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New existence results for fractional differential equations in
a weighted Sobolev space

Ahmed Hallaci, Hamid Boulares, Abdelouaheb Ardjouni∗ and

Abderrazak Chaoui

Abstract. In this paper, we give some conditions to prove the existence of solutions for a

nonlinear boundary value problem of fractional differential equations with higher order q, (n−1 <

q < n), involving Riemann-Liouville fractional derivative. The solutions are discussed in a

weighted fractional Riemann-Liouville Sobolev space using Schauder’s fixed point theorem. An

example is given to illustrate the main results.

1. Introduction

Let T > 0 be a real number and I = [0, T ] be a closed and bounded interval of
the set of real numbers R. Consider the following nonlinear functional boundary
value problem of the higher-order fractional differential equations (FDEs) with
Riemann-Liouville derivative

Dqu (t) = g (t, u (t) , Dsu (t)) , t ∈ I, (1.1)

Dq−iu|t=0 = 0, i = 1, . . . , n, i 6= n− 1 and u (T ) = 0, (1.2)

where 1 < n− 1 < q < n, 0 < s < 1, g : I ×R2 → R is given function, Dq denotes
the Riemann-Liouville’s fractional derivative.

Recently, the subject of fractional calculus has become a fundamental branch
of applied mathematics, has been applied widely in a variety of mathematical
models in science and engineering during the last three decades such as physics,
chemistry, biology, engineering, viscoelasticity, signal processing, electrotechnical,
electrochemistry and controllability. Many researchers have been interested in the
theory of nonlinear FDEs stimulated by the extensive applicabilities mentioned
previously (see [12, 15, 17]). Most of researches centred around the investigation
on existence and uniqueness of solution where this side of study for nonlinear FDEs
have been extensively developed using especially the fixed point theory and other
theoretical methods as iterative method, measures of non-compactness technic,
Krasnoselskii-Krein and nagumo uniqueness theorems (see [4, 19]). However, the
fixed point theorems staying the most used method to study the existence and
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uniqueness of solutions of nonlinear FDEs and nonlinear fractional differential
systems (see [2, 3, 5, 6, 10, 16, 21]). Beside, the mentioned published papers has
been devoted to give the existence and uniqueness of solution of various classes of
fractional differential and integral equations in the space of continuous functions
C ([a, b]) or C (R+) . But the discussion on measurable solutions of differential and
integral equations remains relatively few compared to continuous solutions, we
refer to some papers about this side as [9, 13, 14]. Where the Lp-solutions of
fractional differential equations are discussed by Burton and Zhang in [9] using
some techniques to show the belonging of solutions to Lp (R+). In [13], Schauder’s
and Darbo’s fixed point theorems are employed to study the existence of Lp (R+)-
solutions of nonlinear quadratic integral equations. Also in [14], the authors give
different existence results for Lp [a, b] and C ([a, b])-solutions of some nonlinear
integral equations of the Hammerstein and Volterra types using some fixed point
theorems combined with a general version of Gronwall’s inequality.

In this paper, motivated by those valuable contributions mentioned above, we
mainly discuss the existence of solutions for nonlinear FDEs of higher order q
(n−1 < q < n) in a measurable weighted fractional Sobolev space. To achieve our
mentioned purpose, we first transform the fractional differential equation (1.1) with
conditions (1.2) into a equivalent integral equation with Green continuous function
using Laplace transform technic of the Riemann-Liouville fractional derivative
and some analytical skills, then we present the our study space which is based
essentially on the classical concepts of weighted Lp-spaces and Sobolev spaces.
Furthermore, we investigate the existence of solution of the system (1.1)-(1.2) using
Schauder’s fixed point theorem. The rest of this paper is organized as follows:
in section 2 we present some auxiliary definitions and lemmas about fractional
calculus theory and measurable functions theory that will be used to prove our
main results, also we show the completeness of fractional Sobolev space. Section 3
devoted to the main result. Lastly, we present an example to show the effectiveness
of our main result.

2. Preliminaries

We start by presenting some necessary definitions and lemmas that we will used
for investigate our main results. For more details see [1, 7, 8, 12, 15, 17, 18, 20].

Definition 2.1 ([12, 15, 17]). The Riemann-Liouville fractional integral of the
function u of order q ≥ 0 is defined by

Iqu (t) =
1

Γ (q)

∫ t

0

u (τ)

(t− τ)
1−q dτ,

where Γ (q) is the Euler gamma function defined by Γ (q) =
∫∞

0
e−ttq−1dt.
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Definition 2.2 ([12, 15, 17]). The Riemann-Liouville fractional derivative of the
function u of order q ∈ (n− 1, n] is defined by

Dqu (t) =
1

Γ (n− q)
dn

dtn

∫ t

0

u (τ)

(t− τ)
q−n+1 dτ.

Definition 2.3 ([18]). Φ : I × R −→ R is called a Carathéodory function if
(i) t 7−→ Φ (t, u) is measurable for every u ∈ R ,
(ii) u 7−→ Φ (t, u) is continuous for almost all t ∈ I.

Definition 2.4. Let I be a measurable subset of R, g : I × Rd → Rd′ satisfies
the condition of Carathéodory. By a generalized Nemytskii operator we mean
the mapping Ng taking a (measurable) vector functions u = (u1, . . . , ud) to the
function Ngu(t) = g(t, u(t)), t ∈ I.

The continuity of the operator Ng is concerned in the following lemma.

Lemma 2.5. Consider the same data of above definition. Let pj ∈ [0,∞) for
j = 1, . . . , d and r ∈ [0,∞) with uj ∈ Lpj (I) , j = 1, . . . , d and b ∈ Lr (I) , a
constant c > 0, assume that

|g (t, u)| ≤ b (t) + c

d∑
j=1

|uj |
pj
r , a.e. t ∈ I, u ∈ Rd,

then generalized Nemytskii operator

Ngu(t) = g (t, u(t)) , a.e. t ∈ I, u = (u1, . . . , ud) ∈
d∏
j=1

Lpj (I) ,

is bounded and continuous from
d∏
j=1

Lpj (I) to Lr (I) .

Proof. Lemma 2.5 is a generalization of Theorem 5.1 in [18] to a vector function

case u ∈
d∏
j=1

Lpj (I) instead of u ∈ Lp (I). We use the Vitali’s theorem [18] for show

the continuity and boundedness of the generalized Nemytskii operator. Therefore,
we omit the proof.

Lemma 2.6 ([1, 8]). Let F be a bounded set in Lp ([0, T ]) with 1 ≤ p < ∞.
Assume that

(i) lim
|h|→0

‖τhf − f‖p = 0 uniformly on F , where τhf (t) = f (t+ h), and

(ii) lim
ε→0

T∫
T−ε
|f (t)|p dt = 0, uniformly on F .

Then F is relatively compact in Lp ([0, T ]) .
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Remark 2.7. A first possible definition of solutions of problem (1.1)-(1.2) in the
Lebesgue spaces of measurable function Lp (I), is a function u ∈ Lp (I) whose
fractional derivative Dsu, s ∈ (0, 1) belongs to Lp (I). On the other hand, from
Definition 2.2, for some s ∈ (0, 1) , it is obvious that the Riemann-Liouville frac-

tional derivative of a function u is written in the form Dsu =
(
I1−su

)′
. That is,

if Dsu exists then the Riemann-Liouville fractional integral I1−su is differentiable
almost everywhere. Therefore, we use a more convenient definition of the solutions
of (1.1)-(1.2) as the functions u ∈ Lp (I) , I1−su ∈ Lp (I) and

(
I1−su

)′ ∈ Lp (I),
which form the structure of a Sobolev space that we denote him by W s,p

RL (I),
defined as follows

W s,p
RL (I) =

{
u ∈ Lp (I) and I1−su ∈W 1,p (I)

}
.

Before passing to show the completeness of W s,p
RL (I) , we define the spaces:

D′ (I): space of distributions,
C1
c (I): space of C1 (I)-functions with compact support.

Lemma 2.8 ([11]).
(
W s,p
RL (I) , ‖u‖W s,p

RL (I)

)
is a Banach space endowed with the

norm

‖u‖W s,p
RL (I) =

(
‖u‖pp +

∥∥I1−su
∥∥p
W 1,p(I)

) 1
p

.

Remark 2.9. In [7], the authors discussed more broadly about fractional Sobolev
space W s,p

RL (I) in the case where p = 1 to make the relation between this spaces
and the classical spaces of functions of bounded variation BV. The authors shown
also the completeness of the fractional Sobolev spaces W s,1

RL (I).

The following weighted fractional Sobolev space plays a fundamental role in
our discussion. We define the weighted Lp-space

Lp,σ (I) =
{
u ∈ Lp (I) , ‖u‖p,σ < +∞

}
,

where, ‖u‖p,σ is the positive real valued function defined on Lp (I) by

‖u‖p,σ =

(∫
I

σ (t) |u (t)|p dt
) 1
p

for all u ∈ Lp (I) .

Also, we define the weighted fractional Sobolev space with Riemann-Liouville frac-
tional derivative by

Eσ =
{
u ∈ Lp,σ (I) : I1−su ∈W p,σ

1 (I)
}
,

equipped with the norm

‖u‖σ =
(
‖u‖pp,σ +

∥∥I1−su
∥∥p
Wp,σ

1

) 1
p

,

where
W p,σ

1 (I) = {v ∈ Lp,σ (I) : v′ ∈ Lp,σ (I)} ,
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σ is a given function defined on I and such that there exists a real number σ∗ > 1
satisfies 1 ≤ σ (t) ≤ σ∗, for all t ∈ I, and

K ′ ∈ Lp,σ (I) , for all t ∈ I, (2.1)

where

K (t) =


∫ t

0
(σ(t−τ))

1
p

(t−τ)s dτ, t ≥ τ,
0, t < τ.

(2.2)

Clearly
σ (t− τ) ≥ 1, for all t, τ ∈ I with t ≥ τ,

and ‖.‖σ is a norm. Since 1 ≤ σ (t) ≤ σ∗, then the two norms ‖.‖W s,p
RL (I) and ‖.‖σ

are equivalent. So, from Lemma 2.8, (Eσ, ‖.‖σ) is a Banach space.

Definition 2.10. The solutions of the system (1.1)-(1.2) are functions u ∈ Eσ (I)
and u satisfies the system (1.1)-(1.2).

Lemma 2.11 ([17]). Let n− 1 ≤ q < n and p > 0. The Laplace transform of the
Riemann-Liouville fractional derivative Dqu (t) and the power function t 7→ tp are
given respectively by

(i) L {Dqu (t) , z} = zqU (z)−
n−1∑
i=0

zi
[
Dq−i−1u (t)

]
t=0

,

(ii) L {tp, z} = Γ (p+ 1) z−(p+1),
where U (z) = L {u (t) , z} =

∫∞
0
e−ztu (t) dt denotes the Laplace transform of

u (t).

Lemma 2.12. System (1.1)-(1.2) is equivalent to the following integro-differential
equation

u (t) =

∫ T

0

G (t, τ) g (τ, u (τ) , Dsu (τ)) dτ, t ∈ I,

where G (t, τ) denotes the Green’s function defined by

G (t, τ) =


1

Γ(q)

[
(t− τ)

q−1 −
(
t
T

)q−n+1
(T − τ)

q−1
]
, 0 ≤ τ ≤ t ≤ T,

1
Γ(q)

[
−
(
t
T

)q−n+1
(T − τ)

q−1
]
, 0 ≤ t ≤ τ ≤ T.

(2.3)

Proof. We take
[
Dq−iu (t)

]
t=0

= bi. Applying Laplace transform on both side of
(1.1) and using Lemma 2.11, we get

zqU (z)−
n−1∑
i=0

zi
[
Dq−i−1u (t)

]
t=0

= G (z) ,

where U (z) and G (z) denote the Laplace transformers of u (t) and g (t) respec-
tively.
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In other words, we can write

U (z) = z−qG (z) +

n−1∑
i=0

bi+1z
i−q.

Inverse Laplace transform give us

u (t) =
1

Γ (q)

∫ t

0

(t− τ)
q−1

g (τ, u (τ) , Dsu (τ)) dτ +

n−1∑
i=0

bi+1

Γ (q − i)
tq−i−1

=
1

Γ (q)

∫ t

0

(t− τ)
q−1

g (τ, u (τ) , Dsu (τ)) dτ +

n∑
i=1

bi
Γ (q − i+ 1)

tq−i,

we have bi = 0, i = 1, . . . , n for i 6= n− 1 then

u (t) =
1

Γ (q)

∫ t

0

(t− τ)
q−1

g (τ, u (τ) , Dsu (τ)) dτ +
bn−1

Γ (q − n+ 2)
tq−n+1. (2.4)

By condition u (T ) = 0 we obtain

bn−1

Γ (q − n+ 2)
=
−Tn−q−1

Γ (q)

∫ T

0

(T − τ)
q−1

g (τ, u (τ) , Dsu (τ)) dτ,

substuting in (2.4), we get

u (t) =

∫ T

0

G (t, τ) g (τ, u (τ) , Dsu (τ)) dτ,

where G (., .) is the Green’s kernel defined by (2.3). The proof is complete.

Define the operator A : Eσ (I)→ Eσ (I) by

Au (t) =

∫ T

0

G (t, τ) g (τ, u (τ) , Dsu (τ)) dτ. (2.5)

We give in the following, Schauder’s fixed point theorem which is the main ingre-
dient in the proof of our existence result.

Theorem 2.13 (Schauder’s fixed point theorem [20]). Let M be a closed convex
subset of a Banach space E. If A : M → M is continuous and the set A(M) is
compact, then A has a fixed point in M .

Obviously, all fixed points of A is a solution of system (1.1)-(1.2).
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3. Main results

Theorem 3.1. Assume the following hypothesis:

(H1) g : I × R2 → R satisfies the Carathéodory’s condition.

(H2) There exist a real constant c > 0 and a function b : I → R+ with b ∈
L1,σ (I) such that

|g (τ, u, v)| ≤ b (τ) + c (|u|p + |v|p) ,

for any τ ∈ I and any u, v ∈ R.

(H3) There exists a real number R > 0 satisfies

‖G∗‖∞

[
Tσ∗ +

σ∗T
1+p(1−s)

(Γ (2− s))p
+
‖K ′‖pp,σ

(Γ (1− s))p

] 1
p [
‖b‖1,σ + cRp

]
≤ R,

where G∗ (t) = supτ∈I |G (t, τ)|.
Then the system (1.1)-(1.2) has at least one solution in Eσ.

Proof. Consider the operator A given by (2.5) and we define the set

BR = {u ∈ Eσ, ‖u‖σ ≤ R} ,

where R is the same constant defined in (H3). It is clear that BR is convex, closed
and bounded subset of Eσ.

Firstly, we show that ABR ⊂ BR. Let u ∈ BR, t ∈ I, then by using (H2) and
(H3), we get

σ (t)
1
p |Au (t)|

≤ σ (t)
1
p

∫ T

0

|G (t, τ)| |g (τ, u (τ) , Dsu (τ))| dτ

≤ σ (t)
1
p

∫ T

0

|G (t, τ)|
σ (τ)

[σ (τ) (b (τ) + c (|u (τ)|p + |Dsu (τ)|p))] dτ

≤ σ
1
p
∗ G∗ (t)

[
‖b‖1,σ + c

(
‖u‖pp,σ +

∥∥∥(I1−su
)′∥∥∥p

p,σ

)]
≤ σ

1
p
∗ ‖G∗‖∞

[
‖b‖1,σ + c ‖u‖pσ

]
,

then

‖Au‖pp,σ ≤ Tσ∗ ‖G∗‖
p
∞

[
‖b‖1,σ + cRp

]p
. (3.1)

Similarly, we obtain the following estimates

∥∥I1−sAu
∥∥p
p,σ
≤ σ∗T

1+p(1−s)

(Γ (2− s))p
‖G∗‖p∞

[
‖b‖1,σ + cRp

]p
, (3.2)
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and

σ (t)
1
p

∣∣∣(I1−sAu
)′

(t)
∣∣∣

=
σ (t)

1
p

Γ (1− s)

∣∣∣∣ ddt
∫ t

0

1

(t− τ)
sAu (τ) dτ

∣∣∣∣
≤ σ (t)

1
p

Γ (1− s)

∣∣∣∣ ddt
∫ t

0

1

(t− τ)
s |Au (τ)| dτ

∣∣∣∣
≤ σ (t)

1
p

Γ (1− s)
‖G∗‖∞

[
‖b‖1,σ + c ‖u‖pσ

] ∣∣∣∣∣ ddt
∫ t

0

(σ (t− τ))
1
p

(t− τ)
s dτ

∣∣∣∣∣ ,
thus,

∥∥∥(I1−sAu
)′∥∥∥p

p,σ
≤
‖K ′‖pp,σ

(Γ (1− s))p
‖G∗‖p∞

[
‖b‖1,σ + cRp

]p
. (3.3)

We combine (3.1)-(3.3), it yields

‖Au‖σ ≤ ‖G∗‖∞

[
Tσ∗ +

σ∗T
1+p(1−s)

(Γ (2− s))p
+
‖K ′‖pp,σ

(Γ (1− s))p

] 1
p [
‖b‖1,σ + cRp

]
≤ R.

(3.4)
Hence ABR ⊂ BR.

Secondly, We prove that A is continuous operator. Let un, u in Eσ such that
‖un − u‖σ → 0, using (H1)− (H2), then for all t ∈ I we have

σ (t)
1
p |Aun (t)−Au (t)|

≤ σ (t)
1
p

∫ T

0

|G (t, τ)|
σ (τ)

[σ (τ) |g (τ, un (τ) , Dsun (τ))− g (τ, u (τ) , Dsu (τ))|] dτ

≤ σ
1
p
∗ G∗ (t) ‖Ngun −Ngu‖1,σ

≤ σ
1
p
∗ ‖G∗‖∞ ‖Ngun −Ngu‖1,σ ,

applying Lp-norm, one gets

‖Aun −Au‖p,σ ≤ (Tσ∗)
1
p ‖G∗‖∞ ‖Ngun −Ngu‖1,σ . (3.5)



Fractional differential equations 43

Also

σ (t)
1
p
∣∣I1−sAun (t)− I1−sAu (t)

∣∣
≤ σ (t)

1
p

Γ (1− s)

∫ t

0

(t− τ)
−s
∫ T

0

|G (τ, θ)|
σ (θ)

(σ (θ) |g (θ, un (θ) , Dsun (θ))

−g (θ, u (θ) , Dsu (θ))|) dθdτ

≤ σ (t)
1
p

Γ (1− s)

∫ t

0

(t− τ)
−s
G∗ (τ) ‖Ngun −Ngu‖1,σ dτ

≤ σ
1
p
∗ T

1−s

Γ (2− s)
‖G∗‖∞ ‖Ngun −Ngu‖1,σ ,

then

∥∥I1−sAun − I1−sAu
∥∥
p,σ
≤ σ

1
p
∗ T

1
p+1−s

Γ (2− s)
‖G∗‖∞ ‖Ngun −Ngu‖1,σ . (3.6)

Moreover

σ (t)
1
p

∣∣∣(I1−sAun
)′

(t)−
(
I1−sAu

)′
(t)
∣∣∣

≤ σ (t)
1
p

Γ (1− s)

∣∣∣∣∣ ddt
∫ t

0

(t− τ)
−s
∫ T

0

|G (τ, θ)|
σ (θ)

σ (θ) |[g (θ, un (θ) , Dsun (θ))

− g (θ, u (θ) , Dsu (θ))]| dθdτ |

≤
‖G∗‖∞

Γ (1− s)

[
σ

1
p (t)

∣∣∣∣∣ ddt
∫ t

0

(σ (t− τ))
1
p

(t− τ)
s dτ

∣∣∣∣∣
]
‖Ngun −Ngu‖1,σ ,

so ∥∥∥(I1−sAun
)′ − (I1−sAu

)′∥∥∥
p,σ
≤
‖K ′‖p,σ ‖G∗‖∞

Γ (1− s)
‖Ngun −Ngu‖1,σ . (3.7)

Combining (3.5)-(3.7), one finds

‖Aun −Au‖σ

≤ ‖G∗‖∞

[
Tσ∗ +

σ∗T
1+p(1−s)

(Γ (2− s))p
+
‖K ′‖pp,σ

(Γ (1− s))p

] 1
p

‖Ngun −Ngu‖1,σ . (3.8)

Since the operator Ng is continuous on L1,σ, then then the right side term of
(3.8) tends to zero when n tends to infinity. This show that the operator A is
continuous.

Thirdly, we prove that the set ABR = {Au : u ∈ BR} is relatively compact in
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Eσ using Lemma 2.6. For any u ∈ BR and any δ ≥ 0, we have

σ (t)
1
p |Au (t+ δ)−Au (t)|

≤ σ (t)
1
p

∫ T

0

|G (t+ δ, τ)−G (t, τ)| |g (τ, u (τ) , Dsu (τ))| dτ

≤ σ (t)
1
p

∫ T

0

|G (t+ δ, τ)−G (t, τ)|
σ (τ)

[σ (τ) (b (τ) + c (|u (τ)|p + |Dsu (τ)|p))] dτ

≤ σ (t)
1
p sup
τ∈I
|G (t+ δ, τ)−G (t, τ)|

[
‖b‖1,σ + c

(
‖up‖1,σ + ‖(Dsu)

p‖1,σ
)]

= σ
1
p
∗ sup
t∈I

[
sup
τ∈I
|G (t+ δ, τ)−G (t, τ)|

] [
‖b‖1,σ + c

(
‖u‖pp,σ +

∥∥∥(I1−su
)′∥∥∥p

p,σ

)]
≤ σ

1
p
∗ sup
t∈I

[
sup
τ∈I
|G (t+ δ, τ)−G (t, τ)|

] [
‖b‖1,σ + c ‖u‖pσ

]
,

therefore

‖Aun (.+ δ)−Au (.)‖p,σ
(Tσ∗)

1
p

[
‖b‖1,σ + cRp

] ≤ sup
t∈I

[
sup
τ∈I
|G (t+ δ, τ)−G (t, τ)|

]
. (3.9)

Similarly

σ (t)
1
p
∣∣I1−sAu (t+ δ)− I1−sAu (t)

∣∣
≤ σ (t)

1
p

Γ (1− s)

∫ t

0

(t− τ)
−s
∫ T

0

|G (τ + δ, θ)−G (τ, θ)| |g (θ, u (θ) , Dsu (θ))| dθdτ

≤ σ (t)
1
p

Γ (1− s)

∫ t

0

(t− τ)
−s
∫ T

0

|G (τ + δ, θ)−G (τ, θ)|
σ (θ)

σ (θ) [b (θ)

+c (|u (θ)|p + |Dsu (θ)|p)] dθdτ

≤ σ (t)
1
p

Γ (1− s)

∫ t

0

(t− τ)
−s

sup
θ∈I
|G (τ + δ, θ)−G (τ, θ)|

[
‖b‖1,σ

+c
(
‖up‖1,σ + ‖(Dsu)

p‖1,σ
)]
dτ

≤ T 1−sσ
1
p
∗

Γ (2− s)
sup
τ∈I

[
sup
θ∈I
|G (τ + δ, θ)−G (τ, θ)|

] [
‖b‖1,σ + c ‖u‖pσ

]
,

it yields

Γ (2− s)
∥∥(I1−sAun

)
(.+ δ)−

(
I1−sAu

)
(.)
∥∥
p,σ

T 1−s (Tσ∗)
1
p

[
‖b‖1,σ + cRp

]
≤ sup

τ∈I

[
sup
θ∈I
|G (τ + δ, θ)−G (τ, θ)|

]
. (3.10)
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Using same method, one finds

σ (t)
1
p

∣∣∣(I1−sAu
)′

(t+ δ)−
(
I1−sAu

)′
(t)
∣∣∣

≤ σ (t)
1
p

Γ (1− s)

∣∣∣∣∣ ddt
∫ t

0

(t− τ)
−s
∫ T

0

|G (τ + δ, θ)−G (τ, θ)| |g (θ, u (θ) , Dsu (θ))| dθdτ

∣∣∣∣∣
≤ σ (t)

1
p

Γ (1− s)

∣∣∣∣∣ ddt
∫ t

0

(t− τ)
−s
∫ T

0

|G (τ + δ, θ)−G (τ, θ)|
σ (θ)

× [σ (θ) (b (θ) + c (|u (θ)|p + |Dsu (θ)|p))] dθdτ |

≤ σ (t)
1
p

Γ (1− s)

∣∣∣∣ ddt
∫ t

0

(t− τ)
−s

sup
τ∈I
|G (t+ δ, τ)−G (t, τ)| dτ

∣∣∣∣
×
[
‖b‖1,σ + c

(
‖up‖1,σ + ‖(Dsu)

p‖1,σ
)]

≤

[
σ (t)

1
p

∣∣∣∣ ddt ∫ t0 (σ(t−τ))
1
p

(t−τ)s dτ

∣∣∣∣]
Γ (1− s)

sup
t∈I

[
sup
τ∈I
|G (t+ δ, τ)−G (t, τ)|

]
×
[
‖b‖1,σ + c

(
‖u‖pp,σ +

∥∥∥(I1−su
)′∥∥∥p

p,σ

)]
,

then

Γ (1− s)
∥∥∥(I1−sAu

)′
(.+ δ)−

(
I1−sAu

)′
(.)
∥∥∥
p,σ

‖K ′‖p,σ
[
‖b‖1,σ + cRp

]
≤ sup

t∈I

[
sup
τ∈I
|G (t+ δ, τ)−G (t, τ)|

]
. (3.11)

From the continuity of the function G (., .) on I2, we conclude that the second
members of (3.9)-(3.11) tend to zero when δ tends to zero, these prove the condition
(i) of Lemma 2.6.

It remains to prove condition (ii) of Lemma 2.6, before this end, for simplifi-
cation we set the notations

c1 = σ
1
p
∗ ‖G∗‖∞

[
‖b‖1,σ + c ‖u‖pσ

]
,

c2 =
σ

1
p
∗ T

1−s

Γ (2− s)
‖G∗‖∞

[
‖b‖1,σ + c ‖u‖pσ

]
,

and

Φ (t) =
‖G∗‖∞

Γ (1− s)

[
σ

1
p (t) |K ′ (t)|

] [
‖b‖1,σ + c ‖u‖pσ

]
.

Obviously, from conditions (2.1), we deduce that Φ belongs to Lp,σ (I). On the
other hand, for all v ∈ ABR, there exists u ∈ BR such that v = Au, taking
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into account assumption (H2) and some calculation we get the following three
estimates: for t ∈ I,

σ (t)
1
p |v (t)| ≤ c1,

σ (t)
1
p
∣∣I1−sv (t)

∣∣ ≤ c2,
and

σ (t)
1
p

∣∣∣(I1−sv
)′

(t)
∣∣∣ ≤ Φ (t) .

Then, for any v ∈ ABR and t ∈ T , we have

lim
ε→0

sup
v∈ABR

[∫ T

T−ε
σ (t)

1
p |v (t)|p dt+

∫ T

T−ε
σ (t)

1
p
∣∣I1−sv (t)

∣∣p dt
+

∫ T

T−ε
σ (t)

1
p
∣∣I1−sv (t)

∣∣p dt]

≤ lim
ε→0

[∫ T

T−ε
cp1dt+

∫ T

T−ε
cp2dt+

∫ T

T−ε
|Φ (t)|p dt

]
= 0.

This proves the condition (ii) of Lemma 2.6.
Furthermore, from (3.4), we have ‖Au‖σ ≤ R for all u ∈ BR, this proves

that ABR is uniformly bounded. Consequently, ABR is relatively compact in Eσ.
Finally, using Schauder’s fixed point theorem, we conclude that A has at least one
fixed point in BR and the proof of Theorem 3.1 is complete.

4. Example

Consider the following boundary value problem of fractional differential equations
in Eσ

Dqu (t) =
t
−1
2 et+arctan|(tu(t))2−(tDsu(t))2|

(1+t)3et+|u(t)|
, t ∈ I = [0, 1] ,

D(q−i)u|t=0 = 0, i = 1, 2, 3, 5, u (1) = 0,

(4.1)

q = 9
2 , s = 1

6 , g (t, u, v) =
t
−1
2 et+arctan((tu)2−(tv)2)

2

(1+t)3et+|u|
, then

|g (t, u, v)| ≤
t
−1
2 et +

(
u4 + v4

)
(1 + t)

3
et+|u(t)|

≤ t
−1
2 et

(1 + t)
3
et

+

(
u4 + v4

)
(1 + t)

3
et

≤ 1

t
1
2 (1 + t)

3 +

(
u4 + v4

)
(1 + t)

3
et
≤ b (t) + c

(
u4 + v4

)
,

where b (t) = 1

t
1
2 (1+t)3

and c = 1. p = 4, σ (t) = (1 + t)
4
, it is clear that 1 ≤

σ (t− τ) for t ≥ τ, and

K (t) =

∫ t

0

(σ (t− τ))
1
p

(t− τ)
s dτ =

∫ t

0

1 + z

z
1
6

dz =
6t

5
6 (5t+ 11)

55
,
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and
K ′ (t) = t

5
6 + t−

1
6 ,

some computations give us

‖K ′‖4,σ ' 3.187991075720807, ‖b‖1,σ =
8

3
,

then condition (H3) becomes

R4 − 4.672639065946051R+ 2.666666666666665 ≤ 0,

so R ∈ [0.598080985027521, 1.405251623483919].
Using theorem 3.1, we deduce that the nonlinear functional boundary value

problem (4.1) has at least one solution in BR ⊂ Eσ for any

R ∈ [0.598080985027521, 1.405251623483919] .
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