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Other approaches for generalized Bernoulli–Euler
polynomials and beyond

Hacène Belbachir, Slimane Hadj-Brahim and Mustapha Rachidi

Abstract. In this paper we develop two approaches for studying a large family of generalized

Bernoulli–Euler polynomials. For the determinental approach, using Little Fermat’s Theorem,

we establish a congruence identity and we give an explicit formulas of the generalized Bernoulli–

Euler polynomials in terms of the Stirling numbers. The linear recursive approach allows us

to formulate some properties of the generalized Bernoulli–Euler numbers and the generalized

Bernoulli–Euler polynomials. Moreover, combinatorial formulas for these polynomials are pro-

vided.

1. Introduction

The Bernoulli and Euler polynomials Bn(x) and En(x), respectively, as well as
the Bernoulli and Euler numbers Bn and En, are widely used in various topics
of mathematics such that number theory, complex analysis and approximation
theory. Several results and relations concerning these polynomials and numbers
are provided in the literature (see for instance, [1, 10]). In [20, Theorem 1.2],
the Bernoulli polynomials Bn(x) are expressed by a lower Hessenberg determi-
nant. Srivastava et al. [21, 22] investigated a new generalization of the family
of Bernoulli and Euler polynomials. They proved some interesting properties of
their proposed general polynomials and derived explicit representations for them
in terms of a certain generalized Hurwitz–Lerch Zeta function, and in terms of
series involving the familiar Gaussian hypergeometric function. In [7] Carlitz has
extended the classical Bernoulli and Euler polynomials and numbers. Especially,
some properties; such as the recurrence relation between q-Bernoulli polynomials
and q-Euler polynomials, have been proved in [8]. Choi et al. [11] defined and in-
vestigated the Apostol–Bernoulli polynomials and the Apostol–Euler polynomials

B
(α)
n (x, λ, q), E

(α)
n (x, λ, q) of order α.

In [14] and [15] Luo et al. have introduced and studied the generalized Bernoulli
and Euler polynomials Bn(x; a, b, c), En(x; a, b, c), which are defined through their
associated generating functions as follows,

t

bt − at
cxt =

∞∑
n=0

Bn(x; a, b, c)
tn

n!
, such that |t| < 2π

|ln b− ln a|
, (1.1)
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2

bt + at
cxt =

∞∑
n=0

En(x; a, b, c)
tn

n!
, such that |t| <

∣∣∣∣ π

ln b− ln a

∣∣∣∣ , (1.2)

where a, b, c, with a 6= b, are given real numbers in R∗+. When b = c = e and
a = 1, Expressions (1.1)–(1.2) are reduced to the classical (or usual) Bernoulli
and Euler polynomials Bn(x), En(x), respectively. They are denoted by Bn(x) :=
Bn(x; 1, e, e) and En(x) := En(x; 1, e, e), respectively (see [18]). In particular, the
numbers Bn = Bn(0) and En = En(0) are nothing else but the classical Bernoulli
and Euler numbers respectively.

On another side, Belbachir et al. [4, 5] proposed another generalization of
Euler and Genocchi polynomials, which are called Euler–Genocchi polynomials,
and established some of their properties, such as, those related to linear recur-
siveness and difference equations. Moreover, they evaluated an expression for the
sum of the Stirling numbers of the second kind in terms of this family. Recently,
a closed connection between Bernoulli, Euler–Genocchi numbers and some special
linear difference equations of infinite order, was established in [3] and [19]. Note
that these linear recursive sequences of infinite order have been introduced and
studied by Rachidi et al. in various research papers (see, for instance, [6, 17], and
references therein).

The main purpose of the present paper is to study some properties of the gen-
eralized Bernoulli and Euler polynomials Bn(x; a, b, c) and En(x; a, b, c) defined
by (1.1)-(1.2), with the aid of two approaches. First, we consider the determi-
nantal approach for exhibiting some new properties and expressions related to
Bn(x; a, b, c) and En(x; a, b, c). Especially, the little Fermat Theorem, allows us
to establish a congruence identity. In addition, a closed relation with the Stir-
ling numbers is provided. Second, we study the generalized Bernoulli and Euler
polynomials Bn(x; a, b, c) and En(x; a, b, c), using the second approach based on
the properties of linear difference equations of infinite order. Especially, we pro-
vide combinatorial properties of the generalized Bernoulli and Euler polynomials
Bn(x; a, b, c) and En(x; a, b, c), as well as their formulation in terms of Bernoulli
numbers.

The paper is organized as follows. In Section 2, we present some properties
of the generalized Bernoulli and Euler polynomials Bn(x; a, b, c) and En(x; a, b, c)
defined by (1.1)–(1.2). We establish some explicit formulas and give the expression
of the power of a variable, in addition an extension of the little Fermat’s Theorem
is provided. In Section 3, we evaluate the family of generalized Bernoulli and Euler
polynomials Bn(x; a, b, c) and En(x; a, b, c) in terms of the Stirling numbers of the
second kind. Section 4 and 5 are devoted to the generalized Bernoulli and Euler
numbers Bn(λ), Bn(a, b), and the generalized Bernoulli and Euler polynomials
Bn(x; a, b, c), En(x; a, b, c), using properties of the linear difference equations of
infinite order. Therefore, expressions of Bn(λ), Bn(a, b) are given in terms of
Bn, En. Moreover, the Bn(x; a, b, c), En(x; a, b, c) are formulated using Bn(λ),
Bn(a, b).
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2. Determinantal representation of the generalized Bernoulli
and Euler polynomials

2.1. Generalized Bernoulli and Euler polynomials (1.1)–(1.2) and usual
Bernoulli and Euler polynomials

Our goal, in this subsection is to give a formulation for the generalized Bernoulli
and Euler polynomials in terms of the classical ones. The next result allows
us to see that the generalized Bernoulli and Euler polynomials Bn(x; a, b, c) and
En(x; a, b, c) can be expressed in terms of the classical Bernoulli and Euler poly-
nomials.

Theorem 2.1. Let a, b, c be in R∗+ such as a 6= b and a 6= 1. Then, the following
identities holds,

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
(−1)

n−k
(

ln

(
b

a

))k
(ln(a))

n−k
Bk
(
x ln b/a c

)
, (2.1)

En(x; a, b, c) =

n∑
k=0

(
n

k

)
(−1)

n−k
(

ln

(
b

a

))k
(ln(a))

n−k
Ek
(
x ln b/a c

)
, (2.2)

for every n ≥ 0, where lnα x = ln x
lnα .

Proof. We can show that Expression (1.2) can be reformulated under the form,

2

bt + at
cxt =

2

et ln(b/a) + 1
et ln(c

x/a)

=
2

et ln(b/a) + 1
ext ln(b/a) ln b/a ce−t ln a

=

( ∞∑
n=0

(
ln

(
b

a

))n
En
(
x ln b/a c

) tn
n!

)( ∞∑
n=0

(−1)n (ln(a))
n t

n

n!

)
.

(2.3)

Taking into account the right hand sides of Expression (2.3) and Expression (1.2),
a direct computation permits to get the Formula (2.2). The proof of the Identity
(2.1) is similar.

Our next result concerns an explicit formula for generalized Bernoulli and Euler
polynomials in terms of Bernoulli and Euler polynomials.

Theorem 2.2. Let a, b, c ∈ R∗+ (a 6= b). Then, for every n ≥ 0, the following
identities holds,

Bn(x; a, b, c) =

(
ln

(
b

a

))n−1
Bn
(
x ln b/a c− ln b/a a

)
(2.4)

En(x; a, b, c) =

(
ln

(
b

a

))n
En
(
x ln b/a c− ln b/a a

)
. (2.5)
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Proof. For establishing the Formula (2.5), we can reformulate Expression (1.2)
under the following form,

2

bt + at
cxt =

2

et ln(b/a) + 1
et ln(c

x/a) =
2

et ln(b/a) + 1
et(x ln c−ln a)

=
2

et ln(b/a) + 1
et ln(b/a)(x ln b/a c−ln b/a a)

=
∞∑
n=0

(
ln

(
b

a

))n
En
(
x ln b/a c− ln b/a a

) tn
n!
. (2.6)

Taking into account the right hand sides of Expressions (2.6) and (1.2), a direct
computation permits us to obtain the Formula (2.5). The proof of the Identity (2.4)
is similar.

As a consequence of Theorem 2.2, we can give in Table 1 below the generalized
Bernoulli and Euler polynomials.

In [14] and [15], it was shown the following result, concerning the generalized
Bernoulli and Euler polynomials Bn(x; a, b, c) and En(x; a, b, c) defined by (1.1)-
(1.2).

Theorem 2.3 (see [14, 15]). Let a, b, c be in R∗+, with a 6= b. Then, for every
n ≥ 0, we have,

Bn(x+ y; a, b, c) =

n∑
k=0

(
n

k

)
Bk(x; a, b, c)yn−k (ln c)

n−k
, (2.7)

En(x+ y; a, b, c) =

n∑
k=0

(
n

k

)
Ek(x; a, b, c)yn−k (ln c)

n−k
. (2.8)

In addition, for x 6= 0 and y = 0, we derive from Expressions (2.7)–(2.8), the
following formulas,

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
Bk(a, b)xn−k (ln c)

n−k
, (2.9)

En(x; a, b, c) =

n∑
k=0

(
n

k

)
Ek(a, b)xn−k (ln c)

n−k
. (2.10)

for every n ≥ 0. Moreover, replacing y by −x in Formulas (2.7)–(2.8), we get the
following expressions,

Bn(a, b) =

n∑
k=0

(
n

k

)
(−1)n−kBk(x; a, b, c)xn−k (ln c)

n−k
,

En(a, b) =

n∑
k=0

(
n

k

)
(−1)n−kEk(x; a, b, c)xn−k (ln c)

n−k
.
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n
0

1
2

3

B
n

(x
)

1
x
−

1 2
x
2
−

x
+

1 6
x
3
−

3 2
x
2

+
1 2
x

E
n

(x
)

1
x
−

1 2
x
2
−

x
x
3
−

3 2
x
2

+
1 4

B
n

(x
;a

,b
,c

)
1

ln
(b
/
a
)

x
ln
b
/
a
c
−

ln
b
/
a
a
−

1 2
x
2

ln
b a

ln
2 b
/
a
c
−

x
( 2

ln
b
/
a
a

+
1
) ln

c
x
3

ln
2
b a

ln
3 b
/
a
c
−

3
x
2

ln
2
c
( ln

b
/
a
a

+
1 2

)
+

1 6
ln

a
5
b

+
ln

b a
ln

2 b
/
a
a

+
x

ln
c
( 3

ln
b a

ln
2 b
/
a
a

+
ln
√
a
5
b)

−
( ln

b
/
a
a

ln
a

+
ln

a
√
b) ln

a

E
n

(x
;a

,b
,c

)
1

x
ln

c
−

1 2
ln

a
b

x
2

ln
2
c
−

x
ln

a
b

ln
c

x
3

ln
3
c
−

3 2
x
2

ln
2
c

ln
a
b

+
3
x

ln
a

ln
b

ln
c

+
ln

a
ln

b
+

1 4
ln

3
b a
−

3 2
ln

b a
ln

a
−

ln
3
a

Table 1: Some special cases of Bn(x; a, b, c) and En(x; a, b, c).



216 H. Belbachir, S. Hadj-Brahim and M. Rachidi

Expressions (2.7) and (2.8) allow us to formulate the Bernoulli and Euler numbers
Bn(a, b) and En(a, b), in terms of the generalized Bernoulli and Euler polynomials
Bk(x; a, b, c), Ek(x; a, b, c), respectively. Using Table 1, we can obtain the following
table for some values of the generalized Bernoulli and Euler numbers.

n 0 1 2 3

Bn(a, b)
1

ln(b/a)
− lnb/a a− 1

2
1
6

ln a5b + ln b
a

ln2
b/a a −

(
lnb/a a ln a + ln a

√
b
)

ln a

En(a, b) 1 − 1
2

ln ab ln a ln b 1
4

ln3 b
a
− 3

2
ln b
a

ln a− ln3 a

Table 2: Some special cases of Bn(a, b) and En(a, b).

Combining Theorem 2.2 and Theorem 2.3, namely, Expressions (2.4)–(2.5) and
(2.7)–(2.8), we can state the following result.

Theorem 2.4. Let a, b, c be in R∗+ with a 6= b. Then, for every n ≥ 0, we have,

Bn(x+ y; a, b, c) =

n∑
k=0

(
n

k

)(
ln

(
b

a

))n−1

Bn
(
x ln b/a c− ln b/a a

)
yn−k (ln c)n−k ,

(2.11)

En(x+y; a, b, c) =

n∑
k=0

(
n

k

)(
ln

(
b

a

))n
En
(
x ln b/a c− ln b/a a

)
yn−k (ln c)n−k . (2.12)

Expressions (2.11)–(2.12) show that the formulas of addition (2.7)–(2.8), for
the generalized Bernoulli and Euler polynomials (1.1)–(1.2), are given in terms of
the classical Bernoulli and Euler polynomials.

2.2. Determinantal representation of the generalized Bernoulli and Eu-
ler polynomials (1.1)–(1.2)

Let consider the following expression

T (x, a, b, c, t) =
2

bt + at
cxt × t

bt − at
cxt =

2t

b2t − a2t
c2xt.

Then, taking into account the right hand side of Expressions (1.1)–(1.2) for a 6= 0,
a straightforward computation allows us to obtain,

T (x+ 1, a, b, b, t)− T (x, 1, b/a, b, t)

=

∞∑
n=0


n∑
k=0

(
n

k

) ∣∣∣∣∣∣
Bn−k(x+ 1, a, b, b) Ek(x, 1, b/a, b)

Bn−k(x, 1, b/a, b) Ek(x+ 1, a, b, b)

∣∣∣∣∣∣
 tn

n!
,
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where

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a21 − a11a12. On the other hand, we have,

T (x+ 1, a, b, b, t)− T (x, 1, b/a, b, t) = 2tb2xt =

+∞∑
n=0

n2n (x ln b)
n−1 t

n

n!
.

Comparing the two preceding expansions of T (x+1, a, b, b, t)−T (x, 1, b/a, b, t), we
can state the next result.

Theorem 2.5. Let x, a, b be a real numbers such that (a, b) 6= (0, 1). Then, for
every n ≥ 0, we have,

xn =
1

2n+1(n+ 1) lnn b

n+1∑
k=0

(
n+ 1

k

) ∣∣∣∣∣∣
Bn+1−k(x+ 1, a, b, b) Ek(x, 1, b/a, b)

Bn+1−k(x, 1, b/a, b) Ek(x+ 1, a, b, b)

∣∣∣∣∣∣ .
In particular, for a = 1 and b = e = exp(1), we derive the following result in

terms of the Bernoulli and Euler polynomials.

Corollary 2.6 (see [5]). Let x be a real number and an integer n ≥ 0. Then, we
have,

xn =
1

2n+1(n+ 1)

n+1∑
k=0

(
n+ 1

k

) ∣∣∣∣ Bn−(k−1)(x+ 1) Ek(x)
Bn−(k−1)(x) Ek(x+ 1)

∣∣∣∣ . (2.13)

Expressions (2.9)–(2.10) allow us to obtain Bn(x; a, b, c) and En(x; a, b, c) in
terms of the determinantal representation respectively. Indeed, it suffices to replace
the factor xn of Theorem 2.5 in Formulas (2.9) and (2.10), we get the following
formulas:

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
Bn−k(a, b)

1

2k+1(k + 1)
(lnb c)

k

×
k+1∑
j=0

(
k + 1

j

) ∣∣∣∣∣∣
Bk−(j−1)(x+ 1, a, b, b) Ej(x, 1, b/a, b)

Bk−(j−1)(x, 1, b/a, b) Ej(x+ 1, a, b, b)

∣∣∣∣∣∣ ,

En(x; a, b, c) =

n∑
k=0

(
n

k

)
En−k(a, b)

1

2k+1(k + 1)
(lnb c)

k

×
k+1∑
j=0

(
k + 1

j

) ∣∣∣∣∣∣
Bk−(j−1)(x+ 1, a, b, b) Ej(x, 1, b/a, b)

Bk−(j−1)(x, 1, b/a, b) Ej(x+ 1, a, b, b)

∣∣∣∣∣∣ .
In addition, as a consequence of the Little Fermat’s Theorem [2] and Corol-

lary 2.6, we can derive a new formula of addition in a determinantal form. Before
illustrating our main result, we will need to present the Fermat’s little Theorem
under the following lemma.
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Lemma 2.7. For p a prime number and a an integer, we have,

ap ≡ a mod p. (2.14)

Theorem 2.8. Let p be a prime number and a an integer, we have

p+1∑
k=0

(
p+ 1

k

)
∆p+1−k,k(a) ≡ 1

2

2∑
k=0

(
2

k

)
∆2−k,k(a) mod p, (2.15)

where ∆n,s(v) :=

∣∣∣∣ Bn(v + 1) Es(v)
Bn(v) Es(v + 1)

∣∣∣∣.
Proof. Replacing x = a and n = p in (2.13), and combining with (2.14), permits
us to get,

1

2p+1(p+ 1)

p+1∑
k=0

(
p+ 1

k

)
∆p+1−k,k(a) ≡ 1

8

2∑
k=0

(
2

k

)
∆2−k,k(a) mod p.

Multiplying both sides by 2p+1(p+ 1) we obtain,

p+1∑
k=0

(
p+ 1

k

)
∆p+1−k,k(a) ≡ 2p+1(p+ 1)

8

2∑
k=0

(
2

k

)
∆2−k,k(a) mod p.

Using the fact that 2p ≡ 2 mod p and p+1 ≡ 1 mod p, Formula (2.15) holds.

For nonnegative integer n, the Harmonic numbers {Hn}n≥0, and the n-th
generalized harmonic numbers {Hn,m}n≥0, are defined by,

H0 = 0, Hn =

n∑
i=1

1

i
, and H0,m = 0, Hn,m =

n∑
i=1

1

im
,

for every n ≥ 1. Different properties of the harmonic numbers have been studied
recently by many mathematicians. Among them, we list some identities below,

n−1∑
k=1

Hk = nHn − n,
n−1∑
k=m

(
k

m

)
Hk =

(
n

m+ 1

)(
Hn −

1

m+ 1

)
and

n−1∑
k=m

(
k

m

)
1

n− k
=

(
n

m

)
(Hn −Hm) .

In the following theorem, we give a link between the Bernoulli polynomials, the
Euler polynomials and the harmonic numbers.

Theorem 2.9. Let n, m and s be three integers with n ≥ 1 and m ≥ 1. Then we
have the following identity,

1 −Hm−1

s+1∑
k=0

(
s+ 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s+ 1)

)

+
(
H2
m−1 −Hm−1,2

) [s+1∑
k=0

(
s+ 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s+ 1)

)]2
= (−1)m−1

(
ns − 1

m− 1

)
.
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Proof. Let

P (n, s,m) = 1−Hm−1

s+1∑
k=0

(
s+ 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s+ 1)

)

+
(
H2
m−1 −Hm−1,2

) [s+1∑
k=0

(
s+ 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s+ 1)

)]2
.

(2.16)

Substituting x by n and assuming n = s in Expression (2.13), we get the following
identity,

ns =

s+1∑
k=0

(
s+ 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s+ 1)

)
. (2.17)

Combining (2.16) and (2.17) permit us to get,

P (n, s,m) = 1− nsHm−1 + n2s
(
H2
m−1 −Hm−1,2

)
= 1− ns

m−1∑
i=1

1

i
+ n2s

 ∑
1≤i≤j≤m−1

1

ij
−
m−1∑
i=1

1

i2


= 1− ns

m−1∑
i=1

1

i
+ n2s

∑
1≤i<j≤m−1

1

ij
.

On the other hand, we have

(
ns − 1

m− 1

)
=

(ns − 1)(ns − 2) · · · (ns − j) · · · (ns − (m− 1))

1.2 . . . j . . . (m− 1)

=

(
ns

1
− 1

)(
ns

2
− 1

)
· · ·
(
ns

j
− 1

)
· · ·
(

ns

m− 1
− 1

)
= (−1)m−1

(
1− ns

1

)(
1− ns

2

)
· · ·
(

1− ns

j

)
· · ·
(

1− ns

m− 1

)

= (−1)m−1

1− ns
m−1∑
i=1

1

i
+ n2s

∑
1≤i<j≤m−1

1

ij


= (−1)m−1P (n, s,m).

Therefore, multiplying both sides by (−1)m−1 permits us to obtain our state-
ment.
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Theorem 2.10. Let n, m and s be three integers with n ≥ 1 and m ≥ 1. Then
we have the following identity,∣∣∣∣∣∣∣∣

0 −
[∑s+1

k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)]2
−
[∑s+1

k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)]4
H2
m−1 Hm−1,2 2

Hm−1,2 2Hm−1,2 −H2
m−1 3

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
1

∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

) [∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)]2
2Hm−1 1

∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)
Hm−1,2 0 1

∣∣∣∣∣∣∣∣∣∣
− 2

∣∣∣∣∣∣
Hm−1 1 0
Hm−1,2 Hm−1 1

Hm−1Hm−1,2 Hm−1,2 Hm−1

∣∣∣∣∣∣
[
s+1∑
k=0

(s + 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s + 1)

)]2
=
(ns − 1

m− 1

)2
.

Proof. Let

Q(n, s,m) =∣∣∣∣∣∣∣∣
0 −

[∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)]2
−
[∑s+1

k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)]4
H2
m−1 Hm−1,2 2

Hm−1,2 2Hm−1,2 −H2
m−1 3

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
1

∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

) [∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)]2
2Hm−1 1

∑s+1
k=0

(s+1
k

)
∆s+1−k,k

(
n

2 s
√

2(s+1)

)
Hm−1,2 0 1

∣∣∣∣∣∣∣∣∣∣
− 2

∣∣∣∣∣∣
Hm−1 1 0
Hm−1,2 Hm−1 1

Hm−1Hm−1,2 Hm−1,2 Hm−1

∣∣∣∣∣∣
[
s+1∑
k=0

(s + 1

k

)
∆s+1−k,k

(
n

2 s
√

2(s + 1)

)]2
. (2.18)

Combining (2.17) and (2.18) permit us to get

Q(n, s,m) =

∣∣∣∣∣∣
0 −n2s −n4s

H2
m−1 Hm−1,2 2

Hm−1,2 2Hm−1,2 −H2
m−1 3

∣∣∣∣∣∣+

∣∣∣∣∣∣
1 ns n2s

2Hm−1 1 ns

Hm−1,2 0 1

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣
Hm−1 1 0
Hm−1,2 Hm−1 1

Hm−1Hm−1,2 Hm−1,2 Hm−1

∣∣∣∣∣∣n2s

=

∣∣∣∣ H2
m−1 2

Hm−1,2 3

∣∣∣∣n2s −
∣∣∣∣ H2

m−1 Hm−1,2

Hm−1,2 2Hm−1,2 −H2
m−1

∣∣∣∣n4s + 1 − 2Hm−1n
s

− 2

[∣∣∣∣ Hm−1 1
Hm−1,2 Hm−1

∣∣∣∣Hm−1 −
∣∣∣∣ 1 0
Hm−1,2 Hm−1

∣∣∣∣Hm−1,2

+

∣∣∣∣ 1 0
Hm−1 1

∣∣∣∣Hm−1Hm−1,2

]
n3s

= 1 − 2Hm−1n
s +

(
3H2

m−1 − 2Hm−1,2

)
n2s − 2

(
H3
m−1 −Hm−1Hm−1,2

)
n3s

+
(
H4
m−1 − 2H2

m−1Hm−1,2 +H2
m−1,2

)
n4s.



Other approaches for generalized Bernoulli–Euler polynomials 221

On the other hand, we have(
ns − 1

m− 1

)2

=
(ns − 1)2(ns − 2)2 · · · (ns − j)2 · · · (ns − (m− 1))2

12.22 . . . j2 . . . (m− 1)2

=

(
ns

1
− 1

)2(
ns

2
− 1

)2

· · ·
(
ns

j
− 1

)2

· · ·
(

ns

m− 1
− 1

)2

=

(
1 − ns

1

)2(
1 − ns

2

)2

· · ·
(

1 − ns

j

)2

· · ·
(

1 − ns

m− 1

)2

=

1 − ns
m−1∑
i=1

1

i
+ n2s

∑
1≤i<j≤m−1

1

ij

2

=
[
1 −Hm−1n

s +
(
H2
m−1 −Hm−1,2

)
n2s]2

= 1 −Hm−1n
s +

(
H2
m−1 −Hm−1,2

)
n2s −Hm−1n

s +H2
m−1n

2s

−
(
H3
m−1 −Hm−1Hm−1,2

)
n3s +

(
H2
m−1 −Hm−1,2

)
n2s

−
(
H3
m−1 −Hm−1Hm−1,2

)
n3s +

(
H4
m−1 +H2

m−1,2 − 2H2
m−1Hm−1,2

)
n4s

= 1 − 2Hm−1n
s + (3Hm−1,2 − 2Hm−1,2)n2s − 2

(
H3
m−1 −Hm−1Hm−1,2

)
n3s

+
(
H4
m−1 +H2

m−1,2 − 2H2
m−1Hm−1,2

)
n4s

= Q(n, s,m).

3. Explicit formulas in terms of the Stirling numbers

In this section, we prove some explicit formulas for the generalized Bernoulli and
Euler polynomials in terms of the Stirling numbers of the second kind. Firstly, we
give some definitions of remarkable numbers and polynomials well-known in the
literature. The partial Bell polynomials Bn,k(x1, x2, . . . , xn) are defined by,

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
=

1

k!

( ∞∑
m=1

xm
tm

m!

)k
,

(see [12, 16]), also by considering the explicit formula,

Bn,k(x1, x2, . . . , xn−k+1) =
∑
σ(n,k)

n!∏n−k+1
i=1 mi!

n−k+1∏
i=1

(xi
i!

)mi
,

given in [12, p. 134], where σ(n, k) denotes the set of all integer solutions of the
system, {

m1 + 2m2 + · · ·+ nmn = n;

m1 +m2 + · · ·+mn = k.
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For n and k nonnegative integers with (k ≤ n), the Stirling numbers of the second

kind S (n, k) are defined by the following formula S (n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn

(see [12, p. 206]). Moreover, their associated generating functions is given by,

∑
n≥k

S (n, k)
tn

n!
=

(et − 1)k

k!
.

The following result represents one of our main results of the paper.

Theorem 3.1. Let a, b, c be in R∗+, with a 6= b, x ∈ R and Bn(x; a, b, c) be the
generalized Bernoulli polynomials. Then, we have,

Bn(x; a, b, c) =

n∑
k=1

(
n+ k

n

)−1 ∑
s+t=k
i+j=n

∑
r≤s,m≤t

(−1)t−m−r
(

n+ k

s− r, t−m, i+ r, j +m

)

× Ci,j,k(x; a, b, c)S(i+ r, r)S(j +m,m),

for n ∈ N, where Ci,j,k(x; a, b, c) :=
lnj (a/cx) lni (b/cx)

lnk+1 (b/a)
.

Especially, for b = c = e and a = 1, we can derive the following corollary.

Corollary 3.2. Let Bn(x) be the Bernoulli polynomials. Then, we have,

Bn(x) =

n∑
k=1

(
n+ k

n

)−1 ∑
s+t=k
i+j=n

∑
r≤s,m≤t

(−1)t+j−(m+r)

(
n+ k

s− r, t−m, i+ r, j +m

)

× xj (1− x)
i
S(i+ r, r)S(j +m,m),

for n ∈ N.

For establishing the preceding main result, namely, Theorem 3.1, we need some
preliminary lemmas.

Lemma 3.3 (see [12]). For every n ≥ k ≥ 1, we have,

Bn,k(abx1, ab
2x2, . . . , ab

n−k+1xn−k+1) = akbnBn,k(x1, x2, . . . , xn−k+1).

for a, b ∈ C, with a 6= 0, b 6= 0.

Lemma 3.4 (see [12]). For n ≥ k ≥ 1, we have,

Bn,k(x1 + y1, . . . , xn−k+1 + yn−k+1) =∑
s+t=k
i+j=n

(
n

i, j

)
Bi,s(x1, . . . , xi−s+1)Bj,t(y1, . . . , yj−t+1).
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Lemma 3.5 (see [23]). For every n ≥ k ≥ 1, we have,

Bn,k

(
1

2
,

1

3
, . . . ,

1

n− k + 2

)
=

n!

(n+ k)!

k∑
i=0

(−1)k−i
(
n+ k

k − i

)
S(n+ i, i).

On the other side, the Faà di Bruno Formula for computing higher order deriva-
tives of composite functions, can be stated in terms of the partial Bell polynomials
Bn,k,as follows,

Theorem 3.6 ([12]). For every n ≥ k ≥ 1, we have,

dn

dtn
(g ◦ f)(t) =

n∑
k=1

g(k)(f(t))Bn,k(f
′
(t), f

′′
(t), . . . , f (n−k+1)(t)). (3.1)

Proof of Theorem 3.1. We can reformulate Expression (1.1) under the form,

t

bt − at
cxt =

t

et ln(b/cx) − et ln(a/cx)
=

1∫ ln(b/cx)

ln(a/cx)
etudu

. (3.2)

Putting g(y) =
1

y
and f(t) =

∫ ln(b/cx)

ln(a/cx)

etudu. By using the Faà di Bruno Formula

(3.1), on the right-hand side of (3.2), we get

dn

dtn

(
t

bt − at
cxt
)

=

n∑
k=1

(−1)kk!(∫ ln(b/cx)

ln(a/cx)
etudu

)k+1

×Bn,k

(∫ ln(b/cx)

ln(a/cx)

uetudu, . . . ,

∫ ln(b/cx)

ln(a/cx)

un−k+1etudu

)
.

We show that when t 7→ 0 in the above formula and by Taylor-Maclaurin series ex-

pansion in (1.1), we obtain Bn(x; a, b, c) =

[
dn

dtn

(
t

bt − at
cxt
)]

t=0

, which implies

that we have,

Bn(x; a, b, c) =

n∑
k=1

(−1)kk!(
ln b

cx
− ln a

cx

)k+1
Bn,k

(∫ ln(b/cx)

ln(a/cx)

udu, . . . ,

∫ ln(b/cx)

ln(a/cx)

un−k+1du

)
.

Therefore, we arrive to have the following formula,

Bn(x; a, b, c) =
n∑
k=1

(−1)kk!

lnk+1 (b/a)
Bn,k

(
1

2

[
ln2 b

cx
− ln2 a

cx

]
, . . . ,

1

n− k + 2

[
lnn−k+2 b

cx
− lnn−k+2 a

cx

])
.
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By applying Lemma 3.4, we obtain,

Bn(x; a, b, c)

=

n∑
k=1

(−1)kk!

lnk+1 (b/a)

∑
s+t=k
i+j=n

(
n

i, j

)
Bi,s

(
1

2
ln2

(
b

cx

)
, . . . ,

1

i− s+ 2
lni−s+2

(
b

cx

))

×Bj,t
(
−1

2
ln2
( a
cx

)
, . . . ,− 1

j − t+ 2
lnj−t+2

( a
cx

))
.

And with the aid of Lemma 3.3 and Lemma 3.5, we have

Bn(x; a, b, c) =

n∑
k=1

(−1)kk!

lnk+1 (b/a)

∑
s+t=k
i+j=n

(
n

i, j

)
lni
(
b

cx

)

×Bi,s

(
1

2
, . . . ,

1

i− s+ 2

)
(−1)t lnj

( a
cx

)
Bj,t

(
1

2
, . . . ,

1

j − t+ 2

)
=

n∑
k=1

∑
s+t=k
i+j=n

s∑
r=0

t∑
m=0

(−1)t−(m+r)

(
n

i, j

)(
i+ s

s− r

)(
j + t

t−m

)

× k!i!j!

(i+ s)!(j + t)!

1

lnk+1 (b/a)
lnj
( a
cx

)
lni
(
b

cx

)
S(i+ r, r)S(j +m,m).

Finally, we obtain,

Bn(x; a, b, c) =

n∑
k=1

∑
s+t=k
i+j=n

s∑
r=0

t∑
m=0

(−1)t−(m+r)

(
n+ k

s− r, t−m, i+ r, j +m

)
(
n+ k

n

)
× lnj (a/cx) lni (b/cx)

lnk+1 (b/a)
S(i+ r, r)S(j +m,m).

Therefore, we can express the generalized Euler polynomials in terms of the Stirling
numbers of second kind, using closed relation between the generalized Bernoulli
and Euler polynomials. Indeed, for every even integer h, it is well-known that,

En(hx; a, b, c) =
(−2)hn

n+ 1

h−1∑
j=0

Bn+1

(
x+

j(ln b− ln a) + (h− 1) ln a

h ln c
; a, b, c

)
,

(see [13]). Particularly, for h = 2, we derive,

En(2x; a, b, c) =
−2n+1

n+ 1

[
Bn+1

(
x+

1

2
lnc a; a, b, c

)
−Bn+1

(
x+

1

2
lnc b; a, b, c

)]
.

Hence, we can reformulate Theorem 3.1 as follows.
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Theorem 3.7. Let a, b, c in R∗+, with a 6= b, and En(x; a, b, c) be the generalized
Euler polynomials. Then, for every nonnegative integer n, we have,

En(x; a, b, c)

=
−2n+1

n+ 1

n+1∑
k=1

(
n+ k + 1

n+ 1

)−1 ∑
s+t=k
i+j=n+1

∑
r≤s,m≤t

(−1)t−(m+r)

(
n+ k + 1

s− r, t−m, i+ r, j +m

)

× S(i+ r, r)S(j +m,m)

[
Ci,j,k

(
2x+ lnc a

2
; a, b, c

)
− Ci,j,k

(
2x+ lnc b

2
; a, b, c

)]
,

where Ci,j,k(x; a, b, c) := lnj(a/cx) lni(b/cx)

lnk+1(b/a)
.

In particular, for b = c = e and a = 1, we reach the following corollary.

Corollary 3.8. Let En(x) be the Euler polynomials. Then, for every nonnegative
integer n, we have,

En(x) =
2n+1

n+ 1

n+1∑
k=1

(
n+ k + 1

n+ 1

)−1 ∑
s+t=k
i+j=n+1

∑
r≤s,m≤t

εm,r(t, j)

(
n+ k + 1

s− r, t−m, i+ r, j +m

)

× S(i+ r, r)S(j +m,m)

∣∣∣∣∣ xj
(
1
2
− x
)i(

1
2

+ x
)j

(1 − x)i

∣∣∣∣∣ ,
where εm,r(t, j) = (−1)t+j+1−(m+r).

4. Linear recursive approach for generalized Bernoulli poly-
nomials

4.1. Preliminary on the linear recursiveness of infinite order

Let {ai}i≥0 and {αi}i≥0 be two sequences of real or complex numbers, such that
for every N ∈ N there exists i > N such that ai 6= 0. The former sequence is called
the coefficient sequence and the latter the initial sequence. Consider the sequence
{wn}n∈Z defined by setting w−n = αn for n ≥ 0, and

wn =

∞∑
i=0

aiwn−i−1 for n ≥ 1. (4.1)

Expression (4.1) represents a series, thus the general term involves infinitely many
terms. Therefore, we have to worry about the convergence of this series (for more
details see [6, 17]). In [6] a necessary and sufficient condition, labeled [(C∞)], on
the existence of wn (n ≥ 1), is formulated as follows: The series

∑∞
i=0 ai+n−1α−i

converges for all n ≥ 1 (see [6, Proposition 2.1]). In particular, if αj = 0, for
all j ≥ k + 1, then the condition (C∞) is trivially verified, and we have vn+1 =
n+k∑
j=0

ajwn−j , for all n ≥ 0. Under some hypothesis on the two sequences {aj}j≥0
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and {αj}j≥0 (respectively), it was proved in [9] that {wn}n∈Z takes the following

combinatoric form wn =

n∑
s=1

Asρ(n− s, 0) with As =

+∞∑
m=0

as+m−1αm, where

ρ(n, 0) =
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!
ak00 · · · a

kn−1

n−1 , (4.2)

with ρ(0, 0) = 1 and ρ(−k, 0) = 0 for every k ≥ 1. Especially, the sequence {vn}n∈Z
defined by (4.2), namely, vn = ρ(n, 0), for every n ≥ 1, with ρ(0, 0) = 1 and
ρ(−k, 0) = 0 for every k ≥ 1, satisfies the recursive relation (4.1) of infinite order.
A straightforward computation shows that the generating function of {vn}n∈Z is,

f(t) =

∞∑
n=0

vnt
n =

1

Q(t)
, (4.3)

where Q(t) = 1 −
∑∞
j=0 ajt

j+1 is the so-called the characteristic function of the
sequence (4.1) (for more details see [17]). Conversely, let Q(t) be a complex func-
tion which is analytic in open disk D(0;R). Suppose that Q takes the following

power series form Q(t) = 1 −
∞∑
j=0

ajt
j+1, in D(0;R). Since Q(0) = 1 6= 0, then

f(t) = 1/Q(t) has a Taylor expansion in a certain disk D(0;R) centered at 0,
which is of the form

f(t) =
1

1−
∑∞
j=0 ajt

j+1
=

∞∑
n=0

wnt
n. (4.4)

And the identity Q(t)f(t) = 1 implies that we have wn+1 =
∑n
j=0 ajwn−j , for all

n ≥ 0, where w0 = 1 and w−j = 0 for all j ≥ 1. Hence, {wn}n∈Z is nothing else
but the sequence {vn}n∈Z defined by (4.3).

4.2. Generalized Bernoulli numbers Bn(λ) by recursiveness of infinite
order

Let {Bn(λ)}n≥0 be the sequence of Bernoulli numbers defined by their associated
generating function,

t

eλt − 1
=

+∞∑
n=0

Bn(λ)
tn

n!
. (4.5)

For λ = 1, Expression (4.5) allows us to get the usual Bernoulli numbers, namely,

Bn(1) = Bn. Also, we have eλt − 1 = λt

[
1 +

+∞∑
n=0

λn+1

(n+ 2)!
tn+1

]
. The left-

side of (4.5) can be written as follows
t

eλt − 1
=

1

Qλ(t)
, where Qλ(t) = 1 −∑+∞

n=0 bn(λ)tn+1, with bn(λ) = − λn+1

(n+2)! .
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Moreover, we have,

t

eλt − 1
=

1

λ

1

Qλ(t)
=

1

λ

+∞∑
n=0

vn(λ)tn =

+∞∑
n=0

n!
vn(λ)

λ

tn

n!
, (4.6)

where {vn(λ)}n∈Z is a sequence (4.1) of coefficients bn(λ) = − λn+1

(n+2)! and initial

conditions v0(λ) = 1 and v−k(λ) = 0, for every k ≥ 1. Comparing with the right
sides of (4.5)–(4.6) we derive the following result.

Theorem 4.1. The Bernoulli numbers are expressed in terms of the linear recur-
sive sequence of infinite order (4.1) as follows,

Bn(λ) = n!× vn(λ)

λ
, (4.7)

where {vn(λ)}n∈Z is a sequence (4.1) of coefficients bn(λ) = − λn+1

(n+2)! and initial

conditions v0(λ) = 1 and v−k(λ) = 0, for every k ≥ 1. In addition, the combina-
torial formula of the Bernoulli numbers is given by

Bn(λ) =
n!

λ

∑
k0+2k1+···+nkn−1=n

(−1)k0+···+kn−1
(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

[
λj+1

(j + 2)!

]kj
.

(4.8)

Moreover, the sequence
{
Bn(λ)
n!

}
n≥0

satisfies the recursive relation (4.1),

Bn+1(λ)

(n+ 1)!
= a0

Bn(λ)

n!
+ a1

Bn−1(λ)

(n− 1)!
+ · · ·+ an

B0(λ)

0!
. (4.9)

We can show easily that

n−1∏
j=0

[
λj+1

(j + 2)!

]kj
= λ

∑n−1
j=0 (j+1)kj

n−1∏
j=0

[
1

(j + 2)!

]kj
.

Since

n−1∑
j=0

(j + 1)kj = n and

Bn = Bn(1) = n!
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

a
kj
j ,

where aj = − 1
(j+2)! , we derive that Expression (4.9) takes the following form,

Bn(λ) = λn−1Bn(1) = n!λn−1
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

a
kj
j . (4.10)

Formulas (4.8) and (4.10) represent the combinatorial expression for generalized
Bernoulli numbers Bn(λ). Meanwhile, formula (4.9) gives a recursive process
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for generating the generalized Bernoulli numbers Bn(λ). It seems for us that
Expressions (4.8), (4.9) and (4.10), for the generalized Bernoulli numbers Bn(λ),
are not known in the literature under this form.

Remark 4.2. The function fλ(t) = t
eλt−1 satisfies fλ(−t) = t + fλ(t), therefore

the equality fλ(−t) =
∞∑
n=0

(−1)nvn(λ)tn = t +
∞∑
n=0

vn(λ)tn implies that v2n+1 = 0

for every n ≥ 1. Thus, Expression (4.7) shows that B2n+1(λ) = 0 for every n ≥ 1.
Since all the odd Bernoulli numbers vanish except B1(λ) = − 1

2 .

Remark 4.3. For λ = 1 in the preceding data, we recover results on the usual
Bernoulli numbers established in [3] and [19].

4.3. Recursive approach for generalized Bernoulli numbers Bn(a, b)

Let first consider the generalized Bernoulli numbers Bn(a, b) defined by the fol-
lowing generating function,

t

bt − at
=

t

eβt − eαt
=

+∞∑
n=0

Bn(a, b)
tn

n!
, (4.11)

wherea, b are positive numbers, α = ln a and β = ln b. Set λ = β − α = ln(b) −
ln(a). Let Fa,b(t) be the function Fa,b(t) = t

bt−at = t
eβt−eαt . We show easily

that Fa,b(t) = te−αt

eλt−1 . The basic Taylor series e−αt =
+∞∑
p=0

(−1)pαp t
p

p! and t
eλt−1 =

1
λ

1
1−

∑+∞
j=0 bjt

j
, where bj = − λj+1

(j+2)! , implies that we have,

Fa,b(t) =

+∞∑
n=0

[
n∑
s=0

(−α)s

s!

vn−s(λ)

λ

]
tn =

+∞∑
n=0

n!

[
n∑
s=0

(−α)s

s!

vn−s(λ)

λ

]
tn

n!
, (4.12)

where {vn(λ)}n∈Z is a sequence (4.1) of coefficients bn(λ) = − λn+1

(n+2)! and initial

conditions v0(λ) = 1 and v−k(λ) = 0, for every k ≥ 1. Using Expressions (4.7),
(4.10), and comparing with (4.11), we derive the following result.

Theorem 4.4. Let a, b > 0 and set α = ln a, λ = ln b − ln a. The generalized
Bernoulli numbers Bn(a, b) given by (4.11), satisfy the following properties,
1) For every n ≥ 1, the linear recursive relation is verified,

Bn(a, b)

n!
=

n∑
s=0

(−α)s

s!

vn−s(λ)

λ
,

where {vn(λ)}n∈Z is a sequence (4.1) of coefficients bn(λ) = − λn+1

(n+2)! and initial

conditions v0(λ) = 1 and v−k(λ) = 0, for every k ≥ 1.



Other approaches for generalized Bernoulli–Euler polynomials 229

2) For every n ≥ 1, the combinatorial expression of the Bernoulli numbers Bn(a, b)
is,

Bn(a, b) =n!λn−1
n∑
s=0

(−1)n−s
αn−s

(n− s)!
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

a
kj
j ,

where aj = − 1
(j+2)! .

Taking into account, results of Theorems 4.1, 4.4 and Expression (4.10), we
give below the expression of the Bn(a, b) in terms of the usual Bernoulli numbers
Bn.

Corollary 4.5. Under the data of Theorem 4.4, the expression of the Bn(a, b) in
terms of the usual Bernoulli numbers Bn is,

Bn(a, b) = (ln b/a)
n−1

n∑
s=0

(
n

s

)
(− ln a)n−sBs, (4.13)

for every n ≥ 1.

Moreover, the generalized Bernoulli numbers Bn(a, b) satisfy the following re-
cursive relation,

Bn+1(a, b) = (−1)n+1 (ln a)n+1

ln b/a

n∑
j=0

(ln b/a)j+1

(j + 1)!

(
n+ 1

j + 1

)
Bn−j(a, b),

for every n ≥ 0, b 6= a and (a, b) 6= (1, 1).

4.4.Recursive approach for generalized Bernoulli polynomialsBn(x; a, b, c)

Let a, b, c > 0, with a 6= b, and set α = ln a, β = ln b, γ = ln c and λ = ln b− ln a.
The associated generalized Bernoulli polynomials Bn(x; a, b, c) are defined by (1.1),

namely,
t

bt − at
cxt =

t

eβt − eαt
eγxt =

+∞∑
n=0

Bn(x; a, b, c)
tn

n!
. Following Expression

(4.12) we have
t

bt − at
=

+∞∑
n=0

n!

[
n∑
s=0

(−α)s

s!

vn−s(λ)

λ

]
tn

n!
, where {vn(λ)}n∈Z is a

sequence (4.1) of coefficients bn(λ) = − λn+1

(n+2)! and initial conditions v0(λ) = 1 and

v−k(λ) = 0, for every k ≥ 1. Since eγxt =

+∞∑
n=0

γnxn
tn

n!
, we derive,

t

bt − at
cxt =

[
+∞∑
n=0

γnxn
tn

n!

][
+∞∑
n=0

Ωn(λ)
tn

n!

]
=

+∞∑
n=0

n!

[ ∑
k+m=n

γk

k!
xk

Ωm(λ)

m!

]
tn

n!
,
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where Ωn(λ) = n!
[∑n

s=0
(−α)s
s!

vn−s(λ)
λ

]
. Comparing the former formula with Ex-

pression (1.1), we derive that the generalized Bernoulli polynomials Bn(x; a, b, c)
are given by,

Bn(x; a, b, c) = n!
∑

k+m=n

γk

k!

Ωm(λ)

m!
xk = n!

n∑
k=0

γk

k!

Ωn−k(λ)

(n− k)!
xk.

Theorem 4.6. Under the preceding data, the generalized Bernoulli polynomials
Bn(x; a, b, c) are given by one of the following three equivalent formulas,

Bn(x; a, b, c) =

n∑
k=0

(n− k)!

(
n

k

)
γk

[
n−k∑
s=0

(−α)s

s!

vn−k−s(λ)

λ

]
xk,

Bn(x; a, b, c) =

n∑
k=0

(n− k)!

(
n

k

)
γk

[
n−k∑
s=0

(−α)s

s!

Bn−k−s(λ)

(n− k − s)!

]
xk,

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
γk

[
n−k∑
s=0

(
n− k
s

)
(−α)sBn−k−s(λ)

]
xk,

where

Bn(λ) =
n!

λ

∑
k0+2k1+···+nkn−1=n

(−1)k0+...+kn−1
(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

[
λj+1

(j + 2)!

]kj
.

Taking into account, results of Theorems 4.1, 4.4, Corollary 4.5 and Expres-
sions (4.10), (4.13), we can show that the generalized Bernoulli polynomials
Bn(x; a, b, c) can be formulated in terms of the generalized Bernoulli numbers
Bn(a, b) and the usual Bernoulli numbers Bn.

Corollary 4.7. In terms of the generalized Bernoulli numbers Bn(a, b), the gen-
eralized Bernoulli polynomials Bn(x; a, b, c) are given by,

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
γkBn−k(a, b)xk,

for every n ≥ 1, where γ = ln c. In terms of the usual Bernoulli numbers Bn, we
have the following formula,

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
λn−k−1γk

[
n−k∑
s=0

(
n− k
s

)
(−α)n−k−sBs

]
xk,

for every n ≥ 1.

Through Expression (4.10), with λ = 1, and the Corollary 4.7, we can arrive
at the combinatorial expression of the generalized Bernoulli polynomials.
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Corollary 4.8. The combinatorial formula of the generalized Bernoulli polyno-
mials Bn(x; a, b, c) is given by,

Bn(x; a, b, c) =

n∑
k=0

(
n

k

)
λn−k−1γk

[
n−k∑
s=0

s!

(
n− k
s

)
(−α)n−k−sBs

]
xk,

for every n ≥ 1, where γ = ln c, B0 = 1 and

Bs = s!
∑

k0+2k1+···+sks−1=s

(k0 + · · ·+ kn−1)!

k0! · · · ks−1!

s−1∏
j=0

a
kj
j .

5. Linear recursive approach for generalized Euler polynomi-
als

5.1. Generalized Euler numbers En(λ) and En(a, b) by recursiveness of
order ∞

The generalized Euler numbers En(λ) are defined by their generating function as
follows,

2

eλt + 1
=

+∞∑
n=0

En(λ)
tn

n!
. (5.1)

We can show easily that for λ = 1, we get the usual Euler numbers, namely,
En(1) = En. The process used for expressing the Bernoulli numbers in terms of
linear recursive relations (4.1), can also be applied for Euler numbers En. Indeed,
we have

2

eλt + 1
=

2

2 +
∑+∞
n=0 λ

n tn

n!

=
1

1−
∑+∞
n=0 bn(λ)tn+1

, where bn(λ) = − λn+1

2[(n+ 1)!]
.

Therefore, with the aid of Expression (4.4), we derive

2

eλt + 1
=

+∞∑
n=0

wn(λ)tn =

+∞∑
n=0

n!wn(λ)
tn

n!
,

where {wn(λ)}n∈Z is a sequence (4.1) of coefficients bn(λ) = − λn+1

2[(n+1)!] and initial

conditions w0 = 1, w−k = 0 for k ≥ 1. Using (4.4) and comparing with (5.1), we
obtain,

En(λ) = n!wn(λ) = n!
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

[
−λj+1

2[(j + 1)!]

]kj
.

(5.2)
For λ = 1, we get the following expression for Euler numbers,

En = En(1) = n!wn(1) = n!
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

b
kj
j , (5.3)
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where bj = −1
2[(j+1)!] . Expression (5.3) has been established in [3]. Since bj(λ) =

λj+1[ −1
2[(n+1)!] ] = λj+1bj , we derive that,

n−1∏
j=0

b
kj
j (λ) = λ

∑n−1
j=0 (j+1)kj

n−1∏
j=0

b
kj
j =

λn
n−1∏
j=0

b
kj
j , for

∑n−1
j=0 (j+ 1)kj = n. Therefore, Expressions (5.2)-(5.3), imply that,

En(λ) = n!λn
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

b
kj
j , i.e., En(λ) = λnEn.

Let a > 0, b > 0, with a 6= b, and consider the generalized Euler numbers En(a, b)
defined as follows,

2

bt + at
=

+∞∑
n=0

En(a, b)
tn

n!
. (5.4)

On the other hand, let λ = ln b − ln a, α = ln a we have
2

bt + at
=

2

eλt + 1
e−αt,

therefore,

2

eλt + 1
e−αt =

[
+∞∑
n=0

n!wn(λ)
tn

n!

][
+∞∑
n=0

(−α)n
tn

n!

]
=

[
+∞∑
n=0

En(λ)
tn

n!

][
+∞∑
n=0

(−α)n
tn

n!

]
,

where En(λ) = n!wn(λ) and {wn(λ)}n∈Z is a sequence (4.1) of coefficients bn(λ) =

− λn+1

2[(n+1)!] and initial conditions w0 = 1, w−k = 0 for k ≥ 1. Therefore, we have,

2

bt + at
=

+∞∑
n=0

n!

[
n∑
p=0

Ep(λ)

p!

(−α)n−p

(n− p)!

]
tn

n!
=

+∞∑
n=0

[
n∑
p=0

(
n

p

)
Ep(λ)(−α)n−p

]
tn

n!
.

Comparing with Expression (5.4), we derive,

En(a, b) =

n∑
p=0

(
n

p

)
Ep(λ)(−α)n−p =

n∑
p=0

(
n

p

)
λp(−α)n−pEp, (5.5)

since En(λ) = λnEn, where En are the usual Euler numbers, namely.

En(a, b) =

n∑
p=0

(
n

p

)
(ln b− ln a)

p
(− ln a)

n−p
Ep. (5.6)

5.2.Recursive approach for the generalized Euler polynomialsEn(x; a, b, c)

Let a, b, c > 0 be real numbers, with a 6= b, c 6= 1, and set α = ln a, β = ln b,
γ = ln c and λ = ln b − ln a. The associated generalized Euler polynomials
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En(x; a, b, c) are defined by (1.2), namely,
2

bt + at
cxt =

+∞∑
n=0

En(x; a, b, c)
tn

n!
. Fol-

lowing Expression (5.4) we have
2

bt + at
=

+∞∑
n=0

En(a, b)
tn

n!
, we derive,

2

bt + at
cxt =

[
+∞∑
n=0

En(a, b)
tn

n!

][
+∞∑
n=0

γnxn
tn

n!

]
=

+∞∑
n=0

[
n∑
p=0

(
n

p

)
En−p(a, b)γ

pxp

]
tn

n!
,

where En(a, b) is given by Expressions (5.5)–(5.6).

Theorem 5.1. Let a, b, c > 0 be real numbers, with a 6= b and c 6= 1. Then, the
generalized Euler polynomials En(x; a, b, c) are given by,

En(x; a, b, c) =

n∑
p=0

(
n

p

)
En−p(a, b)(ln c)

pxp, for every n ≥ 0, (5.7)

where En(a, b) is given by Expressions (5.5)–(5.6), or equivalently,

En(x; a, b, c) =

n∑
p=0

(
n

p

)[n−p∑
k=0

(
n− p
k

)
(ln b− ln a)k(− ln a)n−p−kEk

]
(ln c)pxp,

(5.8)
where Ek are the usual Euler numbers.

Expression (5.7) shows that the generalized Euler polynomials En(x; a, b, c) are
expressed in terms of the generalized Euler numbers En(a, b) and ln c. Meanwhile,
Expression (5.8) shows that the generalized Euler polynomials En(x; a, b, c) are
expressed in terms of the usual Euler numbers En and, the real numbers ln a, ln b
and ln c. In the best of our knowledge these two formulas are not current in the
literature.

Moreover, utilizing Expression (5.3), namely, Ek = k!
∑
Sk

(
s0 + · · ·+ sk−1
s0, . . . , sk−1

)k−1∏
j=0

b
sj
j ,

where Sk = {(s0, s1, . . . , sk−1); s0 + 2s1 + · · ·+ ksk−1 = k} and
(
s0+···+sk−1

s0,...,sk−1

)
=

(s0+···+sk−1)!
s0!···sn−1!

, we get the following corollary.

Corollary 5.2. Let a, b, c > 0 be real numbers, with a 6= b and c 6= 1. Then,
the combinatorial expression of the generalized Euler polynomials En(x; a, b, c) is
given by,

En(x; a, b, c) =

n∑
p=0

(
n

p

)n−p∑
k=0

k!

(
n− p

k

)
λk(−α)n−p−k

∑
Sk

(
s0 + · · · + sk−1

s0, . . . , sk−1

)
k−1∏
j=0

b
sj
j

γpxp,
where Sk = {(s0, s1, . . . , sk−1); s0 + 2s1 + · · ·+ ksk−1 = k} and(
s0 + · · ·+ sk−1
s0, . . . , sk−1

)
=

(s0 + · · ·+ sk−1)!

s0! · · · sn−1!
.
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6. Concluding remarks and perspectives

In the preceding sections, we had used two approaches for studying the generalized
Bernoulli and Euler polynomials, namely, the determinantal approach and the
linear recursive sequences of order infinity. These approaches have allowed us
to establish some new explicit compact formulas, for the generalized Bernoulli
and Euler polynomials (1.1)–(1.2), in terms of generalized Bernoulli numbers and
generalized Euler numbers, or the usual Bernoulli and Euler numbers. In addition,
new properties were established and other known identities are recovered.

It seems for us that our approaches, for the generalized Bernoulli and Euler
polynomial (1.1)–(1.2), are not current in the literature. On the other hand, it
appears to us that these approaches can be applied to the generalized Genocchi
polynomials.
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