Set in 0 ≤ r < R, ω = r/R and

w̄(x, t) = µm + v(r)− Ft, where v(r) = E

∫ ω2

0

(τp − 1)−1dτ, ∀0 ≤ r < R. (6.4)

We observe that v(r) ≤ 0 and v′(r) ≤ 0. Here E > 0, F = F (R) and p ≥ 2 are to
be determined. We calculate also limR→∞ F (R).

Note that the definition of E differs from the one in Lemma 4.3 but is consistent
with Case (ii) in Remark 3.1.

Set

Lp(ω) =
2E

1− ω2p
. (6.5)

We recall part (vii) of Lemma 4.3, k = k1 + 1, γ = k + 1 and `m = inf Z and
observe that

1− rv′′(r)

v′(r)
+ rZ(·)|v′(r)| = 2EZ(·)ω2

1− ω2p
− 2pω2p

1− ω2p
≥ 2ω2

(
`mE − pω2(p−1)

1− ω2p

)
.

Employing the above lower bound, (5.38), (6.2), parts (ii) and (vii) of Lemma 4.3
in (6.1) leads to

Hσ(w̄) ≥ Lp(ω)kωk1

Rγ
H

(
e, 2ω2

(
`mE − pω2(p−1)

1− ω2p

)
e⊗ e− I

)
+αm

(
Lp(ω)ω

R

)σ
+F.

(6.6)
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Select

E =
p(p+ 1)

`m
and Lp(ω) =

2p(p+ 1)

`m(1− ω2p)
. (6.7)

As 0 ≤ ω < 1 and p ≥ 2, we get that 2ω2
(
`mE − pω2(p−1)

)
≥ 2p2ω2. Set

Jp(ω) =
2p2ω2

1− ω2p
=

(
p

p+ 1

)
`mLp(ω)ω2, (6.8)

where we have used (6.5). Thus,

Jp(ω) ≤ 2ω2

(
`mE − pω2(p−1)

1− ω2p

)
.

Recalling (6.6) and (6.8) we see that

Hσ(w̄) ≥
(
Lp(ω)kωk1

Rγ

)
H (e, Jp (ω) e⊗ e− I) + αm

(
Lp(ω)ω

R

)σ
+ F. (6.9)

Set ω0 = 1/
√

2. We consider separately the cases: (i) 0 ≤ ω ≤ ω0, and (ii)
ω0 ≤ ω < 1.

(i) 0 ≤ ω ≤ ω0: Recall (6.2), (6.3) and (6.8). We bound

H (e, Jp(ω)e⊗ e− I) ≥ H(e,−I) ≥ −|ℵ|.

Using the above in (6.9) we get that

Hσ(w̄) ≥ F −
(
Lp(ω)k|ℵ|ωk1

Rγ
− αm

(
Lp(ω)ω

R

)σ)
. (6.10)

From (6.7), Lp(ω) is increasing in ω. Since 0 ≤ ω ≤ ω0, we choose

F =
Lp(ω0)k|ℵ|ωk10

Rγ
− αm

(
Lp(ω0)ω0

R

)σ
, ∀p > 2. (6.11)

Thus (6.10) implies that w̄ is a sub-solution in Bω0R
T .

(ii) ω0 ≤ ω < 1: This leads to a determination of p. Since Jp is increasing in ω,
using (6.8) we get that

Jp(ω) ≥ Jp(ω0) =
2p2ω2

0

1− ω2p
0

≥ p2 and lim
p→∞

Jp(ω0) =∞. (6.12)

Using Conditions A and B (see Section 2) and (6.12), we have that for ω ≥ ω0,

min
|e|=1

H (e, Jp (ω) e⊗ e− I) ≥ Jp (ω) min
|e|=1

H

(
e, e⊗ e− I

Jp (ω0))

)
≥ Jp (ω)H(p2) ≥ K0Jp(ω0) ≥ K0p

2 > 0. (6.13)
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Here we have used (6.3) and chosen p ≥ p0, where p0 ≥ 2 is large enough such
that H(p2) ≥ K0.

From here on we take p ≥ p0 such that (6.13) holds (see also (6.12)). Using
(6.8) and (6.13) in (6.9), we obtain

Hσ(w̄) ≥ Lp(ω)kωk1Jp(ω)H(p2)

Rγ
+ αm

(
Lp(ω)ω

R

)σ
+ F

≥ `mH(p2)

(
p

p+ 1

)(
Lp(ω)ω

R

)γ
+ αm

(
Lp(ω)ω

R

)σ
+ F. (6.14)

In the last inequality, we have used γ = k + 1 = k1 + 2.

We factor (ωLp(ω)/R)σ from (6.14) and use ω0 ≤ ω < 1 to obtain that

Hσ(w̄) ≥
(
Lp(ω)ω

R

)σ [
`mH(p2)

(
p

p+ 1

)(
Lp(ω0)ω0

R

)γ−σ
+ αm

]
+ F. (6.15)

Sub-Case (a) 0 ≤ σ < γ: As noted earlier, w̄ is a sub-solution in Bω0R
T , if F

is chosen as in (6.11). We assume that αm < 0. For αm ≥ 0, see Sub-Case (b).
We refer to (6.15) and select R such that

Lp(ω0)ω0

R
=

[(
|αm|

`mH(p2)

)(
1 + p

p

)]1/(γ−σ)

. (6.16)

With this choice, w̄ is a sub-solution in BRT .
From (6.3) and (6.7), H(p2) = O(1) and Lp(ω0) = O(p2) as p → ∞. Thus,

(6.16) yields that for some K1 = K1(α, γ, `m, ω0,K0) > 0,

R ∼ K1p
2 as p→∞.

Thus, R→∞ if and only if p→∞.

We calculate limR→∞ F . We write F in (6.11) as the sum of two terms X and
Y as follows:

F =
|ℵ|Lp(ω0)kωk10

Rγ
+ |αm|

(
Lp(ω0)ω0

R

)σ
= X + Y.

We use (6.16), γ = k + 1 and k = k1 + 1 to observe that

lim
p→∞

X = lim
R→∞

X =
|ℵ|ωk10

R

(
Lp(ω0)

R

)k
= 0.

Next, using (6.16), we get

Y = |αm|
(
Lp(ω0)ω0

R

)σ
=

[
|αm|γ

(`mH(p2))σ

(
p+ 1

p

)σ]1/(γ−σ)

.
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Referring to (6.3), we see that

lim
R→∞

F = lim
R→∞

Y = lim
p→∞

Y =

(
|αm|γ

(`mHm)σ

)1/(γ−σ)

, 0 ≤ σ < γ. (6.17)

From (6.17), if αm < 0 then

lim
R→∞

F =

{
|αm|, σ = 0,

(|αm|γ/(`mHm)σ)1/(γ−σ), 0 < σ < γ.
(6.18)

Sub-Case (b) χ ≥ 0: We may choose F = X as seen in (6.9), (6.11) and
(6.15)(since αm ≥ 0). For a large enough value of p, w̄ is a sub-solution in BRT for
any σ ≥ 0 and any R > 0. Clearly, limR→∞ F = 0. No lower bound is needed.

Sub-Case (c) σ = γ: An inspection of (6.15) shows that if

|αm| < `mHm = [inf
s
Z(s)][min

|e|=1
H(e, e⊗ e)],

by selecting p, large enough, (6.15) may be written as

Hγ(w̄) ≥
(
ωL(ω)

R

)γ [
`mH(p2)

(
p

p+ 1

)
− |αm|

]
+ F ≥ 0.

For the chosen p, w̄ is a sub-solution in BRT for any R > 0. Moreover, R is
independent of p and F (R) → 0 as R → ∞. However, if |αm| ≥ `mHm then it is
not clear if a lower bound is needed. See Case II below. In Section 7, a minimum
principle is proven by imposing a lower bound.

Case II γ ≤ σ <∞: We adapt the work in Section 5, see Step 2, in particular.
Recall that k2 = 1, γ = k + 1 = k1 + 2, σ∗ = σ/(σ − 1) and γ∗ = γ/k.
First, we describe the two sub-cases of interest and then present the work that

addresses them. Set
κ(t) = 1 + t, 0 ≤ t ≤ T.

Sub-Case (i) σ = γ: We take |αm| ≥ `mHm and refer to Sub-Parts (i) and (ii)
of Part I in Section 5.

(i1) k = 1: Thus, γ = γ∗ = 2. Assume that for any ε > 0, small, sup|x|≤r(−u(x, t)) ≤
o(|r|2−ε) as r →∞. We take

w̄(x, t) = µm − at− bκ(t)v(r), where v(r) =

∫ r2

0

(1 + τε/2)−1dτ.

(i2) k > 1: Thus, 1 < γ∗ < 2 < γ. We assume that sup|x|≤r(−u(x, t)) ≤ o(|r|γ∗)
as r →∞. We take

w̄ = µm − at− bκ(t)rγ
∗
.
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Sub-Case (ii) σ > γ: We allow k ≥ 1 and refer to Part II of Section 5. We
assume that sup|x|≤r(−u(x, t)) ≤ o(|r|σ∗) as r →∞. We take

w̄ = µm − at− bκ(t)v(r), where v(r) =

∫ rγ
∗

0

(1 + τp)−1dτ and p =
σ − γ
γ(σ − 1)

.

We present the calculations that apply to both the sub-cases. Since w̄r < 0,
except at r = 0, we use the two versions in (3.4). For R > 0, to be determined,

G(w̄)=
|w̄r|k

r
H

(
e,

(
r|w̄r|Z(w̄) + 1− rw̄rr

w̄r

)
e⊗ e− I

)
, ∀0 ≤ r ≤ R,

G(w̄)= |w̄r|γH
(
e,

I − e⊗ e
rw̄r

+

(
w̄rr
w̄2
r

+ Z(w̄)

)
e⊗ e

)
, ∀r ≥ R. (6.19)

From parts (ix) of Cases A, B and C of Remark 4.2, we have that

rw̄rr
w̄r

=
rv′′(r)

v′(r)
≤

 1, σ = γ = 2, k = 1,
γ∗ − 1, σ = γ > 2, k > 1,
γ∗ − 1, σ > γ ≥ 2, k ≥ 1.

• Using the first version in (6.19), noting that γ∗ ≤ 2 and 1 − rw̄rr/w̄r ≥ 0,
one estimates (see (6.2))

H

(
e,

(
r|w̄r|Z(w̄) + 1− rw̄rr

w̄r

)
e⊗ e− I

)
≥ H(e,−I) ≥ −|ℵ|, 0 ≤ r ≤ R.

Hence, in 0 ≤ r ≤ R,

Hσ(w̄) ≥ −
(

[bκ(T )v′(r)]k|ℵ|
r

+ |αm| [bκ(T )v′(r)]σ
)

+ a+ bv(r).

We employ the estimate in (5.8), i.e., v′(r) ≤ γ∗rγ∗−1 = γ∗r1/k we get, in 0 ≤ r ≤
R,

Hσ(w̄) ≥ −
(

[γ∗bκ(T )rγ
∗−1]k|ℵ|

r
+ |αm|[γ∗bκ(T )rγ

∗−1]σ − a
)

≥ −
(

[γ∗bκ(T )]k|ℵ|+ |αm|[γ∗bκ(T )]σRσ/k − a
)
.

As done in (5.31), we select an appropriate a. Thus, w̄ is a sub-solution in |x| ≤ R.

• Next, in r ≥ R, one finds that (see (5.6) and (6.19))

|w̄r|γH
(
e,

I − e⊗ e
rw̄r

+

(
w̄rr
w̄2
r

+ Z(w̄)

)
e⊗ e

)
= [bκ(t)v′(r)]γH

(
e,

e⊗ e− I
bκ(t)rv′(r)

+

(
Z(w̄)− v′′(r)

bκ(t)(v′(r))2

)
e⊗ e

)
≥ bk[κ(t)v′(r)]γH

(
e,
e⊗ e− I
rv′(r)

+

(
bZ(w̄)− v′′(r)

(v′(r))2

)
e⊗ e

)
, (6.20)
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where we have factored out 1/b, used that γ = k + 1, κ(t) ≥ 1 and e⊗ e− I ≤ 0.
We now recall (5.11) i.e.,

0 < max

(
1

rv′(r)
,

v′′(r)

(v′(r))2

)
≤ 2, in r ≥ R ≥ 1.

Employing this estimate in (6.20) and disregarding the term with Z, we get

|w̄r|γH
(
e,

I − e⊗ e
rw̄r

+

(
w̄rr
w̄2
r

+ Z(w̄)

)
e⊗ e

)
≥ bk[κ(T )v′(r)]γS,

where S = min|e|=1H(e,−2(I + e ⊗ e)). Clearly, by (6.2), −∞ < S ≤ ℵ < 0 and
we get that

Hσ(w̄) ≥ −
{
bk[κ(T )v′(r)]γ |S|+ α(bκ(T ))σ(v′(r))σ − a− bv(r)

}
,

which is analogous to (5.14). As done in Section 5, a choice for b (see (5.34)) can
now be made. Thus, w̄ is a sub-solution for any small enough b > 0 and

lim
b→0

a = 0. (6.21)

�

7. Proofs of Theorems 2.2-2.5

Let T > 0 and we take (x, t) ∈ RnT , n ≥ 2. Set

(i) µm = inf
Rn
h, µM = sup

Rn
h, (ii) αm = inf χ(t), αM = supχ(t),

(iii) `m = inf Z, `M = supZ, and assume that

(iv) −∞ < µm ≤ µM <∞, −∞ < αm ≤ αM <∞ and 0 < `m ≤ `M <∞.

Recall that k = k1 + 1, γ = k + 1, γ∗ = γ/k and σ∗ = σ/(σ − 1), ∀σ > 1. Let
z ∈ Rn be a fixed point and r = |x− z|. Define the cylinder BρT = Bρ(z)× (0, T )
and P ρT be its parabolic boundary.

Proof of Theorem 2.2. Let u be a sub-solution as described in the theorem.
By the hypotheses, for a fixed small η > 0, let ρ > ρ0, where ρ0 is large enough so
that

sup
BρT

u(x, t) ≤ ηρδ, ∀ρ ≥ ρ0, (7.1)

where δ is as in Theorem 2.2.

Proof of Theorem 2.2(a) (σ = 0): Recall from (5.1) the super-solution

w(x, t) = µM + at+ bv(r), ∀(x, t) ∈ RnT , (7.2)
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where

(1) if k = 1 then v(r) =

∫ r2

0

(1 + τε/2)−1dτ, and (2) if k > 1 then v(r) = rγ
∗
,

(7.3)
where ε > 0, small, is as in the theorem. See (5.16) and (5.24). Also, in (7.1)

(1) δ = 2− ε if k = 1, and (2) δ = γ∗ if k > 1. (7.4)

For details, see Part I in Section 5, (5.20) in Sub-Part (i), (5.27) in Sub-Part
(ii) and (5.29).

Thus, w is a super-solution in RnT for any 0 < b < b0, for b0 small enough, and
an appropriate a that depends on b. Moreover, limb→0 a = αM . See (5.29).

By part (iv) of Cases A and B of Remark 4.2, v(r) ≥ rδ/4, for r ≥ ρ1, where
ρ1 is large enough. We choose b = 8η. If needed, choose η smaller and ρ0 in (7.1)
larger so that η < b0/8.

Set ρ2 = max(ρ0, ρ1) and consider a cylinder BρT , where ρ > ρ2. Then u(x, 0) ≤
h(x) ≤ µM , ∀x ∈ Rn. Clearly, w(x, 0) = µM + bv(r) ≥ u(x, 0), for |x| ≤ ρ. On
|x| = ρ, we have by (7.1),

w(x, t) ≥ bv(ρ) ≥ 8ηρδ

4
= 2ηρδ ≥ u(x, t).

Thus, w ≥ u on P ρT , ∀ρ ≥ ρ2. We use Lemma 3.2 to conclude that u(x, t) ≤ w(x, t)
in BρT ,

∀ρ > ρ2, u(x, t) ≤ µM + at+ bv(r), ∀|x| ≤ ρ and 0 < t < T.

Fixing (x, t) and letting ρ → ∞, we see that u(x, t) ≤ µM + at + bv(r) in RnT .
Since this holds for any small b, we obtain u(x, t) ≤ µM + αM t, see (5.29). �

Proof of Theorem 2.2(b) (0 < σ ≤ γ): The quantities w, v and δ are
as in (7.2), (7.3) and (7.4). Refer to Part I in Section 5 and see Sub-Parts (i)
and (ii). Arguing as in the proof of Theorem 2.2(a) above, we see that u(x, t) ≤
µM + at + bv(r), in RnT , for any b > 0 small enough. Recalling (5.23) and (5.29),
i.e., limb→0 a = 0, we get that u(x, t) ≤ µM and the claim holds.

Proof of Theorem 2.2(c) (σ > γ): Refer to Part II in Section 5. The
quantity δ = σ∗ in (7.1). From (5.30) w(x, t) = µM + at+ b(1 + t)v(r), where

v(r) =

∫ rγ
∗

0

(1 + τp)−1dτ and p =
σ − γ
γ(σ − 1)

,

where a > 0 and b > 0. Then w is a super-solution in RnT for any 0 < b < b0,
where b0 is small enough, and an appropriate a that depends on b. Moreover, by
(5.35),

lim
b→0

a = 0.
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The rest of the proof is similar to the proof of Theorem 2.2(a). �

Proof of Theorem 2.2(d) and (e) (σ ≥ γ): We take w̄(x, t) = µM + v(r) +
Ft, where v(r) and F are as in (5.37) and (5.39). See also (5.47) and (5.53).
Observe that v(r)→∞ as r → R.

Clearly, w̄(x, 0) ≥ µM ≥ u(x, 0), ∀|x| < R. Since sup|x|≤R |u| < ∞, select

R̄ < R, close to R, such that w̄(x, t) ≥ u(x, t) on |x| = R̄. Thus, w̄(x, t) ≥ u(x, t)
in BR̄T and u(z, t) ≤ w̄(z, t) = µM + Ft. Letting R → ∞ and noting the limits in
(5.47) and (5.53) the claims in parts (d) and (e) follow. Note that for σ = γ, we
require |αM | > `MHM for the argument to apply. �

Proof of Theorem 2.3: We start with the proofs of parts (a)-(c). Recall that
µm = inf h and assume that αm = inf χ < 0.

Proofs of parts (a), (b) and (c) (0 ≤ σ ≤ γ): Recall from (6.4) that for
R > 0,

w̄R(x, t) = µm + v(r)− Ft, where v(r) = E

∫ ω2

0

(τp − 1)−1dτ, ω = r/R,

and E > 0 and F = F (R) > 0. Note that v(r) ≤ 0. See Sub-Cases (a), (b) and
(c) of Case I in Section 6.

From (6.11) and (6.18) we see that

lim
R→∞

F = lim
R→∞

F (R)=


|αm|, σ = 0,

(|αm|γ/(`mHm)σ)1/(γ−σ), 0 < σ < γ,

0, σ = γ, |αm| < `mHm.
(7.5)

Let u be as in the theorem. Since v(r) ≤ 0, clearly, w̄(x, 0) = µm + v(r) ≤
h(x) ≤ u(x, 0) in |x| < R. Since sup |u| < ∞ in BRT , w̄(x, t) ≤ u(x, t) on r = R′,

for any R′ < R, close to R. By Lemma 3.2, w̄R ≤ u in BR
′

T and hence, in BTR.
Thus, w(z, t) ≤ u(z, t) and since v(0) = 0, u(z, t) ≥ µm−Ft. Letting R→∞,

we get,

u(z, t) ≥


µm − |αm|t, σ = 0,

µm − t(|αm|γ/(`mHm)σ)1/(γ−σ), 0 < σ < γ,
µm, σ = γ, |αm| < `mHm.

Proof of part (f) (σ ≥ 0): If χ ≥ 0, take αm ≥ 0 and refer to Case I in
Section 6. The claim u(x, t) ≥ µm, ∀(x, t) ∈ RnT , holds for any σ ≥ 0.

Proofs of parts (d) and (e) (σ ≥ γ):
• Let σ = γ. We take |αm| ≥ `mHm. Assume that

sup
BρT

(−u(x, t)) ≤ o(ρδ), as ρ→∞. (7.6)
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Recall Sub-Cases (i) and (ii) in Case II in Section 6. Take a > 0 and 0 < b < 1
and set

w̄(x, t) = µm − at− b(1 + t)v(r), in RnT .

If k = 1 i.e., γ = 2 then δ = 2− ε, for a small and fixed ε > 0, in (7.6), and

v(r) =

∫ r2

0

(1 + τε/2)−1 dτ.

If k > 1 and γ > 2 then δ = γ∗, in (7.6), and v(r) = rγ
∗
.

• If σ > γ and k ≥ 1 then δ = σ∗ in (7.6), and

v(r) =

∫ rγ
∗

0

(1 + τp)−1 dτ where p =
σ − γ
γ(σ − 1)

.

It follows that limb→0 a = 0 in all the above situations, see (5.35) and (6.21).
The rest of the proof is similar to that of Theorem 2.2. �

Proof of Theorem 2.5. We take χ = σ = 0 in Theorem 2.2. Let u > 0 be as in
the statement of the theorem.

Let k > 1. Set û = φ−1(u) and h = φ−1(g), see Lemma 3.3.
We recall (2.10), (2.13) and (2.14). If η(s) = f−1/(k−1)(s) then, as noted

before,

either (i)

∫ ∞
0

η(s)ds <∞ or (ii)

∫ ∞
0

η(s)ds =∞. (7.7)

The domain of φ in (7.7) (i) is [0,∞), and in (7.7) (ii) it is (−∞,∞). Also,

Z(û) = φ′′(û)/φ′(û) = (dη(s)/ds)|s=û

is non-increasing and 0 < `m ≤ Z(û) ≤ `M < ∞. Moreover, the domain of Z in
(i) is (0,∞) or [0,∞), and in (ii) it is (−∞,∞). Set

µm = inf
x
φ−1(g(x)) and µM = sup

x
φ−1(g(x)).

We employ Lemma 3.3 and Corollary 3.4. Set r = |x− z|.

Proof of part (a): Since û is a sub-solution we have that sup
BRT

û(x, t) ≤ o(Rγ
∗
)

as R → ∞. In (7.7) (i) û > 0 and µM > 0, and in (7.7) (ii) −∞ < û < ∞ and
−∞ < µM <∞.

By Lemma 3.3, û ∈ usc(RnT ) solves

H(Dû,D2û+ Z(û)Dû⊗Dû)− ût ≥ 0, in RnT ,

and û(x, 0) ≤ φ−1(g(x)), for all x ∈ Rn.
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By Theorem 2.2(a), sup
RnT

û ≤ µM , and thus, sup
RnT

u ≤ sup
Rn

g.

Proof of part (b): In this case, û ∈ lsc(RnT ) solves

H(Dû,D2û+ Z(û)Dû⊗Dû)− ût ≤ 0, in RnT ,

and û(x, 0) ≥ φ−1(g(x)), for all x ∈ Rn.

We first discuss (7.7) (ii). Since the domain of φ is (−∞,∞), we apply Theorem
2.3 (a), with χ ≡ 0 and σ = 0, to obtain inf

RnT
û ≥ µm and hence, inf

RnT
u ≥ inf

Rn
g. No

lower bound is needed.

In (7.7) (i), the domains of φ and Z are [0,∞) and at least (0,∞) respectively.
Thus, û > 0 and µm > 0. Let w̄R be as in the proof of Theorem 2.3(a), see also
(6.4), that is,

w̄R(x, t) = µm + v(r)− Ft, where v(r) = E

∫ ω2

0

(τp − 1)−1dτ, ω = r/R,

where E > 0. Here, v(0) = 0, v(r) ≤ 0 and w̄R(r)→ −∞ as r → R. Extend Z to
(−∞, 0) by `M thus defining Z on (−∞,∞).

For all ρ > 0, set

ε(ρ) = inf
BρT

û.

Also, recall from (7.5) that limR→∞ F = limR→∞ F (R) = 0, since χ = 0. Select
R > 0, large enough, such that FT < µm/4. This ensures that w̄R(z, t) = µm +
v(0)− Ft ≥ µm/2 > 0. Fix R.

Clearly, as ε(ρ) > −∞ and is decreasing in ρ, ε(R) ≤ ε(ρ) for ρ ≤ R.

Since v(r) ≤ 0, wR(x, 0) = µm + v(r) ≤ h(x) ≤ û(x, 0), 0 ≤ r < R. Since
v(r) → −∞ as r → R, we choose R

′
< R, close to R, such that w̄R(R

′
, t) ≤

ε(R)/4 ≤ ε(R′)/4. Applying the comparison principle, wR ≤ û in BR
′

T and, hence,
in BRT .

Taking r = 0,

µm + v(0)− Ft = w̄R(z, t) ≤ û(z, t).

Since, v(0) = 0 and limR→∞ F = 0, the claim holds.

Note that a proof can also be worked by considering the sub-solution ψR(x, t) =
max{w̄R(x, t), ε(R)/2} > 0 in BTR. Clearly, ψR(x, t) ≤ û(x, t) on r = R and
ψR(x, 0) ≤ û(x, 0). This follows as w̄R(x, 0) ≤ µm. This leads to û ≥ ψR ≥ w̄R in
BRT . This does not require extending Z.

For k = 1, set u = φ(û) = eû. Then, Z(û) ≡ 1 and a proof follows analogously.
�
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8. Optimality

In this section, we address optimality for Theorems 2.2 (a), (b) and (c) and 2.5 (i)
(a). We point out that some of our results discussed here are partial in nature.

Recall the the assumption −∞ < µm = inf h ≤ suph = µM < ∞, and the
notation

G(v) := H(Dv,D2v+Z(v)Dv⊗Dv) and Hσ(v) = G(v) +χ(t)|Dv|σ − vt. (8.1)

To address optimality of Theorem 2.2, we construct sub-solutions φ(x, t) which
tend to −∞ as t → 0+ and grow at the rate indicated in theorem. We then take
max{µM , φ} to show optimality for the maximum principle. We construct φ = φ(r)
where

r = |x|, ∀x ∈ Rn, φr > 0 and φrr > 0 in r 6= 0.

Also, o stands for the origin in Rn.
Thus, (3.3) and Condition A(see Section 2) lead to

G(φ) = H

(
φre,

(
φr
r

(I − e⊗ e) + φrre⊗ e
)

+ Z(φ)φ2
re⊗ e

)
≥ H

(
φre,

(
φr
r

(I − e⊗ e)
))

=
φkr
r
H

(
e, I +

(
rφrr
φr
− 1

)
e⊗ e

)
. (8.2)

Another version follows from the first equation in (8.2) by using that I−e⊗e ≥
0, `m = inf Z, Hm = min|e|=1H(e, e⊗ e) and writing

G(φ) ≥ H
(
φre, Z(φ)φ2

re⊗ e
)
≥ (φr)

γZ(φ)H(e, e⊗ e) ≥ (φr)
γ`mHm. (8.3)

We may combine (8.2) and (8.3) as follows. For 0 ≤ τ ≤ 1,

G(φ) ≥ τ
[
φkr
r
H

(
e, I +

(
rφrr
φr
− 1

)
e⊗ e

)]
+ (1− τ)(φr)

γ`mHm. (8.4)

Note that to show that the functions φ satisfy the inequalities at r = 0, we use
Remark 4.4.

Sub-solutions: Optimality for the maximum principle

The discussion here refers to Theorem 2.2.

Part I: k > 1. Recall that k1 > 0, k = k1 + 1, γ = k + 1 and γ∗ = γ/k. Note
that γ = k + 1 > 2 and 1 < γ∗ < 2.

Case (0 ≤ σ < γ) : We take

φ =
arγ

∗

tθ1
− b

tθ2
, where θ1 =

2

k − 1
and θ2 =

k + 1

k − 1
=
γθ1

2
. (8.5)
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Here, a > 0 and b > 0 are to be determined. Set E = aγ∗. Then,

φr =
Erγ

∗−1

tθ1
, φrr =

E(γ∗ − 1)rγ
∗−2

tθ1
,
rφrr
φr
− 1 = γ∗ − 2 =

1− k
k

. (8.6)

Taking τ = 1/2 in (8.4) and using (8.6), we obtain that

G(φ) ≥ 1

2

[
Ekrγ

∗k−γ

tkθ1
H (e, I + (γ∗ − 2)e⊗ e) +

Eγr(γ∗−1)γ

tγθ1
`mHm

]
. (8.7)

Observe that, γ∗ − 1 = 1/k, γ∗k− γ = 0 and I + (γ∗ − 2)e⊗ e ≥ (e⊗ e)/k. Thus,

H(e, I − γ∗e⊗ e) ≥ H(e, e⊗ e)/k ≥ Hm/k.

We get from (8.7) that

G(φ) ≥ 1

2

[
EkHm
ktkθ1

+
Eγrγ/k`mHm

tγθ1

]
. (8.8)

Recall that αm = inft χ(t). Using (8.8) and assuming that αm ≤ 0 (otherwise
disregard χ(t)|Du|σ), we get that

Hσ(φ) = G(φ) + χ(t)φσr − φt

≥ 1

2

[
EkHm
ktkθ1

+
Eγrγ/k`mHm

tγθ1

]
+
αmE

σrσ/k

tσθ1
+
Eθ1r

γ/k

γ∗tθ1+1
− bθ2

tθ2+1

=

[
EkHm
2ktkθ1

− bθ2

tθ2+1

]
+

[
Eγrγ/k`mHm

2tγθ1
− |αm|E

σrσ/k

tσθ1

]
+
Eθ1r

γ/k

γ∗tθ1+1
. (8.9)

Apply Young’s inequality to obtain

|αm|Eσrσ/k

tσθ1
≤
(
σ

γ

)
Eγrγ/k`mHm

2tγθ1
+

(
γ − σ
γ

)(
2

`mHm

)σ/(γ−σ)

|αm|γ/(γ−σ).

Employing this in the right side of (8.9), we get

Hσ(φ) ≥ EkHm
2ktkθ1

− bθ2

tθ2+1
−
(
γ − σ
γ

)(
2

`mHm

)σ/(γ−σ)

|αm|γ/(γ−σ)

By (8.5), kθ1 = θ2 + 1. Hence,

Hσ(φ) ≥ 1

tkθ1

[
EkHm

2k
− bθ2 −

(
γ − σ
γ

)(
2

`mHm

)σ/(γ−σ)

|αm|γ/(γ−σ)T kθ1

]
.

(8.10)
Select b = 1 and E large enough to get a sub-solution for 0 < σ < γ. For σ = 0,
we use (8.9) to see that

H0(φ) ≥ EkHm
2tkθ1

− |αm| −
θ2

tθ2+1
=

1

2tkθ1

[
EkHm − 2|αm|T kθ1 − 2θ2

]
. (8.11)
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Choosing E large enough we get a sub-solution. �

Case σ = γ and |αm| < `mHm: Let 0 < ε < 1 be such that |αm| ≤
(1− ε)`mHm. Setting τ = ε in (8.4), using (8.5) and arguing as in (8.7) and (8.8),
we get that

G(φ) ≥ εE
kHm
ktkθ1

+ (1− ε)E
γrγ/k`mHm

tγθ1
. (8.12)

Selecting θ1 and θ2 as in (8.5), arguing as in (8.9) and replacing |αm| by
(1− ε)`mHm, we get that

Hγ(φ) ≥
[
εEkHm
ktkθ1

− bθ2

tθ2+1

]
+

[
(1− ε)Eγrγ/k`mHm

tγθ1
− (1− ε)`mHmEσrσ/k

tγθ1

]
+
Eθ1r

γ/k

γ∗tθ1+1

=
1

tkθ1

[
εEkHm

k
− bθ2

]
+
Eθ1r

γ/k

γ∗tθ1+1
.

Choose E = 1 and b = εHm/kθ2 and conclude that φ is a sub-solution in RnT . �

Sub-case σ = γ and |αm| = `mHm: This is not clear to us for general
H. However, if H is quasilinear, i.e, if G is quasilinear (such as the parabolic
p-Laplacian) then rγ/k is optimal. We assume that αm ≤ 0.

Observe that (8.2), (8.3), (8.7) and (8.8) lead to

G(φ)= H
(
Dφ,D2φ+ Z(φ)Dφ⊗Dφ

)
= H(Dφ,D2φ) +H(Dφ,Z(φ)Dφ⊗Dφ)

= H

(
φre,

φr
r

(I − e⊗ e) + φrre⊗ e
)

+H
(
φre, Z(φ)φ2

re⊗ e
)

≥ EkHm
ktkθ1

+
Eγrγ/k`mHm

tγθ1
.

As done in (8.9), we get that

Hγ(φ) ≥ EkHm
ktkθ1

+
Eγrγ/k`mHm

tγθ1
− |αm|E

γrγ/k

tγθ1
− bθ2

tθ2+1
+
Eθ1r

γ/k

γ∗tθ1+1

≥ EkHm
ktkθ1

− bθ2

tθ2+1
+
Eθ1r

γ/k

γ∗tθ1+1
.

Since kθ1 = θ2 + 1, we may now conclude optimality. �

Case σ > γ: We assume that χ ≥ 0. Choose

φ(r, t) =
af(r)

tθ1
− b

tθ2
, where θ1 =

2

k − 1
, θ2 =

k + 1

k − 1
=
γθ1

2
,

f(r) =

∫ rγ
∗

0

1

1 + τp
dτ, p =

σ − γ
γ(σ − 1)

and σ∗ =
σ

σ − 1
.
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See (5.30) in this context. We apply the two versions (8.2) and (8.3) as follows:

G(φ) ≥ ak(f ′)k

rtkθ1
H

(
e, I +

(
rf ′′

f ′
− 1

)
e⊗ e

)
, 0 ≤ r ≤ 1,

G(φ) ≥ aγ(f ′)γ

tγθ1
`mHm, 1 ≤ r <∞.

Refer to (vi), (viii) and (ix) in Case C of Remark 4.2. Then

f ′(r) ≥ (γ∗/2) min(rγ
∗−1, rσ

∗−1) and rf ′′/f ′ ≥ 1/σ.

Set
E = aγ∗/2 ≤ a.

Since I + (σ−1 − 1)e⊗ e ≥ e⊗ e/σ, we obtain from above that

G(φ) ≥ Ek

tkθ1
H
(
e, I +

(
σ−1 − 1

)
e⊗ e

)
≥ EkHm

σtkθ1
, 0 ≤ r ≤ 1,

G(φ) ≥ aγ(f ′)γ

tγθ1
`mHm ≥

Eγrγ/(σ−1)`mHm
tγθ1

≥ Eγ`mHm
tγθ1

, 1 ≤ r <∞. (8.13)

Since χ ≥ 0, we see from (8.1) that Hσ(φ) ≥ G(φ)− φt and

Hσ(φ) ≥ EkHm
σtkθ1

− bθ2

tθ2+1
, 0 ≤ r ≤ 1, and Hσ(φ) ≥ Eγ`mHm

2γtγθ1
− bθ2

tθ2+1
, 1 ≤ r <∞.

(8.14)
Since kθ1 = θ2 + 1 and γθ1 − (θ2 + 1) = θ1, we get that φ is a sub-solution if we
select E = 1 and

0 < b ≤ min

(
Hm
σθ2

,
`mHm
θ2T θ1

)
.

To show optimality for σ > γ, we observe that for any χ, supRnT u ≤ µM if we

impose that supBRT u = o(Rσ
∗
) as R→∞.

If supχ < 0 then the maximum principle holds without any restrictions, see
Theorem 2.2(e). If χ ≥ 0 somewhere in (0, T ) then the above shows that the
growth rate of o(Rσ

∗
) is optimal, see Theorem 2.2(c).

The above also applies to part (a) of Theorem 2.5(i). �

Part II: k = 1. Note that k1 = 0 and γ = 2. Also, H(p,X) = H(X) for all
(p,X) ∈ Rn × Sn×n. See Condition B in Section 2. We take f ≡ 1.

This part applies to Theorem 2.5 (ii). Clearly, u > 0 satisfies

H(D2u)− ut ≥ 0, in RnT and u(x, 0) ≤ g(x), ∀x ∈ Rn.

We apply the change of variable v = log u. Then, by Case (ii) of Lemma 3.3,

H(D2v +Dv ⊗Dv)− vt ≥ 0, in RnT and v(x, 0) ≤ log g(x), ∀x ∈ Rn.
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For a > 0 and b > 0, we define

w =
a(r + r2)

t3/2
− b

t2
, in r ≥ 0 and t > 0.

In r > 0, wr > 0, wrr > 0 and hence,

H(D2w +Dw ⊗Dw) = H
(wr
r

(I − e⊗ e) + wrre⊗ e+ w2
re⊗ e

)
≥ H(w2

re⊗ e) = w2
rH(e⊗ e) ≥ a2(1 + 2r)2

t3
Hm.

Thus,

H(D2w +Dw ⊗Dw)− wt ≥
a2(1 + 2r)2Hm

t3
+

3a(r + r2)

2t5/2
− 2b

t3
.

Choosing b = a2Hm/2, we see that w is sub-solution in r > 0.
To show that w is a sub-solution in all of RnT , let ψ, C2 in x and C1 in t, be

such that (w − ψ)(x, t) ≤ (w − ψ)(o, s) for some 0 < s < T . Hence,

a(r + r2)

t3/2
− b

t2
+

b

s2
≤ 〈Dψ(o, s), x〉+ ψt(t− s) as (x, t)→ (o, s).

It is clear that ψt(o, s) = 2b/s3. Taking t = s, we see that

a(r + r2)

s3/2
≤ 〈Dψ(o, s), x〉 as (x, t)→ (o, s).

Dividing by r = |x| and writing e = x/|x| and letting r → 0, we get

0 <
a

s3/2
≤ 〈Dψ(o, s), e〉, ∀e.

Thus, Dψ(o, s) does not exist contradicting that ψ is C2 in x. Hence, w is a
sub-solution in RnT . �
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