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From formal smoothings to geometric smoothings

Alessandro Nobile

Abstract. Let X be a projective, equidimensional, singular scheme over an algebraically closed
field. Then the existence of a geometric smoothing (i.e. a family of deformations of X over a
smooth base curve whose generic fibre is smooth) implies the existence of a formal smoothing
as defined by Tziolas. In this paper we address the reverse question giving sufficient conditions
on X that guarantee the converse, i.e. formal smoothability implies geometric smoothability.
This is useful in light of Tziolas’ results giving sufficient criteria for the existence of formal

smoothings.

1. Introduction

Let X be a proper k-scheme of finite type over an algebraically closed field k£ of
characteristic 0. A geometric smoothing of X is a Cartesian diagram

X — X

l lp (1.1)

Speck —*— C

where C'is a smooth curve, ¢ € C'is a closed point and p is a flat, proper morphism
such that p~(n¢) =: Xgen is smooth, where 7¢ is the generic point of C. We say
that X is geometrically smoothable if it has a geometric smoothing. Following [22,
Definition 11.6], we define a formal smoothing of X to be a formal deformation

X —X

| l»

Spf k —— Spf k[t]

such that there exists a b € N with 3° C FittdimX(Q;/ Spfkﬂt]])7 where J is an
ideal of definition of X and Fitta(Q;/ spfk[ey) is the a™ Fitting sheaf of ideals

(see [21, Tag 0CZ3]). We say that X is formally smoothable if it admits a formal
smoothing. Note that if X is smooth then it is geometrically (hence formally)
smoothable. Furthermore, Tziolas proved that geometrical smoothability implies
formal smoothability. The main result of this paper is the following:
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Theorem 1.1. If X is a projective, equidimensional and singular scheme over k
such that one of the following assumptions hold:

1. H3(X,0x) =0,
2. if X Gorenstein, then either the dualising sheaf wx or its dual wY is ample,
then the formal smoothability of X is equivalent to its geometrical smoothability.

The above theorem also extends Grothendieck’s algebraisation theorem, see
[21, Tag 089A], since we have found a way to enlarge the parameter space from
the spectrum of a local complete k-algebra to an affine curve.

1.1. Motivation

This result is motivated by the study of moduli spaces of surfaces of general type
and their higher-dimensional analogues.

Moduli spaces of surfaces of general type are well studied and it is known that
stable surfaces lie within the compactification of these moduli spaces.

A stable surface, see [15], is a proper two-dimensional reduced connected
scheme satisfying one local and one global condition. The local condition bounds
the badness of singularities that such surfaces can have, requiring them to be
semi-log-canonical (see [15, Definition 1.40]). The global condition requires the
dualising sheaf to be ample.

Since stable surfaces appear as points on the boundary of the moduli space of
surfaces of general type, it is of great interest to understand which stable surfaces
are geometrically smoothable.

In order to understand which surfaces can be smoothed, it is important to know
which singularities among the semi-log-canonical ones can be smoothed. The class
of such singularities is very broad since it admits both isolated and non-isolated
singularities. If X has isolated singularities, it is known [20, Proposition 2.4.6]
that H2(X ,Tx) is an obstruction space to the extension of local smoothings to
global ones.

The study of non-isolated singularities is not so easy. In [19], they gave exam-
ples of non-smoothable singularities with normal crossing divisors, showing that
not all non-isolated singularities are smoothable. Another difficulty that one has
to face studying non-isolated singularities is that the Schlessinger’s cotangent sheaf
T (and its higher analogues), which is a sheaf supported on the singular locus,
is difficult to describe and sometimes not finite dimensional, as shown in [6]. An
application to Godeaux surfaces of Theorem 1.1 is given in [5].

1.2. Structure of the paper

This paper is an expository article on formal schemes, formal deformation and
smoothing. It organized in four sections: in the first one it is collected an intro-
duction to formal schemes, following the treatment of Illusie in [16] and of Alonso
Tarrio, Jeremias Lopez and Pérez Rodriguez in [1] and [2]. The second section


https://stacks.math.columbia.edu/tag/089A

From formal smoothings to geometric smoothings 183

contains a discussion on formal deformation theory with, what we hope, a clear
treatment on the differences between the various type of definition of deformations.
We decide to add this information in order fix the terminology and better clarify
what is the main point of this article. This section ends with a discussion of two
different notions of smoothing of a scheme; in particular, in there we motivate the
definition of formal smoothing as given by Tziolas in [22]. The third section is an
overview of the Gorenstein condition and its behaviour under deformation, mostly
following [21]. Since we were not able to find a reference in the literature, in this
section we include a proof of a classical result on good behaviour of the Gorenstein
property under infinitesimal deformations. The fourth and last part contains the
main result, its proof and an example of application to a real moduli problem.

1.3. Conventions

All schemes are defined over an algebraically closed field k of characteristic 0. We
will assume that all schemes will be of finite type and separated and we will denote
by FTSy, (or simply by FTS) the category whose objects are separated, finite type
k-schemes and whose morphisms are morphisms of k-schemes.

2. Locally Noetherian formal schemes

We recall for the reader’s convenience some basic results on formal schemes. We
follow Illusie’s and Grothendieck’s language and presentation in [16] and [8] re-
spectively. At some points we will also refer to articles [1] and [2] by Alonso Tarrio,
Jeremias Lopez and Pérez Rodriguez.

2.1. The category of locally Noetherian formal schemes

Definition 2.1. An adic (or I-adic) Noetherian ring is a topological Noetherian
ring A that admits an ideal I, called an ideal of definition, such that

e {I"},en is a fundamental system of neighbourhoods of 0 in A;

e the topology induced on A turns A into a separated and complete topological
space.

In general an ideal of definition is not unique. Indeed for another ideal J to be
an ideal of definition it is necessary and sufficient that there are two non-negative
integers n, m such that J D I"™ D J".

We remark that A is an [-adic Noetherian ring if and only if A = l<i£1n AT =:

A, where A denotes the formal completion of A along the ideal I.

Examples of adic Noetherian rings are the ring of formal power series and
the ring of restricted power series, see [1, Example 1.6], in the following denoted
respectively by k[t] and A{Ty,...,T,}, with A an I-adic Noetherian ring and ¢,
Ty, ...,T, indeterminates.
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We wish to introduce the notion of an affine formal scheme, needed for the
definition of a formal scheme. If A is an [-adic Noetherian ring A and n a non-
negative integer, we denote by A, the quotient A/I"*! and by X,, the affine
scheme Spec A,,. We then have a chain of closed subschemes

XoCcXyC---CcX,C---
and all these subschemes have the same underlying topological space | Spec A/I|.

Definition 2.2. Let A be an adic Noetherian ring with I an ideal of definition.
The affine formal spectrum of A is the topologically ringed space (Spf A, Ospr 4)
where

e the topological space is
Spf A:={p € SpecA: I C p}

which is naturally homeomorphic to | Spec A/I|. Equivalently, we could have
defined Spf A to be the topological space made by open primes ideals of A;

e the structure sheaf is '
Ospt 4 = lim Ox,
n

and is a sheaf of topological rings. Its topology is given by

I(U, Ospr 4) = Im (U, Ox,)

for every open subset U of Spf A, where I'(U, Ox, ) has the discrete topology.

The definition above does not depend on the ideal of definition. Indeed if a
prime ideal p of A contains [ it also contains all of its powers, in particular it
contains I™ and hence J". Since p is prime, it follows that it contains also J.

Since the topology of Spf A admits a base of neighbourhoods made by quasi-
compact open subsets, it is enough to require that for every quasi-compact open
subset U of Spf A,

I'(U, Osps a) = ImT'(U, Ox,,),

n

where I'(U, Ox ) has the discrete topology (see [8, (1.10.1.1)]).

Remark 2.3. For an [-adic Noetherian ring A, the canonical morphism A — A
is an isomorphism and it induces a morphism of ringed spaces from Spf A = Spf A
to Spec A.

We can now define what are affine Noetherian formal schemes and locally
Noetherian formal schemes.

Definition 2.4. An affine Noetherian formal scheme is a topologically ringed
space isomorphic to an affine formal spectrum as in Definition 2.2.
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Definition 2.5. A locally Noetherian formal scheme is a topologically ringed space
(X, Ox) such that every point has an open neighbourhood which is isomorphic to
an affine Noetherian formal scheme.

A Noetherian formal scheme is a quasi-compact locally Noetherian formal
schemes.

Since affine formal schemes are locally topologically ringed spaces, locally
Noetherian formal schemes are locally topologically ringed spaces.

As in the classical case, we denote the locally Noetherian formal scheme (X, Ox)
by X.

Notation 2.6. For the rest of the article we will abbreviate “locally Noetherian
formal scheme” by LNFS.

Example of locally Noetherian formal schemes, which are in particular affine
Noetherian formal schemes, are Spf k[¢t] and Spf A{T},...,T,}. In what follows,
we will denote the formal scheme Spf A{T1,...,T,} by Ag ;4 and we will call it
the formal affine n-space. Observe that the underlying topological space of Ag ¢ 4
is Spec ((A/I)[T1, ..., T,]).

Notation 2.7. In what follows we will denote Spf k[[t] by & and, for every non-

negative integer n, S,, will denote Spec % = Spec %

Now we define morphisms between LNF'Ss.

Definition 2.8. Let X and ) be two LNFSs. A morphism of LNFSs is a morphism
f: X = 9 of locally ringed spaces such that for every open subset U of ) the

induced map
F(QL O@) — F(f_l(m)a O%)

is continuous.

As in the classical case of schemes, there is an equivalence of categories be-
tween adic Noetherian rings and affine Noetherian formal schemes, for more see [8,
(1.10.2.2)]. Furthermore, the classical adjunction holds also in the case of LNFSs.

Proposition 2.9 ([8, (1.10.4.6)]). Let X be a LNF'S and let A be a Noetherian adic
ring. Then there is a natural bijection between morphisms of locally Noetherian

formal schemes from X to Spf A and continuous ring homomorphisms from A to
I'(%,0z%).

As a further example of formal schemes, we can consider the completion of a
scheme along a closed subscheme.

Example 2.10. Suppose that X is a locally Noetherian scheme and consider a
closed subscheme Y of X with sheaf of ideals given by Z. Then we can consider the
schemes X, := (Y, Ox /Z"1), for every n € N, which gives rise to the sequence of
thickenings

XO;}XI <_>...ch_>...

Taking now the colimit we get a LNFS, denoted by X sy and called the formal
completion of X along Y.
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We point out that, if Y = X, then X/X = X. Therefore the category of LNFSs
contains the category of Noetherian schemes.

However, Hironaka and Matsumura in [13, Theorem (5.3.3) page 81] and in-
dependently Hartshorne in [11, Example 3.3 page 205] constructed two examples
showing that not all formal schemes appear as the completion of a single scheme
along a closed subscheme. This consideration motivates the following definition.

Definition 2.11. A LNFS X is called algebraisable if there are a scheme X and
a closed subscheme Y of X such that X = X,y .

2.2. Sheaves on LNF'Ss

We now define the notion of a coherent formal sheaf on a LNFS. In the classical
case of affine Noetherian schemes there is the functor (—) that associates to any
finitely generated module its coherent sheaf. Similarly, in the formal case there
is the functor (—)® which associates to any finitely generated module its formal
coherent sheaf.

Note that if A is an adic Noetherian ring, then every A-module M has an
induced I-adic topology where a system of fundamental neighbourhoods of 0 is
given by {I"™ - M},en.

Notation 2.12. If A is a Noetherian I-adic ring and M and N are finitely gener-
ated A-modules that are separated and complete in the induced [-adic topology,
then, by [8, (0.7.8.1)] it follows that every A-module homomorphism is automati-
cally continuous. Therefore, in what follows, we will write Hom 4 (M, N) in place
of Hom g _cont (M, N).

Furthermore, by [8, (0.7.8.2)] we have a canonical isomorphism

=~ M N
HOmA(M7N)—>£%nHOmm% <M7I"1+1]V)

From this we conclude that, if A is a Noetherian I-adic ring and M is a finitely
generated A-module, then

M A Mo\
MY = Homa(M, 4) = ljm Hom 4 ([H]WI“)_I (ww)‘

Definition 2.13. Let A be an [-adic Noetherian ring and let M be a finitely
generated A-module. Then we define the coherent formal sheaf M A on Spf A to be
the completion of M along the ideal sheaf I of the closed embedding Spec A/I —
Spec A:

M
M2 = lim ———.
S In-M

~

The functor (—)* satisfies similar properties of the functor (f:/)7 for more see
[8, (1.10.10.2)].
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Definition 2.14. An ideal of definition of a LNFS X is a formal coherent sheaf
of ideals J of Ox such that for any point x € X there exists a formal affine
neighbourhood Spf A of x in X and there exists an ideal of definition I of A such
that :i|SpfA = IA.

A formal coherent sheaf J on a LNFS X is an ideal of definition if and only
if (X, O—:ﬁ) is a scheme. Actually, for any LNFS X there exists a maximal ideal of
definition J which is the unique ideal of definition such that (X, %) is a reduced
scheme. In a Noetherian formal scheme the ideal of definition is not unique; indeed,
any other formal coherent sheaf of ideals JJ on the LNFS X is an ideal of definition
if and only if there are positive integers m,n such that the chain of inclusions
J D JI™ D™ holds.

Remark 2.15. As in the affine formal case, it is also possible to define LNF'Ss as
a collection of all of their infinitesimal neighbourhoods (or thickenings).

More precisely, let X be a LNFS and let J be an ideal of definition. For every
n € N, define (X,,,Ox,) to be the ringed space (|X|, Ox/I"T1) which is a locally
Noetherian scheme. This induces a sequence of closed embeddings

Xo=>Xi = Xo—= - = X, — -

whose ideals of definition are nilpotent and all the maps on the underlying topolog-
ical spaces are the identity. Then X can be recovered from the above sequence of
thickenings by passing through the direct limit in the category of locally Noethe-
rian topologically ringed spaces, i.e.

X = lianw

In particular there are natural morphisms of ringed spaces a,,: X, — X, where
«, is the identity on the underlying topological space and the map of sheaves of
topological rings is just the quotient map
Ox
CYELZ Ox — OX,L = W
Conversely, see [8, (1.10.6.3)], given a collection {X,}nen of locally Noetherian
schemes satisfying:

(i) for every n, there are morphisms of schemes 11 ,,: X, — X,,4+1 such that

they are homeomorphisms on the underlying topological spaces and induce

surjective morphisms of sheaves Ox, ., = Ox,;

(ii) if J,, := ker(Ox, — Ox,), then ker(Ox, — Ox, ) = J7 1 for m < n;
(iii) J1 € Coh(Xo);
then the topologically ringed space X := h_n; X, obtained by taking the direct

limit is a LNFS. Moreover, denoting by J := 7](Lier((%g — Ox,), then J is an ideal
of definition of X and satisfies the following properties

J=1lmJ, and 7" = ker(Ox — Ox,).

n
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Definition 2.16. A coherent formal sheaf on a LNFS X is a sheaf § such that, for
every open Noetherian formal affine subset 31 = Spf A of X, there exists a finitely
generated A-module M with |y = M2.

Next we give an interpretation of coherent formal sheaves on a LNFS as the
limit of coherent sheaves on all thickenings.

Remark 2.17. Let X be a LNFS, let J be an ideal of definition and let § be a
coherent formal sheaf of Ox-modules. For every n, let us denote by X,, the locally
Noetherian scheme as defined in Remark 2.15. If, for every n, we define

S

J@\n = jn—&-lg’

then we have that .%,, € Coh(X,) and we recover § by considering l&nn G
Conversely, see [8, (1.10.11.3)]), let X be a locally Noetherian scheme and J and
ideal of definition of X. Let {X,, }»en be a collection of locally Noetherian schemes
defining X as in Remark 2.15 and, for m < n, let ¢y, »: X, — X,, denote the
canonical maps. Suppose that for every n € N, .%,, is a coherent sheaf on X,
together with morphisms, for m <n

¢n,m: ﬁm — (d}n,m)*ﬁnv

such that for every I > m > n we have ¢,.m © ¢m; = ¢n;'. Then the limit
F:= @n F, 1s a coherent formal sheaf on X.

Definition 2.18. Let X be a LNFS and » € N. We say that a formal coherent sheaf
§ on X is locally free of rank r if for every open Noetherian affine subset 4l = Spf A
of X, the finitely generated A-module M (which exists since § is coherent) is free
of rank r.

We can give an equivalent definition of formal coherent sheaf on a LNFS based
on the infinitesimal thickening description of LNFSs. It is done as follows: a
formal coherent sheaf § on a LNFS X is locally free of finite rank r if each sheaf
T = % is locally free of the same rank r, for all natural numbers n, where J
is an ideal of definition of the formal scheme X.

2.3. Adic morphisms between LNFSs

In order to give a description in terms of thickenings for morphisms of formal
schemes, we need to restrict our interest to a particular kind of morphisms: the
adic morphisms.

Definition 2.19. A morphism f: X — 2) of LNFSs is called an adic morphism if
there exists an ideal of definition J of ) such that {*J - Ox is an ideal of definition
of X.

IThe conditions listed here are equivalent to requiring that the system {.%,, Om,n}n,meN be a
projective system.
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The definition of an adic morphism does not depend on the choice of the ideal
of definition; indeed one could equivalently ask that the condition *J - Ox holds
for all ideals of definition of 9 (see [8, (1.10.12.1)]). Observe that if f: X — )
is an adic morphism bethween LNFSs, then the topology on Oy determines the
topology on Ox.

Remark 2.20. Suppose that f: X — 2) is an adic morphism of LNFSs and let J
and J := §*J - Ox be ideals of definition of ) and X respectively.
Then we can consider the sequences of thickenings

Xo—=Xj—=--- Xy, —-- and Yp—=Y, —- -V, —. .-

as in Remark 2.15. Since the morphism was supposed to be adic, we get that for
every n € N, f*(J**1) - Ox = 3" *L. Therefore we have induced morphisms

fn: Xn =Y,

such that all the squares

j j (2.1)

Xn+1 % Yn+1
are Cartesian. Then f can be recovered by the collection of morphisms {f, }nen
by considering the colimit, i.e. f =1 . fn-
Conversely (see [16, (8.1.5)]), any system of morphisms of locally Noetherian
schemes {f,: X, — Y, }nen such that all squares eq. (2.1) are Cartesian induces
an adic morphism of LNFSs by considering the colimit.

2.4. Properties of adic morphisms

Now we introduce the notions of finite type, properness and flatness for a morphism
of formal schemes.

Definition 2.21. Let X and ) be LNFSs. A morphism f: X — 9) is said to be
of finite type if f is an adic morphism and the induced morphism fy: X9 — Yj is
of finite type.

Definition 2.22. A morphism f: X — 2) of LNFSs is proper if it is of finite type
and fo: X9 — Y) is proper.

Definition 2.23. Let f: X — 2) be a morphism of LNFSs. We say that | is flat if
it is adic and for every x € X, Ox ;. is a flat Oy j(,)-module.

Proposition 2.24. Let f: X — 2) be an adic morphism of LNFSs, let {f,: X, —
Y. }nen be a compatible collection associated to f and P be one of the following
properties of morphisms: of finite type, proper, flat. Then the following conditions
are equivalent:



190 A. Nobile

1. § has P;
2. fn has P, for every n € N.

We point out that we could have defined a flat morphism of LNFSs f: X — 9)
without assuming it to be adic. However, with that choice, we would not be able
to deduce the flatness of f from the flatness of all {f,}n>0 and vice versa. See
[2, Proposition 3.3] for the local criterion of flatness for formal schemes, and [2,
Example 3.2] gives a counter example.

We conclude the section by presenting one result needed in the proof of the
main result.

Theorem 2.25 ([10, II - Ex. 9.6(c)]). Let X be a LNFS, let J be an ideal of
definition of X and, for each n € N, let us denote by X,, the scheme (X,Ox/I™).
Suppose that, for every n € N, we are given invertible sheaves £,, on X,, together
with isomorphisms £ 11 ®ox, . Ox, = %,. Then the sheaf

L= %&n-’%n

n

is an invertible sheaf on X.

3. On deformations and smoothings

In this section we introduce various definitions of deformations of a scheme and we
discuss their relationship. Then we present and explain the two different definitions
of smoothing of a scheme used in this paper.

3.1. Introducing formal deformations

Definition 3.1. Let X be a scheme and let (R, m) be a complete local ring. A
formal deformation of X over R is a Cartesian diagram

X — X

| s (3.)

Spf(£) — Spf R

with § a flat morphism.

Notation 3.2. In the future, in order to ease the notation, we will denote any
deformation (either classical or formal) by its flat morphism. For example, we will
refer to the formal deformation of eq. (3.1) only by f: X — Spf R.

As we have seen before in Remark 2.15, formal schemes can be equivalently de-
scribed as compatible collection of infinitesimal thickenings. A similar description
can be given for formal deformations.
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Remark 3.3. Fix a formal deformation of a scheme X as in eq. (3.1) and, for any
non-negative integer n, let us denote by R,, the quotient ring R/m"*!. Then, for
any n > 0, we have diagrams

X
L
Spec R, —— Spf R.

Pulling back § along the closed immersion Spec R,, < Spf R, we obtain a collection
of deformations {f,: &,, — Spec R,,}n,>0 of X over Spec R,,. Moreover, by con-
struction, all these deformations of X are compatible, i.e. for every non negative
integer n, we have Cartesian diagrams

Xy s X1

J/fn J/fnﬁ-l

Spec R, — Spec R, 11.

The converse also holds true, as stated in the following proposition.

Proposition 3.4 ([12, Proposition 21.1]). Let (R, m) be an adic local Noetherian
ring with residue field k, let X be a scheme and define, for every non-negative
integer n, let R, := R/m"Tt. Suppose that for every n € N we are given a
family {fn: X, — Spec R, }n>0 of infinitesiaml deformations such that Xy = X,
the morphisms f,, are flat, of finite type and the following compatibility condition
holds: for all n > 0, the diagrams

Spec R,, — Spec Ry, +1

are all Cartesian.
Then there exists a (Noetherian) formal scheme X, flat over Spf R, such that
X =2 X Xgpt r Spec Ry, for every natural number n.

Concluding, Remark 3.3 together with Proposition 3.4 imply that a formal de-
formation f: X — Spf R is uniquely determined by a family of infinitesimal defor-
mations {f,,: X, — Spec Ry, },>0 satisfying the compatibility condition expressed
by asking that all diagrams of eq. (3.2) must be Cartesian.

Next we explain how to construct a formal deformation starting from a defor-
mation over the spectrum of an algebra essentially of finite type.

Remark 3.5. Let X be a scheme, let (A, m) be a k-algebra essentially of finite
type, i.e. a localisation of a k-algebra of finite type. Consider a deformation of X
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over A
Xe——3X

l s

Speck —— Spec A.

Let A be the formal completion of A at m; for every n > 0, define A,, to be the
quotient ring A/m"*! and note that we have canonical isomorphisms A/m"+A =
Ay, (see [4, Theorem 7.1 b)]). Now, for every natural number n, consider the
following diagram of solid arrows

Fa lf

Spec A,, — Spec A

and complete it to a Cartesian one. For every non-negative integer n, we have
that f,: X, — Spec A,, is a deformation of X and all these deformations satisfy
the compatibility condition of eq. (3.2). By applying Proposition 3.4 we have
constructed a formal deformation §: X — Spf A.

We call the formal deformation f constructed in remark 3.5 the formal defor-
mation associated to f.

3.2. Relations among different types of deformations

It is now a good time to exploit the relationships among the deformations we will
find in this article. We start by recalling a few definitions taken from [20].

Definition 3.6. Let X be a proper scheme over an algebraically closed field k
and consider the following Cartesian diagram of schemes

X — X

l lf (3:3)

Spec k — B

with f flat, proper and surjective morphism, b € B a closed point inducing the
closed embedding b: Speck — B. We say eq. (3.3) is

(a) a family of deformations of X iff B is a connected k-scheme;
(b) an algebraic deformation of X iff B is a k-scheme (essentially) of finite type;

(c) a local deformation of X iff B is the affine spectrum of a local Noetherian
k-algebra with residue field k;

(d) an infinitesimal deformation of X iff B = Spec A with A a local Artinian
k-algebra with residue field k;
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(e) a first-order deformation of X iff B = Speckle]/(g?).

(f) We say that a Cartesian diagram

X —X

| lf

Speck —— Spf A

of formal schemes is a formal deformation iff A is a local complete Noetherian
k-algebra with residue field k and f is a flat proper morphism of finite type of
formal schemes. As we have shown, this is equivalent to give a collection of
infinitesimal deformations {f,: X,, = Bp}nen, where B,, := Spec A/mzﬂ7

such that the following diagram is Cartesian

Xn — Xn+1

lfn lfn-}—l

Bn —> Bn+1.

We remark that in cases (c¢), (d), (e) and (f) the underlying topological spaces
of X and X (respectively X) are the same and what is changing is the scheme
(respectively formal scheme) structure. In particular it follows that the properness
condition of X is equivalent to f (respectively f) being proper.

In the same hypotheses and notations used in the previous definition, we have
the following properties:

1.

any algebraic deformation induces a local one by taking the closed point
b € B and considering the pull-back of f: X — B along the closed embedding
Spec OB,b — B;

any infinitesimal deformation is in particular a local deformation since every
Artinian ring is Noetherian too;

any first order deformation is an infinitesimal one because the ring of dual
numbers k[e]/(?) is an example of Artinian ring;

. since, by definition, a formal deformation is a (numerable) collection of in-

finitesimal deformations, we get that any formal deformation induces count-
ably many infinitesimal deformation;

on the other hand, any local deformation induces a formal one. To see this,
let m;, denotes the maximal ideal of the local ring Op 3 and, for any n € N,
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consider the following diagram made by Cartesian faces

Xn/l\X

T Speck m

X

o
Spec mffl Spec Op p.
b

Doing this for every n € N we get a collection of compatible deformations of
X, which defines a formal deformation.

In this work there are more steps to be aware of. To explain them, let us
consider the following diagram of deformations of a k-scheme X (this simply means
that each vertical arrow is a deformation of X):

Y

x T
Y

Yy

X

> y
SNk ]

SpecD —— SpecE —— B

where B is a k-scheme of finite type, F is a k-algebra (essentially) of finite type
(essentially of finite type means that it is the localization of a k-algebra of finite
type), D is a k-algebra which is also a DVR, A is a local complete Noetherian
k-algebra and C is a local Artinian k-algebra.

We will say that a morphism defining a deformation is induced by another if
the second deformation is isomorphic (as deformations, see [20, page 21]) to the
pull-back of the first along the closed embedding on the base. We point out that,
in general, there is not a natural arrow from f to g, hence the dashed arrow, unless
A is taken to be the completion of the DVR D along its maximal ideal. Now, h
is induced by w since the closed embedding b: Speck — B factors through the
spectrum of a k-algebra (essentially) of finite type. Passing from h to f can be
done as follows: since F is the localization of a k-algebra of finite type, it has a
maximal ideal mp and we can complete E along such maximal ideal. Similarly,
from g we can deduce f by considering the completion of the DVR along the
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powers of its maximal ideal. f induces f since the formal spectrum has a natural
map to the affine spectrum. Since the quotient of a DVR by powers of its maximal
ideal is an Artinian ring, it follows that g induces [. Similarly, f induces [. Lastly,
the formal deformation § induces a infinitesimal deformation [ since the quotient
of a local complete Noetherian ring by a power of the maximal ideal is an Artinian
ring.

3.3. Reversing some constructions on deformation

Reversing some constructions above is usually a hard problem and without further
hypotheses on the scheme X is a very hard one. For example, passing from a formal
deformation of a k-scheme X to a deformation of the same scheme over an affine
spectrum of a k-algebra (essentially) of finite type means to find “an algebraisation
of the formal deformation”. By an algebraisable formal deformation we mean the
following:

Definition 3.7. Let X be a scheme and let (A, m) be a complete local Noetherian
ring. A formal deformation f: X — Spf A is called algebraisable if there exist

e a k-algebra essentially of finite type (R, n),
e a deformation g: ) — Spec R of X,
e an isomorphism A ]A{n,

e an isomorphism between f and the formal deformation g: ) — Spf R asso-
ciated to g.

The deformation g: Y — Spec A is called an algebraisation of f.

The existence of an algebraisation is a very difficult problem. To solve it, Artin
introduced in [3] a weaker condition than algebraisation, “effectivity of a formal
deformation”, which we introduce next.

Definition 3.8. Let X be a scheme and let (A, m) be a complete local Noetherian
ring. A formal deformation f: X — Spf A is called effective if there exists a
deformation

X— X

l s

Speck — Spec A

with f a flat morphism of finite type such that X = X X -
The idea of Artin was to split the problem of algebraisation in two subproblems:

(i) to prove the effectivity of the formal deformation: in other words, using
notations above, find conditions on X to extend the formal deformation f to
the deformation f;
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(ii) to find hypotheses on the formal deformation to extend it to the spectrum
of an (essentially) of finite type k-algebra.

For step (ii), a sufficient criterion was given by Artin in [3] and goes by the
name of Artin algebraisation theorem, see [20, Theorem 2.5.14]. In there, under
the hypotheses that the central fibre X is a projective scheme, Artin showed that
if the formal deformation is versal, see [20, Definition 2.2.6], and effective then it
is algebraisable.

However, step (i) above can not be always achieved: for instance, the universal
formal deformation of a K3 surface is not effective, see [20, Example 2.5.12].

Recall from Definition 2.11 that a LNFS X is called algebraizable if there are
a scheme Y and a closed subscheme X of Y such that X = Y/ x. It also makes
sense to define algebraisable schemes in the relative setting. For this, suppose we
have a formal scheme X over the affine formal scheme Spf A, with A a local adic
Noetherian k-algebra A with residue field k.

Definition 3.9. We say that X is algebraisable over Spf A if there exists a scheme
X over Spec A such that X is isomorphic to the formal completion X, x,, where
Xo 1= X xgpf A4 Spec ?.

When the formal scheme X is proper over Spf A, we say that it is algebraisable
if there exists a proper scheme X over Spec A such that X =2 by /x,,» Where again
Xo =X XSpf A Spec ?

Note that the ring A is left fixed but we are changing the locally ringed space
structure induced by it.

At this point one wonders if there are conditions to ensure algebraisability of a
formal scheme and, in the case an algebraisation exists, how unique it is. We first
address the latter problem. Assume we have found an algebraisation of a locally
Noetherian formal scheme; then in general it is not unique and a counterexample
is given in [16, Remark 8.4.8.]. However, in [16, Corollary 8.4.7.], Illusie proved
that if we restrict to proper formal schemes then an algebraisation is unique up to
a unique isomorphism inducing the identity on X.

Theorem 3.10 ([9, (3.5.4.5)] or [16, Theorem 8.4.10]). Let A be a Noetherian I-
adic ring, let T = Spec A, T := Spf A, letf: X — T be a proper morphism of formal
schemes. For any | € N, let T} := Spec(A/I'*), X; := X x5 T;. Suppose that
there is an invertible formal sheaf £ such that £o := £/I£ is an ample invertible
sheaf on Xgo. Then X is algebraisable. Furthermore, if X is its algebraisation,
which is proper over T' since § was supposed proper, then there erists a unique
ample invertible sheaf M on X such that £= M x, .

We present now a few remarks on the above theorem. The first one is that the
hypotheses | proper, which is equivalent to Xy proper over k, and £y ample on
Xy together imply that X is projective over Tj. Furthermore, since § was proper,
the algebraisation of X is proper over T by the above definition; in particular it is
unique up to a unique isomorphism inducing the identinty on the formal scheme.
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We also remark that the existence of an ample invertible sheaf M on X together
with the fact that X" is proper, imply that X is projective over T.
A corollary of the above theorem, is the classical result by Grothendieck:

Theorem 3.11 ([7, Théoreme 4]). Let A be a local adic Noetherian ring with
residue field k, let X be a proper formal scheme over Spf A and suppose that

1. the local rings of Ox are flat A-modules (in other words § is flat);
2. Xo:= X ®4 k satisfies H*(Xo, Ox,) = 0;
3. Xy s projective.

Then X is algebraisable and its algebraisation is projective over Spec A.

We can interpret Theorem 3.11 as a theorem on deformations; it says that, in
the same notations as above, if the structure morphism f: X — Spf A is proper
and a formal deformation of a projective scheme X, with HZ(XO, Ox,) =0, then
the formal deformation f is effective. Therefore Theorem 3.11 gives sufficient con-
ditions to achieve step (i) above.

The difference between the algebraisation of a formal scheme over a formal
affine scheme, say Spf A with A as above, and the algebraisation of a formal
deformation over Spf A with proper central fibre lies in the base affine scheme: in
the algebraisation of the formal scheme, the k-algebra is required to be complete,
while in the algebraisation of the formal deformation the k-algebra is required to
be (essentially) of finite type.

Examples of formal schemes that are not algebraizable (resp. formal defor-
mations that are not effective) are K3 surfaces and Abelian varieties, see [20,
Example 2.5.12 ] or [16, Remark 8.5.24(b) and remark 8.5.28(a)]. Even though
in both cases we are able to extend (resp. deform) the scheme at all infinitesi-
mal neighbourhoods, there are ample line bundles that do not lift to the whole
formal scheme. This is the consequence of the fact that the space of all defor-
mation of pairs Abelian variety together with an ample line bundle on it (or K3
surface together with an ample line bundle) is a proper subspace of the space of
all deformations of Abelian varieties (or of K3 surfaces).

3.4. Motivating formal smoothness

In the next part we introduce two definitions of smoothing that will be relevant in
the following. In particular we motivate why the definition of formal smoothing
given by Tziolas in [22] is the most natural and, in some sense, the only one
possible in our framework.

This section was motivated by the following result of Tziolas, which is key to
our argument.

Proposition 3.12 ([22, Proposition 11.8]). Let Y be a proper, equidimensional
scheme and let A be a k-algebra which is a DVR. Let g: Y — Spec A also be a de-
formation of Y over A and letg: 2 — Spf A be the associated formal deformation.
Then g is a smoothing if and only if g is a formal smoothing.
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The importance of the above result is that it gives a criterion to recognise if
a one-parameter deformation is a smoothing by checking if the associated formal
deformation is a formal smoothing. Let us first introduce the two definitions of
smoothings.

Definition 3.13. Let Y be a proper, equidimensional scheme and let A be a k-
algebra which is a DVR. We say that a deformation g: ) — Spec A of Y over A
is a smoothing if the generic fibre YVeen := ) Xgpec 4 Spec k(A) is smooth.

Following [22], we now recall the notion of formal smoothing. Such definition
requires the knowledge of the sheaf of Fitting ideals, which can be found either in
[4, Chapter 20.2] or in [21, TAG 0C3C]. We will not introduce it but we will just
give an interpretation of what the Fitting ideal is. Let X be a formal scheme, let
T be a formal coherent sheaf and let a € N; we denote by Fitt,(F) the a'® Fitting
ideal sheaf of §. This ideal measures the obstructions for the sheaf § to be locally
generated by a elements. For example, § is locally generated by a elements if and
only if Fitt,(F) = Ox.

Definition 3.14. Let X be a proper, equidimensional scheme. A formal defor-
mation of X over &
X —X

Lk

Spfk —— &

is called a formal smoothing of X if and only if there exists a natural number
a such that J¢ C FittdimX(Q;/G), where J is an ideal of definition of X and

FittdimX(Q;/G) is the Fitting sheaf of ideals.
We say that X is formally smoothable if it admits a formal smoothing.

We point out that Proposition 3.12 establishes an equivalence among two dif-
ferent notions of smoothing that, apparently, are very different. Indeed, in Defi-
nition 3.13, the condition uses strongly the existence of a generic point, while in
Definition 3.14 the same condition is “forced” to be algebraic since there is not a
generic point in Spf k[t].

As mentioned above the two notions differ only apparently as we are going to
explain next.

First observe that any DVR which is a k-algebra is a local Noetherian ring; in
particular we have that its completion with respect to the adic topology induced
by its maximal ideal is isomorphic to the formal power series in one variable, k[t].
We also remark that the (classical) spectrum of a DVR, contains two points: the
closed and the generic one. On the other hand, the formal spectrum of the formal
power series ring is made of one point only. Therefore it is natural to define the
notion of smoothing of a scheme over a DVR as a deformation of X whose general
fibre, i.e. the fibre over the open generic point, is smooth. On the other hand, in
the case of formal deformation over Spf k[t] such idea is not possible. However,
Tziolas come up with a definition of formal smoothing that does not need the
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generic point, as we are going to explain now. Let us suppose that 7: X — Bis a
locally of finite type, flat of relative dimension r morphism of schemes and define

U, ={x € X: 7 is smooth at z of relative dimension r} .

By [21, TAG 02G2], it is an open subset of X’ and by [4, 407] or [21, TAG 0C3K]
we have that

U, =X\ V(Fitt,.(2L)) and  Sing, () = V(Fitt,(Q})).

If we assume that 7 is proper, then 7(U,) C B is open too and 7|y, : U, — A, is
smooth of relative dimension r, where A, := B\ 7(V(Fitt,(€2}))). Doing a base
change, we can always find a smoothing from the family over B if and only if A,
is not empty.

Suppose that B is affine smooth curve over k, let p € B be a closed point and
let R := Opp; it is known that R is a DVR with residue field k. 7: X — B is a
smoothing (according to Definition 3.13) if and only if the pullback deformation
Xr — Spec R along the localization morphism Spec R — B is a smoothing (again
in the sense of Definition 3.13). We then have following diagram:

B

X, X Xr X

7| x, W‘Xﬁl J{ﬂ-lXR J{ﬂ'

Sp —— Spec}A% ——— SpecR —— B

where all squares are Cartesian, R denotes the completion of Op ), along its max-
imal ideal m, and, for every n € N, R, := % = % and S,, := Spec R,,. As
previously mentioned, the completion of Op , along the maximal ideal is isomor-
phic to k[t].

In order to lighten the notation, let us denote 7, = 7|x,,
7T|XR-

Observe now that « is a homeomorphism, hence £ is at least a bijective function
on the sets; by [4, Corollary 20.5] we have that

Sing, (7) = 7 (Sing, (7).

Therefore, 7 is smooth of relative dimension r along 7—1(n) if and only if 7 is
smooth of relative dimension 7 along 7~1(7), where i and 7 are the generic points
of Spec R and Specﬁ respectively. Now Spec R has only two points: the closed
one, Y with ideal sheaf Zy/gpec g = (t), and the open one, 1. Let C;. := Sing, (7).
Now 7(C,) C Y as schemes if and only if there exists a structure of closed SpecR-
subscheme Y on Y with ?}ed =Y and such that 7(C,) C Y as sets. We are
then reduced to classify all closed subscheme structures on Speck[t]. These are
given by Y}, := V((t**1)), for every k € N. In particular we have a chain of closed
subschemes

T o= Tx, T o=

Y=V(t)=YocY1 =V(t*))CYsC---.
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Hence, Y _is a closed Spec R-subscheme structure on Y satisfying Yred =Y and
7(Cy) C Y if and only if there exists a non-negative integer k such that Y =Y.
Concluding, we have proven that the following statements are equivalent:

(a) m: X — B is smooth of relative dimension 7;

(b) 7: Xr — Spec R is smooth of relative dimension r;

T X — Spec R is smooth of relative dimension r;

—
o

£
3

there is a closed subscheme Y of Spec R such that Y;eq = Y and 7(C,) C Y;

there exist a k € N such that 7(C,.) C Yy;

)
)
f) there exists a k € N such that C, € 77 1(Y%);
) there exists a k € N such that

Fitt, (Q%) = Zo, v 27 (") = 7 (Tvi ) spec r)-

Observing that the condition we have found is independent of the ideal of defini-
tion, we have reached the definition of formal smoothing as given in [22, Defini-
tion 11.6].

4. Gorenstein schemes, morphisms and their deformations

In this part we will review, following [21, Tag 08XG] and [21, Tag OWDE], the
notions of dualising complexe and of Gorenstein morphisms. We then discuss how
the Gorenstein property behaves under infinitesimal deformations. The main re-
sult of this section is that the relative dualising sheaf extends to every infinitesimal
deformation. In the way to prove this result, we also present a proof of the classical
result that deformation of a Gorenstein morphism is still Gorenstein, for which we
were not able to find a proof in the literature.

4.1. Gorenstein schemes and morphisms

We start the section introducing the notions of dualising sheaf, Gorenstein scheme
and Gorenstein morphism.

Definition 4.1. Let A be a Noetherian ring. A dualising complex is a complex
of A modules w$ such that

1. w$ has finite injective dimension;
2. H'(w%) is a finite A-module, for every i;

3. A - RHomy(w%,w?) is a quasi-isomorphism in the derived category of
A-modules.
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We remark that the dualising complex thus defined is not unique. Indeed,
according to [21, TAG 0ATF], if w% and v% are two dualising complexes for A,
then there exists an invertible object L®* € D(A) such that v% is quasi-isomorphic
to wy @Y% L*.

Definition 4.2. Let A be a local Noetherian ring. We say that A is a Gorenstein
local ring if A[0] is a dualising complex.
Definition 4.3. A scheme X is called Gorenstein if it is locally Noetherian and

for every x € X, O, x is a Gorenstein local ring according to Definition 4.2.

Definition 4.4. Let f: X — Y be a morphism of schemes such that for every
y € Y, the fibre X, is a locally Noetherian scheme.

1. Let z € X and y := f(x). We say that f is Gorenstein at z if f is flat at
and Ox, . is a Gorenstein local ring.

2. We say that f is Gorenstein if it is Gorenstein at z, for all x € X.

Lemma 4.5 ([21, Tag 0C12)). Let f: X =Y be a flat morphism of locally Noethe-
rian schemes. If X is Gorenstein, then f is Gorenstein.

Proposition 4.6 ([21, Tag 0C07]). Let f: X — Y be a morphism of schemes
such that for every y € Y the fiber X, is locally Noetherian and let g: Y' — Y
be a locally of finite type morphism of schemes. Consider the following Cartesian
diagram

X 2o X

lf, lf (4.1)
v 245 Y.
If f' is Gorenstein at ' € X' and f is flat at ¢’ (2'), then [ is Gorenstein at ¢'(z').

From this it follows that being a Gorenstein is local in the flat topology on the
category of schemes.

4.2. Right adjoint to the pushforward and relative dualising complex

Now we introduce the derived pushforward functor and its right adjoint. This
machinery will be used to define a relative dualising complex and to show that it
behaves well under pullbacks.

Definition 4.7. Let f: X — Y be a morphism of scheme with Y quasi-compact.
By [21, Tag 0A9E], Rf.: Dqgcon(X) = Dqcon(Y) admits a right adjoint and we
denote it by v DQCoh(Y) — DQCoh(X)-

Definition 4.8. Let Y be a quasi-compact scheme, let f: X — Y be a proper,
flat morphism of finite presentation and let ¥ be the right adjoint for Rf.. We
define the relative dualising complex w} of f (or of X over Y) as follows

w}'c = \IJ(Oy) S DQCoh(X)-
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The following proposition explains the behaviour of the relative dualising com-
plex under base change.

Proposition 4.9 ([21, Tag 0AAB]). Let X be a scheme, let Y and Y’ be quasi-
compact schemes, let g: Y' — Y also be any morphism and let f: X — Y be
a proper, flat morphism of finite presentation. Consider the fibre diagram as in
eq. (4.1). Then we have a canonical isomorphism

wi 2 L(g') W} € Docon(X'),
where X' := X xy Y'.

4.3. Upper shriek functor and Gorenstein morphisms

We now introduce the upper shriek functor and explain its relationships with the
right adjoint functor for the derived pushforward functor and with Gorenstein
morphisms.

Remember from Section 1.3 that FTS is the category whose objects are sepa-
rated, algebraic schemes over the field k£ and whose morphisms are morphisms of
k-schemes.

Definition 4.10. Let f: X — Y be a morphism in the category of FTS schemes.
We define the upper shriek functor

f!: DgCoh(Oy) - DaCoh(OX)

as follows. We choose a compactification X — X of X over Y. Such a com-
pactification always exists by [21, Tag 0F41] and [21, Tag 0A9Z]. Let denote by
f: X = Y the structure morphism and consider its right adjoint functor ¥; we
then let f'K := W(K)|x for K € D{g,(Oy).

According to [21, Tag 0AAQ], the definition of the upper shriek functor is, up
to canonical isomorphism, independent of the choice of the compactification of X.

Remark 4.11. We point out that if f: X — Y is a proper morphism in the
category F'TS, then ¥ = ¥, implying that the upper shriek functor is the restriction
to Dqcon(Oy) of ¥, the right adjoint functor of R f, (see [21, Tag 0AU3]).

We are now ready to present the link between the Gorenstein condition and
the upper shriek functor.

Proposition 4.12 ([21, Tag 0C08]). Consider f: X — Y a flat morphism of
schemes in FTS and let x € X. Then the following conditions are equivalent:

1. f is Gorenstein at x;

2. f'Oy is isomorphic to an invertible object (of the derived category) in a
neighbourhood of x.

In particular the set {x € X: f is Gorenstein at x} is open in X.

If we assumed that f were proper, then {y € Y: fis Gorenstein at = €
f71(y)} is open in the target.
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4.4. Relative dualising sheaf and dualising complex

The aim of this subsection is to show that all the definitions given until now, under
mild hypotheses, converge. In particular, the next proposition introduces the no-
tion of relative dualising sheaf for a morphism in the category FTS and describes
its relationships with the relative dualising complex and with the Gorenstein mor-
phisms.

Proposition 4.13 ([21, Tag 0BVS8]). Let X and Y be separated schemes and let
f: X =Y be a Gorenstein morphism of schemes. Then there exists a coherent,
invertible sheaf, called the relative dualising sheaf of f and denoted by wy, which
is flat over Y and satisfies

fIOY = Wf[—d},

where d is the locally constant function on X which gives the relative dimension
of X overY.
If f is also proper, flat and of finite presentation, then w$ = wrl—d].

If Y = Speck, then we denote the relative dualising sheaf of X over k by wx.

Proposition 4.14. Let X be a Gorenstein scheme and let A be an Artinian local
k-algebra with residue field k. Consider now a deformation of X over A; that is a
Cartesian diagram

X— X

| 5

Speck —— Spec A
with f flat (see [20]). Then f is a Gorenstein morphism.

Proof. Since X is Gorenstein and X — Speck is flat, by Lemma 4.5 it follows
that X — Speck is Gorenstein. Applying now Proposition 4.6, we deduce that
f: X — Spec A is Gorenstein. O

Remark 4.15. The result can be improved to obtain that the scheme X is Goren-
stein. This is true as soon as we require that the affine base scheme Spec A is the
spectrum of a local, Artinian, Gorenstein k-algebra A. This result and its proof
can be found in [18].

Now we present the first result that will help us to deduce the existence of a
geometric smoothing.

Proposition 4.16. Let X be a proper, Gorenstein scheme. If f: X — & is a
formal deformation of X, then there exists a unique invertible formal sheaf £ on
X such that £ ®0, Ox 2 wx and £ R, Ox, = wy,, for every n € N, where wy,
is the relative dualising sheaf. In particular, every morphism f, is Gorenstein.

Proof. By Proposition 3.4, the formal deformation f is equivalent to a collection of
deformations {f,: &, — Sp}, oy satisfying the compatibility condition of Equa-
tion (3.2), with f, flat, proper morphisms. Since X is Gorenstein, applying


https://stacks.math.columbia.edu/tag/0BV8

204 A. Nobile

Proposition 4.14 we deduce that for every natural number n, the morphism f,
is Gorenstein. Now consider the following Cartesian diagram

Jn
Xn — Xn+1

J{f‘n J{fn«#l

Sn — Sn—i—l;

we have, for every natural number n, the following chain of equalities and natural
isomorphisms

Jrwg,., = H Xy, [~ dimX]) (Proposition 4.13)
—H™ dim X (L].;;UJ},HF] )
o f - dim X (e ) (Proposition 4.9)
=H™ 4™ X(w, [~ dim X]) (Proposition 4.13)

= wfn'

Theorem 2.25 then implies that there exists an invertible formal sheaf £ on X such
that £®0x OngX- O

As a consequence of this last proposition, we get that if X is a proper, local
complete intersection scheme over a field k and we have a formal deformation
f: X — Spf k[t], then the relative dualising sheaf wx always extends to the formal
deformation §. To see this, it is enough to observe that l.c.i. schemes/morphisms
are in particular Gorenstein schemes/morphisms and then apply the previous
proposition.

This result for l.c.i. schemes can be achieved only by using properties of the
naive cotangent complex; this second way is described in length in [18].

5. From formal smoothing to geometric smoothing

In this last section we use all the previous results to show how pass from a formal
smoothing to a geometric one. We start by recalling the definition of geometric
smoothing.

Definition 5.1. Let X be a proper scheme. A geometric smoothing is a Cartesian
diagram
Xe— X

| l” (5.1)

Speck = Spec% — C

me
where C' is a smooth curve, ¢ € C' is a closed point and 7 is a flat and proper

morphism, such that 77! (nc) =: Xgen is smooth, where ¢ is the generic point of
C. We say that X is geometrically smoothable if it has a geometric smoothing.
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We remark that, if X is smooth over Speck, then X is geometrically smooth-
able in a trivial way by considering the trivial family pry: X x3 C — C of defor-
mations.

We now present some results that will be needed in the proof of the main
theorem.

Lemma 5.2 ([14, Lemma 7.2.1 page 87]). Let X be a scheme, let U be an open,
dense subset of X and let p € X be a closed point. Then there exists an affine
curve C in X such that C intersects U and passes through p.

Remark 5.3. Let C be a smooth curve over k and let ¢ € C(k) be a closed point.
Denote by [ a local parameter of the maximal ideal m. in O¢ . Then there is a
isomorphism of topological rings

Oc.. = k1]
such that [ is sent to t.

Proposition 5.4. Let f: X — Y be a morphism of schemes such that X is reduced
and irreducible. Then there exists an irreducible and reduced component Y' of Y
such that f factors trough Y’, i.e. the following diagram commutes

x— 1 .y

N

Proof. Since X is irreducible, by [21, Tag 0379], f(X) is an irreducible subset of
Y. Then Y’ := f(X) is an irreducible component of Y and f factors through Y’
by construction. By [10, II-Ex. 2.3(c)], we can always assume Y’ to be a reduced
scheme. O

Notation 5.5. From now on, we will denote by & the formal scheme Spf k[¢] and
by S the scheme Spec k[t]. Moreover, for any non-negative integer n, we denote

by S, the scheme Spec (fn[[—ﬂ)

The next lemma shows that geometrical smoothability implies formal smootha-
bility.

Lemma 5.6. Let X be a projective, equidimensional scheme. If X is geometrically
smoothable, then it is also formally smoothable.

Proof. Suppose X has a geometric smoothing like eq. (5.1), where ¢ is the closed
point of C' such that the fibre of 7 over ¢ is X. Consider the pullback 7 of 7 along
the composite morphism Spec@ — SpecO¢,. — C since 7 is a smoothing of
X, so is 7. By Remark 5.3 we have that the completion of the regular local ring
Oc,c is continuously isomorphic to &. Now using Remark 3.5, we can construct
the associated formal deformation p: X — &. We end the argument by invoking
Proposition 3.12. O
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At this point we are ready to restate and prove our main result.

Theorem 5.7. Let X be a projective, equidimensional scheme such that one of
the following hypotheses hold:

1. H*(X,0x) =0,
2. if X Gorenstein, then either the dualising sheaf wx or its dual wY is ample.
Then X s formally smoothable if and only if X is geometrically smoothable.

Proof. One implication is proved in Lemma 5.6
Suppose we are given a formal smoothing p: X — &. Now,

1. if H*(X,Ox) = 0, then by [20, Theorem 2.5.13], we get that every formal
deformation of X is effective; that is to say that there exists a deformation
of schemes p: X — S such that X = /'?/X. In particular, from the proof, we
also deduce that the morphism p is projective.

2. By Proposition 4.16 the dualising sheaf wx (or w¥ ) extends to an invertible
formal sheaf £ on the formal scheme X. Theorem 3.10 then gives us a
deformation p: & — S of X such that the completion of X along the central
fibre is X. Moreover, as bonus point of the aforementioned theorem, we
deduce that X is projective over S.

Concluding, from either hypothesis, if we start with a formal deformation

X — X

L b

Spfk —— &

then we can construct a deformation of schemes

X — X

l lp (5.2)

Speck —— S

such that X = X/X. Since p is assumed to be a formal smoothing and since k[t]
is a DVR, we use Proposition 3.12 to conclude that eq. (5.2) is a smoothing of
X. Moreover, in eq. (5.2), the scheme X is projective over S; i.e. there is a non-
negative integer d such that p factors as a closed embedding ¢: X < P% = S x;, P¢
followed by the first projection pry : IP"; — S.

Now we use the fact that the Hilbert functor $)ilbpa is representable to deduce
the existence of an isomorphism

ag: f)l[b]pd(S) — Hom(Sch) (S, Hﬂbpd) = hHile,,d (S)
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Therefore there exists a unique morphism v: S — Hilbps such that both the
following diagrams are Cartesian

Xt s Sx Py —2 38

l(ld )| x lwxld Jw

Univpa <« Hilbpa xj, P¢ —— Hilbpa

pry

Recall that Univpa is by definition a closed subscheme of IF’Z X, Hilbpa. Inside the
Hilbert scheme we consider the smooth locus, defined as follows

Hsmooth := {[Z] € Hilbpa(Speck): Z is smooth }

By [21, Tag 01V5], Hgmootn is an open subset of the Hilbert scheme Hilbpa.

Now we study the map ¢ : S — Hilbpa. To do so, we first observe that, since
k[t] is a DVR, its spectrum S is made of two points: the closed point, ¢, and the
generic point, 7. According to our results so far we have that

o (n) = [Xgen] € Hamootn, since (eq. (5.2)) is a smoothing;
e (q) = [X] € Hilbpa \ Hgmootn, since X was singular.

Since S is connected, there exists a polynomial ® € Q[m] such that the image
of ¢ is contained in the connected component Hilbgd of the Hilbert scheme. By
Proposition 5.4 there exists a reduced, irreducible component Y of Hilbgd such
that v factors through it:

S —— ¥ . HibE

N

Observe now that if we define Yimogth 1= Y N Hymootn and denote Ygmoorn the
schematic closure of Yimooth, then (1) € Ysmooth and ¥(q) € Yimootn- Since
Yimootnh 1S @ non-empty open, and therefore dense, subset of Yimootn and J(q) S
Ysmooth, then we can apply Lemma 5.2 concluding that there exists a curve C
inside Ygmootn such that 1(q) € C and C N Yamootn # 0.

Now let v: C — C be the normalisation morphism, and p: X — C be the
pullback under the normalisation morphism v of the universal family over Y.
Since v is surjective, let & € C be such that v() = ¢(q). This completes the proof
since we have that the fibre p~1(¢) is isomorphic to X and X is smooth. O
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5.1. Applications of the theorem

In this section we present an application of our result: smoothability of local com-
plete intersection schemes. We start by recalling the definitions of local complete
intersection (l.c.i.) schemes and of complete intersection morphisms.

Definition 5.8. Let f: X — Y be a morphism of schemes. We say that f is a
local complete intersection morphism, or l.c.i. morphism for short, if it is of finite
type and for every point x € X there are an open neighbourhood z € U C X, a
scheme P together with a regular immersion i: U — P, a smooth morphism of
finite type s: P — Y such that f|y = soi. We say that a k-scheme X is a l.c.i.
scheme if the structure morphism X — Speck is a l.c.i. morphism.

The first remark is that the definition of l.c.i. morphisms does not depend on
the factorisation chosen, see [21, Tag 069E].

Moreover, if f: X — Y is any morphism of schemes, then the locus X ;. of
points of X such that f is a l.c.i. morphism at x, is open in X. If we further
assume that f is proper, then the locus of points

Yiei :={y€Y: fislci. at z,Vz € f~(y)}
is open in Y.

Definition 5.9. We say that the morphism f: X — Y is a complete intersection
morphism if there exists a scheme P together with a global factorisation so1 of f,
with i: X — P a regular immersion and s: P — Y a smooth morphism. We also
say that a scheme X is a complete intersection scheme if the structure morphism
X — Speck is a complete intersection.

We now present a theorem of Tziolas [22, Theorem 12.5] which gives a sufficient
condition for the existence of a formal smoothing. We start by introducing the
following notation.

Notation 5.10. Let f: X — Y be a morphism of schemes. We denote the relative
tangent sheaf by Tx y 1= 2 0 (Qk/y, Ox) and for i € N, the i** relative cotan-

gent sheaf in the sense of Schelessinger, see [17], by T)i(/y = é%/lbx (Qﬁ(/yv Ox).
In case Y is the spectrum of the ground field k, we let Tx := Tx,; and Ty := T)Z'(/k

be the tangent sheaf and the i'" cotangent sheaf respectively.

Theorem 5.11 ([22, Theorem 12.5]). Let X be a proper, reduced, pure dimen-
sional scheme. If the following conditions hold

(a) X has complete intersection singularities;
(b) H*(X,Tx) = 0;
(¢) H'(X,T3) = 0;

(d) T4 is finitely generated by its global sections;
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then X is formally smoothable, i.e. it admits a formal smoothing.

As a corollary we would like to mention the following result that can be found
in [22, Corollary 12.9].

Corollary 5.12. Let X be a projective, lci scheme such that there exists a regular
embedding in a smooth scheme Y. If the normal sheaf Nx v is finitely gener-
ated by its global sections, H* (X, T+) = H*(X,Tx) = 0, then X admits a formal
smoothing.

Putting together Corollary 5.12 and Theorem 5.7 we get the following.

Proposition 5.13. Let X be a singular, projective, l.c.i. variety (i.e. an integral
Noetherian scheme of finite type over k) over k satisfying conditions (a), (b) and
(¢) of Theorem 5.11 and such that either its dualising sheaf or its dual is ample.
Then X is geometrically smoothable.

The above result can be used to get information about points on the moduli
space in the following sense.

Theorem 5.14. Let X be a projective, l.c.i. variety with wx (respectively wy )
ample. Assume that X satisfies also hypotheses (b), (¢) and (d) of theorem 5.11.
Then we have that

1. X represents a point in closure of the open subset of the (algebraic) moduli
stack M of all projective smooth Gorenstein varieties with ample canonical
(respectively anti-canonical) sheaf;

2. the general point of the unique irreducible component of M containing X is
smooth.

Proof. The hypothesis of theorem 5.11 and of theorem 5.7 are satisfied; hence X
is geometrically smoothable. In other words, X represents a point that lies in
the closure of the open subset of the moduli stack of projective l.c.i. varieties
with ample canonical (respectively anticanonical) sheaf. This proves (1) and (2)
above. O

The above theorem has been proved in [5] for the specific case of Godeaux
stable surfaces. More precisely, in there the authors verified the hypotheses of
Tziolas’ Theorem 5.11 and then apply theorem 5.7 to show that stable semi-
smooth complex Godeaux surfaces appear in the closure of the smooth locus of
the moduli stack of stable surfaces of general type and such moduli stack at the
point representing the surface has dimension equal to the expected dimension.

Acknowledgements. A very special thank is due to my PhD supervisor, prof.
Barbara Fantechi, for her constant patience, support and precious advice. I would
like to thank the algebraic geometry group at SISSA for useful mathematical
discussions and precious suggestions.

I would also like to thank the algebraic geometry group at Université du Lux-
embourg



210 A. Nobile
References
[1] Alonso Tarrio, L. and Jeremias Lépez, A. and Pérez Rodriguez, M.: Infinitesimal Lifting

[2]

3]

[4]
[5]
[6]
7]
(8]
[9]
[10]
[11]
[12]
(13]
(14]
(15]

[16]

(17]

(18]
(19]

20]

(21]
(22]

and Jacobi Criterion for Smoothness on Formal Schemes. Communications in Algebra 35
n. 4, 1341-1367 (2007); doi:10.1080/00927870601115823

Alonso Tarrio, L. and Jeremias Lépez, A. and Pérez Rodriguez, M.: Local structure the-
orems for smooth maps of formal schemes. Journal of Pure and Applied Algebra 213 n.7,
1373-1398 (2009); doi:10.1016/j.jpaa.2008.12.006

Artin, M.: Algebraization of formal moduli: I. In: Global Analisys (papers in honor K.
Kodaira), Volume 1586, pages 21-71. University of Tokyo Press, Tokyo; Princeton University
Press, Princeton, N.J. (1969)

Eisenbud, D.: Commutative Algebra with a view toward algebraic geometry. Springer,
Graduate Texts in Mathematics (1995)

Fantechi, B., Franciosi, M., Pardini, R.: Deformations of Semi-Smooth Varieties, Interna-
tional Mathematics Research Notices, 2022;, rnac261; doi:10.1093/imrn/rnac261

Fantechi, B., Massarenti, A.: On the rigidity of moduli of weighted pointed stable curves.
Journal of Pure and Applied Algebra 222, 3058-3074 (2017); doi:10.1016/j.jpaa.2017.11.014
Grothendieck, A.: Géométrie formelle et géométrie algébrique. In: Séminaire Bourbaki,
Volume 5, pages 169-204. Société mathématique de France (1960)

Grothendieck, A. and Dieudonné, J. A.: Eléments de géométrie algébrique. 1. Le langage
des schémas. Pub. Math. IHES 4 (1960)

Grothendieck, A. and Dieudonné, J. A.: Eléments de géométrie algébrique. 111 Etude coho-
mologique des faisceaux cohérents, Premiér partie. Pub. Math. THES 11 (1961)
Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52, Springer (1977)
Hartshorne, R.: Ample subvarieties of algebraic varieties. Springer 156 (2006)

Hartshorne, R.: Deformation Theory. Graduate Texts in Mathematics 257, Springer (2009)
Hironaka, H., Matsumura, H.: Formal functions and formal embeddings. Journal of the
Mathematical Society of Japan 20, 52-82 (1968) d0i:10.2969/jmsj/02010052

Kempf, G. H.: Curves. In: Algebraic Varieties, pages 85—97, London Mathematical Society
Lecture Note Series, Cambridge University Press (1993)

Kolldr, J., Altmann, K., Kévacs, S.: Families of varieties of general type - in prepara-
tion.https://web.math.princeton.edu/ kollar/FromMyHomePage/modbook.pdf

Illusie, L.: Grothendieck’s existence theorem in formal geometry with a letter of Jean-Pierre
Serre. In: Fundamental Algebraic Geometry: Grothendieck’s FGA explained, Volume 123,
pages 179-233. Mathematical Surveys and Monographs, AMS (2005)

Lichtenbaum, S., M. Schlessinger, M: The Cotangent Complex of a Morphism. Transactions
of the American Mathematical Society 128 n.1, 41-70 (1967) doi:10.2307/1994516

Nobile, A.: On formal schemes and smoothings. PhD Thesis, SISSA (2022)

Persson, U., Pinkham, H.: Some examples of nonsmoothable varieties with normal crossings.
Duke Mathematical Journal 50, 477-486 (1983) doi:10.1215/S0012-7094-83-05020-2
Sernesi, E.: Deformations of Algebraic Schemes. Grundlehren der mathematischen Wis-
senschaften 334, Springer Berlin Heidelberg (2007)

The Stacks Project Authors: Stacks Project Stacks Project

Tziolas, N.: Smoothings of schemes with nonisolated singularities. Michigan Mathematical
Journal 59 n.1, 25-84 (2010) doi:10.1307/mmj/1272376026

Received: 24 November 2022 /Accepted: 7 February 2023 /Published online: 13 February 2023

Department of Mathematics, Université du Luxembourg, 6, av. de la Fonte,
L-4836/ Esch-sur-Alzette, Luzembourg

alessandronobile1987@gmail.com

© The copyright of this article is retained by the Author(s).

Open Access. This article is published in open access form and licensed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA
4.0) (http://creativecommons.org/licenses/by-nc-sa/4.0/).


https://doi.org/10.1080/00927870601115823
https://doi.org/10.1016/j.jpaa.2008.12.006
https://doi.org/10.1093/imrn/rnac261
https://doi.org/10.1016/j.jpaa.2017.11.014
https://doi.org/10.2969/jmsj/02010052
https://web.math.princeton.edu/~kollar/FromMyHomePage/modbook.pdf
https://doi.org/10.2307/1994516
https://doi.org/10.1215/S0012-7094-83-05020-2
https://stacks.math.columbia.edu
https://doi.org/10.1307/mmj/1272376026
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduction
	Motivation
	Structure of the paper
	Conventions

	Locally Noetherian formal schemes
	The category of locally Noetherian formal schemes
	Sheaves on LNFSs
	Adic morphisms between LNFSs
	Properties of adic morphisms

	On deformations and smoothings
	Introducing formal deformations
	Relations among different types of deformations
	Reversing some constructions on deformation
	Motivating formal smoothness

	Gorenstein schemes, morphisms and their deformations
	Gorenstein schemes and morphisms
	Right adjoint to the pushforward and relative dualising complex
	Upper shriek functor and Gorenstein morphisms
	Relative dualising sheaf and dualising complex

	From formal smoothing to geometric smoothing
	Applications of the theorem


