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An elementary approach to the model structure on DG-Lie
algebras

Emma Lepri

Abstract. This paper contains an elementary proof of the existence of the classical model struc-

ture on the category of unbounded DG-Lie algebras over a field of characteristic zero, with an

emphasis on the properties of free and semifree extensions, which are particularly nice cofibra-

tions. The cobar construction of a locally conilpotent cocommutative coalgebra is shown to be

an example of semifree DG-Lie algebra. We also give an example of a non-cofibrant DG-Lie

algebra whose underlying graded Lie algebra is free; this cannot occur in the bounded above case,

where DG-Lie algebras of this form are always cofibrant.

1. Introduction

A model structure on the category of bounded above DG-Lie algebras over the
rational numbers was constructed by Quillen in [15]. Denoting by DGLA<0

Q the
category of DG-Lie algebras over Q living in degrees i < 0, the weak equivalences in
this model structure are quasi-isomorphisms, the fibrations are the maps surjective
in degrees i < −1, and the cofibrations are the maps with the left lifting prop-
erty with respect to the trivial fibrations. This model structure was extended by
Neisendorfer in [13] to the category of DG-Lie algebras living in degrees i ≤ 0 over
a field of characteristic zero. To be precise, the categories considered by Quillen
and Neisendorfer are of DG-Lie algebras living in positive degrees with differential
of degree −1, while in our terminology a DG-Lie algebra has differential of degree
+1.

In [3], Hinich constructed model structures on the categories of algebras over
certain operads in chain complexes satisfying a splitness condition. In particular,
he constructed a model structure on the category of unbounded DG-Lie algebras
over a ring k containing Q. In this model structure the weak equivalences are again
the quasi-isomorphisms, the fibrations are the surjective maps, and the cofibrations
are the maps with the left lifting property with respect to the trivial fibrations.
Over a field of characteristic zero, the existence of this model structure was also
proved in [10] by Lurie, who furthermore showed that the model category is left
proper and combinatorial.

The purpose of this expository paper is to give a direct, elementary proof of the
existence of the model structure on the category of unbounded DG-Lie algebras
over a field of characteristic zero, and to give an explicit construction of a subclass
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of the cofibrations. The proof is based on the properties of free and semifree
extensions of DG-Lie algebras.

In particular, we will prove that the cofibrations in the model structure are
the retracts of semifree extensions of DG-Lie algebras, and that trivial cofibrations
are the retracts of free extensions. In [15], Quillen introduced a definition of
free map of DG-Lie algebras, which does not involve the differentials, and proved
that the cofibrations in the bounded above case are exactly the retracts of the
free maps. This implies that in the bounded above case every DG-Lie algebra
whose underlying graded Lie algebra is free is cofibrant. Quillen’s definition of
free maps does not coincide with our definition of semifree extensions; however
in the bounded above case every free map is also a semifree extension. In the
unbounded case this is no longer true: in general Quillen’s free maps are not
semifree extensions according to our definition. In fact, we show that in the
unbounded case DG-Lie algebras whose underlying graded Lie algebra is free are
not always cofibrant.

Organisation of the paper: In Section 2, the basics about free DG-Lie algebras
are recalled. Section 3 contains some lemmas about the extension of a contraction
of chain complexes to a contraction of tensor algebras and free DG-Lie algebras.
In Section 4 we recall the definition of model structure, and the fact that a left
pre-model structure naturally gives rise to a model structure. The proof of the
existence of the classical model structure on the the category of DG-Lie algebras
is given in Section 5, using left pre-model structures. Finally, Section 6 is devoted
to some examples: in particular we show that, unlike in the bounded case, in
the unbounded case DG-Lie algebras which are free as graded Lie algebras are
not always cofibrant, and that the cobar construction of a locally conilpotent
cocommutative coalgebra is a semifree DG-Lie algebra.

Notation and setup

Throughout the paper, K will denote a fixed field of characteristic 0. Every
(graded) vector space is assumed over K and the symbol ⊗ denotes the tensor
product over K, unless otherwise specified. If V = ⊕n∈ZV n is a graded vector
space, ā denotes the degree of a non-zero homogeneous element a: in other words
ā = n whenever a 6= 0 and a ∈ V n.

In a complex of vector spaces, the differential will always have degree +1. As
usual, for every complex of vector spaces V , we shall denote by Zn(V ), Bn(V )
and Hn(V ) the space of n-cocycles, the space of n-coboundaries and the nth
cohomology group, respectively. The vector space generated by v will be denoted
by K〈v〉.

2. Free DG-Lie algebras

In this section we recall the construction of the free DG-Lie algebra generated by
a complex of vector spaces over a field of characteristic zero. This construction is
similar to the free Lie algebra generated by a non-graded vector space over a field
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of characteristic zero; the only additional thing to prove is that the differential
of the complex of vector spaces induces one on the free graded Lie algebra. The
references for this section are [1, Chapter 21] and [15, Appendix B].

Recall that the free associative DG-algebra generated by a complex of vector
spaces (V, d) is the tensor algebra T (V ). As a graded vector space it is given by
T (V ) =

⊕
n≥0 V

⊗n, with product defined as the bilinear extension of

(v1 ⊗ · · · ⊗ va)(w1 ⊗ · · · ⊗ wb) = v1 ⊗ · · · ⊗ va ⊗ w1 ⊗ · · · ⊗ wb,

and differential

d(v1 ⊗ · · · ⊗ vs) =

s∑
i=1

(−1)v1+···vi−1v1 ⊗ · · · ⊗ dvi ⊗ · · · ⊗ vs.

An associative DG-algebra A can be considered as a DG-Lie algebra, with

bracket induced by the graded commutator [a, b] = ab− (−1)abba. To avoid confu-
sion we denote by AL the DG-algebra A seen as a DG-Lie algebra. In particular,
given a graded vector space V , we denote by T (V )L the graded Lie algebra with
bracket defined as the bilinear extension of [v, w] = v ⊗ w − (−1)v ww ⊗ v.

The free graded Lie algebra generated by a graded vector space V is then the
smallest graded Lie subalgebra L(V ) ⊆ T (V )L containing V , or equivalently, the
intersection of all the graded Lie subalgebras of T (V )L containing V . We need to
prove that if (V, d) is a complex of vector spaces, L(V ) is a DG-Lie algebra: this
can be done by checking that the differential on T (V )L restricts to a differential
on L(V ). We will use the following results:

Lemma 2.1. Let L(V )n ⊆ V ⊗n be the graded subspace generated by all the ele-
ments

[v1, [v2, [. . . , [vn−1, vn] . . . ]]],

with v1, . . . , vn ∈ V . Then L(V ) =
⊕
n≥1

L(V )n.

Theorem 2.2 (Dynkin, Specht, Wever). Let V be a graded vector space and H a
graded Lie algebra over a field K of characteristic 0. Let f : V → H be a map of
graded vector spaces, and define F : T (V )→ H as follows:

F (1) = 0, F (v) = f(v),

F (v1 ⊗ · · · ⊗ vn) =
1

n
[f(v1), [f(v2), . . . [f(vn−1), f(vn)] . . . ]].

Then the restriction F : L(V )→ H is the unique morphism of graded Lie algebras
extending f .

Corollary 2.3 (Dynkin projector). For every graded vector space V over a field
of characteristic 0, the map of graded vector spaces

ρ : T (V )→ L(V ) ρ(V ⊗0) = 0
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ρ(v1 ⊗ · · · ⊗ vn) =
1

n
[v1, [v2, . . . , [vn−1, vn] . . . ]]

is a projection. Therefore for every n > 0

L(V )n = {x ∈ V ⊗n| ρ(x) = x}.

For the proofs of the above facts we refer either to [15, Appendix B] or to [8,
V.4]. In the latter, the above facts are proved in the non-graded case, but the
graded case is similar.

The following observation is key:

Remark 2.4. Consider the setup of Theorem 2.2, where (V, d) is now a complex
of vector spaces, H a DG-Lie algebra, and f : V → H a morphism of complexes
of vector spaces. Then the map F : T (V )L → H defined in Theorem 2.2 is a
morphism of DG-Lie algebras. In fact,

F (d(v1 ⊗ · · · ⊗ vn))

=

n∑
i=1

(−1)v1+···+vi−1F (v1 ⊗ · · · ⊗ dvi ⊗ · · · ⊗ vn)

=
1

n

n∑
i=1

(−1)v1+···+vi−1 [f(v1), [. . . [f(dvi), . . . [f(vn−1), f(vn)] . . . ]]]

=
1

n

n∑
i=1

(−1)f(v1)+···+f(vi−1)[f(v1), [. . . [df(vi), . . . [f(vn−1), f(vn)] . . . ]]]

=
1

n
d([f(v1), [. . . [f(vn−1), f(vn)] . . . ]]) = dF (v1 ⊗ · · · ⊗ vn).

The differential on the tensor algebra (T (V )L, d) restricts then to a differential
d : L(V ) → L(V ): in fact, by the above calculation, the differential commutes
with the Dynkin projector ρ, so that d(L(V )) ⊆ L(V ). Therefore L is left adjoint
to the forgetful functor from DG-Lie algebras to complexes of vector spaces, and
it makes sense to call L(V ) the free DG-Lie algebra generated by the complex of
vector spaces (V, d).

The functor L allows to construct coproducts and pushouts of DG-Lie algebras.

Defintion 2.5. Given two DG-Lie algebras (H, [−,−]H , dH) and (M, [−,−]M , dM ),
their coproduct is defined as the quotient H qM = F/I of the free DG-Lie al-
gebra F = L(H ⊕M) by the Lie ideal I generated by the elements of the form
[x, y]H − [x, y] and [u, v]M − [u, v], with x, y ∈ H, u, v ∈ M , where by [−,−] we
denote the bracket on L(H ⊕M).

Given two morphisms of DG-Lie algebras f : H → L and g : H → M , their
pushout is (L qM)/J , where J is the Lie ideal generated by f(h) − g(h), with
h ∈ H.
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The category of DG-Lie algebras over a field K of characteristic zero is hence
complete and cocomplete: coproducts and pushouts are defined above, and prod-
ucts and pullbacks are taken in the category of complexes of vector spaces and
endowed with natural brackets.

Remark 2.6. Note that for a complex of vector spaces V and a DG-Lie algebra
(A, [−,−]A, dA) there is an isomorphism of DG-Lie algebras

Aq L(V ) ∼= L(A⊕ V )/IA,

where IA is the Lie ideal generated by [x, y]A − [x, y], for all x, y ∈ A. In fact,
L(A ⊕ V )/IA has the universal property of the coproduct: let N be a DG-Lie
algebra and f : A→ N , g : L(V )→ N maps of DG-Lie algebras.

A L(A⊕ V )/IA L(V )

N.

f
v

g

Since V ⊆ L(V ), g restricts to a map of complexes g|V : V → N , so we obtain a
map of complexes f + g|V : A⊕ V → N , which extends to a unique morphism of
DG-Lie algebras v : L(A⊕ V )→ N . For x, y ∈ A one has that

v([x, y]A − [x, y]) = f([x, y]A)− [v(x), v(y)]N = f([x, y]A)− [f(x), f(y)]N = 0,

and thus v(IA) = 0, so there exists a unique map of DG-Lie algebras v : L(A ⊕
V )/IA → N . In particular, note that this implies that L(A)/IA ∼= A.

Notice also that for a graded vector space V and a graded Lie algebra A there
is an isomorphism of graded Lie algebras AqL(V ) ∼= L(A⊕V )/IA, where AqL(V )
is the coproduct in the category of graded Lie algebras.

3. Contractions

This section contains some technical results about the natural extension of a con-
traction of complexes of vector spaces to a contraction of tensor algebras and free
DG-Lie algebras. These results, which will be needed in Section 5, also allow to
prove that the cohomology commutes with the functors T and L.

Firstly, to fix notation, we recall the definition of contraction of complexes of
vector spaces.

Defintion 3.1. A contraction is a diagram

M
ι // N
π
oo

h

��

where M,N are complexes of vector spaces, h ∈ Hom−1
K (N,N) and ι, π are mor-

phisms of complexes of vector spaces such that:
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• (deformation retraction) πι = IdM , ιπ − IdN = dNh+ hdN

• (annihilation properties) πh = hι = h2 = 0

In particular both ι and π are quasi-isomorphisms.

Lemma 3.2. Let M and N be complexes of vector spaces. Every contraction

M
ι // N
π
oo

h

��

extends canonically to a contraction between tensor algebras

T (M)
T (ι) // T (N).
T (π)
oo

k

��
(3.1)

Proof. Since the map ι is injective, it is not restrictive to think of M as a subspace
of N , so that ι : M → N is an inclusion, and N = M ⊕W , where W denotes the
kernel of π. Since hι = 0 and πh = 0, h(M) = 0 and the image of h is contained
in W , so that h : W →W is a contracting homotopy.

Every element of T (N) is linear combination of elements of the form x1⊗· · ·⊗
xn, with xi ∈M or xi ∈W . Define:

k(x1 ⊗ · · · ⊗ xn) = 0 if xi ∈M ∀i,

k(x1 ⊗ · · · ⊗ xn) =
1

p

n∑
i=1

(−1)x1+···+xi−1x1 ⊗ · · · ⊗ h(xi)⊗ · · · ⊗ xn

if p is the number of xi in W . We show that (3.1) is also a contraction: the fact
that kT (ι) = 0 follows from the definition of k, and

T (π)k(x1⊗· · ·⊗xn) =
1

p

n∑
i=1

(−1)x1+···+xi−1π(x1)⊗· · ·⊗πh(xi)⊗· · ·⊗π(xn) = 0,

k2(x1 ⊗ · · · ⊗ xn)

=
1

p2

∑
i,j<i

(−1)x1+···+xi−1+x1+···+xj−1x1 ⊗ · · · ⊗ h(xj)⊗ · · ·h(xi)⊗ · · · ⊗ xn

+
1

p2

∑
i,j>i

(−1)x1+···+xi−1+x1+···+xj−1−1x1 ⊗ · · · ⊗ h(xi)⊗ · · ·h(xj)⊗ · · · ⊗ xn

= 0.

If p 6= 0, let J ⊆ {1, . . . , n}, |J | = p denote the set of indices such that i ∈ J ⇐⇒
xi ∈W , then
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(dk + kd)(x1 ⊗ · · · ⊗ xn)

=
1

p

n∑
i=1

(−1)x1+···+xi−1d(x1 ⊗ · · · ⊗ h(xi)⊗ · · · ⊗ xn)

+

n∑
i=1

(−1)x1+···+xi−1k(x1 ⊗ · · · ⊗ dxi ⊗ · · · ⊗ xn)

=
1

p

n∑
i=1

(x1 ⊗ · · · ⊗ dh(xi)⊗ · · · ⊗ xn + x1 ⊗ · · · ⊗ hd(xi)⊗ · · · ⊗ xn)

=
1

p

n∑
i=1

x1 ⊗ · · · ⊗ (dh(xi) + hd(xi))⊗ · · · ⊗ xn

=
1

p

∑
i∈J

x1 ⊗ · · · ⊗ (ιπ(xi)− xi)⊗ · · · ⊗ xn.

Finally, since W = ker(π), this is equal to

1

p

∑
i∈J

x1 ⊗ · · · ⊗ (−xi)⊗ · · · ⊗ xn = −x1 ⊗ · · · ⊗ xn

= (T (ι)T (π)− IdN )(x1 ⊗ · · · ⊗ xn).

Remark 3.3. A contraction of complexes of vector spaces extends canonically
to two different contractions between tensor algebras: for the other one, see [12,
10.1.8].

Let us now derive a formula for the contraction k which will be useful later.
In the setup of Lemma 3.2, T (N) = T (M ⊕W ) =

⊕
n≥0(M ⊕W )⊗n, so defining

T a,b := Span{x1 ⊗ · · · ⊗ xa+b | a of the xi are in M, b of the xi are in W}, (3.2)

one has that T (N) =
⊕

a,b≥0 T
a,b. Then for x = x1 ⊗ · · · ⊗ xa+b ∈ T a,b and

y = y1 ⊗ · · · ⊗ yp+q ∈ T p,q,

k(x1 ⊗ · · · ⊗ xa+b ⊗ y1 ⊗ · · · ⊗ yp+q)

=
1

b+ q

a+b∑
i=1

(−1)x1+...xi−1x1 ⊗ · · · ⊗ h(xi)⊗ · · · ⊗ xa+b ⊗ y1 ⊗ · · · ⊗ yp+q

+
(−1)x

b+ q

p+q∑
i=1

(−1)y1+···+yi−1x1 ⊗ · · · ⊗ xa+b ⊗ y1 ⊗ · · · ⊗ h(yi)⊗ · · · ⊗ yp+q.

Hence for x ∈ T a,b and y ∈ T p,q,

k(x⊗ y) =
b

b+ q
k(x)⊗ y + (−1)x

q

b+ q
x⊗ k(y). (3.3)
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Lemma 3.4. Let M and N be complexes of vector spaces. Every contraction

M
ι // N
π
oo

h

��

extends canonically to a contraction between free DG-Lie algebras

L(M)
L(ι) // L(N).
L(π)
oo

k

��

Proof. Consider again M as a subspace of N , so that N = M⊕W , with W = kerπ.
By Lemma 3.2 the contraction extends to a contraction of tensor algebras, and it
follows from the functoriality of L that there exist morphisms of DG-Lie algebras
L(ι) : L(M)→ L(N) and L(π) : L(N)→ L(M) such that L(π)L(ι) = IdL(M). We
show that the map k : T (N) → T (N) commutes with the Dynkin projector ρ of
Corollary 2.3, so that it induces a contraction of free DG-Lie algebras. Using the
formula in (3.3) we obtain for x ∈ T a,b ∩ L(N) and y ∈ T p,q ∩ L(N)

k([x, y]) =
b

b+ q
[k(x), y] + (−1)x

q

b+ q
[x, k(y)]. (3.4)

We show that kρ(x1⊗ · · ·⊗xn) = ρk(x1⊗ · · ·⊗xn) by induction on n. For n = 1,
ρ(x1) = x1 and k(x1) = h(x1), so that kρ(x1) = k(x1) = h(x1) = ρh(x1) = ρk(x1).
By definition of ρ, one has that

ρ(x1 ⊗ · · · ⊗ xn) =
1

n
[x1, [x2, . . . , [xn−1, xn] . . . ]] =

n− 1

n
[x1, ρ(x2 ⊗ · · · ⊗ xn)]

=
n− 1

n
[ρ(x1), ρ(x2 ⊗ · · · ⊗ xn)].

Therefore, for x1 ∈ T a,b and x2 ⊗ · · · ⊗ xn ∈ T p,q,

kρ(x1 ⊗ · · · ⊗ xn) =
n− 1

n
k ([ρ(x1), ρ(x2 ⊗ · · · ⊗ xn)]) =

n− 1

n

(
b

b+ q
[kρ(x1), ρ(x2 ⊗ · · · ⊗ xn)] +

q

b+ q
(−1)x1 [ρ(x1), kρ(x2 ⊗ · · · ⊗ xn)]

)

which by the inductive hypothesis is equal to

n− 1

n

(
b

b+ q
[ρk(x1), ρ(x2 ⊗ · · · ⊗ xn)] +

q

b+ q
(−1)x1 [ρ(x1), ρk(x2 ⊗ · · · ⊗ xn)]

)
.
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On the other hand,

ρk(x1 ⊗ · · · ⊗ xn)

=
b

b+ q
ρ(k(x1)⊗ x2 ⊗ · · · ⊗ xn) + (−1)x1

q

b+ q
ρ(x1 ⊗ k(x2 ⊗ · · · ⊗ xn))

=
n− 1

n

(
b

b+ q
[ρk(x1), ρ(x2 ⊗ · · · ⊗ xn)] + (−1)x1

q

b+ q
[ρ(x1), ρk(x2 ⊗ · · · ⊗ xn)]

)
,

which concludes the proof.

As a consequence of the previous lemmas, one can prove the commutativity of
the cohomology with the functors T and L, see also [15, Appendix B].

Proposition 3.5. For any complex of vector spaces (V, d) there are isomorphisms

1. H∗(T (V )) ∼= T (H∗(V )),

2. H∗(L(V )) ∼= L(H∗(V )).

Proof. There exists a splitting V = H ⊕ W , with W an acyclic complex and
H ∼= H∗(V ) a complex with trivial differential. The complex W is contractible,
so that there exists γ ∈ Hom−1

K (W,W ) with dγ + γd = − IdW . Since γ2 is not
necessarily zero (as it should be according to Definition 3.1), we define h := γdγ ∈
Hom−1

K (V, V ). One can check that dh + hd = − IdV still holds, and that addi-
tionally h2 = 0. This map can be extended to h : H ⊕W → H ⊕W by setting
h(H) = 0, so that the diagram

H
ι // V
π
oo

h

��

is a contraction. By Lemma 3.2, this extends to a contraction of tensor algebras

T (H)
ι // T (V ).
π
oo

k

��

This implies that H∗(T (H)) ∼= H∗(T (V )), and since H has trivial differential,
H∗(T (H)) = T (H) ∼= T (H∗(V )).

Let L(V ) be the free DG-Lie algebra generated by (V, d). By Lemma 3.4 the
diagram

L(H)
ι // L(V )
π
oo

k

��

is a contraction, which implies H∗(L(H)) ∼= H∗(L(V )), and since H has trivial
differential, H∗(L(H)) = L(H) ∼= L(H∗(V )).
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4. Model and pre-model structures

The topics of this section are a brief reminder about the definition and basic
properties of model categories, the definition of left pre-model structures, and the
fact that a left pre-model structure naturally induces a model structure. The
notion of left pre-model structure will be used in the next section to give a proof
of the existence of the model structure on the category of unbounded DG-Lie
algebras, which is the goal of the paper.

In a model category, two out of the three classes of weak equivalences, cofibra-
tions and fibrations determine the third. However it is important to note that, for
example, if W and F are two classes satisfying (M1) and (M2) in Definition 4.3
below, in general they do not extend to a model structure. It is typical to try
to construct a model structure by establishing two of the three classes and seeing
whether they induce a model structure. Left pre-model structures are a useful
instrument to prove the existence of a model structure when one has fixed the
weak equivalences, the fibrations, and a subclass of the cofibrations (see also [2,
Section 3.2] and [9]).

Firstly, we briefly recall the definitions of lifting properties, retracts and that
of a model structure. The standard references for model categories, introduced by
Quillen in [14], are the books [5, 6].

Defintion 4.1. Consider two morphisms i : A→ B and p : C → D in a category
M. Then i has the left lifting property with respect to p or, equivalently, p has
the right lifting property with respect to i if for every commutative diagram of the
form

A C

B D

f

i p

g

h

there exists a lift h : B → Y such that hi = f and ph = g.

Defintion 4.2. A morphism f is called a retract of a morphism g if there exists
a commutative diagram of the form

A B A

C D C.

f

IdA

g f

IdC

Defintion 4.3. A model structure on a complete and cocomplete category M is
the data of three classes of maps, called weak equivalences, fibrations and cofibra-
tions, which satisfy the following four axioms:



An elementary approach to the model structure on DG-Lie algebras 63

(M1) (2-out-of-3) If f and g are morphisms in M such that the composition gf is
defined, and two out of the three f , g and gf are weak equivalences, so is
the third.

(M2) (Retracts) If f and g are maps in M such that f is a retract of g, and g is a
weak equivalence, a cofibration or a fibration, then so is f .

(M3) (Lifting) A trivial fibration is map which is both a fibration and a weak
equivalence; a trivial cofibration is map which is both a cofibration and a
weak equivalence.

(a) Cofibrations have the left lifting property with respect to trivial fibra-
tions.

(b) Trivial cofibrations have the left lifting property with respect to fibra-
tions.

(M4) (Factorisation) Every morphism g in M admits two factorisations:

(a) g = qj, where j is a trivial cofibration and q is a fibration,

(b) g = pi, where i is a cofibration and p is a trivial fibration.

As usual, the classes of weak equivalences, fibrations and cofibrations will be
denoted respectively by W,F and C. We shall denote by FW = F ∩W the class
of trivial fibrations and by CW = C ∩W the class of trivial cofibrations. An object
is said to be cofibrant if the initial map is a cofibration; it is called fibrant if the
terminal map is a fibration.

Since they will be used later on, a few standard results in model category
theory are recalled for the reader’s convenience. We refer to [5, Section 7.2] or [6,
Section 1.1] for the proofs.

Lemma 4.4. If j has the left (right) lifting property with respect to f , and i is a
retract of j, then i has the left (right) lifting property with respect to f .

Proposition 4.5 (Retract Argument). Let g be a map which can be factored as
g = pi.

1. If g has the left lifting property with respect to p then g is a retract of i.

2. If g has the right lifting property with respect to i then g is a retract of p.

Lemma 4.6. Let M be a model category,

1. a map in M that has the left lifting property with respect to all trivial fibra-
tions is a cofibration;

2. a map in M that has the right lifting property with respect to all trivial
cofibrations is a fibration.
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Lemma 4.7. Let f and g be maps such that the composition fg is defined. If
f and g have the left (right) lifting property with respect to a map p, then the
composition fg has the left (right) lifting property with respect to p.

Next, we recall the definition of left pre-model structure, and prove that a left
pre-model structure extends naturally to a model structure.

Defintion 4.8. A left pre-model structure on M is the data of four classes of
maps W,F , C′, CW ′ such that:

(L1) The maps in W satisfy the 2-out-of-3 property;

(L2) The classes W and F are closed under retracts;

(L3) There is an inclusion CW ′ ⊂ W;

(L4) The maps in C′ have the left lifting property with respect to the maps in
F ∩W; the maps in CW ′ have the left lifting property with respect to the
maps in F ;

(L5) Every map g in M has two factorisations:

(a) g = qj, where i is in CW ′ and p is in F ;

(b) g = pi, where j is in C′ and q is in F ∩W.

There exists a dual definition of right pre-model structure, useful when one
has fixed the classes of weak equivalences, cofibrations, and some particularly easy
fibrations. A left pre-model structure gives rise to a unique model structure in the
following way:

Theorem 4.9. Given a left pre-model structureW,F , C′, CW ′ there exists a unique
model structure where the weak equivalences are the maps in W and the fibrations
are the maps in F . Notably, the cofibrations are the retracts of C′, and the trivial
cofibrations are the retracts of CW ′.

We refer to [9] for the proof.

5. Model structure on DG-Lie algebras

In this section we work in the category of unbounded DG-Lie algebras over a
fixed field K of characteristic zero. There is a model structure on this category,
constructed in a more general context in [3], where weak equivalences are quasi-
isomorphisms and fibrations are surjective morphisms. Cofibrations are then by
Lemma 4.6 the maps with the left lifting property with respect to surjective quasi-
isomorphisms. The goal of this section is to give an elementary proof of the
existence of this model structure, which will be done via the notions of pre-model
structure of the previous section, and of semifree extension of DG-Lie algebras.
We also give a more explicit description of cofibrations as retracts of semifree
extensions, as described in [7].
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Lemma 5.1. Let A be a graded Lie algebra and V a graded vector space. There is
a bijection between the degree n derivations of AqL(V ) that preserve the subalgebra
A and pairs (f, g) such that f ∈ DernK(A,A) and g ∈ Homn

K(V,Aq L(V )).

Proof. Let φ be a degree n derivation of A q L(V ) which preserves the Lie sub-
algebra A. The restriction φ|A of φ to A is a degree n derivation of A, and the
restriction φ|V : V → Aq L(V ) of φ to V is a linear map of degree n.

Conversely, given a pair g ∈ Homn
K(V,AqL(V )) and f ∈ DernK(A,A), one can

define φ(v) = g(v) for all v ∈ V , φ(a) = f(a) for all a ∈ A, and

φ([x1, . . . [xn−1, xm] . . . ]) =

m∑
i=1

(−1)n(x1+···+xi−1)[x1, . . . [φ(xi), . . . [xn−1, xm] . . . ]].

The map φ is then a well defined derivation of L(A⊕V ). By Remark 2.6, there is
an isomorphism of graded Lie algebras AqL(V ) ∼= L(A⊕ V )/IA, where IA is the
Lie ideal generated by [x, y]A − [x, y], for all x, y ∈ A. One has that

φ([x, y]A − [x, y]) = f([x, y]A)− [φ(x), y]− (−1)nx[x, φ(y)]

= [f(x), y]A + (−1)nx[x, f(y)]A − [f(x), y]− (−1)nx[x, f(y)],

and it is easy to see that φ preserves the ideal IA, hence it induces a well defined
derivation of Aq L(V ).

The lemma implies that if A is a DG-Lie algebra and V a graded vector space,
a differential on A q L(V ) is determined by the differential on A and by a linear
map g : V → Aq L(V ) of degree 1.

Defintion 5.2 (Free extension). A free extension in the category of DG-Lie al-
gebras is an inclusion A → A q L(V ), with (V, d) an acyclic complex of vector
spaces, and Aq L(V ) the coproduct of DG-Lie algebras.

Defintion 5.3 (Semifree extension). An elementary semifree extension in the
category of DG-Lie algebras is a morphism of DG-Lie algebras f : A → B such
thatB is isomorphic as a graded Lie algebra to the coproduct of graded Lie algebras
A q L(V ), with V a graded vector space, in such a way that f is identified with
the inclusion A→ Aq L(V ). Moreover, denoting by d the differential induced on
Aq L(V ) by said isomorphism, we have dV ⊆ A.

A semifree extension is the countable composition of elementary semifree ex-
tensions. Equivalently, f : A → B is a semifree extension if there is an isomor-
phism of graded Lie algebras B ∼= A q L(V ), and there is a countable filtration
V0 ⊂ V1 ⊂ · · · of V such that d(Vi) ⊂ Aq L(Vi−1).

Every free extension is a semifree extension: let (V, d) be an acyclic complex
of vector spaces, let Z∗(V ) ⊂ V be the graded vector spaces of cocycles, and let
V = Z∗(V ) ⊕W be a splitting of graded vector spaces. Notice that since V is
acyclic, Z∗(V ) = B∗(V ) = d(V ) = d(W ). The free extension A → A q L(V ) is
given by the composition of two elementary semifree extensions
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A Aq L(Z∗(V )) Aq L(V ),

where the second map is the inclusion

Aq L(Z∗(V )) (Aq L(Z∗(V )))q L(W ) = Aq L(V )

with d(W ) = Z∗(V ) ⊆ AqL(Z∗(V )), hence it is an elementary semifree extension.

Theorem 5.4. There is a model structure on the category of unbounded DG-Lie
algebras over a field of characteristic zero, where weak equivalences are quasi-
isomorphisms, fibrations are surjective morphisms, cofibrations are retracts of
semifree extensions, and trivial cofibrations are retracts of free extensions.

The theorem is proved using the notion of left pre-model structure of Section 4;
in particular, we set:

1. W the quasi-isomorphisms,

2. F the surjective maps,

3. C′ the semifree extensions,

4. CW ′ the free extensions.

We now show thatW,F , C′, CW ′ satisfy the axioms of Definition 4.8; the proof
is split into the following five propositions. It is clear that quasi-isomorphisms have
the 2-out-of-3 property, and that the classes W and F are closed by retracts, so
we begin by proving that CW ′ ⊆ W.

Proposition 5.5. Free extensions are quasi-isomorphisms.

Proof. Let A be a DG-Lie algebra, (V, d) an acyclic complex of vector spaces,
and let f : A → A q L(V ) be a free extension. If A = 0, the fact that the
free DG-Lie algebra L(V ) is quasi-isomorphic to 0 follows from Proposition 3.5:
H∗(L(V )) ∼= L(H∗(V )) = 0 since V is acyclic.

Let now A be different from zero; by Remark 2.6, A q L(V ) ∼= L(A ⊕ V )/IA,
where IA is the Lie ideal generated by [a, b]A − [a, b], for all a, b ∈ A. Since
(V, d) is an acyclic complex of vector spaces, the identity IdV is a coboundary
in Hom∗K(V, V ), i.e. there exists γ ∈ Hom−1

K (V, V ) such that dγ + γd = − IdV .
We wish to construct a contraction 0 � V as in Definition 3.1; since γ2 is
not necessarily zero, we define h := γdγ ∈ Hom−1

K (V, V ). One can check that
dh+ hd = − IdV still holds, and that additionally h2 = 0.

We can now extend h to a map h : A ⊕ V → A ⊕ V by setting h(A) = 0.
Let p1 : A ⊕ V → A be the projection and i1 : A → A ⊕ V the injection, so that
p1i1 = IdA; then the diagram

A
i1 // A⊕ V
p1
oo

h

��



An elementary approach to the model structure on DG-Lie algebras 67

is a contraction. By Lemma 3.4, it extends to a contraction

L(A)
i1 // L(A⊕ V )
p1
oo

k

��
,

where for brevity we have denoted L(i1) by i1 and L(p1) by p1, and where the
map k is such that k(A) = 0 and

k([x, y]) =
b

b+ q
[k(x), y] + (−1)x

q

b+ q
[x, k(y)], (5.1)

for x ∈ La,b and y ∈ Lp,q, see (3.4), where

La,b=Span{[x1, [. . . [xa+b−1, xa+b] . . . ]] | a of the xi are in A, b of the xi are in V }.

We now show that there are induced maps ĩ1, p̃1 and k̃ such that the diagram

L(A)/IA
ĩ1 // L(A⊕ V )/IA
p̃1

oo

k̃

��

is a contraction. The map ĩ1 is induced by i1, because it preserves the ideal IA: for
x, y ∈ A one has i1([x, y]A−[x, y]) = i1([x, y]A)−[i1(x), i1(y)] = [x, y]A−[x, y] ∈ IA;
likewise p̃1 is induced by p1. The Lie ideal IA is generated by the vector subspace

U = Span{[a, b]A − [a, b] | a, b ∈ A};

we show first that k preserves U . In fact, since a, b and [a, b]A are in A, k(a) =
k(b) = k([a, b]A) = 0, and by (5.1), there exist α, β ∈ Q such that

k([a, b]A − [a, b]) = −k([a, b]) = −α[k(a), b]− (−1)aβ[a, k(b)] = 0. (5.2)

An element of the ideal IA is a linear combination of elements of the form

[x1, [x2, . . . [xn, u] . . .]], n ∈ N, u ∈ U ;

we prove that k(IA) ⊆ IA by induction on n. The case n = 0 follows from the fact
that k preserves U . Assume that k([x1, [x2, . . . [xn, u] . . .]]) belongs to IA, then by
Equation (3.4) there exist some α′, β′ ∈ Q such that

k([x0, [x1, . . . [xn, u] . . .]]) = α′[k(x0), [x1, . . . [xn, u] . . .]]

+ β′[x0, k([x1, . . . [xn, u] . . .])].

Since [x1, . . . [xn, u] . . .]] belongs to the ideal IA, so does [k(x0), [x1, . . . [xn, u] . . .]].
By the inductive hypothesis, k([x1, . . . [xn, u] . . .]) belongs to the ideal IA, and
therefore also [x0, k([x1, . . . [xn, u] . . .])] belongs to IA.
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Finally, since L(A)/IA ∼= A and L(A⊕ V )/IA ∼= Aq L(V ) in such a way that

f is identified with the inclusion ĩ1, we have a contraction

A
f // Aq L(V ),oo

k

��

therefore f : A→ Aq L(V ) is a quasi-isomorphism.

Proposition 5.6. For every commutative diagram of DG-Lie algebras

A C

B D,

i gh

where i is a semifree extension and g is a surjective quasi-isomorphism, there exists
a lifting h : Aq L(V )→ C making both triangles commute.

Proof. By Lemma 4.7 we can suppose without any loss of generality that i is an
elementary semifree extension, i : A → A q L(V ), with d(V ) ⊆ A, and consider a
diagram of the form

A C

Aq L(V ) D.

i

γ

g

β

h

To define a lifting h : A q L(V ) → C we need only define a graded linear map
k : V → C such that the map h induced by universal properties of the free graded
Lie algebra and of the coproduct of graded Lie algebras has the required properties:

A Aq L(V ) L(V )

C

i

γ

∃!h

k

Let {vi} be a homogeneous basis of the graded vector space V . By definition of
elementary semifree extension the elements dvi belong to A, so the only possible
definition for the lifting is h(dvi) = γ(dvi). Then dh(dvi) = 0, and gh(dvi) =
gγ(dvi) = β(dvi) = dβ(vi). Since g is a quasi-isomorphism the h(dvi) are exact in
C, so there exist ci ∈ C such that h(dvi) = dci. A surjective quasi-isomorphism is
surjective on cocycles and therefore, since

d(g(ci)− β(vi)) = g(dci)− β(dvi) = gh(dvi)− gh(dvi) = 0,

there exist c′i ∈ Z∗(C) such that β(vi) = g(ci + c′i). We then set h(vi) := ci + c′i,
which is the required lifting, as gh(vi) = β(vi) and dh(vi) = dci + dc′i = dci =
h(dvi).
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Proposition 5.7. For every commutative diagram of DG-Lie algebras

A C

Aq L(V ) D,

i

γ

g

β

h

where i is a free extension and g is surjective, there exists a lifting h : AqL(V )→ C
making both triangles commute.

Proof. It is enough to define a map of complexes h : V → C: in fact, by the
universal property of the free DG-Lie algebra this extends to a DG-Lie morphism
h : L(V )→ C, and then to a DG-Lie morphism h : AqL(V )→ C by the universal
property of the coproduct.

Since V is acyclic, there is a splitting of graded vector spaces V = Z∗(V )⊕W
with d(V ) = d(W ) = B∗(V ) = Z∗(V ). We start by defining a graded linear map
W → C. Taking generators wi ∈W we set h(wi) := ci, where ci ∈ C are elements
such that g(ci) = β(wi), which exist because of the surjectivity of g. As remarked
before, every z ∈ Z∗(V ) is a coboundary, so z = dx with x ∈ W : we then set
h(z) = h(dx) := dh(x), so that h commutes with differentials. The induced map
h : Aq L(V )→ C is such that hi = γ and gh = β.

Proposition 5.8. Every morphism f : A→ B of DG-Lie algebras can be factored
as a free extension followed by a surjective morphism:

Aq L(V )

A B

g

f

i

Proof. We construct an acyclic complex of vector spaces (V, d) such that there is
a surjective map of complexes V → B, which induces a surjective morphism of
DG-Lie algebras L(V )→ B, and hence a surjective morphism of DG-Lie algebras
g : Aq L(V )→ B such that gi = f .

Let {bij} be elements of Zi(B) whose cohomology classes generate Hi(B). For

every bij , let cij be a new element of degree i − 1, and set V i−1 := Bi−1 ⊕ K〈cij〉,
dcij = bij . There is a surjection V → B, and V is by construction acyclic.

Proposition 5.9. Every morphism f : L→M of DG-Lie algebras can be factored
as a semifree extension followed by a surjective quasi-isomorphism.

Proof. Using Proposition 5.8, factor f as

L C M,
j g
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with j a free extension and g a surjective map. Since a free extension is in par-
ticular a semifree extension, and semifree extensions are closed by composition by
definition, it is sufficient to factor the surjective map g : C → M as a semifree
extension followed by a quasi-isomorphism. We construct a sequence of DG-Lie
algebras and a sequence of morphisms fn : Cn →M

C = C0 C1 C2 · · · Cn · · ·

M

g=f0

io i1

f1 f2

in−1 in

fn

such that:

1. Cn = Cn−1 q L(Vn) as a coproduct of graded Lie algebras, with d(Vn) ⊆
Cn−1,
in−1 : Cn−1 → Cn is the natural inclusion in the coproduct;

2. fn extends fn−1;

3. f1 : Z∗(C1)→ Z∗(M) is surjective;

4. f−1
n (B∗(M)) ∩ Z∗(Cn) ⊆ B∗(Cn+1) ∩ Cn, ∀n > 0

Setting C̃ = colimn Cn, f̃ = colimn fn and i : C → C̃ the natural inclusion, we
have that

C C̃ Mi f̃

is a factorisation with the required properties. Note that by the surjectivity of
f0 = g all the maps fn are surjective, and thus so is f̃ .

We begin by setting C0 = C, f0 = g, and V1 = Z∗(M), d(V1) = 0. The
inclusion h1 : V1 →M induces the DG-Lie algebra map f1 : C1 := CqL(V1)→M ,
which is surjective on cocycles by construction. For the next step, let wj be
generators of f−1

1 (B∗(M)) ∩ Z∗(C1), so that dwj = 0 and f1(wj) = dnj . Set
V2 = K〈yj〉, dyj = wj ∈ C1 and h2 : V2 → M , h2(yj) = nj , then h2 induces the
DG-Lie algebra map f2 : C2 = C1 q L(V2)→M with the required properties.

Assume now that we have constructed Cn and fn : Cn →M , and let vi be a set
of generators of f−1

n (B∗(M)) ∩Z∗(Cn), so that dvi = 0 and fn(vi) = dmi. Define
Vn+1 = K〈xi〉, dxi = vi ∈ Cn, and hn+1 : Vn+1 → M as hn+1(xi) = mi. Define
Cn+1 = Cn q L(Vn+1), and fn+1 as the natural DG-Lie algebra map induced by
hn+1.

Remark 5.10. Consider the category of bounded above DG-Lie algebras DGLA<0
K

and the faithful inclusion functor

ι : DGLA<0
K → DGLAK.
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The canonical truncation of an unbounded DG-Lie algebra (L, d, [−,−]), defined
as

τ(L)i =


Li if i < −1,

ker(d) ∩ L−1 if i = −1,

0 if i > −1

gives a a functor τ : DGLAK → DGLA<0
K which is right adjoint to ι. We show

here that by applying τ one obtains exactly the model structure on DGLA<0
K

considered in [15]. In this model structure, the fibrations – which we will denote
by F<0 – are the maps surjective in all degrees i < −1 and the weak equivalences
– which we will denote byW<0 – are the quasi-isomorphisms. Cofibrations, which
we denote by C<0, are defined in accordance to Lemma 4.6 as the maps with the
left lifting property with respect to trivial fibrations.

In fact, τ applied to a fibration in DGLAK, i.e., to a surjective map, gives
exactly a map which is surjective in all degrees i < −1. Denote as usual by F , C
and W the fibrations, cofibrations and weak equivalences of the model structure
on DGLA. We then have that

ι(F<0 ∩W<0) ⊆ F ∩W :

any quasi-isomorphism f : L → M in DGLA<0
K which is surjective in degrees

i < −1 is also surjective in degree −1. In fact, for any x ∈ M−1 one has dx = 0,
so by the fact that f is a quasi-isomorphism there exists y ∈ L−1 such that
f(y) = x + dz, with z ∈ M−2. Since f is surjective in degree −2, there exists
t ∈ L−2 such that f(t) = z, hence x = f(y)− df(t) = f(y − dt). By the fact that
τ ◦ ι is the identity one obtains the inclusion F<0 ∩W<0 ⊆ τ(F ∩W). The other
inclusion τ(F ∩W) ⊆ F<0 ∩W<0 is clear, so that τ(F ∩W) = F<0 ∩W<0 .

The maps in C<0 are by definition those with the left lifting property with
regards to the maps in F<0 ∩W<0 = τ(F ∩W). By the adjointness of τ and ι,
this means that the maps in ι(C<0) are exactly those with the left lifting property
with regards to the maps in F ∩W, so again by Lemma 4.6 they coincide with the
cofibrations in DGLA. Applying τ to the identity ι(C<0) = C, we conclude that
C<0 = τ(C), so that the functors ι and τ preserve all the model structure.

6. Examples

This section contains an example of a DG-Lie algebra which is not cofibrant, in
spite of the underlying graded Lie algebra being free, and the proof that the cobar
construction of a locally conilpotent cocommutative coalgebra is a semifree DG-Lie
algebra.

In the first part of the section we assume that the reader has a basic knowledge
of deformation functors associated to differential graded Lie algebras: we refer for
instance to [11, 12] for a detailed treatment of the topic.
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6.1. A free graded Lie algebra which is not cofibrant

In the model structure on DG-Lie algebras living in degrees i < 0 and i ≤ 0 all
DG-Lie algebras whose underlying graded Lie algebra is free are cofibrant: see [15,
Proposition 5.5] and [13, Proposition 5.7] respectively. This example shows that
this is not true in the unbounded case.

Let t be an indeterminate of degree 1. Consider the free graded Lie algebra
L〈t〉 generated by t: as a graded vector space it is generated by t and by [t, t],
because [t, [t, t]] = 0 by the Bianchi identity. Since the differential of t has to be
of degree two, either dt = 0 or dt = λ[t, t] for some 0 6= λ ∈ K. Consider the case
where the differential of t is not zero: by rescaling t we can suppose without loss
of generality that dt = − 1

2 [t, t], i.e., that t is a Maurer–Cartan element. In fact, if
we set t′ := −2λt, then

dt′ = −2λdt = −2λ2[t, t] = −2λ2

[
− 1

2λ
t′,− 1

2λ
t′
]

= −1

2
[t′, t′].

Proposition 6.1. The free graded Lie algebra generated by one indeterminate in
degree 1 is cofibrant if and only if its differential is trivial.

Proof. Consider first the case where the differential is trivial, then the initial map

0→ L〈t〉

is an elementary semifree extension: in fact dt = 0 ⊂ 0. Let now dt be different
from zero, then by the above considerations we can set without loss of generality
dt+ 1

2 [t, t] = 0.
Notice that for any DG-Lie algebra M and any Maurer–Cartan element x ∈

M1, one has a morphism of DG-Lie algebras

fx : L〈t〉 →M, t 7→ x,

because dfx(t) = dx = − 1
2 [x, x] = − 1

2 [fx(t), fx(t)] = 1
2fx[t, t] = fx(dt).

Let 0 → V → A
ϕ−→ B → 0 be any small extension of Artin local K-algebras

with residue field K, and consider the following commutative diagram, where L is
a DG-Lie algebra, x is a Maurer–Cartan element of L⊗mB and fx(t) = x.

0 L⊗mA

L〈t〉 L⊗mB .

ϕ

fx

h

The vertical map on the right is surjective, and hence a fibration in the model
structure on the category of DG-Lie algebras. Notice that H∗(L〈t〉) = 0, so that
the vertical map on the left is a weak equivalence. If we suppose that L〈t〉 is
cofibrant, by the lifting axiom of Definition 4.3 there exists a map h making both
triangles commute: hence there exists y = h(t) ∈ L⊗mA such that

dy = dh(t) = h(dt) = h

(
−1

2
[t, t]

)
= −1

2
[h(t), h(t)] = −1

2
[y, y],
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and that ϕ(y) = ϕ(h(t)) = fx(t) = x, i.e., there exists a Maurer–Cartan element
of L⊗mA lifting x. This would of course imply that any Maurer–Cartan functor
is unobstructed, which is absurd. This fact is clear in the context of deforma-
tion theory, however we give here an easy example of a DG-Lie algebra whose
Maurer–Cartan functor is obstructed: the DG-Lie algebra (L〈t〉, d ≡ 0) generated
by one indeterminate in degree 1 and with trivial differential. In fact, the primary
obstruction map, which is equal to the induced bracket in cohomology

[−,−] : H1(L)×H1(L)→ H2(L),

is not trivial, so that the Maurer–Cartan functor is obstructed (see e.g. [12,
Appendix B]).

6.2. The cobar construction for a locally conilpotent cocommutative
coalgebra

A coassociative graded coalgebra is a pair (C,∆) consisting of a graded vector space
C and a morphism of graded vector spaces ∆: C → C ⊗ C, called a coproduct,
satisfying the coassociativity equation

(∆⊗ IdC)∆ = (IdC ⊗∆)∆: C → C ⊗ C ⊗ C.

The iterated coproducts ∆n : C → C⊗n+1 are defined recursively for n ≥ 0 by the
formulas

∆0 = Id, ∆n : C
∆−→ C ⊗ C Id⊗∆n−1

−−−−−−→ C ⊗ C⊗n = C⊗n+1.

The kernels of ∆n form an increasing filtration: ker ∆n ⊂ ker ∆n+1 for every n ≥ 0,
see e.g. [4] or [12, Chapter 11].

The following lemma is well known, see e.g. [12, Lemma 11.1.10], and in any
case easy to prove.

Lemma 6.2. Let (C,∆) be a graded coalgebra, then for every n ≥ 1,

∆(ker ∆n) ⊆ ker ∆n−1 ⊗ ker ∆n−1.

Defintion 6.3. The graded coalgebra (C,∆) is called (graded) cocommutative if
tw ◦∆ = ∆, where

tw: C ⊗ C → C ⊗ C, tw(x⊗ y) = (−1)x yy ⊗ x,

is the twist map.

Defintion 6.4. The graded coalgebra (C,∆) is called locally conilpotent if C =⋃
n ker ∆n.
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This property is sometimes also called primitive cogeneration in the literature,
see e.g. [1, Chapter 22]. For instance, the reduced symmetric coalgebra generated
by a graded vector space is cocommutative and locally conilpotent.

We briefly recall here the cobar construction for a cocommutative coalgebra.
For more details we refer to [1, Chapter 22], [15, Appendix B] for the bounded case
and to [4] for the unbounded case. Let (C,∆) be a locally conilpotent cocommu-
tative graded coalgebra, and denote by s : C → C[−1] the suspension. Consider
the free graded algebra T (C[−1]), which is a DG-algebra with differential defined
as

d(sx) =
∑

(−1)xisxi ⊗ sx′i,

for x ∈ C such that ∆(x) =
∑
i xi ⊗ x′i, and extended to the whole tensor algebra

via the Leibniz rule. By the cocommutativity of the coproduct ∆, the above
differential restricts to the free graded Lie algebra L(C[−1]); the differential can
be expressed as

d(sx) =
1

2

∑
(−1)xi [sxi, sx

′
i], (6.1)

for x ∈ C such that ∆(x) =
∑
i xi ⊗ x′i. The cobar construction L(C) associated

to (C,∆) is the DG-Lie algebra L(C[−1]) with the differential (6.1).

Proposition 6.5. The cobar construction L(C) associated to the locally conilpo-
tent cocommutative graded coalgebra (C,∆) is a semifree DG-Lie algebra.

Proof. We show that the initial map 0 → L(C) is the countable composition of
semifree extensions. Consider the increasing filtration of C given by the kernels of
the iterated coproduct:

0 = ker ∆0 ⊂ ker ∆ ⊂ · · · ⊂ ker ∆n ⊂ ker ∆n+1 ⊂ · · · ,

and the associated quotients

An :=
ker ∆n

ker ∆n−1
.

Denoting by Bn := An[−1], then C[−1] =
⊕

nB
n, because by hypothesis (C,∆)

is locally conilpotent. We prove that for every n ≥ 1 the map

an :

n−1∐
i=1

L(Bi)→
n∐
i=1

L(Bi),

is an elementary semifree extension, i.e., that d(Bn) ⊆
∐n−1
i=1 L(Bi).

We claim that for every n ≥ 1, the differential d descends to

d : Bn → L(Bn−1)2 ⊂ Bn−1 ⊗Bn−1.

Fix n ≥ 1; by Lemma 6.2, one has that ∆: ker ∆n → ker ∆n−1 ⊗ ker ∆n−1, hence

∆[−1] : ker ∆n[−1]→ ker ∆n−1[−1]⊗ ker ∆n−1[−1], ∀n ≥ 1.
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Since the differential on C[−1] is defined as d = ∆[−1], one obtains a map

d :
ker ∆n

ker ∆n−1
[−1]→ ker ∆n−1

ker ∆n−2
[−1]⊗ ker ∆n−1

ker ∆n−2
[−1].

By the cocommutativity of the coproduct ∆, the image of d is contained inside

L(ker ∆n−1

ker ∆n−2 [−1])2 = L(Bn−1)2.
The countable composition

0→ L(B1)→ L(B1)q L(B2)→ · · · →
n∐
i=1

L(Bi)→
n+1∐
i=1

L(Bi)→ · · ·

is equal to the initial map 0→ L(C), because
∐n
i=1 L(Bi) ∼= L(

⊕n
i=1B

i) as graded
Lie algebras.

Remark 6.6. By the results of [15] in the bounded above case and [4] in the un-
bounded case, there exists a model structure on the category of differential graded
cocommutative coalgebras. Moreover the cobar construction is a left Quillen func-
tor, which means it preserves cofibrations and trivial cofibrations. Cofibrations
in the category of DG-coalgebras are the injective maps, therefore in the setting
of Proposition 6.5 it is clear that L(C) is cofibrant, since all DG-coalgebras are
cofibrant.
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