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planar graphs arisen from planar chorded cycles
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Abstract. In this paper, a new family of rotationally symmetric planar graphs is described

based on an edge coalescence of planar chorded cycles. Their local fractional metric dimension

is established for those ones arisen from chorded cycles of order up to six. Their asymptotic

behaviour enables us to ensure the existence of new families of rotationally symmetric planar

graphs with either constant or bounded local fractional dimension.

1. Introduction

In the 1970’s, Slater [35] and Harary and Melter [19] introduced independently
the metric dimension problem, which consists of determining the minimum num-
ber of vertices within a graph that may uniquely be represented by their respective
vector of distances. Being NP-hard [17], this problem has explicitly been solved
for different types of graphs [8, 20, 23]. General and specific bounds are known
depending on the order, maximum degree or diameter of the graph under consid-
eration [8, 14, 36]. In this regard, Imran et al. [21, 22] asked for characterizing
families of (rotationally symmetric) planar graphs with constant metric dimension
(see also [8, 24, 26]). The metric dimension problem plays a relevant role not
only in the study of structural properties of graphs, but also in solving real life
problems such as robot navigation [26], pattern recognition and image processing
[30], representation of chemical compounds [8], combinatorial optimization [33] or
networking [5], amongst others. Particularly, the metric dimension problem con-
cerning hexagonal graphs [29, 34, 38] has acquired special relevance because of
their implementation in computer graphics [27], multiprocessor networks [9] and
cellular networks [16].

In 2000, Chartrand et al. [8] formulated the metric dimension problem as an
integer programming problem. Shortly after, Currie and Oellermann [10] formu-
lated a linear programming relaxation whose optimal solution they termed frac-
tional metric dimension of the graph (see also [3, 11]). This new problem has
explicitly been solved for different types of graphs [4, 12, 13, 15, 32].

In 2018, a local version of the fractional metric dimension concerning only
adjacent vertices was introduced by Benish et al. [7] (see also [6]). Even if its study
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is still in a very initial stage, the local fractional metric dimension has explicitly
been determined for several types of graphs [1, 25]. More recently, Liu et al. [28]
have computed the local fractional metric dimension of a family of rotationally
symmetric planar graphs derived from an edge coalescence of a cycle of order m
with m distinct chorded cycles of a same order n ∈ {3, 4, 5}. This paper delves
into this last topic by describing a new family of rotationally symmetric planar
graphs arisen from an edge coalescence of m planar chorded cycles of order n.

The paper is organized as follows. In Section 2, we remind some preliminary
concepts and results on graph theory that are used throughout the paper. In Sec-
tion 3, we describe the mentioned family of rotationally symmetric planar graphs.
We focus in particular on those ones derived from planar chorded cycles of order
n ∈ {4, 5, 6}, for which we study their local fractional metric dimension. The case
n = 4 is dealt with at the end of Section 3, whereas exhaustive analyses of the
cases n = 5 and n = 6 are done in Section 4. The obtained results are summarized
in the conclusion section, where we make use of the asymptotic behaviour in order
to ensure which ones of these rotationally symmetric planar graphs have either a
constant or a bounded local fractional metric dimension. Finally, all the tables
described in the body of the manuscript are enumerated in Appendix A.

2. Preliminaries

Let us review some basic concepts and results on graph theory that are used
throughout the paper. See [37] for more details about this topic.

Any graph G is formed by a set V (G) of vertices and a set E(G) of edges so
that each edge contains two vertices, which are said to be adjacent. The subset of
vertices that are adjacent to a given vertex v ∈ V (G) constitutes its neighborhood
N(v). Two adjacent vertices having the same neighborhood are called true twin
vertices. From here on, we denote uv the edge formed by two vertices u, v ∈
V (G). The number of vertices and the number of edges of the graph G constitute,
respectively, its order and size. If both of them are finite, then the graph is said to
be finite. The graph G is called bipartite if the set V (G) may be partitioned into
two subsets so that every edge contains exactly one vertex of each subset. Further,
two graphs are isomorphic if there exists a bijection between their sets of vertices
preserving their adjacency.

A path between two distinct vertices v, w ∈ V (G) is any ordered sequence of
adjacent and pairwise distinct vertices 〈 v0 = v, v1, . . . , vn−2, vn−1 = w 〉 in V (G),
with n > 2. A graph is connected if there always exists a path between any pair of
vertices. If the initial and final vertices of a path coincide, then it is called a cycle.
If all the vertices of a cycle are joined to a new vertex, then the resulting graph is
called a wheel. The new vertex is called the center of the wheel. Further, a chord
of an existing cycle in G is any edge of the graph containing two non-adjacent
vertices of the cycle. A chorded cycle is any cycle containing at least one chord.

A planar graph is any graph that can be embedded in the plane. That is, it
may be drawn on the plane without crossing edges. Figure 1 illustrates the set of
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non-isomorphic planar chorded cycles of order n ≤ 6.

Figure 1: Non-isomorphic planar chorded cycles of order n ≤ 6.

The union of two graphs G1 and G2 is the graph G1∪G2 such that V (G1∪G2) =
V (G1) ∪ V (G2) and E(G1 ∪G2) = E(G1) ∪ E(G2). If E(G1) 6= ∅ 6= E(G2), then
the edge coalescence [18] of G1 and G2 via u1v1 ∈ E(G1) and u2v2 ∈ E(G2) is the
graph G1 ·G2(u1v1, u2v2 : u3v3) resulting after identifying in G1 ∪G2 both edges
u1v1 and u2v2, which merge into a single new edge u3v3. Figure 2 illustrates this
concept with three different examples of edge coalescence between the same pair
of planar chorded cycles of order six.

Figure 2: Edge coalescences between the same pair of planar chorded cycles of order six.

Let G = (V (G), E(G)) be a finite connected graph. The minimum number
of edges within a path between two vertices v, w ∈ V (G) constitutes the distance
d(u, v). The diameter diam(G) of the graph G is the maximum distance between
any two vertices in V (G). Further, the representation of a vertex v ∈ V (G) with
respect to an ordered subset S = {v1, . . . , vk} ⊆ V (G) is the ordered k-tuple
r(v|S) := (d(v, v1), . . . , d(v, vk)). The subset S is a resolving set for the graph G if
r(v|S) 6= r(w|S), for every pair of distinct vertices v, w ∈ V (G). If such condition
holds for every edge vw ∈ E(G), then the subset S is a local resolving set. The
(local) metric dimension of the graph G is then defined as the minimum number
of vertices contained in any of its (local) resolving sets. It is denoted dim(G)
(ldim(G) in its local version).

The resolving neighbourhood of a pair of vertices v, w ∈ V (G) is the set

R{v, w} := {u ∈ V (G)| d(v, u) 6= d(w, u)}.

From here on, in order to simplify the notation of this manuscript, we also denote
RC{v, w} = V (G) \ R{v, w}. A resolving function [3] of the graph G is any map
ϑ : V (G)→ [0, 1] such that ∑

u∈R{v,w}

ϑ(u) ≥ 1, (2.1)
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for every pair of distinct vertices v, w ∈ V (G). The fractional metric dimension of
the graph G is

dimf(G) := min

 ∑
v∈V (G)

ϑ(v) : ϑ is a resolving function of G

 .

The concepts of local resolving neighbourhood and local resolving function arise
similarly in case of dealing only with pairs of adjacent vertices. Then, the local
fractional metric dimension of the graph G is defined as

ldimf(G) := min

 ∑
v∈V (G)

ϑ(v) : ϑ is a local resolving function of G

 .

Further, we denote from now on `(G) := min{|R{v, w}| : vw ∈ E(G)}. In par-
ticular, since v, w ∈ R{v, w}, for all v, w ∈ V (G), it is `(G) ≥ 2. The next result
follows from all the previous definitions.

Lemma 2.1 ([6, 7, 31]). Let G be a finite connected graph of order n ≥ 2. Then,

ldimf(G) ≤ dimf(G), (2.2)

n

n− ldim(G) + 1
≤ ldimf(G) ≤ n

`(G)
≤ n

2
(2.3)

1 ≤ ldimf(G) ≤ ldim(G) ≤ n− diam(G). (2.4)

In addition, the following assertions are satisfied.

1. ldimf(G) = 1 if and only if the graph G is bipartite.

2. ldimf(G) = n
2 if and only if each vertex in V (G) has a true twin vertex.

Example 2.2. Let G be the planar graph described in Figure 3. In order to
determine an upper bound of ldimf(G), we determine the cardinality of its local
resolving neighbourhoods. To this end, the symmetry of the graph G enables us
to focus on the following four resolving neighbourhoods.

RC{v1, v7} = {v10, v14, v15, v16, v20, v21}.

RC{v7, v13} = {v2, v5, v8, v12}.

RC{v13, v18} = {v3, v6, v21, v24}.

RC{v13, v24} = {v4, v5, v10, v11, v12, v16, v17, v18, v22, v23}.

Thus, `(G) = 14 and hence, Condition (2.3) implies that ldimf(G) ≤ 24
14 = 12

7 . In
fact, a simple computation establishes that ldimf(G) = 3

2 .
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Figure 3: Planar graph G such that ldimf(G) = 3
2
≤ 12

7
.

3. A family of rotationally symmetric planar graphs arisen
from planar chorded cycles

This paper focuses on the asymptotic behaviour of the local fractional metric
dimension of a particular family of rotationally symmetric planar graphs. They
arise from a sequential edge coalescence among a series of disjoint copies of a given
planar chorded cycle. In this section, we detail their construction and establish
some basic results concerning their local fractional metric dimension.

Let G1, . . . , Gm be m disjoint copies, with m ≥ 2, of a planar chorded cycle G
of order n, whose set of vertices is V (G) = {v1, . . . , vn}. Let vki ∈ V (Gk) denote
the corresponding copy of each vertex vi ∈ V (G). Without loss of generality, we
assume that the vertices are naturally labeled counterclockwise. Then, we are
interested in the planar graph Gm(G) that is sequentially defined as follows.

• Let G1(G) := G1 · G2(v12v
1
3 , v

2
n−1v

2
n : v2n−1v

2
n). (Notice that we label the

merged new edge in the same way that the edge in the second graph under
consideration. The same is done in the subsequent steps.)

• Let Gk(G) := Gk−1(G) · Gk+1(vk2v
k
3 , v

k+1
n−1v

k+1
n : vk+1

n−1v
k+1
n ), for each positive

integer k ∈ {2, . . . ,m− 1}.

• Finally, let Gm(G) := Gm−1(G) · Gm−1(G)(vm2 vm3 , v1n−1v
1
n : v1n−1v

1
n).

The resulting graph Gm(G) is a rotationally symmetric planar graph of order
m · (n− 2).

Based on the planar chorded cycles described in Figure 1, we enumerate in
Figure 4 all the vertex-labeled planar chorded cycles of order n ≤ 6 on which
the just defined constructive procedure may be implemented in order to get non-
isomorphic rotationally symmetric planar graphs. From here on, we refer them as
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quadrilateral (Q1 and Q2, for n = 4), pentagonal (P1 to P6, for n = 5) or hexagonal
(H1 to H17, for n = 6) chorded cycles.

Figure 4: Quadrilateral, pentagonal and hexagonal chorded cycles.

Figure 5 illustrates a representation of each one of the two non-isomorphic
rotationally symmetric planar graphs arisen from the quadrilateral chorded cycles
Q1 and Q2. In addition, Figure 6 illustrates the representations of a pair of
rotationally symmetric planar graphs arisen from the pentagonal chorded cycle P4

and the hexagonal chorded cycle H5. Notice that the first and last vertical edges
in each one of these two representations refer to the same edge. In a similar way,
Figures 7 and 8 outline all the rotationally symmetric planar graphs arisen from
pentagonal and hexagonal chorded cycles. Notice that, even if the vertex-labeling
has been omitted for making clearer the illustration, it coincides in each case with
that one described in Figure 6.

Table 1 illustrates the local fractional metric dimension of each one of the
planar chorded cycles described in Figure 4. Notice in particular that the minimum
value is reached for both graphs H1 and H2, which constitute different vertex-
labelings of the same bipartite graph (see Lemma 2.1). In order to determine the
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Figure 5: The graphs Gm(Q1) and Gm(Q2).

Figure 6: The graphs Gm(P4) and Gm(H5)

remaining values, we have computationally solved the linear programming problem
associated to each case [10].

Example 3.1. The linear programming problem based on the local fractional
metric dimension of the hexagonal chorded cycle H5 consists of finding a map
ϑ : V (H5)→ [0, 1] that minimizes

∑
1≤i≤6 ϑ(vi) subject to

∑
1≤i≤6 ϑ(vi) ≥ 1,

ϑ(v1) + ϑ(v2) + ϑ(v3) + ϑ(v4) + ϑ(v6) ≥ 1,

ϑ(v3) + ϑ(v4) + ϑ(v5) + ϑ(v6) ≥ 1,

ϑ(v1) + ϑ(v2) + ϑ(v5) ≥ 1.

SinceR{v1, v2} = R{v2, v3} = R{v3, v4} = V (H5), these three edges are related to
the case

∑
1≤i≤6 ϑ(vi) ≥ 1. The second case follows from R{v1, v4} and R{v1, v6}.

The third one follows from R{v4, v5} and R{v5, v6}). Finally, the fourth one fol-
lows from R{v1, v5}. An optimal solution of this problem is the resolving function
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Figure 7: Rotationally symmetric planar graphs arisen from pentagonal chorded cycles.

ϑ of H5 satisfying that ϑ(vi) = 1
2 , if i ∈ {1, 3, 5}, and zero, otherwise. Hence,

ldimf(H5) = 3
2 .

We are interested in the asymptotic behaviour of the local fractional metric
dimension of each rotationally symmetric planar graph arisen from the planar
chorded cycles described in Figure 4. In this regard, we finish this section by deal-
ing with those graphs arisen from quadrilateral chorded cycles. Those ones arisen
from pentagonal and hexagonal chorded cycles are studied in Section 4. Firstly,
we prove a preliminary lemma concerning the local fractional metric dimension of
a wheel. (Notice that it differs from the unproven Theorem 3 in [2], whose third
assertion seems not to be true.)

Lemma 3.2. Let Wn be the wheel graph of order n ≥ 4. Then,

ldimf(Wn) =


2, if n = 4,
3
2 , if n ∈ {5, 6},

n−1
4 , otherwise.

Proof. The case n ≤ 6 follows directly from solving the corresponding linear pro-
gramming problem. In any case, notice that the case n = 4 holds readily from
Lemma 2.1 once it is observed that every pair of vertices within the wheel graph
W4 are true twin.

Now, in order to deal with the case n > 6, let us suppose that V (Wn) =
{v0, . . . , vn−2, w}. Here, w denotes the center of the wheel graph Wn. In addition,
vivi+1 ∈ E(Wn), for every non-negative integer i < n, where, from here on, all the
indices are taken modulo (n − 1). Then, the computation of ldimf(Wn) requires
to minimize ϑ(w) +

∑
0≤i≤n−2 ϑ(vi) subject to{

ϑ(vi−1) + ϑ(vi) + ϑ(vi+1) + ϑ(vi+2) ≥ 1,

ϑ(w)− ϑ(vi−1)− ϑ(vi+1) +
∑

0≤i≤n−2 ϑ(vi),
∀i ≤ n− 2.
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Figure 8: Rotationally symmetric planar graphs arisen from hexagonal chorded cycles.

The first case derives from R{vi, vi+1}, whereas the second one derives from
R{w, vi}. An optimal solution of this problem is the resolving function ϑ of the
wheel graph Wn satisfying that ϑ(w) = 0 and ϑ(vi) = 1

4 , if 0 ≤ i ≤ n− 2. Hence,
ldimf(Wn) = n−1

4 .

The following result establishes the local fractional metric dimension of Gm(Q1)
and Gm(Q2).

Proposition 3.3. Let m ≥ 2 be a positive integer. Then,

ldimf(Gm(Q1)) =

{
3
2 , if m = 2,
m
2 , otherwise.

ldimf(Gm(Q2)) =

{
3
2 , if m ≤ 4,
m
4 , otherwise.

Proof. For Q1, the result holds from Lemma 3.2, because the planar graph Gm(Q1)
is a wheel graph of order 2m + 1. For Q2, the case m ∈ {2, 3, 4} follows directly
from solving the corresponding linear programming problem. In order to deal with
m ≥ 5, the computation of ldimf(Gm(Q2)) requires to solve the linear programming
problem consisting on minimizing the objective function ϑ(v13) +

∑
1≤i≤m(ϑ(vi1) +

ϑ(vi4)) so that the following cases hold, for all i ≤ m. Here, the superscripts are
all of them taken modulo m.

• From R{vi1, vi4}, it is ϑ(v13) +
∑

j 6∈{i+1, i+2}

(
ϑ(vj1) + ϑ(vj4)

)
≥ 1.

• From R{v13 , vi4}, it is ϑ(v13) +
∑

j 6∈{i−2, i+1} ϑ(vj1) +
∑

j 6∈{i−1, i+1} ϑ(vj4) ≥ 1.

• From R{vi4, vi+1
4 }, it is ϑ(vi−21 ) + ϑ(vi−11 ) + ϑ(vi+1

1 ) + ϑ(vi+2
1 ) + ϑ(vi−14 ) +

ϑ(vi4) + ϑ(vi+1
4 ) + ϑ(vi+2

4 ) ≥ 1.
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An optimal solution of this problem is the resolving function ϑ of the wheel
graph Wn such that ϑ(v) = 1

4 , if v = vi4, for some positive integer i ≤ m, and zero,
otherwise. Hence, ldimf(Wn) = m

4 .

4. Rotationally symmetric planar graphs based on pentagonal
and hexagonal chorded cycles

This section studies the local fractional metric dimension problem of the rotation-
ally symmetric planar graphs arisen from the pentagonal chorded cycles P1 to P6

and the hexagonal chorded cycles H1 to H17.

4.1. The pentagonal case

Except for Gm(P1) and Gm(P5), this problem has recently been dealt with by Liu
et al. [28], who have proved the following result.

Proposition 4.1 ([28]). Let m ≥ 4 be an even positive integer. For each i ∈
{2, 4, 6},

ldimf(Gm(Pi)) ≤
6m

3m + 2
,

They have also considered the rotationally symmetric graph Gm(P3), with
m ≥ 4 even, by indicating that ldimf(Gm(P3)) ≤ 3m

2m−1 (see [28, Theorem 6]).
Nevertheless, such an upper bound is based on a wrong use of Condition (2.3).
More specifically, they indicate that

∣∣R{vi4, vi5}∣∣ = 2m − 1, for every positive
integer i ≤ m (see [28, Lemma 6.(a)]. However, as we notice in the proof of
Proposition 4.2,

∣∣R{vi4, vi5}∣∣ = 3m+4
2 . A comprehensive study of the asymptotic

behaviour of the local fractional metric dimension of all the graphs Gm(Pi), with
m ≥ 2 and 1 ≤ i ≤ 6, is therefore necessary.

Proposition 4.2. Let m ≥ 2 be a positive integer. Then,

1. `(Gm(P1)) =

{
m + 2, if m ∈ {2, 3},
8, otherwise.

2. `(Gm(P2)) = 3m+3
2 .

3. `(Gm(P3)) =


3, if m = 2,

5, if m = 3,
3m+5

2 , if m > 3 is odd,
3m+4

2 , otherwise.

4. `(Gm(P4)) = `(Gm(P6)) =

{
5, if m = 3,
3m+3

2 , otherwise.
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5. `(Gm(P5)) =


3, if m = 2,

5, if m = 3,
3m+3

2 , if m > 3 is odd,
3m+2

2 , otherwise.

Proof. From the symmetry of the planar graphs under consideration, the result
follows readily from the minimum cardinality of some of their resolving neighbour-
hoods. More specifically, it is enough to focus on those ones indicated in Tables 2
and 3. In order to simplify the notation in these tables, and the subsequent ones,
we denote each vertex vbav

d
c by abcd, and, for each positive integer m, we denote

by mi the value m+i
2 , for all i ∈ {0, 1, 2, 3, 4}.

Based on the previous result, the following theorem establishes upper bounds
for the local fractional metric dimension of all the rotationally symmetric planar
graphs arisen from the pentagonal chorded cycles P1 to P6.

Theorem 4.3. Let m ≥ 2 be a positive integer. Then,

1. ldimf(Gm(P1)) ≤

{
3m
m+2 , if m ∈ {2, 3},
3m
8 , otherwise.

.

2. ldimf(Gm(P2)) ≤

{
2m
m+1 , if m is odd,
6m

3m+2 , otherwise.

3. ldimf(Gm(P3)) ≤


2, if m = 2,
9
5 , if m = 3,
6m

3m+5 , if m > 3 is odd,
6m

3m+4 , otherwise.

.

4. If i ∈ {4, 5, 6}, then ldimf(Gm(Pi)) ≤


2, if (i,m) = (5, 2),
9
5 , if m = 3,
2m
m+1 , if m > 3 is odd,
6m

3m+2 , otherwise.

Proof. For the planar graphs P2, P4 an P6, the case m even follows from Propo-
sition 4.1 together with the computational resolution of the linear programming
problem related to the case m = 2, which gives rise to the values ldimf(G2(P2)) =
ldimf(G2(P4)) = 3

2 and ldimf(G2(P6)) = 2. The remaining cases follows all of them
straightforwardly from Proposition 4.2 and Condition (2.3).
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4.2. The hexagonal case

Similarly to the pentagonal case, the following preliminary technical result is re-
quired.

Proposition 4.4. Let m ≥ 2 be a positive integer. Then,

1. `(Gm(H3)) = 2m + 1.

2. If i ∈ {4, 10, 12, 17}, then `(Gm(Hi)) =

{
4, if m = 2,

2m + 2, otherwise.

3. If i ∈ {5, 11, 13}, then `(Gm(Hi)) = 2m.

4. If i ∈ {6, 9, 14, 16}, then `(Gm(Hi)) = 4.

5. `(Gm(H7)) =

{
4m− 6, if m ≤ 4,

2m + 3, otherwise.

6. `(Gm(H8)) =

{
2m, if m ≤ 4,

8, otherwise.

7. `(Gm(H15)) =

{
4m− 6, if m ≤ 3,

2m + 2, otherwise.

Proof. Again, from the symmetry of the planar graphs under consideration, the
result follows readily from the resolving neighbourhoods indicated in Tables 4–7,
together with the following consideration. (Again, each vertex vbav

d
c is represented

as abcd in the mentioned tables.) Under the following assumptions, it is verified
that |R{v, w}| ≥ 4 for all vw ∈

(
E(Gm(H6)) \ {v14v16}

)
∪
(
E(Gm(H9)) \ {v15v16}

)
∪(

E(Gm(H14)) \ {v14v16}
)
∪
(
E(Gm(H16)) \ {v11v14}

)
.

Based on the previous result, the following theorem establishes upper bounds
for the local fractional metric dimension of all the rotationally symmetric planar
graphs arisen from the hexagonal chorded cycles H1 to H6.

Theorem 4.5. Let m ≥ 2 be a positive integer. Then,

1. ldimf(Gm(H1)) = ldimf(Gm(H2)) = 1.

2. ldimf(Gm(H3)) ≤ 4m
2m+1 .

3. If i ∈ {4, 10, 12, 17}, then ldimf(Gm(H4)) ≤

{
2, if m = 2,
2m
m+1 , otherwise.

4. If i ∈ {5, 11, 13}, then ldimf(Gm(Hi)) ≤ 2.
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5. If i ∈ {6, 9, 14, 16}, then ldimf(Gm(Hi)) ≤ m.

6. ldimf(Gm(H7)) ≤

{
2m

2m−3 , if m ≤ 4,
4m

2m+3 , otherwise.

7. ldimf(Gm(H8)) ≤

{
2, if m ≤ 4,
m
2 , otherwise.

8. ldimf(Gm(H15)) ≤

{
2m

2m−3 , if m ≤ 3,
2m
m+1 , otherwise.

Proof. For the planar graphs H1 and H2, the result follows from Lemma 2.1,
because both graphs Gm(H1) and Gm(H2) are bipartite. The remaining cases
follows all of them straightforwardly from Proposition 4.4 and Condition (2.3).

5. Conclusion and further work

In this paper, we have described a new family Gm(G) of rotationally symmetric
planar graphs arisen from an edge coalescence of m disjoint copies of a given planar
chorded cycle G of order n. For n ≤ 6, we have obtained either the exact value or
an upper bound of the local fractional metric dimension ldimf(Gm(G)), whatever
the planar chorded cycle G is. The obtained results are summarized in Table 8 just
after the bibliography. Where possible, we indicate the asymptotic behaviour of
the corresponding local fractional dimension. Particularly, our results generalize
those ones obtained by Liu et al. [28], by considering the odd case for n = 5,
together with the case m = 2.

Further work is still required in order to determine not only the asymptotic
behaviour of the remaining cases, but also to deal with higher orders. In this
regard, and according to the lower bound described in Condition (2.3), the study
of the local metric dimension of the rotationally symmetric planar graphs Gm(G)
may play a relevant role. Similarly, the establishment of new general lower bounds
concerning the local fractional metric dimension of any graph also constitutes a
primordial aspect to be considered as further work. Finally, to delve into the study
of structural properties of the rotationally symmetric planar graphs Gm(G) may
also be of usefulness. In any case, let us remark that the local fractional dimension
problem is still in a very initial stage, and much more work must be done even
for establishing either exact values or lower/upper bounds for the most commonly
used types of graphs. Lemma 3.2 contributes in this regard by establishing the
local fractional metric dimension of a wheel graph, which constitutes indeed a
correction to the unproven Theorem 3 in [2].
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dimension of some families of graphs. Electron. Notes Discret. Math. 22, 129–133 (2016);
doi:10.1016/j.endm.2005.06.023

[21] Imran, M., Baig, A. Q., Ahmad, A.: Families of plane graphs with constant metric dimen-
sion. Util. Math. 88, 43–57 (2012)

[22] Imran, M., Baig, A. Q., Bokhary, S. A. U. H.: On the metric dimension of rotationally-
symmetric graphs. Ars Combin. 124, 111–128 (2016)

https://doi.org/10.1088/1755-1315/243/1/012043
https://doi.org/10.21123/bsj.2020.17.4.1288
https://doi.org/10.1016/j.disc.2011.05.039
https://doi.org/10.1142/S1793830913500377
https://doi.org/10.1109/JSAC.2006.884015
http://prr.hec.gov.pk/jspui/handle/123456789/14444
http://arxiv.org/abs/1810.02882
https://doi.org/10.1016/S0166-218X(00)00198-0
https://doi.org/10.1016/S0166-218X(00)00198-0
https://doi.org/10.1109/12.46277
https://doi.org/10.1016/j.disc.2005.09.015
https://doi.org/10.1016/j.dam.2014.01.006
https://doi.org/10.1016/j.disc.2011.11.020
https://www.jstor.org/stable/43660718
https://doi.org/10.1109/TPDS.2002.1036069
https://doi.org/10.1016/j.disc.2013.01.027
https://doi.org/10.1016/j.endm.2005.06.023


Local fractional metric dimension of symmetric planar graphs 173

[23] Imran, M., Bashir, F., Baig, A. Q., Bokhary, S. A. U. H., Riasat, A., Tomescu, I.: On metric
dimension of flower graphs fn×m and convex polytopes. Util. Math. 92, 389–409 (2013)

[24] Javaid, I., Rahim, M. T., Ali, K.: Families of regular graphs with constant metric dimension.
Util. Math. 75, 21–33 (2008)

[25] Javaid, M., Raza, M., Kumam, P., Liu, J. B.: Sharp bounds of local fractional
metric dimensions of connected networks. IEEE Access 8, 172329–172342 (2020);
doi:10.1109/ACCESS.2020.3025018

[26] Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math.
70, 217–229 (1996); doi:10.1016/0166-218X(95)00106-2

[27] Lester, L., Sandor, J.: Computer graphics on a hexagonal grid. Comput. Graph. 8, 401–409
(1984); doi:10.1016/0097-8493(84)90038-4

[28] Liu, J., Aslam, M. K., Javaid, M.: Local fractional metric dimensions of ro-
tationally symmetric and planar networks. IEEE Access 8, 82404–82420 (2020);
doi:10.1109/ACCESS.2020.2991685

[29] Manuel, P., Rajan, B., Rajasingh, I., Monica M, C.: On minimum metric dimension of
honeycomb networks. J. Discrete Algorithms 6, 20–27 (2008); doi:10.1016/j.jda.2006.09.002

[30] Melter, R., Tomescu, I.: Metric bases in digital geometry. Computer Vision, Graphics, and
Image Processing 25, 113–121 (1984); doi:10.1016/0734-189X(84)90051-3

[31] Okamoto, F., Phinezy, B., Zhang, P.: The local metric dimension of a graph. Math. Bohem.
135, 239–255 (2010)
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Appendix

A. Tables

G ldimf(G)
Qi (1 ≤ i ≤ 2) 3/2
Pi (1 ≤ i ≤ 6) 3/2
Hi (1 ≤ i ≤ 2) 1
Hi (3 ≤ i ≤ 12) 3/2
Hi (13 ≤ i ≤ 17) 5/3

Table 1: Local fractional dimension of planar chorded cycles of order n ≤ 6.

n abcd RC{vba, vdc} Case
1 1142 {12, 1m, 52, 5m}

4151
1151 {42} m = 3

{1m1, 4m3, 5m3} m > 3 odd
∅ m > 3 even

1152 {4i : 1 ≤ i ≤ m} m ∈ {2, 3}
{1i, 5i : i ∈ {1, 2, 3,m} }C m > 3

4142 {1m1, 4m3, 5m3} m odd
∅ m even

2 1151 {11, 1i, 41, 4i, 51, 5i : m1 < i ≤ m}C
4142 {11, 4m3, 5m3}5152
4151 ∅

Table 2: Resolving neighbourhoods of Gm(Pn), for n ∈ {1, 2}.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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n abcd RC{vba, vdc} Case
3 1151 {42} m ∈ {2, 3}

{1i, 42, 4i, 5i : 3 ≤ i ≤ m1} m > 3 odd
{1i, 42, 4j, 5j : 3 ≤ i ≤ m0, 3 ≤ j ≤ m3} m > 3 even

1152 ∅ m = 2
{43} m = 3
{1i, 4m3, 4(i + 1), 5(i + 1): m3 ≤ i < m} m > 3 odd
{5m4} m > 3 even

4142 {11, 12, 52} m = 2
{11, 12, 43, 52} m = 3
{11, 12, 1m3, 4m3, 52} m > 3 odd
{11, 12, 4m4, 52} m > 3 even

4151 ∅ m = 2
{42, 52} m = 3
{1i, 4m, 4i, 5i, 5m : m3 ≤ i < m} m > 3 odd
{1i, 4m0, 4(i + 1), 5(i + 1): m0 < i < m} m > 3 even

4152 {42, 53} m = 3
{1i, 42, 4i, 53, 5(i + 1): 3 ≤ i ≤ m1} m > 3 odd
{1i, 42, 4i, 5i : 3 ≤ i ≤ m3} m > 3 even

4 1141 {12, 1i, 51, 5i, 42, 4i : 3 ≤ i ≤ m1}
1151 {1i, 41, 4i, 4m, 5i : m3 ≤ i < m}
4142 {4m3, 5m3}
4151 {11, 1m, 52, 5m}

5 1141 {12, 1m, 51, 52}
1151 {41} m = 2

{1i, 41, 42, 4i, 5i : 3 ≤ i ≤ m1} m odd
{1i, 41, 42, 4i, 5m3, 5i : 3 ≤ i ≤ m0} m > 2 even

1152 {1m3, 1i, 41, 4m3, 4i, 4m, 5i, 5m : m3 < i < m} m odd
{1i, 41, 4i, 4m, 5i, 5m : m4 ≤ i < m} m even

4142 {51} m = 2
{1m3, 4m3, 51} m odd
{51, 5m4} m > 2 even

4151 {11, 1i, 4i, 4m, 5i, 5m : m3 ≤ i < m}C m odd

{11, 1i, 4m3, 4j, 5j : m0 < i < m, m3 < j ≤ m}C m even
4152 {11, 1i, 42, 4i, 5i, 5m3 : 3 ≤ i ≤ m1} m odd

{11, 1i, 42, 4i, 5i : 3 ≤ i ≤ m3} m even
6 1151 {1i, 4i, 5i : 2 ≤ i ≤ m1}

1152 {1m3, 1i, 4i, 51, 5i : m3 < i ≤ m}
4142 {11, 12, 43, 52} m = 3

{11, 12, 1m3, 4m3, 52} m 6= 3
4151 {1i, 4j, 5i : 2 ≤ i ≤ m1, m3 ≤ j ≤ m}
4152 {1m3, 1i, 4i, 51, 5j : m3 < i ≤ m, 2 ≤ j ≤ m1}
5152 {11, 41, 5m3}

Table 3: Resolving neighbourhoods of Gm(Pn), for 3 ≤ n ≤ 6.
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n abcd RC{vba, vdc} Case
3 1151 {1i, 4j, 5j, 61, 6i : 2 ≤ j ≤ m1 < i ≤ m} m odd

{1i, 4j, 5k, 61, 6l : 2 ≤ j ≤ m0 < i ≤ m, 2 ≤ k ≤ m3 < l ≤ m} m even
1161 {41, 4m, 51}
1162 {41, 5m1} m odd

{41, 4(m0 + 1)} m even
4151 {62} m odd

{1m3, 62} m even
4152 {62, 6m3} m odd

{1m3, 62} m even
5161 {11, 1i, 4m1, 4j, 5j, 5m, 6i : 2 ≤ i ≤ m1 < j < m} m odd

{1i, 4j, 5j, 5m, 6k : 2 < i ≤ m0 < j < m, 2 ≤ k ≤ m3} m even
4 1161 {4i, 5i : 2 ≤ i ≤ m1} m odd

{4i, 5j : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even
4151 {ij : i ∈ {1, 4, 5, 6}, 2 ≤ j ≤ m1} m odd

{1i, 4i, 5j, 6j : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even
5152 {11, 41, 5m1, 6m1} m odd

{11, 1(m0 + 1), 41, 4m3} m even
5161 {62, 6m} m = 2

{12, 1(m− 1), 62, 6m} m > 2
5 1141 {1i, 4j, 51, 5j, 6k : 2 ≤ i ≤ m1 < j ≤ m, 2 < k ≤ m3} m odd

{12, 1i, 4j, 51, 5k, 6i : 2 < i ≤ m3 < k ≤ m, m0 < j ≤ m} m even
1151 {1i, 41, 4j, 5j, 61, 6i : 2 ≤ j ≤ m1 < i ≤ m} m odd

{1m3, 1i, 4j, 5k, 61, 6i : 2 ≤ k ≤ m3 < i ≤ m, 1 ≤ j ≤ m0} m even
1161 {4m, 51} m odd

{4m, 51, 5m3} m even
1162 {5m3} m odd

{4m3} m even
4151 {11, 62, 6m3} m odd

{11, 1m3, 62} m even
4152 {1m3} m odd

{6m4} m even
5161 {11, 1i, 4m1, 4j, 5j, 5m, 6i, : 2 ≤ i ≤ m1 < j < m} m odd

{1i, 4j, 5k, 6l : 1 ≤ i ≤ m0 < k ≤ m, 2 ≤ l ≤ m3 ≤ j < m} m even

6 4161 {11, 1m, 41, 61}C

Table 4: Resolving neighbourhoods of Gm(Hn), for 3 ≤ n ≤ 6.
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n abcd RC{vba, vdc} Case
7 1161 {12, 1i, 4i, 4(m1 + 1), 5i, 62, 6i : 2 < i ≤ m1} m odd

{1i, 4j, 5j, 62, 6j : 2 ≤ i ≤ m0, 2 < j ≤ m3} m even
1162 {1i, 4j, 51, 5j, 61, 6j : m1 < i ≤ m, m3 < j ≤ m} m odd

{1i, 4i, 51, 5j, 61, 6i : m3 < i ≤ m, m4 < i ≤ m} m even
4151 {12, 1i, 4i, 4m1, 5i, 5m1, 62, 6i, 6m1 : 2 < i < m1} m odd

{12, 53, 62} m = 4
{12, 1i, 4i, 5i, 62, 6i : 2 < i ≤ m0} Other

4152 {1i, 4i, 5j, 6i, 6m : m1 < i < m, m3 < j ≤ m} m odd
{1m3, 1i, 4i, 5i, 5m, 6i, 6m : m3 < i < m} m even

5161 {1m1, 1i, 4i, 5i, 5m, 6i, 6m : m1 < i < m} m odd
{1m3, 1i, 4m3, 4i, 5i, 5m, 6m3, 6i, 6m : m3 < i < m} m even

5261 {12, 1i, 4i, 5j, 62, 6i : 2 < i ≤ m1, 2 < j ≤ m3} m odd
{1i, 4j, 5j, 62, 6j : 2 ≤ i ≤ m0, 2 < j ≤ m3, } m even

6162 {11, 41, 42, 4m3, 52, 6m3} m odd
{11, 1m3, 41, 42, 52, 5m4} m even

8 1161 {1i, 4i, 5i, 6i : 2 ≤ i ≤ m1} m odd
{1i, 4j, 5j, 6j : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even

1162 {1i, 1m, 41, 4j, 51, 5i, 61, 6i : m1 < i < m, m3 < j ≤ m} m odd
{1i, 41, 4i, 51, 5i, 61, 6i : m3 < i ≤ m} m even

4151 {41, 42, 51, 52}C m = 2

{41, 42, 4(m− 1), 4m, 51, 52, 53, 5m}C m > 2
4152 {11, 4m1} m odd

{11, 1m0} m even
4161 {42, 4m, 51, 53}
5161 {41, 4(m− 1), 52, 5m}
6162 {11, 6m3} m odd

{11, 1m3} m even

9 5161 {41, 4m, 51, 61}C
10 1161 {1i, 4i, 5i, 6i : 2 ≤ i ≤ m1} m odd

{1i, 4i, 5j, 6j : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even
5161 ∅
6162 {11, 41, 5m3, 6m3} m odd

{11, 1m3, 41, 4m3} m even
11 1161 {5m3} m odd

{4m3} m even
4151 {11, 1m1, 61} m odd

{11, 61, 6m0} m even
4161 {1i, 4j, 51, 5j, 6i : 2 ≤ i ≤ m1 < j ≤ m} m odd

{1i, 4k, 51, 5l, 6j : 2 ≤ i ≤ m0 < k ≤ m, 2 ≤ j ≤ m3 < l ≤ m}m even
5161 {1m1, 1i, 41, 4j, 5j, 6i : 2 ≤ j ≤ m1 < i ≤ m} m odd

{1i, 4j, 5k, 6i : m0 < i ≤ m, 1 ≤ j ≤ m0, 2 ≤ k ≤ m3} m even

Table 5: Resolving neighbourhoods of Gm(Hn), for 7 ≤ n ≤ 11.
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n abcd RC{vba, vdc} Case
12 1151 {12, 1i, 42, 4i, 52, 5i, 61, 6i : 2 < i ≤ m1} m odd

{1i, 4i, 52, 5j, 61, 6j : 2 ≤ i ≤ m0, 2 < j ≤ m3} m even
1161 {1m1, 1i, 41, 51, 4i, 4m, 5i, 5m, 6i : m1 < i < m} m odd

{1i, 41, 4i, 4m, 51, 5j, 6k : m0 < i < m, m4 ≤ j ≤ m, m3 < k < m}m even
4151 {1i, 4i, 5i, 6i : 2 ≤ i ≤ m1 ≤ i < m} m odd

{1i, 4i, 5j, 6j : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even
5152 {11, 41, 5m3, 6m3} m odd

{11, 1m3, 41, 4m3} m even
5161 {11, 1m, 62, 6m}

13 1141 {1i, 4j, 5k, 61, 6i : 2 ≤ j ≤ m1 < i ≤ m, 2 ≤ k ≤ m3} m odd
{1i, 4j, 5j, 61, 6k : m0 < i ≤ m, 2 ≤ j ≤ m3 < j ≤ m} m even

1161 {41, 5m3} m odd
{41, 4m3} m even

4151 {2m1, 61} m odd
{61, 6m3} m even

4161 {11, 1i, 4j, 51, 5j, 6i : 2 ≤ i ≤ m1 < j ≤ m} m odd
{1i, 4j, 51, 5k, 6l : 1 ≤ i ≤ m0 < j ≤ m, 2 ≤ l ≤ m3 < k ≤ m} m even

5161 {1m1, 1i, 41, 4j, 5j, 6i : 2 ≤ j ≤ m1 < i ≤ m} m odd
{1i, 4j, 5k, 6i : m3 ≤ i ≤ m, 1 ≤ j ≤ m0, 2 ≤ k ≤ m3} m even

14 4161 {11, 1m, 41, 61}C
15 1161 {12, 1i, 4i, 52, 5i, 62, 6i : 2 < i ≤ m1} m odd

{1i, 4j, 5j, 6k : 2 ≤ i ≤ m0, 2 < j ≤ m3, 2 ≤ k ≤ m3} m even
5152 {11, 1m1, 1m, 41, 5m3, 61} m odd

{11, 1m, 41, 4m3, 61, 6m3} m even
5161 {1i, 4j, 5j, 6k : m1 ≤ i < m, 2 ≤ j ≤ m1 < k ≤ m} m odd

{1i, 4j, 5k, 6l : 2 ≤ j ≤ m0 < i < m, 2 ≤ k ≤ m3 ≤ l ≤ m} m even
6152 {1i, 4j, 51, 5k, 6i : 2 ≤ i ≤ m1 < j ≤ m,m3 < k ≤ m} m odd

{1i, 4j, 51, 5m3, 5j, 6k : 2 ≤ i ≤ m0,m3 < j ≤ m, 2 ≤ k ≤ m3} m even

16 1141 {11, 41, 61, 62}C

Table 6: Resolving neighbourhoods of Gm(Hn), for 12 ≤ n ≤ 16.
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abcd RC{vba, vdc} Case
1161 {1i, 1m1, 41, 4i, 5i, 5m1, 6i, 6m1 : 2 ≤ i < m1} m odd

{1i, 41, 4i, 5i, 6j : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even
1162 {1i, 1m, 4i, 5i, 5m, 61, 6i, 6m : m1 < i < m} m odd

{1i, 1m, 4m3, 4i, 5m3, 5i, 5m, 61, 6i, 6m : m3 < i < m} m even
4151 {11, 12, 1i, 4i, 5i, 6j : 3 ≤ i ≤ m1, 2 ≤ j ≤ m3} m odd

{11, 12, 1i, 4j, 5i, 62, 6i : 3 ≤ i ≤ m3, 3 ≤ j ≤ m0} m even

4152 {1i, 4j, 4m, 5j, 6i, 6m3 : 1 ≤ j ≤ m1 ≤ i < m}C m odd

{1i, 4j, 4m, 5j, 6i, 6m4 : 2 < i ≤ m3, 1 ≤ j ≤ m3}C m even
4162 {42, 4m, 51, 52}
5161 {1i, 1m1, 4i, 5i, 5m1, 6i, 6m1, 6m : 2 ≤ i < m1} m odd

{1i, 4i, 5i, 6j, 6m, : 2 ≤ i ≤ m0, 2 ≤ j ≤ m3} m even
5162 {1i, 1m, 41, 4i, 5i, 5m, 61, 6j : m1 < i < m, m3 < j ≤ m} m odd

{1i, 1m, 41, 4m3, 4i, 5i, 5m, 61, 6i, 6m : m3 < i < m} m even
6162 {11, 4m1, 51, 6m3} m odd

{11, 1m3, 51, 5m3} m even

Table 7: Resolving neighbourhoods of Gm(H17).

G Asymptotic behaviour G Asymptotic behaviour
Q1 Unbounded H1, H2 = 1
Q2 Unbounded H3 ∼ 2
P1 Unknown H4, H10, H12, H17 ∼ 2
P2 ∼ 2 H5, H11, H13 ∼ 2
P3 ∼ 2 H6, H9, H14, H16 Unknown
P4, P5, P6 ∼ 2 H7 ∼ 2

H8 Unknown
H15 ∼ 2

Table 8: Asymptotic behaviour of ldimf(Gm(G)).
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