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A Phragmén-Lindelof property of viscosity solutions to a
class of nonlinear parabolic equations with growth
conditions

Tilak Bhattacharya* and Leonardo Marazzi

Abstract. We study Phragmén-Lindeldf properties of viscosity solutions to a class of doubly
nonlinear parabolic equations in R™ x (0,T). We include an application to some doubly nonlinear

equations. We address also the optimality of some our results.

1. Introduction

In this work, we discuss Phragmén-Lindelof type results for a class of nonlinear
parabolic equations. This is a follow-up of the work in [3] where we stated similar
results for viscosity solutions of Trudinger’s equation in infinite strips R™ x (0,7,
where n > 2 and 0 < T' < co. The classical references [11, 13, 14, 16] contain a
detailed discussion of the importance of this property and its connections to other
questions. The main question of interest is: under what conditions do solutions
of elliptic and parabolic equations satisfy a maximum principle on unbounded
domains? Our work considers infinite strips of R™*! and presents some results in
this direction. Our results apply to a fairly large class of parabolic equations and,
in many instances, appear to be optimal. Further discussion and connections to
other questions can be found in, for instance, [1, 7, 12, 14].

Many of the references, cited above, address primarily linear uniformly elliptic
and parabolic equations. Our current work, on the other hand, studies nonlinear,
possibly degenerate, parabolic equations and includes in it a certain class of dou-
bly nonlinear equations. The case of Trudinger’s equation is an instance of such
equations, see [3, 15]. Moreover, the class we study here does include some linear
uniformly parabolic equations, as examples.

Our work is in the context of viscosity solutions and it is important to point
out that [7] appears to be the earliest work done on this question for nonlinear
elliptic operators. Our work addresses similar questions for the parabolic versions
of the operators considered in [7].

We introduce notation for our discussion. Let n > 2 and 0 < T < co. Define
R7. =R"x(0,T). Let g: R™ — (0,00) and h: R™ — R be two continuous functions
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satisfying

max (sup |log g(x)|, sup |h(:r)|> < o00. (1.1)
zER" zER"

Our motivation for the work arises from the study of viscosity solutions of
doubly nonlinear equations of the kind

H(Du, D*u) — f(u)us = 0, in R}, wu(x,t) >0 and u(z,0) = g(z), YV in R",
(1.2)
where H satisfies certain homogeneity conditions and f: Rt — RT is a non-
decreasing continuous function, see Section 2 for more details. As shown in [5], if
f satisfies certain conditions then there exists a function ¢ such that the change
of variable u = ¢(v) transforms (1.2) to

H(Dv, D*v+ Z(v)Dv® Dv) —v; = 0, in R%, and v(z,0) = ¢~ (g(z)), Vo in R",
(1.3)
where Z: R — R* is a non-increasing function. As observed in [2, 5], one can
conclude a comparison principle for (1.3), and hence, for (1.2).
Consider the well-known Trudinger’s equation [2, 15]:

div(|Du[P~2Du) — (p — 1)uP"?u; = 0, in R%, and u > 0.
Writing « = e” (see [2]), we obtain an instance of (1.3), i.e.,
div(|Dv|P~2Dv) + (p — 1)|Dv|P — (p — 1)v; =0, in R%..
Setting H(Dw, D?*w) =div(|Dw|P~2Dw), the above may be written as
H(Dv,D*v+ Dv® Dv) — (p— 1)v; =0, in R%.
A related and somewhat more general equation is

H(Du, D*u) + x(t)|Du|” — (p — 1)uP"u; = 0, in R, u >0,
with u(z,0) = g(z), Vo in R,
where o > 0 and x(t) is continuous on [0, T]. Using u = e¥ we get that
H(Dv, D*» + Dv® Dv) + x(t)e"=P=D?|Dy|” — (p — 1)v, = 0, in R,
and v(z,0) = log g(x), V& in R™.

At this time, it is not clear to us as to how to address the above equation. Nonethe-
less, this provides motivation for addressing the following related question of study-
ing Phragmén-Lindel6f results for equations of the kind

H(Dv, D*v + Z(v)Dv @ Dv) + x(t)|Dv|” —v; = 0,
v(x,0) = h(x), for all z in R™. (1.4)
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Here x and h are continuous, bounded and can have any sign. The function 7 is
non-increasing and continuous.

In this work, the operators H satisfy certain monotonicity and homogeneity
conditions, see Section 2 for a more precise formulation. Our goal then is to con-
sider equations such as (1.4) and show that if v satisfies certain growth conditions,
for large |z|, then v satisfies a maximum principle. A similar conclusion then
follows for the equation in (1.2).

The role of the function Z is important. We assume that Z is non-increasing
and infs Z(s) > 0. This greatly influences our results as Z(v)Dv ® Dv and
x(t)|Dv|? could be dueling terms and this is reflected in the nature of the im-
posed growth rates. Included in the work is also the role of the sign of x in
deriving a maximum principle.

The second assumption we make is the following. Let e € R™ denote any unit
vector, I be the n x n identity matrix and A € R be a parameter. Set

Amin(A) = min H(e,e® e — I).

le|=1

We require that Apin(A) > 0 for some A > 1. As shown in Section 2, this implies
that supys o A(A) =c0. The p-Laplacian, the Infinity-Laplacian, the pseudo p-La-
placian and the Pucci operators all satisfy this condition, see [5, 10]. Another
operator of interest included here is as follows. Let H(X) = Zle wi(X), € <mn,
where X is any symmetric n X n matrix and p1(X) > pa(X) > -+ > pn(X) are
its eigenvalues. Such partial scalar curvature operators are of great interest and
have been considered in many works, see [17] for a detailed discussion.

The current work, in a sense, complements the work in [6] wherein we study
the case supy[maxj—; H(e, e ® e + 1) < co. As an example, the operator
H(X)=3Y" 1 (X), m>1 (see the above paragraph) is included in this work.
Another example would be |Du|?Au — (D|Du|?, Du)/2. Our results in the current
work do not apply to these instances.

As shown in [6] and the current work, the behaviour of H (e, Ae®e+1) for large
A influences greatly the nature of the imposed growth rates. A comparison of the
main results shows that for smaller values of o, the maximum principle discussed
in [6] appears to hold under growth rates at infinity which are greater than ones
imposed in the current work (shown to be optimal in many cases, see Section 8)
even allowing for exponential growth rates in some cases. In the current work,
however, for small o, the minimum principle holds without requiring any lower
bound. A lower bound is needed in all instances in [6].

Another point of contrast is that, in the current work, 0 < inf Z < sup Z < oo
and the two bounds play an important role. In [6], Z > 0 can vanish and its upper
bound does not appear to have a significant role in the work. Also, unlike the
present work, a lower bound on H(e,\e ® e — I) is imposed, in some instances,
to derive a minimum principle. We should also point out that we do not address
optimality in [6]. It is not clear to us if rates greater than stated in the results
could apply.
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In both the works, the influence of the sign of x is important and some differ-
ences are seen even here. If x < 0 then the maximum principle in [6] holds without
any restrictions for a greater range of ¢ than in the current work. The converse,
however, appears to be true of the minimum principle if x > 0, in particular, this
holds for any o > 0 in the current work. It is also to be noted that for certain
range of values of o, the results turn out to be quite similar.

We have divided our work as follows. In Section 2, we present notation, as-
sumptions and the main results. In Sections 3 and 4, we present comparison
principles, a change of variables result and calculations for some of the auxiliary
functions. Sections 5 and 6 address the super-solutions and sub-solutions respec-
tively. Section 7 presents proofs of the main results. Finally, Section 8 addresses
the matter of optimality.

We do not address existence and uniqueness issues in this work. It would
be interesting to know if the growth rates stated in this work would imply such
results. We do address the issue of optimality of the various growth rates imposed
on the solutions, although, some of the results are partial in nature.

For additional discussion and motivation, we direct the reader to the works
[1,7,8,09,12, 14].

2. Notation, definitions, assumptions and main results

We employ the notion of viscosity solutions and sub-solutions, super-solutions and
solutions are all understood in the viscosity sense, see [5, 8] for definitions. We
use the notation usc(lsc) for upper(lower) semicontinuous functions. Throughout
this work, we assume that the functions g and h will always satisfy (1.1).

By o, we denote the origin in R™ and e denotes a unit vector in R™. The letters
x, y will denote points in R™. Let S™*™ be the set of all symmetric n x n real
matrices, I be the n X n identity matrix and O the n X n zero matrix.

We now state the conditions H satisfies.

Condition A (Monotonicity): The operator H: R" x S™ — R is continuous
for any (g, X) € R™ x S™*". We assume that

(i) H(q,X) < H(q,Y), for any ¢ € R™ and for any X, Y in S™*™ with X <Y,
(ii) H(q,0) = 0, for any g € R™. (2.1)

Clearly, for any ¢ € R™ and X € S™*™ with X > O, H(q, X) > 0.

Condition B (Homogeneity): There is a constant k; > 0 such that for any
(g, X) € R™ x S,

(i) H(0q,X)=10|""H(q,X), VO€R,and
(ii) H(q,0X)=0H(q,X), V6> 0. (2.2)

Note that if k; = 0 then H(q, X) = H(q/6,X),¥0 > 0. Hence, H(q, X) = H(X).
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Our results in this work can be adapted to include the case H(g,0X) =
0%2 H(q, X) where ks > 1 is a natural number such that Condition A holds. For
this work, however, we take ko = 1.

Before stating the next condition, we introduce additional notation. For a
vector £ € R™, we write its component form as (£1,&s,...,&,). Recall that (£ ®
£)ij =8&&, 4,7=1,...,n. Clearly, £ ® £ € S"*" and £ ® € > O.

Recalling that e € R™ is a unit vector, define, for every A € R,

Apmin(A) = min H(e,de® e — I) and Apax(A) = max H(e,Ae®@e+1). (2.3)
€ €

By Condition A, Apin(A\) and Apax(X) are both non decreasing functions of A.
Condition C(Growth at Infinity): We require that

(i) ‘m‘zi)ch(e,—I) <0< lnllirllH(e,I—Ae®e), VA < 1.

(ii) There exists a Ag > 1 such that Apyin(Ao) = lnlliri H(e,hpe®@e—1)>0. (2.4)

We require A\g > 1 since, de @ e — I < O, if A < 1. See Condition A.

Remark 2.1. We state some implications of Conditions A, B and C.
By Condition A, Apin(A) > Amin(Ao) > 0, VA > Xg. By Condition B,

A . )\0 )\Amin()\O)
. = | — —— > 7 V>
Amm()\) ()\0> ‘rerlnr} H (e, e ® e \ I) o s A > Ao,

since (A\o/A)I < I. Noting that de ® e — I = Ae ® e — (\)71I), we get that

Amin AInin
) > (M) >0 and sup Apin(A) = 0. (2.5)

H(e,e®e) > =
( ) A Ao A>0

Thus, (2.4) implies that (2.5) holds. If minj,—; H(e,e ® e) > 0 then by the
continuity of H, Conditions A and B, minj—; H(e, \pe ® e — I) > 0 for some
A > 1.0

We discuss some examples of H. We record the following: for A € R, the
eigenvalues of Ae ® e — I are (i) —1 with multiplicity n — 1, and (ii) A — 1.

Examples of H: Let ¢ € R™ and X € S"*". We set

Hy =min H(e,Ae®e—1I).

le|=1
The following operators satisfy Conditions A, B and C.
(i) p-Laplacian: Define

H(g, X) = |qlP*Tr(X) + (p — 2)|q/" 2qiq; Xij, > 2,
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where Tr denotes the trace. Then Hy = A(p—1) — (n+p — 2).

(ii) Pseudo p-Laplacian: Define H(q, X) = Y., |¢:[?"?X;i, p > 2. Then
Hy =30 Mei|P — |es[P=2 > anp/271 —n,

(iii) Infinity Laplacian: Define H(q, X) = szzl ¢iq; Xi; then Hy = X —1.

(iv) Pucci Operators: Define HT(X) = oTr(X) + (1 — na)u(X) and
H (X) = oIr(X) + (1 — na)un(X), where 0 < a < 1/n, w1 and p, are the
largest eigenvalue and the smallest eigenvalue of X respectively, see [10]. Then for
A >0,

H"Qe@e—I)>Al—-(n—1)a]—1 and H Ne®e—1I)=a\—1.

(v) Partial Scalar Curvature: Let py > pus > -+ > u, be the eigenvalues
of X. Define for any 1 < ¢ <n, H(X) = Zle 1i(X). Hence, Hy = A—¢, YA > 0.
As an example, if for n > 2, H(z) = p1(X) 4+ pn(X), then Hy = A — 2. See [17]
for more discussion and related works.

Note that Conditions A, B and C are also satisfied by operators |g|* H(q, ), s >
0, where H is any of the operators listed above, and are included in this work. [

For the rest of this work, we set
k=k+1 and v=k +2=Fk+1. (2.6)

Also, x: (0,T) — R is a bounded continuous function and, for some interval
I CR, Z: I — RT is a non-increasing continuous function. We set and require
the following.
by =inf Z(s), Ly =supZ(s) and 0 <, <Ly < oo,
sel sel
am = inf x(t), apy = sup x(t) and —oo<ay, <ay <oo. (2.7)
0<t<T 0<t<T
Let h: R™ — R be bounded and continuous, see (1.1). Furthermore, we set and
impose that

tm = inf h(z), pa = sup h(x) satisfy — 0o < pm < par < 00,

zER™ -
Hop = In‘lin H(e,e®e), Hy = Im‘axH(e,e ®e) satisty 0 < Hp < Hppr <o0. (2.8)
el=1 e|=1

We use the following notation wherever there is little possibility for confusion.
From here on, set

G(u) = H(Du, D*u+ Z(u)Du ® Du).

We now state the main results of this work. For Theorems 2.2 and 2.3, we
assume that Conditions A, B and C hold. We also note that if Z is defined on
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some interval [u, 00) then, if need be, one can extend Z to

Ly, —o0<s<u,
Z(s)=4 M- TSN
Z(s), s> .

Theorem 2.2. (Mazimum Principle) Let 0 < T < oo and recall (2.6), (2.7) and
(2.8). Let Z: [p,00) — RT, for some p < inf, h(z). Let u € usc(R%}), u > p,
solve

G(u) + x(#)|Dul” —uy > 0, in R}, and u(x,0) < h(x), Yo € R™.
Suppose that there is § > 0 such that

sup u(z,t) = o(R’), as R — oo.
0<|z|<R, 0<t<T
The following hold.
In parts (a) and (b), we assume that either (i) k=1 1ie,v=2and § =2 —¢,
for any fixred and small e > 0, or (i) k> 1 and § = v/k.
(a) Let 0 =0. In both (i) and (i), we get that

sup u(x,t) < sup h(z) + t(sup x(t)).
R7. T t

(b) Let 0 < o <#. In both (i) and (ii), we get that

sup u(z,t) < sup h(x).
R7. T

(c) Let 0 >~y and § = o /(0c — 1). Then
supu(z,t) < suph(z), Vk>1.
R T
Moreover, if sup, x(t) < 0 and o > v then the following hold for any k > 1.
(d) Suppose that o = 7.
If [sup, x(t)| > (sup Z)(max|c|—; H(e,e ® e)) then part (b) holds without im-
posing any upper bound.

The conclusion in part (b) holds, if |sup, x(t)| < (sup Z)(max = H(e,e®e)).
The upper bound in part (b) is needed.

(e) Let 0 > ~. No upper bound is needed and

A L H(e,e® c11/(6—7)
supu < sup h(z)+1 | LEPRE) X1 Hle e ® )} .
R x | sup, x(t)|”
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In part (e), the term x|Du|” dominates the term Z(u)Du ® Du thus requiring
no upper bound. In Section 8, we show that the growth rates are optimal.

Theorem 2.3. (Minimum Principle) Let 0 < T < oo and recall (2.6), (2.7) and
(2.8). Suppose that Z: (—o0,00) — RT. Let u € lsc(R%.) solve

G(u) + x(t)|Du|® —ur <0, in R}, and u(z,0) > h(x), Vo € R™.

Then the following hold. We impose no restrictions on u in parts (a)-(c), For
parts (a)-(e), assume that inf o 7y x(t) <0, see part (f) below.
(a) If o =0 then

%}&f u(z,t) > inf h(z) — 1| irgf x(t)]-

T

(b) If 0 < o < 7y then

. . | infe x(t)] Voo
> — .
pfu(@.t) 2 (@) | (2 iy H{e, e @ )7

(c) If o =~ and |inf; x(t)| < (inf Z)(min|—; H(e,e®e)) then infgn u(x,t) >
[im.-
For parts (d) and (e), assume that there is a 0 > 0 such that
sup (—u(z,t)) = o(R?), as R — oo,

0<|z|<R, 0<t<T

(d) Let 0 = and |inf; x(t)| > (inf Z)(minje—; H(e,e ® e)). Fither (i) k =1
(y=2) and § =2 —¢ for a fized, smalle >0, or (it) k>1 (v >2) and § = v/k,
then
%fu(x,t) > ir;f h(x).

T

(e) Ifo >~ and 6 = o/(0 — 1) then infry u(z,t) > inf, h(z).
(f) If inf, x(¢) > 0, i.e., x > 0 then no lower bound is needed and

u(z,t) > infh(z), VO<o<oo. O
xT

As seen from parts (a)-(c) and (f), the minimum principle holds, without any
restrictions, as x|Du|? is dominated by Z(u)Du ® Du.

Remark 2.4. If H is quasilinear then Conditions A and B imply

H(Dw, D*w + Z(w)Dw ® Dw) = H(Dw, D*w) + Z(w)|Dw|"H(e,e @ e),
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since y =k+1 and o =~.

Take Z(s) = 1. Clearly, £, = {py = 1. Set H,, = minje—; H(e,e ® e) and
Har = maxe—1 H(e,e ®e).

We observe the following. If H(Dw, D?*w) — w; > 0 then

H,(w) = H(Dw, D*w + Dw ® Dw) — Hp|Dw|” — w, > 0,

Thus, Theorem 2.2 (b) and (d) apply with x = —H,, and || = |ap| = Hm <
Har

If H(Dw, D*w) — w; < 0 then we take x = —H s and
H,(w) = H(Dw, D*w + Dw ® Dw) — Hs|Dw|” —w; < 0.

Thus, Theorem 2.3 (d) applies as |ap,| = Har > Hin-

The growth rate is /k for both results. Clearly, our results apply to the case
of the parabolic p-Laplacian i.e., Apu —us =0, p > 2 and v/k =p/(p—1). A
stronger result for the heat equation is obtained from Theorem 2.5 viewing it as a
case of Trudinger’s equation. O

Before stating results for a class of doubly nonlinear equations, we introduce
a change of variables, see Lemma 2.3 in [5]. See also [3].

Recall that k = k; + 1 and v = k; + 2. Let f:[0,00) — [0,00) be a C*
increasing function. For k > 1, we assume that f1/(*=1) is a concave function. Set
n(s) = (f(s))~Y*=1 Let F be a primitive of 7 i.e.,

F(r)— F(n) = /T n(s)ds, 0 <1y <7 < 00. (2.9)

To

Clearly, F is increasing. Let 0 < € < 1. Either

(i) lim F(1)—F(e) <oo or (ii) lim F(1)— F(e) = oo. (2.10)

e—0t e—0t

If (2.10)(i) holds then we take 79 = 0 and F(0) = 0 in (2.9) and define

F(r) = /OT n(s)ds, > 0. (2.11)
If (2.10)(ii) holds then F(¢) — —oo, as € — 07. We take F as
F(r) = /T n(s)ds, 7> 0. (2.12)
Suppose that (2.10)(i) holds then we use (2.11) and define ¢ by

F(¢(7)) = 7 and the domain of ¢ is [0, 00). (2.13)

Since F'(0) = 0 and F' is increasing, ¢ is increasing and ¢(0) = 0.
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If (2.10)(ii) holds then we use F in (2.12) and define ¢ by
F(¢(7)) = 7 and the domain of ¢ is (—oo, o). (2.14)

Clearly, ¢ is increasing.
Moreover, the definition of ¢ and (2.9) lead to

{ ¢ () =[(fo ¢)(7.)]1/(k—1) and ¢"(1)/¢'(1) = {f(e)l/(k_l)}, o) (2.15)

Set Z(s) = Z(¢(s)) := ¢"(5)/¢'(s).

Since f1/(=1) is concave and ¢ is increasing (2.15) shows that Z is non-increasing
in s and the domain of Z contains (0,00). By Lemma 2.3 in [5], if u > 0 solves

H(Du, D*u) — f(u)u, > (<)0, in R7%,
then u = ¢(v) solves

H(Dv, D*v 4 Z(v)Dv ® Dv) —v; > (<)0, where Z(v) = ¢"(v)/¢'(v).

Since Z is non-increasing, a comparison principle (see Lemma 3.3 and Corollary
3.4 in Section 3) holds.
Next, (2.7) together with (2.15) implies that

(U + a)* =1 < f(0) < (bpr0 + b)F 1, 0>0
Aexp(lms) = A< 6(s) < Bexp(lars) — B,
for some a > 0, b >0, A >0, B > 0. Here, either A=A or A =0 and B =B

or B =0. An example is f(s) = (s + h(s))*~1, s > 0, where h(s) > 0 and h is
concave such as s®, 0 < a < 1, log(s + 1) and tan~'(s).

We now state the final result of the work. Some of the claims follow from
Theorems 2.2(a) and 2.3(a) with & = 0 = 0. The domain of Z is either (i) (0, 00)
or [0,00), or (ii) (—o0, c0).

Theorem 2.5. Let k > 1, f:[0,00) — [0,00) be a C' non-decreasing function,
and g: R™ — (0,00) be such that 0 < infern g() < sup,ern g9(z) < 0.

Recall (2.7), (2.13), (2.14) and (2.15).
(i) Let k > 1. We assume that /=1 is concave and

. d 1/(k—1) d 1/(k—1)
—f < —f .
0< 0<1£<foo ds (s) 0<sl1£>o S () < oo

Select ¢: R — [0,00), a C? increasing function such that

#() = F(6(r) /D,
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(a) Let u € usc(R%), u > 0, solve
H(Du, D*u) — f(u)u; > 0, in R% and u(z,0) < g(x), Vr € R™.

Suppose that sup|, < g, o<t<7 u(7,1) < #(o(R/*%)), as R — oo.
Then supgn u(,t) < supepn 9().

(b) Let u € lsc(R%), u > 0, solve
H(Du, D*u) — f(u)u; <0, in R} and u(x,0) > g(x), Vo € R".
Then infgn u(z,t) > infrern g(x). No lower bound is needed.

(ii) If k = 1, we take f = 1 and ¢(7) = ™. The conclusion in part (i)(a) holds pro-
vided that we assume that, for any e > 0, sup|, <g, o<i<7 w(,t) < exp(o(R*~°)),
as R — oco. The conclusion in part (i)(b) holds without any modifications.

We provide proofs of the main results in Section 7. Section 8 addresses opti-
mality.

3. Preliminaries

In this section, we present some calculations important for our work, a comparison
principle and a change of variable result useful for our work. Some additional
discussion about the condition in (2.4) is also included.

For definitions and a discussion of viscosity solutions, we direct the reader to
[8] and Section 2 in [3].

Recall that for some pu € R, Z: [u,00) — R™ is continuous, non-increasing and
(2.7) holds, i.e.,

O<£m=i1§fZ§€M:s§pZ<oo. (3.1)

We present some elementary calculations. Let z € R™ and r = | — z|. For 0 <
R < o0, let Br(z) be the ball of radius R with center z. We define Boo(z) = R™.
Also, set BE = Bg(z) x (0,T) and PF be its parabolic boundary.

Suppose that v(z) = v(r) is a C? function. Set e = (e1,ea,...,e,) where
e;=(x—2)/r,Vi=1,2,...,n. Forz # z,

{ Dv=1'(r)e, Dv® Dv=(v(r))?e®e, and (3.2)

D?v=('(r)/r)(I —e®e) +v"(r)e®e.

Remark 3.1. Let x: [0,7] — (0,00) be a C! function and Z be as in (3.1).
Suppose that D € R™*! is a domain and (z,t) € D. Let w: D — R be C! in z
and t, in D, and C? in o in D\ {(2,t)}. Set r = |z — z|, w(r,t) = w(z,t) and
assume that w, # 0 for r # 0 and w > p.

Using (3.2) in r > 0, we get that

G(w) = H (wre, wT (I—e®e)+ (wer + Z(w)(w,)?) e@ e ) . (33)
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We recall Condition B in (2.2), (2.6) i.e, k = k1 + 1 and v = k; + 2, and derive
two versions for G(w) from (3.3). For the first, we factor w, from the first entry,
|wy|/r from the second. For the second version, we factor w, from the first entry
and w? from the second. Thus,

k
G(w) = [ H (e, L (I-e®e)+ (rwr|Z(w) + er) e®e) and
w

|w| ||

Glw) = |w, " H (67 % + (1‘;2 + Z(w)) e® e> . (3.4)

T T

Case (i) w, > 0: Let a be any scalar and b > 0. Suppose that w(z,t) =
(a + bu(r))k(t), where v'(r) > 0 and £ > 0. The first version in (3.4) yields, in
r >0,

G(w) = (B ()s(t)* (e, I+ (T””“) — 1+ be(t) (o' (1) Z(w) ) e®e) .

r v (r)

This version will be used for small values of r.
Apply the second version in (3.4) to obtain in r > 0,

G(w)—(bv’(m(t))m(e I—e®e ( o(r)

@O () T\ bR ()2

We use this version for large values of r.
In this work, we take 0 < b < 1. By factoring 1/b from the second entry in H
(in (3.6)), using Condition B and v = k + 1, the above may be rewritten as

G(w)b’“(n(m'(r))m(e, I-cwe < )

s T\ RO e T bZ('“”) ¢ > '

(3.7)

Case (ii) w, < 0: Set w(z,t) = v(r) — k(¢), where v'(r) < 0. We use (3.4)
and argue as in part (i). We obtain

[0/ (r)|* ro”(r)
T v (r)

Glw) = |/ () H <e, ! ;j,’ge + ( (;’(53))2 + Z(w)) e®e> . 7 large. (3.8)

G(w) =

H<e, <r|v’(r)|Z(w) +1-— )e®eI>, r small

O

We now state a comparison principle which is a slight adaptation of Theorem
8.2 in [8]. See also Section 4 in [5].
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Let F: Rt x RxR" x §"*" — R be continuous. Suppose that VX, Y € §7*",
with X <Y, F satisfies

F(t,r1,p, X) < F(t,r2,p,Y), ¥(t,p) € RT x R" and r; > ra. (3.9)

Let © C R™ be a bounded domain and T' > 0. Set Qr = Q x (0,T) and Pr its
parabolic boundary.

Lemma 3.2 (Comparison principle). Let F satisfy (3.9), ¢: [p,00) — R, for
some 1 € R, be a bounded non-increasing continuous function and f: Rt — RT
be continuous. Let u € usc(Qr U Pr) and v € lsc(Qp U Pr) satisfy in Qrp,

F(t,u, Du, D*u+ ((u)Du ® Du) — f(t)u; > 0 and
F(t,v, Dv, D*v + ¢(v)Dv ® Dv) — f(t)v; < 0.

If inf(u,v) > p, supp, v < oo and u < v on Pr then u <wv in Q. O
Lemma 3.2 leads to a comparison principle for
H(Du, D*u) — f(u)u; =0, where u > 0.

This is shown in Lemma 2.3 in [5]. An earlier version appears in [3].
We employ a change of variables u = ¢(v) for our purpose, where ¢ is defined
in (2.13) and (2.14). Recall from (2.15) that

Z(v) = ¢"(v)/¢' (v). (3.10)

Then Z is non-increasing and the domain of Z is (0, 00) or [0, 0), or (—0c0,c0)
We state the following change of variables lemma which is a simplified version
of Lemma 2.3 in [5].

Lemma 3.3. Let H satisfy Conditions A and B, see (2.1) and (2.2) and let
f:[0,00) = [0,00) be a C increasing function. Assume that fY/* =1 is concave
ifk>1,and f =1 if k = 1. Suppose that ¢ is defined either as in (2.13) or as in
(2.14).

Case (i): Letk > 1 and Z be as in (3.10). We assume that f is non-constant,
u>0 andv=¢"1(u).

Then u € usc(lsc)(Qr) solves H(Du, D*u) — f(u)us > ()0 in Qp if and only
if v € usc(lsc)(Qr) and

H (Dv, D*v+ Z(v)Dv ® Dv) — v, > (<)0 in Q.

Case (ii): Let k = 1, ie, ky = 0. If f = 1 and ¢(7) is any increasing
positive C% function then the claim in (i) holds with uw = ¢(v). In particular, if
é(1) = €™ and u € usc(lsc)(Qr), u > 0, then H(D?u) —u; > (<)0 if and only if
v € usc(lsc)(Qr) and H(D?*v + Dv ® Dv) — v, > (<)0.
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Corollary 3.4. (Comparison principle) Let f and ¢ be as described in Lemma
3.3. Suppose that u € usc(Qr), u >0, and v € lse(Qr), v > 0, satisfy

H(Du, D*u) — f(u)u; >0 and H(Dv, D*v) — f(v)v, >0 in Qp.
If u <wvin Pr then u < v in Qrp.

Proof. We assume that k > 1. If k = 1 and f = 1 then Lemma 3.2 applies directly.
For k > 1, we apply the change of variables u = ¢(u) and v = ¢(v) and Lemma 3.3
shows that

H(Du, D*u+ Z(@)Du® Da) — 4y > 0 and H(Dv, D*v+ Z(v) Do ® D) — 0 > 0

in Q7. By (2.13) and (2.14), the domain of ¢ is either (i) (—oo, 00), the domain
of Z is (—00,00) and —oo < @, U < 00, or (ii) [0,00), the domain of Z is at least
(0,00) and 0 < @, ¥ < oo. Since 4 < ¥ in Pr, Lemma 3.2 implies that @ < ¥ in
Q7 and the claim holds. O

4. Auxiliary Functions

In this section, we construct auxiliary functions that are used in this work. Recall
that K = k1 +1 and v = k1 + 2 = k + 1. Through out this section, z € R” is a
fixed point and r = | — z|. We begin with

Lemma 4.1. Let 1 < 3 < 3. Forr >0, define

B

v(r) = /OT (1+7P)"tdr, where p= %

Then:

(i))0<p<1, (ii) (1—p)B =0, and

(i) min(r®, r7)/2 <P /(1 + rP?) < v(r) < Bmin(+?, rP)/B, Vr >0,

(iv) If R > 1 then (fﬁ) (r® — RP) <w(r) —v(R) < (g) (r® — RP), Vr > R.
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Moreover, in r > 0, we have

_ ps—1 _
(v) gminw*%r‘“) <o/(r) = f o < Amin (7770

(vi) gmin(rﬁ,r’[;) < rv/(r) < Bmin (7’5, r5> ,

3 (U/(T))k _ ﬁkrkﬂ_v " _ -2 6 -1+ (B - 1)747,6
(vii) P (P " (r) = Brf [ (1 + r79)2 ] )

r

k / _
(’U'H,Z) <§) min (,rkﬁf’)’7 ,,JCB*'Y> < (U (T))k < /Bk min (,,,kﬁ*“/’ 7J<B*’Y>’

') Bo1t (B
(w) G-1< v(r) 1+ rp8 <p-1

o'(r)  (B=1Y\ _4 B—1\ _j
@ G () ()
L (B-Vr P W) _2(B-1r
O e )
Proof. Parts (i) and (ii) follow easily. Part (iii) is a consequence of the bounds

L+7P>7P and 14+ 7P < 1+ 7P VY7 < 7P Part (iv) follows by noting part (ii),
that 77 < 1+ 7P < 27P, 7 > 1, and writing

, Vr>1.

B
o) =v(®)+ [ (4 e)
RS
Parts (v), (vi) and (viii) are easily obtained from the estimate 1 + rP? >
max(1, 77?) and noting that v = k + 1 and 8 — 3 = pg.
To see (vii), we differentiate (v) and use (ii) to find

" o (B - l)rﬂ_Q pBTpﬁJrﬁ_z _ p.B— (6 - 1)(1 + rpﬂ) _pﬁrpﬁ
(7") - /6 |: 1+ TPB - (1 n Tpﬁ)2:| = ﬁr 2 |: (1 T rpB)Z
_ B ﬁ_1+(B_I)Tpﬁ
= pri—? [ EwE .

Applying (v), (vii) and using 3 < 3, (ix) follows. To see (x) and (xi), use (ii),
(v) and (vii) to get

) B—1+ (B -1 A1
CIGIE BrP =B g

Since 8 < S, (xi) holds in 7 > 1. O

Remark 4.2. We list some consequences of Lemma 4.1. These are used in the
proofs of Theorems 2.2 and 2.3. The functions of r are C! in z, in R”, and C? in
zinr > 0.
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Recall that k = k1 +1,vy=k+1 = k1 4+ 2 and o is as in Theorems 2.2 and
2.3. Set
v =~/k and o*=0/(c—-1), Vo> 1.

We have divided our work into three cases.

Case (A) (k=1): Take =2, 8=2—-¢, 0 < e < 1. From Lemma 4.1,
p=¢/2 and
7‘2
v(r) = / (1 +TE/2)_1 dr, 0<e<1.
0
We apply Lemma 4.1 (iii), (iv), (vi), (vii), (viii), (ix) and (xi). Thus,

min (1"275, 1"2)

(iif) — <wo(r) < 2min(r?~¢, r?), Vr >0,
7,,2—8 _ R2—5

(iv) — <v(r)—v(R)<2(r* ¢ —R*°),Vr>R>1

Noting that v = 2 and k8 — v = 0, we find that, in r > 0,
. rv'(r) ey _ v'(r) .
(vi) 1< m <2, (viii) min(1,r7°) < - < 2min(1, r~°),
” 1_ " 1

(ix)l—sgm} (r) . € 0" (r) < Vr> 1

v =t Y g = )

Case (B) (k > 1): Set 3 =3 =~* and v(r) = r7". Using that v = k + 1 and
k(v* —1) =1, we have

! k "
o) ) =t i) IR g oo
T A W
o WMV_(v* T
Case (C) (k>1): Set 3 =~* and B = ¢*, where ¢ > .
Since o > =, we have that 3 > 3. We get that
B=B _Alo=1)—ko  o-—v
b= _ - >0 and kB —~ = 0.
B V(e =1) V(e -1 !
Set .
v(r) = / (1+77)"tdr.
0
We apply parts (iii), (iv), (vii), (viii), (ix) and (xi) of Lemma 4.1.
In r > 0, parts (iii) and (iv) read
.. v(r) Yy A () —e(R) oy
< < < < — > 1.
(i) 2 = min(r", ro7) = o*’ (iv) 20% = ro" — R0~ o*’ r>R21
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Next, in r > 0,

*min (ro, 7 x .
(vi) 7 (2 ) < 7o' (r) < 4" min (7“" ,rY ) ,

N\ k / k
o (7 : 1 (v'(r)) vk 1
(viii) (2> min <1’ r(ov)/(al)) s =0 (L ey )-

The versions in (iii) and (iv) may be rewritten so that (iii) holds in » > 0 and (iv)
inr> R.
Since o >y > 2 and v* — 1 = 1/k, Lemma 4.1 (ix) and (xi) read
" 1"
(ix)lérv(r) 1*§v(7")_7*’
V) T S WP S

Since k8 — vy = 0, parts (vii

Vr>1.

1
S E7 (Xi)

g

~—

and (ix) of Lemma 4.1 imply that

O CO) L _or(r) 1
A%T_(W) and - lim, o'(ry Tk

~

Some of the versions versions stated in Cases A, B and C may be rewritten so
that they hold in r > 0 and in r > R. O

Next, we study a second auxiliary function that is used in this work.
Lemma 4.3. Let 0 < R <00, 0 <r < R andp > 0. Set r = |z|, v € R", define
w=r/R and

2

UJZ ”
’UE(UJ) = ’UE(’F) = E/ (1 _ Tp)_ldT — ER2(p_1) / (Rgp _ sp)_lds7
0 0

where E # 0. Set sgn(E) =sign of E and

2F

Lp(w) = 1 _wgp)

Vo<w< 1.

Then (i) vg(0) = 0, sgn(vg) = sgn(E) and |vg(r)] — oo as r — R. Also, for
r<R,vg(r)—0as R— oco.

" Ly(w) (14 (2p — 1)w?
(ii) v (r) = R - R (iii) v (r) = ’17%2 ( T :
(iv) rolh(r) _ 1+ (2p — 1)w?P ) rug(r) = 2pw?P

vl (r) 1— w2 ’ vl (r) 1— w2’
. T (r) ;o 2B Z()w? + 2pw?
(vi) o () —1+7rZ()wg(r)| = o , VE >0,
i) o ABIZ()? — o
(vii) 1 — o (1) +rZ()|vg(r)| = T , VE <0,

(Viii) |UIE(T)|k — ‘Lp(w)|kwk — |Lp(w)|kwk1 .
r

RFwR Ry
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Moreover, vy is C% inz, in 0 <r < R.

Proof. Parts (ii) and (iii) follow from a differentiation. The rest follow from (ii)
and (iii). In part (viii), we use r = wR, k=k1 + 1 and v = k1 + 2. O

Remark 4.4. The sub-solutions and super-solutions in this work involve a C*
function of x and ¢, and C? in z, except at x = z. See Remark 4.2. We verify that
the expressions for the operator H hold in the sense of viscosity at » = 0 and any
0<s<T.

By Lemma 4.1, v'(r) # 0 in r # 0. Also, v(0) = v'(0) = 0. Let x(t) > 0 be a
C! function in t > 0. Recall that v* = v/k and 0* = o /(0 — 1), for o > 1.

We now refer to Remark 4.2. Note that in Case (A) and in the sub-case k = 1
of Case C, v* = 2 and v is C? everywhere.

We address k > 1 in Cases B and C, i.e., 1 <~* < 2. Set r = |z| and

w(z,t) = (a+ bv(r))k(t), where b >0 and

*

{ e, B=pB=7,
v(r) = _
fo (1+7P)"Ldr, B=~* B=0c"

We apply (3.5) in Remark 3.1. Taking r > 0 and setting e = z/r and w = &(t)v(r),
we get after a slight rearrangement that

G(w) + x(t)| Dw|” — wy = x(t)(k(t))7 b0 (r)|7 — &"(t)(a + bv(r))
L GV R@)* (e, I+ (r”"(r) 1+ br() (' (1) Z (w) ) e®e).

T v'(r)

(4.1)

From Cases (B) and (C) in Remark 4.2 rv”(r)/v'(r) — 1/k and (v/(r))*/r —
(v*)* as 7 — 0. It is clear that the right hand side of (4.1) may be extended
continuously to r = 0. Set the limit » — 0 of the right hand side of (4.1) as
H(0) + x(t)L(0) — ar'(t), where H(0) = (v*br(t))*H (e, I —[(k—1)/kle®e ),
and L(c) =1if 0 =0, and L(0) =0 if o # 0.

Note that H(0) > 0 since (k —1)/k < 1.
We show that

G(w) + x(s)|Dw|” = wy = H(0) + x(s)L(0) — ar'(s), (4.2)

holds at points (o, s), ie., at r =0 and 0 < s < T, in the viscosity sense.
Let s > 0. Suppose that ¥, C! in t and C? in x, is such that (w — v¥)(z,t) <
(w —)(o,s), for (z,t) near (o, s). Since w(o, s) = ak(s), we have that

alk(t) = v(s)) + bo(r)r(t) < (Di(0,s),2) + r(o,5)(t — s) + o] + |t — s]),
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as (z,t) — (0,8). Since v'(0) = 0, it follows that D(o,s) = 0 and 9:(o,s) =
arx'(s). Using that

bo(r)k(t) < (D*(0, s)x,x)/2 + o(|t — 5| + |z|*), as (x,t) — (o, s),

we see that D?1)(0,s) does not exist, since v(r) ~ 7 (y* < 2) near r = 0. Thus,
w is a sub-solution.

Now, let ¢, C! in t and C? in z, be such that (w —1)(x,t) > (w—1)(o, s), for
(z,t) near (o, s). Thus, w(z,t) —w(o,s) > (D(o,s),x) + (o0, s)(t — s) + o(|z| +
[t—s|), as (z,t) — (o0, s). Clearly, Dy)(o,s) = 0 and ¥(0, s) = ar’(s). Since k > 1,
i.e., k1 > 0, by Condition B, H(0,X) = 0. Hence,

H (D, D*¢ + Z(w) Dy ® D) (0,5) + x(5)| D" (0, 8) — ¢4(0, 5)
< H(0) + x(s)L(0) — ar'(s).
Thus, w is a super-solution. ]

From here on, we include r = 0 in applying the expressions in (3.4), (3.5), (3.7)
and (3.8).

5. Super-solutions

In this section, we construct super-solutions for Theorem 2.2. To achieve this, we
employ the auxiliary functions discussed in Remark 4.2. For small r, (3.5) is used
and, for large r, we use (3.6). See Remark 3.1. The two situations are treated
separately.

The section has been divided into two parts: (I) 0 < o < 7 and (II) ¢ > +.
The work in Part I is further divided into two sub-parts (i) ¥ = 1 and (ii) £ > 1.
Part (II) provides a unified treatment for k£ > 1.

Fix z € R™ and set r = |z —z|. Recall that s = supgn h with —oco < ppr < 0.
Define

w(z,t) = pp +at +b(1 +t)v(r), in R}, wherea >0,0<b< 1, (5.1)

and
B

T 1
Vr >0, o(r)= / dr or v(r) = o,
0 1 + TP

for an appropriate 8 and p (or ), see Lemma 4.1.

We show that w is a super-solution for an appropriate b small enough, and an a
that may depend on b. This aids the calculation of lim;_,¢+ a, wherever applicable.
Moreover, w is a super-solution for any 0 < b < by and corresponding a, where
by < 1 is small enough. This is important in showing the claims in Theorem 2.2.

Throughout this section 8 = v/k = v*, see (5.1) and Remark 4.2. The quantity
3 varies with o, see (5.3) below.
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To make our presentation more compact, we often use the notation

H,(w) := H(Dw, D*w + Z(w)Dw ® Dw) + x(t)|Dw|® — w;.

Preliminary Estimates: These will apply to both Parts I and II.
In what follows, set

o
o—1

(5.2)
We assume that 0 < £,,, < £y < co. In Lemma 4.1 (see also Remark 4.2) we take

= inf x(t), apr=sup x(t), by = i%fZ, by =sup Z, v* =v/kando* =
R

2—¢, k=1,0<0<n,
57{3/k Zi} and B=1{ ~%, k>1,0<0<~, (53)
o*, k>1,v7v<o0 <oo.
Moreover, we require that for k =1,
min{l,0} .

(i) 0<e<1/8 ifc=0, and (ii)0<E<Tlf0>0. (5.4)

Next, we state bounds for H. Recall that k = k1 +1, vy =k+1, v* =~/k, a >
0and 0 < b< 1. Weuse w as in (5.1) and note that w > .

In the following the constants E, I} and G, to be defined later, are positive
and do not depend on r.

Step 1: For small r, we use (3.5) with x(¢) = 1 + ¢ to obtain that

V' (r)]F rv” (r
H,(w) = MH (e,I + ( v’(i)) —1+0b(1+ t)(rv’(r))Z(w)) e® e)
+x(6)[b(1 + )0 (r)]7 — a — bu(r). (5.5)

For large r, we use (3.6)(or (3.7)) to obtain that

() = 10+ 00 1 H (e s (g 020 ) o)

+x (&) (b(1 + t)v' (1)) —a — bv(r). (5.6)

Step 2 Bounds for H: We employ Remark 4.2 and use estimates for v(r) from
(5.5) and (5.6) to obtain upper bounds for H. Let R > 1, to be chosen later.
(i) 0 <r < R: Since 4, < Z(w) < Z () < Lpr(see (5.2)), define

M(b,r) = max H (e, T+ A+ T)yr" e® e) . (5.7)

lel=1
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By using Condition A (see (2.1)(i)), Condition B (see (2.2)) and that M(b,r) is
non-decreasing in r and b, we have that

0 < max H(e,I) < M(b,r) < M(1,R) < R” M(1,1), VR > 1.

lel=1

Recall parts (vi), (viii) and (ix) of Cases A, B and C in Remark 4.2. Since
1L<y* <2,

@O _ o g )

T v (r)

Applying (5.8) in (5.5) and using Condition A, we get that

v’ < ¥ —1<+4*-2<0, Vk>1. (5.8)

H <e,1 + (Tz(g) —14b(1+ t)Z(w)m’(r)) e® e)

<H <e,[+7*b(1 +T)€Mr“’*e®e> .

Since 0 < b < 1, using (5.7) and the bound for M (b, r) we obtain that for 0 < r <
R,

rv(r) _ w)rv'(r) Je®e v
H(e,I+(U,(T) 14+ 0(1 + 1) Z(w) ()) ® )<R M(1,1), VR>(;.9>

Next we set
E=(1+4T) and F,=E"M(1,1), k>1,
and use the estimate for (v'(r))*/r from (5.8) to get

[b( + t)v' (r)]*

. < () A+ 1) = () B"

Thus, (5.2), (5.5) and (5.9) lead to the estimate

YR>1, Hy(w)< (v FR + ay[bEV (r)]” —a—bo(r), ¥r <R. (5.10)

(ii) 1 < R < r: Recall parts (vi) and (xi) of Cases A, B and C in Remark 4.2.
Then

r2Te, k=1 0<0o<n,
ro'(r) >y, k>1, 0<o <7,
(v*/2)r°", k>1, 0>n.

Note that, o* < y* <2,if o0 > 7.
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Using the above bounds and part (xi) of the Cases A, B and C, we obtain that

—(2-9) =
1 v (r) 27"7 7, k=1, 0<0 <7,
max W, W S 2r ’Y*’ :l€>17 OSUS’Y,
v 2r=7 k>1, o>n.
Thus,
1 v (1)

Vo >0 and Vk > 1, OSmax( )§2, inr>1. (5.11)

ro'(r)” (v'(r))?

Using Condition A and (5.11) in (5.6), we see that, in t > 0 and r > 1,

H(e,(1_6®e +( LG 2+bZ(w))e®e)

L+)rv'(r)  \ (148 (r))
<8 (o 5+ (e + 14 <o)

<H(2(l-e®e)+2ee+bZ(w)l) < H(e,(2+lp)I), (5.12)

since 0 <b<1land 0< Z < {,.
Observing that H(e,2I) = 2H (e, I) > 0, we define

M = max H (6, (2 + f]w)]) . (513)

lel=1

Using (5.13) in (5.12) we get

" ( ek ((1 R “”)b) e®e) <AL

Set
E=1+T and G,=E'M, Vy>2.

Use (5.2) and the above in (5.6) to get that

Hy(w) < WG, [/ (r)] + ap[bEV (1)]7 —a—bu(r), Vr>R>1. (5.14)
Step 3: Additional bounds: Refer to part (vi) of Cases A, B and C in Remark
4.2. Inr >0,

2min(rl=¢,r), k=1, 0<o <y,
Rl k>1, 0<o0<7, (5.15)

v'(r) < :
y* min(rt/ =1 171 k>1, 0>1.

Construction of Super-Solutions:

Part I (0 <o <+): We take R > 1. A value of R is determined in what follows.
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Sub-part (i) (k=1 or k; = 0): Let ¢ > 0 be as in (5.4). Also, y =~v* =2
and the interval [0,7] = [0, 2].
Take p = €/2; using (5.1) we get that V(x,t) € R},

2

w(x,t) = par + at + (1 +t)v(r), where v(r) = / (1+75/)" dr, (5.16)
0

and a > 0 and 0 < b < 1 are to be determined.

e Consider 0 < r < R. Using (5.15), we have v'(r) < 2R. Employing this in
the second term on the right hand side of (5.10)(Fy = Fy, v* = 2), we get

H,(w) < 2bFy R* + ap(20E) R — a.
Thus, w is a super-solution in 0 < r < R, if

. { 2F, (bR2) + an + (b/2)R2~%, o =0, (5.17)

2F (bR?) + ap(2E)° (bR)? + (b/2)R?*7¢, 0< o <2.
e Let 7 > R. Use the estimate v/(r) < 2r'=¢ (see (5.15)) in (5.14) and G, = G»
to obtain that

H,(w) < 4bGor®=9) 4+ apr(20Er )7 — a — bu(r). (5.18)

The bound in part (iv) of Case A in Remark 4.2 reads
v(r) > (r*~¢ = R*€)/2, Vr>R>1.
Calling @ = a — bR?>7¢/2 > 0 (see (5.17)), (5.18) yields that

H,(w) < 4bGar?™% 4 ap (20E)7r7 (=9 — g — b(r?~¢ — R*79)/2
< 4bGor?™% 4 ap(20E)7 1719 — G — br2 7 /2. (5.19)

(a) o = 0: Using (5.17) and that @ = 2F; (bR?) + apr > 0, the right hand side
in (5.19) yields
4bGar® ™% +apr — a — (b/2)r*7F < br* 7% [4Gy — r/2].

Let R be such that R® = max (1, 8G3). Clearly, w is a super-solution in RY}. for
any small b > 0. The choice of R and (5.17) yield that

limy_,o+ a =ayp; ifo=0. (5.20)
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(b) 0 <o <y =2: Set P=4G5 and Q = ap(2F)7 in (5.19) to obtain that
Vr>R>1,

br2—¢

o—1 &
HU(UJ) < Pb?”272€ +Qb07‘0(17€) o 5 b Q R ) .

2—2¢ A 2
<br (P t o eone 3

Noting that (2 — o)(1 —€) > 0, select

max { (2(1 + P))Y/e, (2Qb°1)1/E=)0-9)1 = <5 <1,
R_{ {0+ P)Y (2Qr ) ) 522)

max {1, (2P +2Q)Y¢}, 1<o<2.

For 1 <o <2, take r = b =1 in the second term of (5.21).

Using (5.22) in (5.21), (5.19) shows that w is a super-solution in R% for any
small enough b > 0.

We recall the expression for a in (5.17) and claim that ¢ — 0 as b — 0. This
is clear for 1 < o < 2 because of the choice of R in (5.22). The case of interest is
0 <o < 1since R — 0o as b — 0. We show that limp_,o bR? = 0 and this would
imply the same of bR and bR?>~¢. From (5.22), one obtains

R=Kplo—1/@=o)0=e)  and bR = K TRe-D/Ere)e)
for an appropriate K that is independent of b. A simple calculation shows that

200—-1)  o(l+¢e)—2¢
2-0)1-¢) (2-0)1-¢)

From (5.4), o(1 +¢) —2¢ > 0.
Summarizing, (5.16), (5.17) and (5.20) imply that

{aM, O':O7

1+

lima =

for any small € > 0. (5.23)
b—0

0, 0<o<y=2,

Sub-part (ii) (k > 1 or v > 2): Note that v* < 2. We take v(r) =7 and

w(z,t) = par + at +b(1+ )7, in RZ. (5.24)

Consider 0 < 7 < R. We use ¢/ (r) = v*r? ~ = 4*r1/¥ in (5.10) to obtain that
Hy(w) < (V) FL(0*RY) 4+ an[y* E(bRY*)]7 — a — bu(r).
Hence, w is super-solution in BIT:a if

a=(V)F,("R) + ap (v E)? (bRYF)7. (5.25)

Let r > R. Using (5.14) and v* = v/k, we get that

Hy(w) < Gy (0" ") + an (v E) (br'/%)7 —a — b7 (5.26)
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Our main focus is (5.26) as w is a super-solution in Bf by using (5.25).

We analyze separately: (1) 0 =0, (2) 0 <o <1,and (3) 1 <o <~. The
choice of R differs in each situation.
(1) 0 = 0: Setting R =1, (5.25) and (5.26) yield that
Hy(w) < G (0" ) +anr —a—br? < b (G0 —1) <0,

if we choose 0 < b < min (1, (G,7**)~**=1)_ Thus, w is a super-solution in RZ:
for any small enough b > 0, and from (5.25)

lim a = im[(v*)* Fub® + an] = apr. (5.27)
b—0 b—0

(2) 0 < 0 < 1: We ignore a in the right side of (5.26) and factor br?" to obtain
that
OéM(’y*E)Ubo_l B

y* *Ypk—1
H,(w) <br [GAN " 4+ RO=)7k

1}, Vr > R.

Noting that 0 <1 < ~, we choose
b < min |1, (4G,Y7*7)*1/(k*1)] and R = max [1, {4aM('y*E)”b”*1}k/(’y_a)] .
Then w is a super-solution in R% for any b > 0, small enough.

We show next that limy_ga = 0. We recall (5.25) and note that o/k < ~*.
For 0 = 1, R does not depend on b and hence, limy_,ga = 0.
For 0 <o <1, R — 00, as b — 0. Using the choice of R in (5.25), we see that

(use v = 7/k)

BFRY = Kbk bk(o—l)/('y—o)}’y*: Kb (@=D/(=0) and pRYVE = gptHle—D/(r=a)

for some K and K independent of b and r. Since vy=k+1=k; + 2, we see that

~1) ok 1 ~y—1
Wo—D) _kr+o a1+ 221210
y—0o y—0 y—0o ~y—o0

k+

Thus, limy_,ga = 0.
(3) 1 <o <~: We bound (5.26) (see also (2) above), in r > R, by

OzM(’y*E)aba_l

v *Yrk—1
Hy(w) <br? |Gyy™70" 7 + RO=a)F

—1/. (5.28)

Setting R =1 in (5.28), we get from (5.26) that

H,(w) < br?” [G,y’y*vbkfl +an (Y E)7 1]
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Choosing 0 < b < 1, small enough, we get that w is super-solution in R’.. More-
over, using (5.25) limy_,oa = 0.

Summarizing from Sub-Parts (i) (see (5.23)) and (ii) (see (1), (2) and (3)),
we get

. 03V ) O’ZO,
= > . .
pm {0, 0<o<qy Ft (5.29)

~ Part Il 0 > v, k > 1: We use Case C of Remark 4.2 and take f = 4" and
B=0"=0/(c—1). Setp= (8 — §)/8 = (¢ —1)/v(c — 1) and

*
rY

1
14 7P

w(z,t) = py + at + (1 + t)v(r), where v(r) = /0 dr.  (5.30)

Recall from Part I that E =1+ T, F, = E*M(1,1) and G-, = EYM.
e Take R > 1 and consider 0 < r < R. We employ (5.10) i.e.,
Hy(w) < (v ) FL(b*RY) 4+ an [bEV (r)]7 — a — bu(r).
Since ¢ > 7, using the bound v'(r) < v*r'/(e=1 from (5.15), we obtain that
Hy(w) < (V) FL (" R") + ap (" E)7 (R ) - a.
Select
a=(y)FFR) + an(v*E)” ("R ) + v (bR7)/(207). (5.31)
Thus, w is a super-solution in 0 < r < R.
e Inr >R, we use (5.14) i.e.,
H,(w) < V"G (V' (1) + an (bEV (1)) — (a + bo(r)). (5.32)
From part (iv) of Case C in Remark 4.2 and (5.31) we have that

v(r) >~ (r”* - R‘T*) /(20%), Vr >R, and a+bv(r) > y*br? /(207).

Using v/(r) < v*rY/(e=1 from (5.15), the lower bound for a + bu(r) stated above
and (5.31) in (5.32), we get that

. *bro”
Hy(w) < 4G (05 O=) 4 apy (v E) 76717 — 72 =
g
o ,Y*Wwak—l . S ,y*
< br L;M/(am +oan(YE)7VT — 507 | - (5.33)

The second inequality holds since 1 <y <o and r > R > 1.
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If k > 1 wetake R =1 and 0 < b < by, where by = bo(v*, 0, am, E, G5) is
small enough. Hence, (5.33) implies that H,(w) < 0. If k = 1 we take

1

o—1
8o * *')'G o * P
R =max |1, (‘”7) ! and b < min |1, (7> .
y* 8c*ap (v E)®

(5.34)
Using these selections in (5.33), Hy(w) < 0. Thus, w is super-solution in R}
for any small enough b > 0. Recalling (5.29) and (5.31), we see that

. _ Qpg, g = 0,
gl_I)I(l)a = { 0. -0 Yk > 1. (5.35)

Remark 5.1. Parts I and IT apply to any x. However, if x < 0 and ¢ > v then
the maximum principle holds without imposing any upper bound. For o = v the
issue is unclear. See below. [

Case 0 > v and x < 0: We provide a complete result for ¢ > «. For o = v,
our method fails in some situations and it is not clear to us if an upper bound is
really needed.

Recall from (2.8) that

am =infyx, ay =supyx, by =infZ, by =supZ, H,, = Imin H(e,e®e)
e|=1
and Hy = max H(e,e®e). (5.36)

lel=1

The definitions of ' and F used here differ from the ones used in the work
prior to Remark 5.1.
We assume ap; < 0 and use Lemma 4.3. Let £ > 0 and R > 0. Define

w =

=]l

w2
() = vs(w) = E/ (1—7")"'dr, Y0<r <R (5.37)
0
We set v(r) = vg(r); clearly, v is defined in 0 < w < 1.

Using (5.36) and parts (ii), (vi) and (viii) of Lemma 4.3, we have

—~ o~

2F L,(w)w V'(r))F Ly (w)kwk
Lp(w) = m’ ’Ul(’/‘) — PR) , ( (T)) — I)(‘R)’y 7 (538)
rv”(r) p o (({aE + pu?Pl)
_ . < b b L e S
and o) 1+rZ( )W (r)| < 2w T ,

Sub-Case (o0 = v): Recall £); and Hjs from (5.36). Assume that

ay =supyx <0 and |ap| > lyrHag.



86 T. Bhattacharya and L. Marazzi

Let ppr = supgs h(z) and R > 0. Employing v(r) from (5.37), set in 0 < r < R,
w(x,t) = par +o(r) + Ft, (5.39)

where E, F' = F(R) and p > 2 are to be determined. Of importance is the limit
limR*)OO F.
Employing (3.5), (5.37), (5.38) and (5.39), we see that in 0 < r < R,

L k, k1 ¢ E 2(p—1) L Y
(@) < @ (e,mwa (MW) e®6)+x ( P<w)w) r

Ry 1—w?r R
(5.40)
Select
2 2
pT—2p 28 p”—2p
FE = d L = = . 41
20 an p(@) 1—w?  ly(1—w?P) (5.41)
As 0 <w < 1andp>2, we get that 2w? ({3 E + pw?®~1) < pw? and
202 (KME +pw2(p*1)) /(1 —w?) < p?w?/(1 — w?).
Using (5.41), we set
2,2 2
_ bpw p 2
Ip(w) = T <p2 — 2p> Uy Ly (w)w=. (5.42)
From (5.40) we see that in 0 <w < lorin0<r < R,
L k, k1 L vy
H,(w) < (ZJ(OQVM) He, I+ J,(w)e®e)— |am| ( p(‘;)w> —F. (5.43)

Set wy = 1/\/5 We consider separately: (1) 0 < w < wp, and (i) wp < w < 1.
We employ (5.43) in both cases.
Observe that J,(w) is increasing in w and, since p > 2, we note from (5.42)
that
P22 < Jyluo) < 17, (5.44)

Let € > 0 be such that |ap| > (1 4 €)lpHps. Choose p > 2, large enough (see
(5.36)) so that
H(e,e®@e+I/Jy(wo)) < (1+e)Hm
and (5.45)
P*(L+e)luHu/(p* — 2p) <ol

Call py such a value of p and fix py. Note that (5.45) continues to hold, if wy is
replaced by any w > wg and any p > po.

(1) 0 < w < wp: Set

N = N(pop) = zipiH(e,I—i—Jpo(wo)e@e).

e|l=
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Recalling (5.41), (5.43) yields that
H,(@) < [L’;Ongl} JR' — F, Y0 <w < w.
Thus w is a super-solution in B;"R if

F= [L’;Ongl} /R (5.46)

(ii) wo < w < 1: Let py be as in (5.45). Note that Jp,(w) is increasing in w.
Factoring J,,(w) in (5.43) and then using (5.42) and (5.45), we obtain that

H, () < = =

In the last inequality, we have used vy =k +1 = k1 + 2.
Hence, w is a super-solution in any R > 0. Moreover,

o Nt Ly (wo)\ T
A F —I%EEOR(R =0 (5.47)

LPO (w)kwkl‘]l)o (w)(l + E)HM <LP0 (w)w)’y
— |04M| Ee—— - F

Sub-Case (o > v): We use the same approach. The inequality in (5.43) reads

Hy(w) < <W> H(e, I+ Jp(w)e®e) — |an| (LP(“)“’)U —F. (5.48)

- R R
Recall from (5.41) and (5.42) that

2 2, .2 2
p*—2p prw D

Set wo = 1/v/2 and consider 0 < w < wy. Then Ip(w) < Jp(wo) and (5.48)
implies that

wo) wg' ww\’
H, (w) < (W) H (e, T+ Jy(wo)e ® €) — |an] (LP(R)> e

< (LP(WO)}C;? Jp(w0)> H (e, (Jp(wo)) ' +e®e) — F (5.50)
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We choose pg > 2 be such that Jp, (wo) > 2. Set

N,(w) = max H(e, J,(w) ' +e®e).

le]=1

Applying (5.49) in (5.50), we get that

Y /20 N
H, () < <Lp(wo)m)> (p fMNp(o.)o)> _F Wp>py and Ve < wo.

R p? —2p
We select
2 7 el
P Np(wo) \ [ Lyp(wo)wo
F=F = . 5.51

We consider wy < w < 1. Since, for each p > po, Jp(w) > Jp(wo), we have that
N,(wo) > N,(w). Disregarding F in (5.48), factoring J,(w) and then using (5.49)
and recalling Np(w), we see that

o = (2400 () o ()
() () e ()]
Choose R > 0 such that

1/(e=) 1/(e—=)
« 22 2 —2p)w «a 22
R = L (wo)wo <| ml(p p)) _ (P* = 2p)wo (I ml(p p)) 7

pQEMNp(oJO) 1— wgp pQEMNp(wO)

(5.52)

where we have used (5.49). Thus, @ is a super-solution in B for R large enough.

From (5.52), R — oo if and only if p — co. Since, lim,_, o Np(wg) = Hu,
(5.51) leads to

- o/(e—") 1/(o0—~)
s N, 2 Y o Y
lim F = lim o]~/ el _ <( wHa) >
R—o0 p—o0 p° — 2p |O(]w|’y

(5.53)

6. Sub-solutions

In this section, we construct sub-solutions. It will follow from the work that if
0 < 0 <~ then a minimum principle holds without any restrictions on the growth
rate. However, a lower bound is needed if o > . Our work is quite similar to that
in Section 5.
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To achieve our goal, we use (3.4) and (3.8) in Remark 3.1. Thus, setting
w(z,t) = v(r) — k(t) and assuming that v’(r) < 0, we get that

H,(w) = W) g (e, <rv’(T)Z(w) +1- ”’”(T)) e@e— I)

r v (r)

X (M7 + K/ (). (6.1)

We recall Condition C (see (2.4)), Remark 2.1, (2.5) and (3.1) and set

Amin A
N = min H(e, 1), Ky= Aumin(o)

by =inf Z(s) and «,, =infy, (6.2)
le|=1 Ao s

where Apin(A) = minje =y H(e, e ® —T).
Set H(A) = minj¢=; H(e,e ® e — A7'I). Let Ao > 0 be large enough so that
Ky > 0. We record that

0</tly <oo, N<0, 0< K< H()\) < Hpup, YA > X, and )\lim H()\) =H,.
—00
(6.3)

Sub-solutions. We treat separately the cases 0 < ¢ < v and o > =. The case
o = 7 is addressed in both the situations. Recall that u,, = infg» h.

Case I 0 < 0 < ~: Our work utilizes Lemma 4.3. Set in 0 <r < R, w =r/R and

w2
w(x,t) = pm +v(r) — Ft, where v(r) = E/ (7P —1)"Ydr, YO <7 < R. (6.4)
0

We observe that v(r) <0 and v'(r) <0. Here E > 0, F = F(R) and p > 2 are to
be determined. We calculate also limpg_,o F(R).

Note that the definition of E differs from the one in Lemma 4.3 but is consistent
with Case (ii) in Remark 3.1.

Set
2F

1o
We recall part (vii) of Lemma 4.3, k = k1 + 1,y =k + 1 and ¢, = inf Z and
observe that

Lp(w) (6.5)

~r(r)
v'(r)

Employing the above lower bound, (5.38), (6.2), parts (ii) and (vii) of Lemma 4.3
in (6.1) leads to

_ Ly(w)kwh o (b E — pw?P—1 Ly(w)w\”
HO-(U}) Z TH 6,2&1 W €®€—I —|—Oém R +F
(6.6)

2EZ(Hw?  2pw?P b B — puw?®=1)
/ _ o 2 m
+rZ(HW (r)| = o o > 2w o
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Select ( D 20 0
_plp+ _ 2pp+
As0<w < 1andp>2, we get that 2w? (émE — pwz(”_l)) > 2p2w?. Set
2p2w? D 9
Ip(w) = % (p+1 lp Lp(w)w?, (6.8)

where we have used (6.5). Thus,

b B — puw?®@=1)
Recalling (6.6) and (6.8) we see that

H,(w) > (W) H(e,Jp(we®e—1I)+ any (IT(];J)L‘J)U +F. (6.9)

Set wo = 1/v/2. We consider separately the cases: (i) 0 < w < wp, and (ii)
wo Sw< 1.

(1) 0 < w < wp: Recall (6.2), (6.3) and (6.8). We bound
H(e,Jp(w)e®e—1I)>H(e,—I) > —|N|.

Using the above in (6.9) we get that

o p- (B (LY

From (6.7), L,(w) is increasing in w. Since 0 < w < wy, we choose

Lp(wo)* [R|wg’ W (Lp(WO)wo 7

F= v 2. 6.11
. e (6.11)

Thus (6.10) implies that @ is a sub-solution in By,

(i) wo < w < 1: This leads to a determination of p. Since J, is increasing in w,
using (6.8) we get that
2p2wi

— 2 ; —
Ip(w) > Jp(wo) = T >p° and plggo JIp(wp) = o00. (6.12)

Using Conditions A and B (see Section 2) and (6.12), we have that for w > wy,

I
min H (e, J, (w)e®e—1)> J,(w)min H (e,e®Re — ————
i 1 (., () )2 Jy ) in 1 o)

> J, (W) H(p?) > KoJp(wo) > Kop* > 0. (6.13)
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Here we have used (6.3) and chosen p > pg, where py > 2 is large enough such
that H(p?) > K.

From here on we take p > py such that (6.13) holds (see also (6.12)). Using
(6.8) and (6.13) in (6.9), we obtain

H (w) > L (w)k( 7k1J2 (W);i(pQ) + ( 1’()") F
7 m E —|—
L

R
s i) (21) (29 b (B9 1 (o

In the last inequality, we have used vy =k + 1 =k + 2.

We factor (wL,(w)/R)? from (6.14) and use wp < w < 1 to obtain that

H, () > <LP(J‘§)“>U lemﬂ(lﬂ)( P > (Lp(a;zo)wo)”_”+am

+ F. (6.15
p+1 ( )

Sub-Case (a) 0 < o < 7: As noted earlier, @ is a sub-solution in B;“R, it F
is chosen as in (6.11). We assume that ., < 0. For a,, > 0, see Sub-Case (b).
We refer to (6.15) and select R such that

s () (29

With this choice, @ is a sub-solution in BE.
From (6.3) and (6.7), H(p?) = O(1) and L,(wo) = O(p?) as p — oco. Thus,
(6.16) yields that for some K = Kj(a, 7, lm,wo, Ko) > 0,

R~K1p2 as p — oo.
Thus, R — oo if and only if p — oco.

We calculate limp_,oo F'. We write F'in (6.11) as the sum of two terms X and
Y as follows:

R|L kyk L 7
= RlLp(wo)'wp! P(;S) 0 4 | (”<°;§>“°) —X+V.

We use (6.16), v =k + 1 and k = k1 + 1 to observe that

k
: : [Nwp' ( Lp(wo)
lim X = lim X=—7+7"—(——+) =0.
oo Rovos R R

Next, using (6.16), we get

Yol (25220 = [ B (557 o
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Referring to (6.3), we see that

|a |y 1/(v—0o)
lim F= lim Y = lim Y—<(m)o) , 0<o<n. (6.17)

R— o0 R—o0 p—00 gmHm

From (6.17), if o, < 0 then

|am‘7 g = 0,
fim F = o\1/(v—0o) (618)
R0 (|l |/ U Hin)?) 790 0 <0 < 7.

Sub-Case (b) x > 0: We may choose F' = X as seen in (6.9), (6.11) and
(6.15)(since vy, > 0). For a large enough value of p, @ is a sub-solution in B for
any ¢ > 0 and any R > 0. Clearly, limg_, o, F' = 0. No lower bound is needed.

Sub-Case (c) 0 =+: An inspection of (6.15) shows that if
|| < M = [inf Z(s)][min H(e,e ® e)],

lel=1

by selecting p, large enough, (6.15) may be written as

gl
H.(7) > (“’LR““’)) [zmy(pQ) (pil) - |am] L E>0.

For the chosen p, w is a sub-solution in B® for any R > 0. Moreover, R is

independent of p and F(R) — 0 as R — oo. However, if |ay,| > £, H,y, then it is

not clear if a lower bound is needed. See Case II below. In Section 7, a minimum

principle is proven by imposing a lower bound.

Case IT v < 0 < oo: We adapt the work in Section 5, see Step 2, in particular.
Recall that ks =1,y =k+ 1=k +2,0*=0/(c — 1) and v* = v/k.
First, we describe the two sub-cases of interest and then present the work that
addresses them. Set
k() =1+t 0<t<T.

Sub-Case (i) o = v: We take |ay,| > £, H,, and refer to Sub-Parts (i) and (i)
of Part I in Section 5.

(i1) k = 1: Thus, vy =" = 2. Assume that for any ¢ > 0, small, sup, <, (—u(z,?)) <
o(|r|?>=¢) as 7 — co. We take

2

w(x,t) = i — at — be(t)v(r), where v(r)= /0’" (1 +75/%)"Ldr.

(i2) k> 1: Thus, 1 <" <2 < 7. We assume that sup,<,(—u(z,t)) < o(|r]"")
as r — oo. We take
W=y, — at — be(t)r7 .
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Sub-Case (ii) o > 7: We allow k& > 1 and refer to Part II of Section 5. We
assume that sup|, <, (—u(z,t)) < o(|r|”") as 7 — oo. We take
" o—
W =y, — at — br(t)v(r), where v(r) = / (14 7P)"'dr and p = i
0 Y(o—1)

We present the calculations that apply to both the sub-cases. Since w, < 0,
except at r = 0, we use the two versions in (3.4). For R > 0, to be determined,

k
H(e, (er|Z(w) +1-—
I _
e®e+<U)_TT+Z(w)>€®e)7 V’["ZR (619)

T

T Wiy

)e@e—]), VO <r <R,

T

W,

G(w)= |w,|"H (e,
From parts (ix) of Cases A, B and C of Remark 4.2, we have that
W TV (T) L, o=7=2 k=1,

= << -1, oc=v>2, k>1,
=1, o>y>2, k>1

e Using the first version in (6.19), noting that v* < 2 and 1 — rw,, /o, > 0,
one estimates (see (6.2))

H<e, <r|zI1T|Z(zD) t1- ’““’”‘>e®e—1> > H(e,~I) > —¥|, 0<r<R.
w

T

Hence, in 0 <r < R,
be(T)v' (r)]F|R
Hy(w) > — ([K()z;(r)]u + |m| [bH(T)’U/(T)]U> + a + bu(r).
We employ the estimate in (5.8), i.e., v'(r) < v*r?7 ~1 = v*r1/k we get, in 0 < r <
R,

[ os(T)r” IR
.

H,(w) > — <

> — (I BR(@)PIN + lounl bR BT/ — a)

+lanl BT Y —a)

As done in (5.31), we select an appropriate a. Thus, @ is a sub-solution in |z| < R.

e Next, in 7 > R, one finds that (see (5.6) and (6.19))

Ii _’]"’r‘ —
|w,.|"H (e, Toe®e (w +Z(w)> e®e)
rw

— () (P H (e, m 4 (Z(w) _ M) e® e>
> bk[/f(t)v’(r)}’YH< ,efjf(;)l (bZ(w) - (;’(g;z) e@e), (6.20)
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where we have factored out 1/b, used that y =k +1, k(¢t) > 1 ande®e — I <0.
We now recall (5.11) i.e.,

v (r)

1 _
r'(r)” (v'(r))?

Employing this estimate in (6.20) and disregarding the term with Z, we get

O<max< )§2, inr>R>1.

I—e®e

([ H (e, 4 (11‘;2 + Z(u‘;)) e® e) > b (T (]S,

T T

where S = minj— H(e, —2(/ + e®e)). Clearly, by (6.2), —oo < S <X < 0 and
we get that

Ho(w) > — {0"[s(T)V (r)]"]S] + a(bs(T)7 (' (r))” — a— bu(r)},

which is analogous to (5.14). As done in Section 5, a choice for b (see (5.34)) can
now be made. Thus, @ is a sub-solution for any small enough b > 0 and

lima = 0. (6.21)
b—0

d

7. Proofs of Theorems 2.2-2.5
Let T > 0 and we take (z,t) € R}, n > 2. Set

(1) pm =infh, par =suph, (i) am =infx(), an =supx(?),
n Rn

(iii) ¢4, =infZ, £y =supZ, and assume that
(iv) —o00 < i <pup <00, —00 < apy <ay <o and 0< £, </l < oo.

Recall that k = k1 +1,y=k+1,v* =~/kand 6* =0/(c — 1), Vo > 1. Let
z € R" be a fixed point and 7 = |z — z|. Define the cylinder Bf. = B,(z) x (0,T)
and P} be its parabolic boundary.

Proof of Theorem 2.2. Let u be a sub-solution as described in the theorem.
By the hypotheses, for a fixed small n > 0, let p > pg, where py is large enough so
that
supu(z,t) <np’, Yp > po, (7.1)
By
where ¢ is as in Theorem 2.2.

Proof of Theorem 2.2(a) (¢ = 0): Recall from (5.1) the super-solution

w(x,t) = py + at + bo(r), V(z,t) € RY, (7.2)
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where

2
*

(1) if k=1 thenov(r) = / (14 7/%)7Ydr, and (2) if k > 1 then v(r) =7,
0
(7.3)
where € > 0, small, is as in the theorem. See (5.16) and (5.24). Also, in (7.1)

(1) 6=2—¢ ifk=1,and (2) §=~* ifk>1. (7.4)

For details, see Part I in Section 5, (5.20) in Sub-Part (i), (5.27) in Sub-Part
(ii) and (5.29).

Thus, w is a super-solution in R7 for any 0 < b < by, for by small enough, and
an appropriate a that depends on b. Moreover, lim,_oa = aar. See (5.29).

By part (iv) of Cases A and B of Remark 4.2, v(r) > r°/4, for r > p;, where
p1 is large enough. We choose b = 8n. If needed, choose 1 smaller and pg in (7.1)
larger so that n < bg/8.

Set po = max(po, p1) and consider a cylinder BY., where p > ps. Then u(z,0) <
h(z) < pn, Yo € R™. Clearly, w(z,0) = par + bo(r) > u(z,0), for |z] < p. On
|x| = p, we have by (7.1),

5
w(a,t) > bo(p) > "0 = 2’ > u, 1)
Thus, w > uon P?, Vp > ps. We use Lemma 3.2 to conclude that u(z,t) < w(x,t
T

in BY,
Vo > pa, u(z,t) < pp +at+bu(r), Y| <p and 0 <t <T.

Fixing (z,t) and letting p — oo, we see that u(z,t) < py + at + bu(r) in R7.
Since this holds for any small b, we obtain u(zx,t) < uy + anpt, see (5.29). O

Proof of Theorem 2.2(b) (0 < o < 7): The quantities w, v and § are
as in (7.2), (7.3) and (7.4). Refer to Part I in Section 5 and see Sub-Parts (i)
and (ii). Arguing as in the proof of Theorem 2.2(a) above, we see that u(z,t) <
pnm + at +bu(r), in RZ., for any b > 0 small enough. Recalling (5.23) and (5.29),
i.e., limp_pa =0, we get that u(z,t) < pps and the claim holds.

Proof of Theorem 2.2(c) (0 > «): Refer to Part II in Section 5. The
quantity 6 = ¢* in (7.1). From (5.30) w(z,t) = par + at + b(1 + t)v(r), where

*

rY
_ o—
v(r:/ 1+7°)"Ydr and p= ———,
=) e SICESy
where ¢ > 0 and b > 0. Then w is a super-solution in R for any 0 < b < by,
where by is small enough, and an appropriate a that depends on b. Moreover, by
(5.35),

lim a = 0.
b—0
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The rest of the proof is similar to the proof of Theorem 2.2(a). O

We take w(x,t) = pp +o(r)+

Proof of Theorem 2.2(d) and (e) (o > v):
5.39). See also (5.47) and (5.53).

Ft, where v(r) and F are as in (5.37) and (
Observe that v(r) — oo as r — R.

Clearly, w(z,0) > pun > u(z,0), V|z| < R. Since supj,<p |u| < oo, select
R < R, close to R, such that w(x,t) > u(z,t) on |z| = R. Thus, w(z,t) > u(z,t)
in BR and u(z,t) < w(z,t) = puy + Ft. Letting R — oo and noting the limits in
(5.47) and (5.53) the claims in parts (d) and (e) follow. Note that for o = v, we
require |aps| > €y Hay for the argument to apply. O

Proof of Theorem 2.3: We start with the proofs of parts (a)-(c). Recall that
iy = inf A and assume that a,, = inf x < 0.

Proofs of parts (a), (b) and (c) (0 < ¢ < 7): Recall from (6.4) that for
R >0,

wWgr(x,t) = iy +v(r) — Ft, where v( E/ )" tdr, w=r/R,

and F > 0 and F = F(R) > 0. Note that v(r) < 0. See Sub-Cases (a), (b) and
(c) of Case I in Section 6.
From (6.11) and (6.18) we see that

|t o=0,
lim F= lim F(R)= X (|am|?/(lmHm)? )/ =), 0<o<n, (7.5)
R— o R— o0
0, o =7, lam| < lmHm

Let u be as in the theorem. Since v(r) < 0, clearly, w(z,0) = pm + v(r) <
h(z) < u(z,0) in |z| < R. Since sup Ju| < oo in BE, w(z,t) < u(x,t) onr = R/,
for any R’ < R, close to R. By Lemma 3.2, wg < u in BYE and hence, in Bg.

Thus, w(z,t) < u(z,t) and since v(0) =0, u(z,t) > p,, — F't. Letting R — oo,
we get,

Hm — |am|t =0,
u(z,t) > — t(|am |/ (U Ho ) ) (=) 0< o<,
Homs o=, |lam| <lmHm

Proof of part (f) (¢ > 0): If x > 0, take v, > 0 and refer to Case I in
Section 6. The claim u(z,t) > piy,, V(z,t) € R}, holds for any ¢ > 0.

Proofs of parts (d) and (e) (o > v):
e Let 0 =~. We take |ay,| > £ Hyn. Assume that

s};l})(fu(m,t)) <o(p®), asp— oo (7.6)



A Phragmén-Lindel6f property of viscosity solutions 97

Recall Sub-Cases (i) and (ii) in Case II in Section 6. Take a > 0 and 0 < b < 1
and set
w(x,t) = pm —at —b(1 4+ t)v(r), in RE.

If k=11ie.,y=2then d =2 — ¢, for a small and fixed € > 0, in (7.6), and

2

v(r) = /OT (14 75/%)~ L dr.

If k> 1 and vy > 2 then § = v*, in (7.6), and v(r) = 77".

eIfo>~and k> 1 then 6 = ¢* in (7.6), and

_ oc—7
u(r) = 1+7°)"tdr where p= ———.
=) 0+ SICE

Tt follows that lim,_,oa = 0 in all the above situations, see (5.35) and (6.21).
The rest of the proof is similar to that of Theorem 2.2. [

Proof of Theorem 2.5. We take x = ¢ = 0 in Theorem 2.2. Let u > 0 be as in
the statement of the theorem.

Let k> 1. Set &= ¢~ *(u) and h = ¢~ (g), see Lemma 3.3.

We recall (2.10), (2.13) and (2.14). If n(s) = f~Y/*=1(s) then, as noted
before,

either (i) /000 n(s)ds < oo or (ii) /000 n(s)ds = oo. (7.7)
The domain of ¢ in (7.7) (i) is [0, 00), and in (7.7) (ii) it is (—o0, 00). Also,
Z() = ¢"(@)/¢' (@) = (dn(s)/ds)|s=a

is non-increasing and 0 < ¢, < Z(4) < £y < co. Moreover, the domain of Z in
(i) is (0,00) or [0,00), and in (ii) it is (—o0,00). Set

pim = inf 6~ (g(2)) and py = sup ¢ (g(x)).

We employ Lemma 3.3 and Corollary 3.4. Set r = |z — z|.
Proof of part (a): Since  is a sub-solution we have that sup @(z, t) < o(R"")
Bf
as R — oco. In (7.7) (i) @ > 0 and ppr > 0, and in (7.7) (ii) —oco < @ < oo and
—00 < pp < 00 L
By Lemma 3.3, @ € usc(R%}:) solves

H(Dt, D0 + Z (i) Di® Da) — iy > 0, in R2,
and @(x,0) < ¢~ (g(x)), for all z € R™.
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By Theorem 2.2(a), sup @ < ppr, and thus, supu < supg.

Rn RT Rn

Proof of part (b): In this case, @ € lsc(R%) solves

H(Du, D*a+ Z(4)Dt® Da) — 4y <0, in R,
and @(z,0) > ¢~ (g(z)), for all x € R™.

We first discuss (7.7) (ii). Since the domain of ¢ is (—o0, c0), we apply Theorem

2.3 (a), with x = 0 and o = 0, to obtain %ﬁu > um and hence, 1nfu > %R?ﬂfg No
T

lower bound is needed.

In (7.7) (i), the domains of ¢ and Z are [0, 00) and at least (0, c0) respectively.
Thus, @ > 0 and p, > 0. Let wg be as in the proof of Theorem 2.3(a), see also
(6.4), that is,

WR(z,t) = pm + v(r) — Ft, where o( E/ )~ldr, w=r/R,

where E > 0. Here, v(0) =0, v(r) <0 and wr(r) = —oco as r — R. Extend Z to
(—00,0) by £y thus defining Z on (—o0, 00).
For all p > 0, set

= inf d.
e(p) infd

Also, recall from (7.5) that limg_, o F = limg_, o F(R) = 0, since x = 0. Select
R > 0, large enough, such that F'T' < p,,/4. This ensures that wg(z,t) = pm +
v(0) = Ft > /2 > 0. Fix R.

Clearly, as e(p) > —oo and is decreasing in p, £(R) < &(p) for p < R.

Since v(r) < 0, wr(z,0) = fim +v(r) h(z) < @(z,0), 0 < r < R. Since
v(r) — —oo as r — R, we choose R < R, close to R, such that wR(R t) <
e(R)/4 <e(R )/4 Applying the comparison principle, wr < @ in BT and, hence,
in B

Taking r = 0,

tm +v(0) — Ft = wgr(z,t) < d(z,t).

Since, v(0) = 0 and limp_,~ F' = 0, the claim holds.

Note that a proof can also be worked by considering the sub-solution g (z,t) =
max{wg(z,t),e(R)/2} > 0 in BE. Clearly, ¢g(z,t) < 4(x,t) on r = R and
Yr(x,0) < d(x,0). This follows as wgr(x,0) < py,. This leads to & > g > @R in
BE. This does not require extending Z.

For k =1, set u = ¢() = e®. Then, Z() = 1 and a proof follows analogously.
(|
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8. Optimality

In this section, we address optimality for Theorems 2.2 (a), (b) and (c) and 2.5 (i)
(a). We point out that some of our results discussed here are partial in nature.

Recall the the assumption —oco < p,, = infh < suph = upy < oo, and the
notation

G(v) := H(Dv, D*v + Z(v)Dv® Dv) and H,(v) = G(v) + x(t)|Dv|” —v;. (8.1)

To address optimality of Theorem 2.2, we construct sub-solutions ¢(z,t) which
tend to —oco as t — 07 and grow at the rate indicated in theorem. We then take
max{ s, ¢} to show optimality for the maximum principle. We construct ¢ = ¢(r)
where

r=|z|, Ve €R", ¢.>0 and ¢, >0 inr #0.

Also, o stands for the origin in R".
Thus, (3.3) and Condition A(see Section 2) lead to

br

G(o) = H (¢ (Tu S ) T+ 2(@)de )

> H (qﬁre, (?(I—e@e))) - ;H <e,1+ (TZ - 1) e®e) . (8.2)

Another version follows from the first equation in (8.2) by using that [ —e®e >
0, by, = inf Z, H,,, = minj,|—; H(e,e ® e) and writing

G(¢) > H ((b,.e,Z(gZ))gbfe ®e) > (o) Z(¢)H(e,e®e€) > (¢p) U Him.  (8.3)

We may combine (8.2) and (8.3) as follows. For 0 <7 <1,

rPrr
Or

G(¢) > 7 [:H (e,] + < - 1) e® e)] (1= 1) (b)) b Hm.  (84)

Note that to show that the functions ¢ satisfy the inequalities at 7 = 0, we use
Remark 4.4.

Sub-solutions: Optimality for the maximum principle
The discussion here refers to Theorem 2.2.

Part I: k£ > 1. Recall that ky >0,k =k + 1,y =k + 1 and v* = v/k. Note
that y=%k+1>2and 1 <vy* < 2.

Case (0 < o <) : We take

_arV* b L 0. — 2 E+1 ~6
T e g VLT T k1 '
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Here, a > 0 and b > 0 are to be determined. Set E = a~v*. Then,

Er 1 E(v* — 1)7“7*_2 TG . 1-k
(br:Ta (brr: 161 ) ¢r _1:7 _QZT (86)

Taking 7 = 1/2 in (8.4) and using (8.6), we obtain that

1 [Ekpy k= Evp( =1y
G(¢) > —H(e,J+ (7 —2e®e) + ———

Z 5| T e fm/Hm] . (8.7)

t’Y‘91
Observe that, v* =1 =1/k, v*k—v=0and I + (v* —2)e®e > (e®e)/k. Thus,
H(e,]—~v'e®e) > H(e,e®e)/k > Hu/k.

We get from (8.7) that

EF m EY ’Y/kgm m
H r H } (8.8)

1
Gle) = 3 [ o 01

Recall that «,, = inf; x(¢). Using (8.8) and assuming that «,, < 0 (otherwise
disregard x(¢)|Du|?), we get that

H,(¢) = G(9) + x(t)dy — b1
1 [E’mm E’Yﬂ/’“ﬁm’}-lm} amE°r?/k B0k o,y
> — _
) ktkel t«,el tael py*t91+1 t62+1

E*H,, B BV R o || EOre/R] EO Yk
otk 102+1 21761 - 1001 Ao (8:9)

Apply Young’s inequality to obtain

|Olm‘EUTU/k < g EFYT’Y/kgmH'm + Y= 0 2 7/rme) ‘am|7/(7_‘7).
too ol 2701 ~ b Hon

Employing this in the right side of (8.9), we get

E*H,, b0 N—0o 2 7/(y=2) Y
H,(¢) > =l G T | [/ =)

By (8.5), k1 = 65 + 1. Hence,

k o/(v—o)
1 E Hm _ b02 _ (’7 - U)( 2 > |O[7n|—y/("yo')Tk‘91‘| .
Y

Ha(¢) Z W

2k CnHon

(8.10)
Select b = 1 and E large enough to get a sub-solution for 0 < ¢ < «. For ¢ = 0,
we use (8.9) to see that

E*H,, 05 1

Ho(9) > — g = lom| = 557 = oo [E¥H,, — 2|a, |TF —20,] . (8.11)




A Phragmén-Lindel6f property of viscosity solutions 101

Choosing F large enough we get a sub-solution. [J

Case 0 = v and |opy| < €pHm: Let 0 < € < 1 be such that |o,| <
(1 —e)lyHyp. Setting 7 = ¢ in (8.4), using (8.5) and arguing as in (8.7) and (8.8),
we get that
E* ., Evr R
o, T ey
ktko01 o1

Selecting #; and 62 as in (8.5), arguing as in (8.9) and replacing || by
(1 — &)l Hm, we get that

G(¢) > ¢ (8.12)

EEka b92
H’Y(¢) > [ ktkel - t02+1]

N [(1 — B % Hy (1 — )l Hm Ero/* ] Efyr/*

+701 761 7*t91+1

E01r7/’“
,y*t91+1 :

1 [eEMH,
TotkOr |k

- 592} +

Choose E =1 and b = eH,,/kb2 and conclude that ¢ is a sub-solution in R%. O

Sub-case ¢ = v and |a,| = €nH,: This is not clear to us for general
H. However, if H is quasilinear, i.e, if G is quasilinear (such as the parabolic
p-Laplacian) then /% is optimal. We assume that a,, < 0.

Observe that (8.2), (8.3), (8.7) and (8.8) lead to

G(¢)=H (D, D*¢ + Z(¢)D¢ ® D) = H(D¢, D*¢) + H(D¢, Z(¢) D¢ ® Dg)

=H <¢7‘€7 %(I —e® 6) + Orre @ €> +H (¢r6a Z(¢)¢72~6 ® 6)
E*H, BV R0, Ho,
= Ktk 70

As done in (8.9), we get that

E*Hy BV R0,H e || EYPE b0y B0 /E
Ltk01 + 761 o 1701 b2t + y*g0+1
E*H,, b0y  EOr/k
= Ltkon - 102+1 7*,5914-1 :

Hy(¢)

Since k#; = 65 4+ 1, we may now conclude optimality. [

Case o > v: We assume that y > 0. Choose

_af(r) b 2 _k+1 A6
o(r,t) = i s where 6 = P Oy = 1 5
T o—7 o

d =—— and 0" = .
1) /0 1y P y(o—1) R
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See (5.30) in this context. We apply the two versions (8.2) and (8.3) as follows:

G(¢) > aii;{ell)kHG’IJr(TJ{’N_l)e@e)’ 0<r<I,

Y( £y
a4 tg;l) b Hom,s 1<r <.

G(o) =

Refer to (vi), (viii) and (ix) in Case C of Remark 4.2. Then
') > (v*/2)min(r? "1, e Y and rf"/f >1/0.

Set
E=ay"/2<a.

Since I + (671 —1)e ® e > e ® e/o, we obtain from above that

E" = E"H,,
G(¢)Ztk01H(e’I+(g *1)‘3@6)2%7 0<r<1,
a¥(f")” Ever/Ce=Dg 1 BV Hom
G(9) = —57bmMm > yen > =5 1< <o (813)

Since x > 0, we see from (8.1) that H,(¢) > G(¢) — ¢+ and

E*Hp, by BVl Hy b0y
Hg(¢) Z W*m, OSTS]., and Hg(¢) 2 2'Yt’)’91 7t92+1, 1§7‘<OO
(8.14)

Since kb = 05 + 1 and v0; — (62 + 1) = 601, we get that ¢ is a sub-solution if we
select £ =1 and
Hon fm?—lm>

0<b<min|—
< _m1n<m927 92T91

To show optimality for o > «, we observe that for any y, SUPRn U < fip if we

impose that suppr u = o(R°") as R — oc.

If sup x < 0 then the maximum principle holds without any restrictions, see
Theorem 2.2(e). If x > 0 somewhere in (0,7) then the above shows that the
growth rate of o(R%") is optimal, see Theorem 2.2(c).

The above also applies to part (a) of Theorem 2.5(i). O

Part II: k£ = 1. Note that k&; = 0 and v = 2. Also, H(p, X) = H(X) for all
(p, X) € R™ x §7*™. See Condition B in Section 2. We take f = 1.
This part applies to Theorem 2.5 (ii). Clearly, u > 0 satisfies

H(D?*u) —u; >0, in R% and u(x,0) < g(), Vo € R™.
We apply the change of variable v = logu. Then, by Case (ii) of Lemma 3.3,

H(D*v+ Dv® Dv) —v; >0, in R% and v(z,0) < logg(z), Vo € R™.
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For a > 0 and b > 0, we define

a(r +1r?)

VEYE — a2 inr>0andt>0.

w =

Inr >0, w, >0, we >0 and hence,

H(DQw—I—Dw@Dw):H(wT (I—e®e)+wrre®e+wfe®e)
r

a?(1+ 2r)?

> Hw?e®e) =w?H(e®e) > 3

Hon
Thus,

a®(1+2r)*H,,  3a(r+1%)  2b
t3 2052 43

H(D?*w + Dw ® Dw) — w; >

Choosing b = a?H,, /2, we see that w is sub-solution in r > 0.
To show that w is a sub-solution in all of R%, let ¢, C? in z and C! in ¢, be
such that (w —)(x,t) < (w —1)(o,s) for some 0 < s < T. Hence,

2
% - t% + s% < {(D(0,8),z) + s (t — 5) as (z,t) — (0, 5).

It is clear that 1/;(o, s) = 2b/s3. Taking t = s, we see that

a(r +1?)
~an < (Dy(o,s),x) as (x,t) — (0, ).
Dividing by r = |z| and writing e = z/|z| and letting r — 0, we get

a
0< S?’W S <D¢(Oa S),6>, Ve.

Thus, D(o,s) does not exist contradicting that v is C? in x. Hence, w is a
sub-solution in R7:. g
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