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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

On the asymptotic behavior and approximate solution of a
varicella zoster model using the modified differential

transform method

Oluwatayo M. Ogunmiloro, Michael O. Oke and Precious O. Ojakovo

Abstract. This article proposes a mathematical model describing the evolution and transmis-

sion of Varicella Zoster Virus (VZV) disease among classes of human individuals. The model

is formulated to accommodate parameters and variables describing direct and indirect forms of

transmission, re-activation of infectious shingles as well as the treatment and vaccination of

susceptible births and immigrants. The model is analyzed and found to be positive, bounded and

well posed. The controlled basic reproduction number Rvzv , obtained using the next generation

matrix operator reveals that vaccination is effective as a control in creating a level herd immu-

nity. Linearizing the model around the VZV - free equilibrium shows that the model is locally

and globally asymptotically stable when Rvzv is less than unity. The approximate solution of

the model system equations is obtained using the modified differential transform which involves

the Differential Tranform Method (DTM) and the Laplace - Pade posttreatment technique (LP).

The hybrid LPDTM technique is employed to enlarge the domain of convergence of the approx-

imate solutions of the model. The model solutions using LPDTM is compared with the Fehlberg

fourth order Runge - Kutta (RK45) via the Maple computational software to show the efficiency

and convergence of the two methods through simulations. Further simulations carried out on

the model reveal that timely vaccination and treatment are effective strategies in curtailing the

spread of VZV infection in human and environmental host population.

1. Introduction

Infectious diseases pose a serious challenge to human existence, but the develop-
ment of safe vaccines, drugs and medical equipments has led to the reduction of the
prevalence of some of the infectious diseases. Chickenpox, also known as Varicella
Zoster Virus (VZV), is exclusively a human virus that belongs to the αo − herpes
virus family. VZV is present worldwide and it is highly infectious where primary
infection leads to acute varicella or chicken pox, usually from exposure through
direct contact with skin or lesions, or indirect contact through airborne spread
from respiratory droplets or infected environmental sources like towels, toiletries,
etc [6]. After initial infection, VZV establishes lifelong latency in cranial nerves
and can reactivate later as infectious Herpes Zoster (HZ) or shingles. Varicella
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vaccination is recommended for outbreak control, while a pregnant woman who
has symptoms of varicella also needs to be vaccinated to prevent Foetal Varicella
Syndrome (FVS), which causes birth defect such as congenital varicella syndrome.
This can also cause shingles in the baby during the first 1− 2 years of life. Symp-
toms of VZV includes onset of slight fever, tiredness and weakness, followed by an
itching blister-like rash which resolves within 7−10 days [20]. In Africa, mortality
is low and morbidity is high, this has placed an endemic burden on the African so-
ciety. However, this disease occurs mostly in children, pregnant women and adults.
Mathematical models are good predictive tools in analyzing the spread and con-
trol of epidemics. Several works have been done in using deterministic models to
analyze the transmission of VZV. Edward, Kuznetsov and Mirau [1], examined
the modeling and stability analysis for VZV with vaccination. They investigated
the local and global asymptotic behavior of the model and bifurcation analysis
to prove that the basic reproduction number of the model is supercritical, while
sensitivity analysis of the reproduction number is performed to suggest control
strategies to policy health makers. Garnett and Greenfal [2], formulated a mathe-
matical model to describe the epidemiology of VZV infections. A steady state age
distribution of Zoster cases predicted by the model are compared to the observed
distribution using data involving VZV transmission. The results obtained showed
that the likelihood of reactivation increases with age. Corberian - Vallet et al. [3],
used a discrete time Bayesian stochastic compartmental model approach to study
the transmission of VZV in Valencia, Spain. The Bayesian analysis allows the
computation of the posterior distribution of the model parameter and posterior
predictive distribution of VZV incidence, which enables point forecast and predic-
tion interval. Gommel, Jaros and Luu [7], formulated and discussed the dynamics
of VZV with United States as a case study. Korostil, Wood and Regan [4], in-
vestigated the impact of periodicity of VZV in the presence of immune boosting
and chemical reinfection with VZV. Furthermore, Tang et al. [5], investigated the
control strategies of VZV in China using mathematical modeling approach where
a school based vaccination intervention scenario is compared with a baseline (no
intervention) scenario. Moreover, a mathematical approach to characterize the
transmission dynamics of the VZV in United States, these results reveal that two
doses of vaccination and 90 percent coverage of vaccination allow the zoster virus
to decrease for 27 years in the host community.

Several semi-analytical methods like DTM, Homotopy Perturbation Method
(HPM), Homotopy Analysis Method (HAM), Variational Iteration Method (VIM)
etc., are powerful techniques employed in approximating nonlinear and linear prob-
lems in engineering and physics. These analytical methods have been used to solve
various kind of models, see [8, 9] and [13 - 15, 17], while the use of Lyapunov tech-
niques to prove asymptotic stability of models can also be seen in [10 - 12], which
proved useful to this work. The semi-analytical method of interest in this work is
the DTM. This method is efficient with less computational effort in solving linear
and nonlinear differential equations, which does not depend on perturbation pa-
rameter like other analytical methods. One of the demerits of DTM is that the
series solution does not portray the actual behavior of the problem but results to
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a good approximation to the actual solution in a very small domain. Due to this
drawback, a hybrid modified DTM is considered, for improving the DTMs trun-
cated series solutions convergence rate by combining the DTM, Laplace transform
and Pade approximant method. The resulting series solutions obtained by DTM,
even if they have large number of terms, may converge in a restricted domain.
Therefore, the domain of convergence of the truncated power series by DTM ex-
pands by the Laplace - Pade. The Laplace transform is applied to the convergent
series obtained by DTM and later form its pade approximant, where the trans-
formed series converts to a meromorphic function. Previous works considered only
the impact of vaccination as well as fitting prevalence data on VZV transmission
to models describing VZV transmission in human host population to show that
vaccine is efficacious in boosting immunity against the disease. Articles, where the
modified DTM is used can be seen in [16, 18, 19, 21].

In view of the cited works, we consider extensively a theoretical model based
on ordinary differential equations subdivided into seven compartments of human
sub-populations and environmental sources. The model incorporates the direct hu-
man to human and indirect human to environment forms of transmission using the
mass action and saturated nonlinear incidence function, while variables describing
the impact of vaccination on susceptible births and immigrants, treatment of VZV
infected individuals as well as the reactivation of infectious shingles after recovery
for some recovered human individuals are incorporated and studied. Furthermore,
the LPDTM method is employed to obtain the approximate solution of the model
in comparison with RK45 via Maple computational software to show the efficiency
and convergence of the two methods with low error approximation. It is to the
author’s knowledge that this work has not been considered. This work is parti-
tioned into sections. Section 2 describes the model derivation and basic properties
of the model, while the computation of the VZV - free equilibrium solution and
Rvzv are being carried out. Section 3 involve the analysis of the local and global
asymptotic behavior of the VZV - free equilibrium solutions, while Section 4 in-
volves using the modified DTM to obtain the approximate solutions of the model
system equations. Section 5 discusses the numerical simulations using LPDTM in
comparison with RK45 via.

2. Mathematical Model Derivation

In this section, a mathematical model is derived describing the transmission of
VZV in the total human and environmental host population. The total human
host population N(t) is sub-divided into population of susceptible individuals
Sh(t), Vaccinated individuals Vh(t); Exposed individuals Eh(t); Infected individ-
uals Ih(t); Treated individuals Th(t) and Recovered individuals Rh(t), such that
N(t) = Sh(t)+Vh(t)+Eh(t)+Ih(t)+Th(t)+Rh(t). Also, the total environmental
host population is considered and denoted by Ev(t), where t > 0. The population
of susceptible human individuals is generated by the rate at which newborns and
immigrants who are recruited and vaccinated, denoted by φHN and ρλ respec-
tively. Also the terms (1−φ)HN and (1−ρ)λ denote the fractions of unvaccinated
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newborns and immigrants respectively. The population of susceptible humans is
further reduced by the quantities β1c1ShIh

N and β2c2ShEv

A+Ev
which follows a mass

action incidence and nonlinear incidence function respectively, where β1 and β2
denote the rate at which susceptible individuals become infectious by coming di-
rectly or indirectly in contact with infected individuals and infected environmental
sources respectively. Also c1 and c2 denote the per capita contact rate associated
to direct and indirect transmission, while µ denote the natural mortality rate asso-
ciated to all classes of human population, A denote the concentration of varicella
zoster virus in environmental sources. The exposed population is increased by the
quantities β1c1ShIh

N and β2c2ShEv

A+Ev
and reduced by quantity (µ + δ)Eh, where δ is

the progression rate from exposed to infected population. In the infected popula-
tion, η1 is denotes the treatment rate while the rate of recovery through treatment
is given by η2. Individuals who have recovered, receive a life long immunity de-
noted by the quantity KoR, and the reactivation of the virus in some fractions
of recovered human individuals, known as shingles is denoted by (1 − α)KoR,
where αKoR is the rate at which some fractions of recovered individuals develop
infectious shingles. Also, the virus increases in the environmental sources through
human infectious contribution to the environment denoted by σ, and there is a
natural death of the virus denoted by µv. Furthermore, the rate at which vacci-
nation losses its potency overtime, is denoted by τ . The assumptions guiding the
model formulation are listed below.

• Birth and death rates are constant.

• The population is homogeneously mixed.

• The vaccinations of immigrants and newborns are considered.

• There is natural death of the virus in the environment.

• Infectious human individuals contribute to the infection of the environment.

The model derived after the assumptions and descriptions of variables is given by

dSh

dt = (1− φ)HN + (1− ρ)λ− β1c1ShIh
N − β2c2ShEv

A+Ev
− µSh + τVh,

dVh

dt = ρλ+ φHN − (µ+ τ)Vh,

dEh

dt = β1c1ShIh
N + β2c2ShEv

A+Ev
− (µ+ δ)Eh,

dIh
dt = δEh − (η1 + µ)Ih + αKoRh,

dTh

dt = η1Ih − (η2 + µ)Th,

dRh

dt = η2Th + (1− α)KoRh − µRh,
dEv

dt = σIh − µvEv.

(2.1)

Subject to the initial conditions Sh(0) ≥ 0, Vh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0,
Th(0) ≥ 0, Rh(0) ≥ 0, Ev(0) ≥ 0.



On the asymptotic behavior and approximate solution of a varicella zoster 41

Figure 1. Block diagram describing the VZV infectious interactions among compartments
of human individuals

Table 1. Parameter Descriptions

Descriptions Parameters Values Sources
Vaccinated newborn rate φ 0.0052/per day [1]

Birth rate H 0.0352/per day [1]
Immigrants influx rate λ 0.00356/per day [1]

Vaccinated immigrants rate ρ 0.0121/per day [4]
Direct contact rate β1 0.0325/per day [4]

Indirect contact rate β2 0.0241/per day [4]
Per capita direct contact rate c1 0.11/per day [4]

Per capita indirect contact rate c2 0.019/per day [4]
Natural mortality rate µ 0.0096/per day [1]

Progression rate η1 0.52/per day [2]
Concentration of virus rate A 0.05/ per day [6]

Lifelong immunity rate Ko 0.46/per day [4]
Progression rate η2 0.14/ per day [4]

Natural death rate of the virus µv 0.014/per day [6]
Vaccination waning rate τ 0.00033/per day [2]

Human infectious contribution rate σ 0.009/per day [4]
Development of shingles rate α 0.00002/per day [4]

3. Basic Analysis of the Model

3.1. Positivity and Boundedness of the Model Solutions

For the model system (2.1) to be epidemiologically reasonable in the sense of VZV
transmission, it is pertinent to show that all the solutions of the model system
(2.1) and its non-negative initial conditions remain non-negative at time t > 0.
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Theorem 3.1. Let the initial conditions Sh(0) ≥ 0, Vh(0) ≥ 0, Eh(0) ≥ 0,
Ih(0) ≥ 0, Th(0) ≥ 0, Rh(0) ≥ 0, Ev(0) ≥ 0.

Then, the solutions (Sh, Vh, Eh, Ih, Th, Rh, Ev) of model (2.1) are non-negative
for t > 0, with N(t) = Sh(t) + Vh(t) + Eh(t) + Ih(t) + Th(t) +Rh(t) + Ev(t) and

Ω1 =

{
(Sh, Vh, Eh, Ih, Th, Rh) ∈ R7

+ : Sh, Vh, Eh, Ih, Th, Rh ≤
HN + λ

µ

}
.

Proof. Let

t0 = sup

{
t > 0

∣∣∣∣ Sh(t) > 0, Vh(t) > 0, Eh(t) > 0, Ih(t) > 0,

Th(t) > 0, Rh(t) > 0, Ev(t) > 0

}
.

Since Sh(0) > 0, Vh(0) > 0, Eh(0) > 0, Ih(0) > 0, Th(0) > 0, Rh(0) > 0, Ev(0) > 0
then t0 > 0, if t0 <∞, then Sh, Vh, Eh, Ih, Th, Rh, Ev is equal to zero at t0. From
the first equation of model system (1), given by

dSh
dt

= (1− φ)HN + (1− ρ)λ− β1c1ShIh
N

− β2c2ShEv
A+ Ev

− µSh + τVh, (3.1)

then,
d
dtSh(t)exp

{[
β1c1ShIh

N + β2c2ShEv

A+Ev
− µ

]}
= (1− φ)HN + (1− ρ)λ

+τVh exp
[
β1c1Ih
N − β2c2Ev

A+Ev
− µ

]
t.

(3.2)

Hence,Sh(t0)exp
[
β1c1Ih
N + β2c2Ev

A+Ev
− µ

]
− Sh(0) =∫ t0

0
(1− φ)HN + (1− ρ)λ+ τVh exp

[
−
(
β1c1Ih
N + β2c2Ev

A+Ev
− µ

)
P
]
dP ≥ 0.

(3.3)
The same procedure in (3.1) - (3.3) can be shown for Sh > 0, Vh > 0, Eh > 0, Ih >
0, Th > 0, Rh > 0, Ev > 0 for time t > 0, which implies that the solutions of (2.1)
are positive.
In addition, adding the total human host population in model system equations
in (2.1) in the absence of VZV infections yields

dN(t)

dt
= HN − µN ≤ HN − µN. (3.4)

Simplifying (3.4) yields

0 ≤ lim
t→∞

infN(t) ≤ lim
t→∞

supN(t) ≤ HN + λ

µ
. (3.5)
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The invariant region of (2.1) is the feasible domain where the solution of (2.1) is
contained, given by,

Ω1 =

{
(Sh, Vh, Eh, Ih, Th, Rh) ∈ R7

+ : Sh, Vh, Eh, Ih, Th, Rh ≤
HN + λ

µ

}
. (3.6)

Hence, (3.6) is well-posed and reasonable in the sense of VZV dynamics, so that
model (2.1) solution starts and remain in Ω1.

3.2. Computation of VZV-Free Equilibrium Solution and Basic Repro-
duction Number Rvzv

The equilibrium solutions of model system (2.1) is obtained by fixing the right
hand side of model system (2.1) to zero. The time independent solutions in the
absence of VZV infection is given by,

W 0 = (Soh, V
o
h , E

o
h, I

o
h, T

o
h , R

o
h, E

o
v)

=
(τ(ρλ+ φHN)− (1− φ)HN − (1− ρ)λ

µ(µ+ τ)
,
ρλ+ φHN

(µ+ τ)
, 0, 0, 0, 0, 0

)
.

(3.7)

The basic reproduction number threshold Rvzv of model system (2.1) is the rate of
average secondary cases of VZV generated when a primary VZV infected individual
is introduced into a large susceptible human population during his or her infection
period. The next generation matrix approach [1, 7], is used to obtain the value of
Rvzv. Therefore, the Rvzv of the model system (2.1) is given by,

Rvzv =
β1β2c1((1−φ)HN+(1−ρ)λ)η1αKo

Nµ(αK(µ(µ+η1+η2))−Ko(µ2+µ(η1+η2)+η1+η2)+µ3+µ2(η1+η2)+µη1η2)
(3.8)

The Rvzv obtained in (3.8) is called the vaccination controlled basic reproduc-
tion number, where the susceptible births and influx of immigrants are vaccinated,
such that φ > 1− 1

Rvzv
and ρ > 1− 1

Rvzv
leads to a herd immunity level. If Rvzv < 1,

VZV is minimized in the host community and if Rvzv > 1, VZV infections contin-
ues in the population and becomes endemic.
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(a) (b)

Figure 2. The impact of the variation of vaccination parameters on the population of
vaccinated newborns and immigrants.

3.3. Local and Global Asymptotic Behavior of VZV-free Equilibrium
Solution of the Model

Theorem 3.2. The VZV-free equilibrium (3.7) of model system (2.1) solution is
locally asymptotically stable when Rvzv < 1

.

Proof. Linearizing the model around the VZV - free equilibrium solutions in (3.7),
yields the Jacobian given by

Jc =



−µ τ 0 −β1c1Sh

N 0 0 0
0 −(µ+ τ) 0 0 0 0 0

0 0 −(µ+ δ) β1c1Sh

N 0 0 0
0 0 δ −(η1 + µ) 0 0 0
0 0 0 η1 −(η2 + µ) 0 0
0 0 0 0 η2 −µ+ (1− α)Ko 0
0 0 0 σ 0 0 −µv


(3.9)

It is observed that the real part of (3.9) is negative. The eigenvalues of (3.9) are
given by −µ,−µv,−(µ+ τ),−(µ+ δ) which reduces (3.9) to another 3× 3 matrix
given by −q1 0 0

η1 −q2 0
0 η2 −q3

 , (3.10)

where q1 = −(η1 +µ), q2 = −(η2 +µ) and q3 = −µ+(1−α)Ko. The characteristic
equations of (3.10) yields

λ3 +A1λ
2 +A2λ+A3, (3.11)
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where 
A1 = (q1 + q2 − q3),

A2 = (q2q3 + q1q3 − q1q3),

A3 = q3q2q1(1−Rvzv).
(3.12)

By the use of the Routh - Hurwitz conditions [10 - 12], Ai > 0 for i = 1, 2, 3 and
A1A2 − A3 > 0 could be verified easily. Also, (1− Rvzv) > 0 ⇔ Rvzv < 1. Thus,
the VZV - free equilibrium (3.7) of model system (2.1) is locally asymptotically
stable.

Theorem 3.3. The VZV - free equilibrium (3.7) of model system (2.1) is globally
asymptotically stable when Rvzv < 1.

Proof. Let dX1

dt = F1(X1, Z1), dZ1

dt = G1(X1, Z1), where X1 = (Sh, Vh, Th, Rh)
denotes the population without VZV infections, i.e., X ∈ R+4 and Z1 =(Eh, Ih, Ev)
denote the compartment with VZV infections. The VZV - free equilibrium solution
is denoted by W 0 = (X∗1 , Z

∗
1 ) = (X∗1 , 0), where

X∗1 =
( (1− φ)HN + (1− ρ)λ

µ
,
ρλ+ φHN

(µ+ τ)

)
,

then the following two conditions are established.

• X∗1 = F1(X1, 0), X∗1 is globally asymptotically stable

• G1(X1, Z1) = LZ1 − G1(X1, Z1) ≥ 0 for all (X1, Z1) ∈ Ω1, which is the
domain of relevance of model system (2.1).

Therefore,

F1(X1, 0) =

 (1− φ)HN + (1− ρ)λ− µSh + τVh
ρλ+ φHN − (µ+ τ)Vh − (η2 + µ)Th

η2Th + (1− α)KoRh − µRh

 (3.13)

and

G1(X1, Z1) =

 β1c1ShIh
N + β2c2ShEv

(A+Ev)
− (µ+ δ)Eh

δEh − (η1 + µ)Ih + αKoRh
σIh − µvEv

 . (3.14)

In the absence VZV infections, G1(X1, 0) = 0. Also, let

L =



−µ τ 0 −β1c1S
o
h

N 0 0 0
0 −(µ+ τ) 0 0 0 0 0

0 0 −(µ+ δ) −β1c1S
o
h

N 0 0 0
0 0 δ −(η1 + µ) 0 αKo 0
0 0 0 η1 −(η2 + µ) 0 0
0 0 0 0 η2 −(µ+ (1− α)Ko 0
0 0 0 σ 0 0 −µv


,

(3.15)
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then G1(X1, Z1) can be re-written as G1(X1, Z1) = LZ1−Ĝ1(X1, Z1), where

Ĝ1(X1, Z1) =

 β1c1(Sh−So
h)(Ih−I

o
h)

Nµ +
β2c2(Sh−So

h)(Ev−Eo
v)

(A+(Ev−Eo
v)

− (µ+ δ)(Eh − Eoh)

δ(Eh − Eoh)− (η1 + µ)(Ih − Ioh) + αKo(Rh −Roh)
σ(Ih − Ioh)− µv(Ev − Eov)

 .

(3.16)

Conclusively, X∗1 =
(

(1−φ)HN+(1−ρ)λ
µ , ρλ+φHN(µ+τ)

)
is a global asymptotic stable

equilibrium point of (3.7), where the solution given by Sh = (1−φ)HN+(1−ρ)λ
Nµ +(

Sh(0) − (1−φ)HN+(1−ρ)λ
Nµ

)
e−µt converges to X∗1 as t → ∞. This implies the

global convergence of (3.16) in Ω1. From (3.15) and (3.16), the two conditions are
satisfied, that is, G1(X1, 0) and G1(X1, Z1) = LZ1 − Ĝ1(X1, Z1) ≥ 0. Thus the
model system (2.1) at the VZV - free equilibrium (3.7) is globally asymptotically
stable.

(a) (b)

(c) (d)

Figure 3. The impact of the variations of parameter values of contact rate, human
infectious contribution to the environment and loss of immunity
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4. Method of Solution

Here, a modified differential transform method (LPDTM) is employed to obtain
the approximate solutions of the model system equations (2.1). The DTM is used
to obtain the truncated series solution, while the LP is applied to enlarge the
convergence domain of the truncated series solution. The use of this method is
highlighted step by step.

4.1. Differential Transform Method (DTM)

Defintion 4.1. . If a function u(t) is differentiable with respect to t, then

U(k) =
1

k!

[dku(t)

dtk

]
t=0

. (4.1)

Defintion 4.2. . The differential inverse of set {U(k)}nk=0 is given by

u(t) =

∞∑
k=0

U(k)tk. (4.2)

Substituting (4.1) into (4.2) yields

u(t) =

∞∑
k=0

1

k!

[dku(t)

dtk

]
t=0

tk. (4.3)

From (4.1) to (4.3), the concept of DTM is derived. Further examples on applica-
tion of DTM to models and the derivation of the basic properties involving DTM
can be seen in [13, 14, 16, 17].

Table 2. Some Basic Operations of DTM.

Original Function Transformed Function
α1u(t)± α2v(t) α1U(t)± α2V (t)

u(t)v(t)
∑k
l=0 U(k)V (k − r)

d
dt [u(t)] (k + 1)U(k + 1)
tn δ(k − n) = 1, when k = n and 0, when k6= n

tnu(t) U(k − n)

eλt λk

k!

sin(ωt+ α1) ωk

k! sin
(
πk
2 + α1

)
cos(ωt+ α1) ωk

k! cos
(
πk
2 + α1

)

4.2. Pade Approximant

Given an analytical function u(t) with Mclaurin series expansion

u(t) =

∞∑
n=0

unt
n, 0 ≤ t ≤ T. (4.4)
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The Pade approximant to u(t) of order [q1, q2], which is represented by
[
q1
q2

]
u
(t),

so that [q1
q2

]
u
(t) =

r0 + r1t+ · · ·+ rq1t
q1

1 + s1t+ · · ·+ sq2t
q2
, (4.5)

where s1 = 1 and the numerator and denominator possess no common factors.

The numerator and denominator in (4.5) are developed so that u(t) and
[
q1
q2

]
u
(t)

and their derivatives agree at t = 0 up to q1 + q2, that is,

u(t)−
[q1
q2

]
u
(t) = 0(tq1+q2+1). (4.6)

From (4.6), we obtain the following algebraic system given by

uq1s1 + · · ·+ uq1−q2+1sn = −uq1+1

uq1+1s1 + · · ·+ uq1−q2+2sn = −uq1+2

.

.

.

uq1+q2−1s1 + · · ·+ uq1sn = −uq1 + q2

(4.7)

and
ro = uo

r1 = u1 + uos1

.

.

.

rq1 = un + uq1−1s1 + · · ·+ uosq1

(4.8)

From (4.7), we compute for all the coefficients sn, 1 ≤ n ≤ q1. Then, the
coefficients rn can be determined, so that 0 ≤ n ≤ q2. From (4.8), note that for
a fixed value of q1 + q2 + 1, the error in (4.6) is smallest when the numerator and
denominator of (4.5) possess the same degree or when the numerator possesses a
degree one higher than the denominator.

4.3. Laplace - Pade Posttreatment Technique

Laplace - Pade posttreatment technique is used to widen the domain of convergence
of solutions or to obtain exact solutions. The procedure governing the Laplace -
Pade technique is outlined below.

• Apply DTM to the given model system (2.1).

• Perform desirable number of iterations and obtain the solutions in power
series form.
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• The Laplace transform is applied to the power series solutions obtained using
DTM.

• Next, s is substituted by
1

z
in the equation.

• The transformed series obtained is converted into a meromorphic function
by forming its Pade approximant of order G

H , where G and H are arbitrarily
chosen, but they should be smaller than the order of the power series. In this
process, the Pade approximant extends the domain of the truncated series
solution to obtain better accuracy and convergence.

• Then, z is substituted by 1/s.

• Finally, by using the inverse Laplace transformation, the exact or approxi-
mate solution is obtained.

Therefore, applying DTM to the formulated model system (2.1) yields following
equations

Sh(k + 1) =
1

(k + 1)

(
(1− φ)HN + (1− ε)λ− β1c1

N

( k∑
l=0

Sh(k)Ih(k − l)
)

− β2c2
( k∑
l=0

Sh(k)
Ev(k − l)
A+ Ev(k)

)
− µSh(k) + τVh(k)

)
,

Vh(k + 1) =
1

(k + 1)
(ρλ+ φHN − (µ+ τ)Vh(k)),

Eh(k + 1) =
1

(k + 1)

(β1c1
N

(

k∑
l=0

Sh(k)Ih(k − l))+

β2c2

( k∑
l=0

Sh(k)
Ev(k − l)
A+ Ev(k)

)
− (µ+ δ)Eh(k)

)
,

Ih(k + 1) =
1

(k + 1)
(δEh(k)− (η1 + µ)Ih(k) + αKoRh(k)),

Th(k + 1) =
1

(k + 1)
(η1Ih(k)− (η2 + µ)Th(k)),

Rh(k + 1) =
1

(k + 1)
(η2Th(k) + (1− α)KoRh(k)− µRh(k)),

Ev(k + 1) =
1

(k + 1)
(σIh(k)− µvEv(k)).

(4.9)

Using the following assumed initial conditions Sh = 0.1750, Vh = 0.950, Eh =
0.1000, Ih = 0.1200, Th = 0.850, Rh = 0.1500, Ev = 0.1000 and the parameter
values given in Table 1, with the aid of Maple computational software, yields
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the tenth order series solution approximations for each sub-equations in (2.1) as
follows;

Sh(t) =

10∑
k=0

Sh(k)tk = 0.1750 + 0.000620103333t+ 0.002202535436t2+

0.001443985993t3 + 0.001091823929t4 + 0.0008767035118t5

+ 0.0007322445605t6 + 0.000628592248t7 + 0.0005506172475t8

+ 0.0004898381148t9 + 0.0004411353066t10,

(4.10)

Vh(t) =

10∑
k=0

Vh(k)tk = 0.950− 0.009424616400t+ 0.00005123502040t2

+ 0.000002791612082t3 + 0.000002213969823t4 + 0.000001772323056t5

+ 0.000001477666805t6 + 0.000001266989538t7 + 0.000001108877349t8

+ 9.858432053 10−7t9 + 8.873810577 10−7t10,

(4.11)

Eh(t) =

10∑
k=0

Eh(k)tk = 0.1000− 0.01994310333t+ 0.002216145340t2

− 0.0001363775366t3 + 0.00002075219132t4 + 0.000007082305302t5

0.000005091756240t6 + 0.000003671273394t7 + 0.000002776977319t8+

0.000002173005673t9 + 0.000001746403645t10,

(4.12)

Ih(t) =

10∑
k=0

Ih(k)tk = 0.1200− 0.0278085000t+ 0.01362001802t2

− 0.001410535693t3 + 0.0002507779532t4 − 0.00001896508281t5

+ 0.000002193728463t6 + 1.263436314 10−8t7 + 9.670781112 10−8t8

+ 5.962821041 10−8t9 + 4.280278913 10−8t10,

(4.13)

Th(t) =

10∑
k=0

Th(k)tk = 0.850− 0.0.0647600t− 0.002386162000t2+

0.002479793068t3 − 0.0002761139008t4 + 0.00003434223506t5−
0.000002499906905t6 + 2.163892677 10−7t7 − 3.225245702 10−9t8

+ 5.641173171 10−10t9 + 3.016274990 10−9t10,

(4.14)

Rh(t) =

10∑
k=0

Rh(k)tk = 0.1500 + 0.1719665000t+ 0.02582834541t2

+ 0.002928728123t3 + 0.0003453335540t4 + 0.0001665695703t5

+ 0.00001781608500t6 + 3.987383010 10−8t7 + 5.546793204 10−9t8

+ 1.674548611 10−10t9 + 8.488942299 10−11t10,

(4.15)
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Ev(t) =

10∑
k=0

Ev(k)tk = 0.1000− 0.0003200t− 0.0001228982500t2

+ 0.00004143357923t3 − 0.000003318722838t4 + 4.606927398 10−7t5

+ 2.95225739510−8t6 + 2.879553173 10−9t7 + 9.174440485 10−12t8

+ 9.669353977 10−11t9 + 5.353001841 10−11t10

(4.16)

The approximate series solutions obtained from (4.10) - (4.16) may have restricted
domains of convergence. The accuracy is enhanced by applying the Laplace - Pade
posttreatment technique earlier described. On applying the Laplace transforma-
tions to (4.10) - (4.16), yields the following;

L[Sh(t)] =
1

s11
(1.000000000 10−12(1.750000000 1011s10 + 6.20103333 108s9

+ 4.405070872 109s8 + 8.663915958 109s7 + 2.620377430 1011s6

+ 1.052044214 1011s5 + 5.272160836 1011s4 + 3.168104933 1012s3

+ 2.220088741 1013s2 + 1.777524551 1014s+ 1.600791801 1015)),
(4.17)

L[Vh(t)] =
1

s11
(4.000000000 10−15(2.375000000 1014s10 − 2.356154100 1012s9

+ 2.561751020 1010s8 + 4.187418123 109s7 + 1.328381894 1010s6

+ 5.316969168 1010s5 + 2.659800249 1011s4 + 1.596406818 1012s3

+ 1.117748368 1013s2 + 8.943569558 1013s+ 8.050320955 1014)),
(4.18)

L[Eh(t)] =
1

s11
(8.000000000 10−14(1.250000000 1012s10 − 2.492887916 1011s9

+ 5.540363350 1010s8 − 1.022831524 1010s7 + 6.225657396 109s6

+ 1.062345795 1010s5 + 4.582580616 1010s4 + 2.312902238 1011s3

+ 1.399596569 1012s2 + 9.856753733 1012s+ 7.921686934 1013)),
(4.19)

L[Ih(t)] =
1

s11
(1.600000000 10−15(7.500000000 1013s10 − 1.738031250 1013s9

+ 1.702502252 1013s8 − 5.28950849 1012s7 + 3.761669298 1012s6

− 1.422381211 1012s5 + 9.871778084 1011s4 + 3.979824389 1010s3

+ 2.437036840 1012s2 + 1.35236812 1013s+ 9.707672575 1013)),
(4.20)

L[Th(t)] =
1

s11
(3.200000000 10−16(2.656250000 1015s10 − 2.023750000 1014s9

− 1.491351250 1013s8 + 4.649612002 1013s7 − 2.070854256 1013s6

+ 1.287833815 1013s5 − 5.624790536 1012s4 + 3.408130966 1012s3

− 4.063809585 1011s2 + 6.397090376 1012s+ 3.420455839 1013)),
(4.21)
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L[Rh(t)] =
1

s11
(6.400000000 10−17(2.343750000 1015s10 + 2.686976562 1015s9

+ 8.071357941 1014s8 + 2.7456826151014s7 + 1.2950008281014s6

+ 3.123179443 1013s5 + 2.004309562 1013s4 + 3.140064120 1012s3

+ 3.494479719 1012s2 + 9.494690624 1011s+ 4.813230284 1012)),
(4.22)

L[Ev(t)] =
1

s11
(3.200000000 10−18(3.125000000 1016s10 − 1.000000000 1014s9

− 7.681140625 1013s8 + 7.768796106 1013s7 − 2.489042128 1013s6

+ 1.72759774 1013s5 − 6.642579139 1012s4 + 4.535296247 1012s3

+ 1.155979501 1011s2 + 1.096504741 1013s+ 6.070304088 1013)),
(4.23)

Substituting s = 1
z in (4.17) to (4.23) yields the following;

L[Sh(t)] = 0.1750000000z + 0.0006201033330z2 + 0.004405070872z3

+ 0.008663915958z4 + 0.02620377430z5 + 0.1052044214z6

+ 0.5272160838z7 + 3.168104933z8 + 22.20088741z9

+ 177.7524551z10 + 1600.791801z11,

(4.24)

L[Vh(t)] = 0.9500000000z − 0.009424616400z2 + 0.0001024700408z3

+ 0.00001674967249z4 + 0.00005313527576z5 + 0.0002126787667z6

+ 0.001063920100z7 + 0.006385627272z8 + 0.04470993472z9

+ 0.3577427823z10 + 3.220128382z11,

(4.25)

L[Eh(t)] = 0.1000000000z − 0.01994310333z2 + 0.004432290680z3

+ 0.0008182652192z4 + 0.0004980525917z5 + 0.0008498766360z6

+ 0.003666064493z7 + 0.01850321790z8 + 0.1119677255z9

+ 0.7885402986z10 + 6.337349547z11,

(4.26)

L[Ih(t)] = 0.1553227612z11 + 0.02163788499z10 + 0.003899258944z9

+ 0.00006367719022z8 + 0.001579484493z7 − 0.002275809938z6

+ 0.006018670877z5 − 0.008463214158z4 + 0.02724003603z3

− 0.02780850000z2 + 0.1200000000z,

(4.27)

L[Th(t)] = 0.8500000000z − 0.06476000000z2 + 0.004772324000z3

+ 0.01487875841z4 − 0.006626733619z5 + 0.004121068208z6−
0.001799932972z7 + 0.001090601909z8 − 0.0001300419067z9

+ 0.002047068920z10 + 0.01094545868z11,

(4.28)
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L[Rh(t)] = 0.1500000000z − 0.1719665000z2 + 0.05165669082z3

+ 0.01757236874z4 + 0.008288005299z5 + 0.001998834844z6+

0.001282758120z7 + 0.0002009641037z8 + 0.0002236467020z9

+ 0.00006076601999z10 + 0.000308046382z11,

(4.29)

L[Ev(t)] = 0.0001942497308z11 + 0.00003508815171z10 + 3.699134403 10−7z9

+ 0.00001451294799z8 − 0.00002125625324z7 + 0.0000528312877z6

− 0.00007964934810z5 + 0.0002486014754z4 − 0.000245796500z3

− 0.0003200000000z2 + 0.1000000000z.
(4.30)

Again, substituting z =
1

s
, we compute the

[
4
4

]
Pade approximant of (4.24) -

(4.30) to obtain the following[4

4

]
Sh

=

0.1750000z
1.000000000−14.51158393z+54.13271792z2−42.36828055z3−11.79047117z4

− 2.538907085z2

1.000000000−14.51158393z+54.13271792z2−42.36828055z3−11.79047117z4

+ 9.468632026z3

1.000000000−14.51158393z+54.13271792z2−42.36828055z3−11.79047117z4

− 7.436176858z4

1.000000000−14.51158393z+54.13271792z2−42.36828055z3−11.79047117z4

− 1.950670201z5

1.000000000−14.51158393z+54.13271792z2−42.36828055z3−11.79047117z4 ,

(4.31)

[4

4

]
Vh

= 0.9499999999z
0.9999999998−14.97506834z+59.70082036z2−59.10246230z3−0.5983573139z4

− 14.23573954z2

0.9999999998−14.97506834z+59.70082036z2−59.10246230z3−0.5983573139z4

+ 56.85701609z3

0.9999999998−14.97506834z+59.70082036z2−59.10246230z3−0.5983573139z4

− 56.71151428z4

0.9999999998−14.97506834z+59.70082036z2−59.10246230z3−0.5983573139z4

− 0.005501559544z5

0.9999999998−14.97506834z+59.70082036z2−59.10246230z3−0.5983573139z4 ,

(4.32)

[4

4

]
Eh

=

0.1000000000z
1.000000000−14.33716523z+52.81052051z2−40.65776383z3−11.51830894z4

− 1.453659627z2

1.000000000−14.33716523z+52.81052051z2−40.65776383z3−11.51830894z4

+ 5.571411910z3

1.000000000−14.33716523z+52.81052051z2−40.65776383z3−11.51830894z4

− 5.183346800z4

1.000000000−14.33716523z+52.81052051z2−40.65776383z3−11.51830894z4

− 0.09468767487z5

1.000000000−14.33716523z+52.81052051z2−40.65776383z3−11.51830894z4 ,

(4.33)
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4
]Ih

= 0.1200000000z
1.000000000−2.616947449z−9.254596881z2−0.5982149832z3+1.582317721z4

− 0.3418421940z2

1.000000000−2.616947449z−9.254596881z2−0.5982149832z3+1.582317721z4

− 1.010538206z3

1.000000000−2.616947449z−9.254596881z2−0.5982149832z3+1.582317721z4

+ 0.1058217024z4

1.000000000−2.616947449z−9.254596881z2−0.5982149832z3+1.582317721z4

− 0.01741550710z5

1.000000000−2.616947449z−9.254596881z2−0.5982149832z3+1.582317721z4 ,

(4.34)

[4

4

]
Th

= 0.8500000000z
0.9999999999−3.294825574z−1.163710935z2−0.5451756029z3+0.09324692916z4

− 2.865361738z2

0.9999999999−3.294825574z−1.163710935z2−0.5451756029z3+0.09324692916z4

− 0.7805537144z3

0.9999999999−3.294825574z−1.163710935z2−0.5451756029z3+0.09324692916z4

+ 0.5693639163z4

0.9999999999−3.294825574z−1.163710935z2−0.5451756029z3+0.09324692916z4

− 0.006141723955z5

0.9999999999−3.294825574z−1.163710935z2−0.5451756029z3+0.09324692916z4 ,

(4.35)

[4

4

]
Rh

=

0.1500000000z
1.000000000−10.61523753z−3.153979011z2+1.751414950z3+0.2961675194z4

− 1.420319130z2

1.000000000−10.61523753z−3.153979011z2+1.751414950z3+0.2961675194z4

− 2.246905406z3

1.000000000−10.61523753z−3.153979011z2+1.751414950z3+0.2961675194z4

+ 0.8104421638z4

1.000000000−10.61523753z−3.153979011z2+1.751414950z3+0.2961675194z4

− 0.004438845357z5

1.000000000−10.61523753z−3.153979011z2+1.751414950z3+0.2961675194z4 ,

(4.36)

[4

4

]
Ev

= 0.1000000000z
1.000000000−3.335431054z−0.6790590667z2+0.6136657858z3+0.004050155030z4

− 0.3338631053z2

1.000000000−3.335431054z−0.6790590667z2+0.6136657858z3+0.004050155030z4

− 0.06708436522z3

1.000000000−3.335431054z−0.6790590667z2+0.6136657858z3+0.004050155030z4

+ 0.06265231624z4

1.000000000−3.335431054z−0.6790590667z2+0.6136657858z3+0.004050155030z4

− 0.0005332896357z5

1.000000000−3.335431054z−0.6790590667z2+0.6136657858z3+0.004050155030z4 .

(4.37)

Finally, applying the inverse Laplace transforms to the Pade approximant so-
lutions in (4.31) - (4.37) yields the following approximate solutions given by the
following;
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Sh(t) = 0.008021267759e−0.2154814030t + 0.0014782625e1.428139387t

+ 0.0000554751e4.220069807t + 3.593 10−7e9.078856139t + 0.1654446352,

Vh(t) = 0.9408028175e−0.01002234779t + 0.000002642e1.512421411t

+ 1.00 10−7e4.306612083t + 1.0 10−9e9.166057196t + 0.009194438534,

Eh(t) = 0.09174529798e−0.2179141521t + 0.00003359144e1.412673919t

+ 4.861 10−7e4.170294470t + 1.610 10−9e8.972110993t + 0.008220622955,

Ih(t) = 0.00000102380e−1.886000729t + 0.08826015413e−0.4930913575t

+ 0.04274513347e0.3676131923t + 1.622 10−8e4.628426343t − 0.01100632753,

Th(t) = −0.1289348104e−0.4967191290t + 0.9993346520e−0.1453263101t

+ 0.0454653058e0.2612685710t + .27 10−8e3.575602442t − 0.06586516050,

Rh(t) = 0.0219625305e−0.4938390223t − 0.2724635881e−0.1494023376t

+ 0.3855134406e0.3686142756t − 1.0 10−10e10.88986461t − 0.01498761703,

Ev(t) = 0.00161998552e−0.4959164711t + 0.2321791195e−0.006553937959t

+ 0.00111227874e0.3581018392 + 3.1 10−10e3.479799624t − 0.1316714130.

(4.38)

5. Discussion of Results and Graphical Illustrations

In this work, a mathematical model describing VZV dynamics has been derived.
The analytical findings reveal that the model solutions are positive and bounded.
The controlled Rvzv showed that vaccination of susceptible births and immigrants
and treatment of infected humans are effective in minimizing VZV infections in
human and environmental host community. Linearizing the model around the
VZV - free equilibrium by obtaining the model Jacobian showed that the model
system is locally and globally asymptotically stable when Rvzv is less than unity.

However, we use the DTM to solve the model system equations, yielding a
recursive system of power series solutions. In order to enhance the convergence of
the DTM solutions, a hybrid posttreatment LPDTM is employed to widen the do-
main of convergence of the solutions. Furthermore, we compared the results using
the LPDTM technique with RK45 method via Maple computational software.

Figures 2(a) and 2(b) shows the impact of timely vaccination of susceptible
newborns and influx varying φ and ρ. The drastic decline in both figures showed
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that drastic and timely vaccination is effective in creating a level herd immunity
and minimizing VZV infection in the host community. Also, Figures 3(a) - 3(c)
displays the effect of the varying the direct and indirect infectious contact rate
between human to human β1 and human to environment β2 as well as the devel-
opment of infectious shingles. The gradual rise of these curves depict that further
interventions strategies are needed to be forestalled in order to curtail the spread
of VZV infections, while the gradual decline in Figure 3(d) describing the variation
of vaccination rate τ in susceptible births and immigrants reveal that vaccination
wanes overtime in vaccinated individuals.

Figures 4(a) - 4(d) and 5(a) - 5(d) reveals the favorable agreement between
the two methods in obtaining the approximate solutions of the model equations
while producing a very low approximation error for the approximate solutions of
the model system equations. The simulations further reveal that DTM and the
Laplace Pade posttreatment technique reduces the volume of computation and
enhances the efficiency of the technique.

(a) (b)

(c) (d)

Figure 4. Model approximate solutions using LPDTM and RK45
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(a) (b)

(c)

Figure 5. Model approximate solutions using LPDTM and RK45

5.1. Conclusion and Recommendations

This work proposes a mathematical model formulation of VZV dynamics incor-
porating essential variables and parameters. The model is shown to be positive,
bounded and exist. The model is asymptotically stable locally and globally when
Rvzv is less than unity. The DTM was employed to solve the model equations.
The Laplace Pade posttreatment technique is further applied to enhance the con-
vergence of the model solutions. This method is recommended to scientist and
engineers to solve highly nonlinear models. Also, forms of interventions like timely
vaccination and treatment are to be forestalled by public health practitioners to
minimize VZV infections. This work also suggest application of further controls
via optimal control theory to minimize reactivation of infectious shingles and con-
centration of the virus in environmental sources.
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