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Abstract. This work focuses on the 3D incompressible magnetohydrodynamic (MHD) equa-
tions with mixed pressure-velocity-magnetic field in view of Lorentz spaces. Our main result
shows the weak solution is regular, provided that

π(
e−|x|

2
+ |u|+ |b|

)θ ∈ Lp(0, T ;Lq,∞), where
2

p
+

3

q
= 2− θ and 0 ≤ θ ≤ 1.

1. Introduction

We are interested in the regularity of weak solutions to the viscous incompressible
magnetohydrodynamics (MHD) equations;

∂tu+ (u · ∇)u− (b · ∇) b−∆u+∇π = 0, x ∈ R3, t ∈ (0, T ),

∂tb+ (u · ∇)b− (b · ∇)u−∆b = 0, x ∈ R3, t ∈ (0, T ),

∇ · u = ∇ · b = 0, x ∈ R3, t ∈ (0, T ),

u(x, 0) = u0(x) and b(x, 0) = b0(x), x ∈ R3,

(1.1)

where u, b and π stand for the velocity field, the magnetic field, and the scalar pres-
sure, respectively, and T ∈ (0,∞) is an arbitrary existence time. Equations (1.1)
describe the motion of electrically conducting fluid in the presence of a magnetic
field, where the fluid and magnetic field interact strongly with each other, and
then their dynamics are coupled. They present applications in several physical sit-
uations; for instance, liquid metals, cosmic plasmas, ionized fluids in astrophysics,
geophysics, and high-speed aerodynamics (see, e.g., [2, 5, 18]). Moreover, taking
b = 0 and b0 = 0, we obtain the 3D Navier–Stokes equations which describe the
motion of viscous incompressible fluids. Thus, due to their mathematical and phys-
ical interest, they have been studied by a number of mathematicians, physicists,
engineers etc.

An important open problem for system (1.1) and 3D Navier–Stokes equations
is the global regularity of weak solutions. In this address, there is a rich literature
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with several types of regularity criterion in different functional spaces (Lebesgue,
weak-Lp; Besov, among others). For example, see [3, 4, 6, 7, 9, 10, 11, 16, 17, 21, 22]
and references therein. Note that the literatures listed here are far from being
complete, we refer the readers to see for example [8, 12, 13, 14, 15] for expositions
and more references. As a matter of fact, Beirão da Veiga and Yang [1] provided
a regularity criterion for weak-solutions (u, π) of the 3D Navier–Stokes equations
with divergence-free initial data u0 ∈ L2 ∩ L4. They proved that weak solutions
(u, π) are regular by assuming the pressure-velocity condition

π(
e−|x|

2
+ |u|

)θ ∈Lp(0, T ;Lq,∞), (1.2)

where 0 ≤ θ ≤ 1, 1 ≤ p, q ≤ ∞, 2
p + 3

q = 2 − θ and Lq,∞ stands for the weak-Lq

(c.f. [20]).
Motivated by [1], the present work extends the above criterion to the system

(1.1). More precisely,

Theorem 1.1. Suppose that (u0, b0) ∈ L2(R3) ∩ L4(R3) with ∇ · u0 = ∇ · b0 = 0
in the sense of distribution. Let (u, b) be a weak solution to the MHD equations on
some interval [0, T ] with 0 < T <∞. Assume that 0 ≤ θ ≤ 1 and that

π(
e−|x|

2
+ |u|+ |b|

)θ ∈Lp(0, T ;Lq,∞(R3)), where
2

p
+

3

q
= 2− θ (1.3)

then the weak (u, b) is regular on (0, T ].

Remark 1.2. A special consequence of Theorem 1.1 and its proof is the regularity
criterion of the 3D Navier–Stokes equations with the mixed pressure-velocity in
Lorentz spaces. This generalizes those of [1].

In order to derive the regularity criterion of weak solutions to the MHD equa-
tions (1.1), we introduce the definition of weak solution.

Next, let us write

w± = u± b, w±0 = u0 ± b0.

We reformulate equation (1.1) as follows. Formally, if the first equation of MHD
equations (1.1) plus and minus the second one, respectively, then MHD equations
(1.1) can be re-written as:

∂tw
+ −∆w+ + (w− · ∇)w+ +∇π = 0,

∂tw
− −∆w− + (w+ · ∇)w− +∇π = 0,

div w+ = 0, div w− = 0,

w+(x, 0) = w+
0 (x), w−(x, 0) = w−0 (x).

(1.4)

The advantage is that the equations become symmetric.
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2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In order to do it, we first
recall the following estimates for the pressure in terms of u and b (see e.g., [8]):

‖π‖Lq ≤ C
(
‖u‖2L2q + ‖b‖2L2q

)
, with 1 < q <∞. (2.1)

We are now in position to prove our main result.

Proof. Multiplying the first and the second equations of (1.4) by |w+|2 w+ and

|w−|2 w− , respectively, integrating by parts and summing up, we have

1

4

d

dt
(
∥∥w+

∥∥4
L4 +

∥∥w−∥∥4
L4) +

∫
R3

(
∣∣∇w+

∣∣2 ∣∣w+
∣∣2 +

∣∣∇w−∣∣2 ∣∣w−∣∣2)dx

+
1

2

∫
R3

(
∣∣∣∇ ∣∣w+

∣∣2∣∣∣2 +
∣∣∣∇ ∣∣w−∣∣2∣∣∣2)dx

= −
∫
R3

∇π · (w+
∣∣w+

∣∣2 + w−
∣∣w−∣∣2)dx

=

∫
R3

π · div(w+
∣∣w+

∣∣2 + w−
∣∣w−∣∣2)dx

≤
∫
R3

|π| (
∣∣w+

∣∣+
∣∣w−∣∣)(∇ ∣∣w+

∣∣2 +∇
∣∣w−∣∣2)dx

≤ C
∫
R3

|π|2 (
∣∣w+

∣∣+
∣∣w−∣∣)2dx+

1

4

∫
R3

(
∣∣∣∇ ∣∣w+

∣∣2∣∣∣2 +
∣∣∣∇ ∣∣w−∣∣2∣∣∣2)dx.

Notice that u =
1

2
(w+ + w−) and b =

1

2
(w+ − w−), then the above inequality

means that

d

dt
(‖u‖4L4 + ‖b‖4L4) + 2

∥∥∥∇ |u|2∥∥∥2
L2

+ 2
∥∥∥∇ |b|2∥∥∥2

L2

+2 ‖|u| |∇u|‖2L2 + 2 ‖|b| |∇b|‖2L2 + 2 ‖|u| |∇b|‖2L2 + 2 ‖|b| |∇u|‖2L2

≤ C
∫
R3

|π|2 (|u|+ |b|)2dx = K, (2.2)

where we have used ∣∣w+
∣∣+
∣∣w−∣∣ ≤ ∣∣w+ + w−

∣∣+
∣∣w+ − w−

∣∣ .
For K, borrowing the arguments in [1], we set

V = e−|x|
2

+ |u|+ |b| and π̃ =
π(

e−|x|
2

+ |u|+ |b|
)θ .

By the Hölder inequality and the following interpolation in Lorentz space (see [20])

‖fα‖Lp,q(R3) ≤ C ‖f‖
α
Lαp,αq(R3) for α > 0, p > 0, q > 0,
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we have

K =

∫
R3

|π|λ V −λθ |π|2−λ V λθ(|u|+ |b|)2dx

≤
∫
R3

|π̃|λ |π|2−λ V 2+λθdx

≤
∥∥∥|π̃|λ∥∥∥

L
q
λ
,∞

∥∥∥|π|2−λ∥∥∥
L
s, 2

2−λ

∥∥V 2λ
∥∥
Lr,

2
λ

= ‖π̃‖λLq,∞ ‖π‖
2−λ
Ls(2−λ),2

∥∥V 2
∥∥λ
Lλr,2

,

where
λ

q
+

1

s
+

1

r
= 1 and λ =

2

2− θ
.

By (2.1), we have

K ≤ ‖π̃‖λLq,∞
(∥∥∥|u|2∥∥∥

Ls(2−λ),2
+
∥∥∥|b|2∥∥∥

Ls(2−λ),2

)2−λ ∥∥V 2
∥∥λ
Lλr,2

≤ C ‖π̃‖λLq,∞
∥∥V 2

∥∥2−λ
Ls(2−λ),2

∥∥V 2
∥∥λ
Lλr,2

.

By the interpolation and Sobolev inequalities in Lorentz spaces, it follows that
∥∥V 2

∥∥
Ls(2−λ),2

≤ C
∥∥V 2

∥∥1−δ1
L2,2

∥∥V 2
∥∥δ1
L6,2 ≤ C

∥∥V 2
∥∥1−δ1
L2

∥∥∇V 2
∥∥δ1
L2 ,∥∥V 2

∥∥
Lλr,2

≤ C
∥∥V 2

∥∥1−δ2
L2,2

∥∥V 2
∥∥δ2
L6,2 ≤ C

∥∥V 2
∥∥1−δ2
L2

∥∥∇V 2
∥∥δ2
L2 ,

(2.3)

where 0 < δ1, δ2 < 1 and

1

s(2− λ)
=

1− δ1
2

+
δ1
6
,

1

λr
=

1− δ2
2

+
δ2
6
.

Hence from (2.3) and Young inequality, it follows that

K ≤ C ‖π̃‖λLq,∞
∥∥V 2

∥∥(2−λ)(1−δ1)+λ(1−δ2)
L2

∥∥∇V 2
∥∥(2−λ)δ1+λδ2
L2

≤ C ‖π̃‖
2λ

2−(2−λ)δ1−λδ2
Lq,∞

∥∥V 2
∥∥2
L2 +

1

2

∥∥∇V 2
∥∥2
L2 .

Due to the definition of V , we see that

∥∥V 2
∥∥2
L2 ≤ C(1 + ‖|u|+ |b|‖2L2 +

∥∥∥|u|2 + |b|2
∥∥∥2
L2

),

and∥∥∇V 2
∥∥2
L2 ≤ C

(
1 + ‖|u|+ |b|‖2L2 + ‖∇(|u|+ |b|)‖2L2 +

∥∥∥∇(|u|2 + |b|2)
∥∥∥2
L2

)
.
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Consequently, we get

K ≤ C ‖π̃‖
2λ

2−(2−λ)δ1−λδ2
Lq,∞ (1 + ‖|u|+ |b|‖2L2 +

∥∥∥|u|2 + |b|2
∥∥∥2
L2

)

+C(1 + ‖|u|+ |b|‖2L2 + ‖∇(|u|+ |b|)‖2L2) +
1

2

∥∥∥∇(|u|2 + |b|2)
∥∥∥2
L2

≤ C ‖π̃‖
2λ

2−(2−λ)δ1−λδ2
Lq,∞ (1 + ‖u‖2L2 + ‖b‖2L2 + ‖u‖4L4 + ‖b‖4L4)

+C(1 + ‖u‖2L2 + ‖b‖2L2 + ‖∇u‖2L2 + ‖∇b‖2L2) +
1

2

∥∥∥∇ |u|2∥∥∥2
L2

+
1

2

∥∥∥∇ |b|2∥∥∥2
L2
.

Since (u, b) is a weak solution to (1.1), then (u, b) satisfies

(u, b) ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)).

Inserting the above estimates into (2.2), we obtain

d

dt
(‖u‖4L4 + ‖b‖4L4) +

∥∥∥∇ |u|2∥∥∥2
L2

+
∥∥∥∇ |b|2∥∥∥2

L2

+2 ‖|u| |∇u|‖2L2 + 2 ‖|b| |∇b|‖2L2 + 2 ‖|u| |∇b|‖2L2 + 2 ‖|b| |∇u|‖2L2

≤ C ‖π̃‖
2λ

2−(2−λ)δ1−λδ2
Lq,∞ (1 + ‖u‖2L2 + ‖b‖2L2 + ‖u‖4L4 + ‖b‖4L4)

+C(1 + ‖u‖2L2 + ‖b‖2L2 + ‖∇u‖2L2 + ‖∇b‖2L2)

≤ C ‖π̃‖
2λ

2−(2−λ)δ1−λδ2
Lq,∞ (1 + ‖u‖4L4 + ‖b‖4L4) + C(1 + ‖∇u‖2L2 + ‖∇b‖2L2),

Using Gronwall’s inequality with the assumption (1.3), we deduce that

(u, b) ∈ L∞(0, T ;L4(R3)) ⊂ L8(0, T ;L4(R3)).

We complete the proof of Theorem 1.1.
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