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Entropy solutions for some nonlinear p(z)-parabolic
problems with degenerate coercivity

Arij Bouzelmate, Youssef Hajji* and Hassane Hjiaj

Abstract. This paper is concerned with the study of the non-coercive p(x)-parabolic problems
ut + Au+ F(z,t, Vu) + 6(z, ) |[ulP@) 2y = f(z,t,u) n Qr,
u(z,t) =0 on Sr,
u(z,0) = uo(x) in Q,
where the initial condition ug € L*(Q) and §(z,t) is the positive function belong to L™= (Qr).
We prove the existence of entropy solutions for this parabolic equation, and we will conclude

some reqularity results.

1. Introduction

Let © be a bounded open subset of RY (N > 2). For T' > 0, we denote by Q7 the
cylinder © x (0,7) and by Sp the later surface 9Q x (0,7"). In [14] Di Nardo, et
al. have studied the nonlinear parabolic problem

up — Apu + div(clu|""tu) + b|Vu|’ = f —divg  in Qr,
u(z,t) =0 on Sr, (1.1)
u(z,0) = up(x) in 0,

where f € LY(Qr) and g € (LP (Q7))", with the initial data uo in L(£). They
have proved the existence of renormalized solutions for this nonlinear parabolic
problem, and in [15] they have proved the uniqueness of renormalized solution for
the parabolic problem (1.1) (see [21]).

Alvino et al. have demonstrated in [3] the existence and regularity of solutions
for the nonlinear elliptic problem with degenerate coercivity

—div M =f in Q
(1 + Ju))?@Y ’

u=20 on 01,

(1.2)

where f is assumed to be in L™ () with m > 1, we refer the reader also to [2] and
[25].
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The domain of Sobolev spaces with variable exponent has received a much
attention in recent years, the impulse for which comes from their physical ap-
plications, such in electro-rheological fluids and image processing (see [12, 22]).
Bendahmane et al. have studied in [9] the parabolic problem

up — div (|[Vu[P®)=2vVy) = f in Qr,
u =0 on X, (1.3)
u(z,0) = up(x) in Q

with f € L*(2), they have proved the existence and uniqueness of the renormalized
solutions to this nonlinear parabolic problem. Moreover, they have established
some regularity results, (we refer the reader to [4, 5, 6, 10, 8] for more details). In
[7], Azroul et al. have proved the existence of entropy solutions for the following
equations, whose prototype is given by:

us + Au+ gz, t,u, Vu) = f —dive(u)  in Qr,
u(z,t) =0 on S, (1.4)
u(z,0) = uo(x) in Q,

where f € LY(Q7), Au = — div(a(z,t, Vu) + & [u[P®) =2y with § > 0, and ug €
LY (). Moreover, Chrif et al. have proved in [13] the existence of entropy solutions
for the problem (1.4) in the anisotropic Sobolev space.

In this paper, we will establish the existence of entropy solutions for the
strongly nonlinear parabolic problem of the form

ut + Au+ F(z,t, Vu) = f(z,t,u) in Qr,
u(z,t) =0 on St, (1.5)
u(z,0) = up(z) in Q,

where Au is a Leray—Lions operator with degenerate coercivity. The Carathéodory
functions F(x,t,&) and f(z,t,s) satisfy only some growth conditions, and the
initial data ug(z) is assumed to belongs to L(€2).

This paper is organized as follows: in section 2, we recall some definitions and
basic properties concerning Sobolev spaces with variable exponents. We introduce
in section 3 the assumptions on the Carathéodory function a(z,t,s,€), F(z,t,£)
and f(xz,t,s) for which our problem has at least one solution. Section 4 contains
some important lemmas that are useful to prove our main result. The last section
5 is devoted to show the existence of entropy solutions for our quasilinear non-
coercive p(z)-parabolic problem (1.5).

2. Preliminaries

Let © open bounded domain in RY (N > 3) with boundary 052, we denote

C, (Q) = {measurable function p(-): Q — R such that 1<p_ <p, < oo},
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where
p_ = essinf{p(z)/ = € Q} and  py = esssup{p(z)/ = € Q}.

We define the variable exponent Lebesgue space for p(.) € C (Q2), by
LPO(Q) = {u: Q— R measurable / /Q|u(x)\1’(””) dx < oo},
Under the norm
) = inf{)\ >0, /Q ‘@‘p(m) do < oo} (2.1)

is a uniformly convex Banach space, and therefore reflexive. Let u € LP()(Q) and
/ 1 1
ve PO with — + —
p(:)  P'()
1 1
| [ do| < (=4 =) o ol (2.2)

Proposition 2.1 (see [17, 24]). We define the modular p(u) by

= 1, we present the generalized Holder’s inequality by

p(u) = / lulP® dz Yu e LPO(Q),
Q

then:
L lullpey <1 (resp,=1,>1) <= plu) <1 (resp,=1,>1),

2 Nullpy > 1= Jull%fy < plu) < [ullZ, and Jullyy < 1= [ul% <
plu) < Jull”;,

3. Ntunllpey = 0 = p(un) =0, and |un|l,) — 00 <= p(un) — oo.
Now, we define the variable exponent Sobolev space by
WhPO(Q) = {u e LPO(Q) and |Vu| € LPO(Q)},

normed by
lullipey = lullpey + 1 Vullpey — Vue WHPO(Q), (2.3)

We denote by Wol’p(') (Q) the closure of C°(Q) in W1P()(Q) for the norm topology
of (2.3).

Proposition 2.2 (see [17]).

1. Let p(-) € CL(Q), then the spaces W) (Q) and Wol’p(')(Q) are separable

and reflexive Banach spaces.
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Np(z)
N—plo) forp(z) < N. If q(-) €

C.(Q) and q(z) < p*(z) for any x € Q, then the embedding Wol’p(')(Q) e
L1C)(Q) is continuous and compact.

2. We define the Sobolev exponent: p*(x) =

Let T > 0, we introduce the space V by
V= {u e LP-(0,T; Wol’p(')(Q)) such that u € LP")(Qr) and |Vu| € LP(')(QT)}.

We define the modular p; p,.)(u) for any u € V' by

P1p(y(u) = / |u[P@®) dz dt + / [VulP@ da dt.
T T
The space V' endowed by the norm

lullv = llullzrey @y + VUl oo @r)
is a separable and reflexive Banach space.

Lemma 2.3 ([23]). Let By, B and By be some Banach spaces, with By C B C By.
Let us set

Y ={u: uel”0,T;By) and u' € L"(0,T;B)}

where pg > 1 and p; > 1 are reals numbers. Assuming that the embedding By ——
B be compact, then
Y —<— LP°(0,T; B)

is a compact imbedding.

2N
Remark 2.4. Let p_ > N2 we set

Bo=Wy"(Q), B=L%Q) and B, =W 0O(Q),
with po =p— and p; = (p+)’. In view of the Lemma 2.3, we obtain
{u:uweV and v eV*}CY <= L'(Qr). (2.4)
Moreover, in view of [9], we have

{u:wueV and o €V*}CC(0,T]; L (). (2.5)

3. Essential assumptions

Let Qr = Q x (0,T) with 0 < T < oo and taking p(.) € C4(f) such that
]3—41\_’2 < p_ < ps < oo. We consider the Leray-Lions operator A acting from V into
its dual V* defined by

Au = —div a(z, t,u, Vu) + 6(z, t)|u[P® 2y,
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where §(z,t) € L°°(Qr) such that there exists a constant dy > 0 with 6(z,t) > do
a.e. in Qp, and the Carathéodory function a(z,t,s,£): Qr x R x RV —— RV
satisfies the following conditions:

la(z,t,5,6)| < BUK (1) + [s[P 71 4 g, (3.1)
where K (z,t) is a nonnegative function lying in L' )(Qr) and 8 > 0.
(a(z,t,5,&) —a(z,t,5,&))(E—E&) >0 forany &#¢, (3.2)
alw,t,5,€) - € > b, [s])IE[", (33)
with b(z,+): @ x R+~ RT is a decreasing function for a.e. & € Q such that there

exists a positive constant by which verifies

bo
W < b(l‘7 ‘SD for any s & R, (34)
where A(z) is a measurable function, such that 0 < A(z) < p(z) — 1 a.e. in .
The lower order term F'(z,t,£) is a Carathéodory function which satisfies only
the growth condition:

| (,1,6)] < e(a, t)[€][1, (3-5)
p(@)(p(z) — 1) , m( :
where 0 < ¢(z) < o)+ @) a.e. in Q and c(z,t) € L™ (Qr) with

p(x)(p(x) — 1)
p(@)(p(z) —q(x) — 1) = A(z)q(x)

The Carathéodory functions f(z,t,s) : Qr xR —— R fulfills the growth condition:

a.e. in Q.

m(x) >

|f(@,t,9)] < folw,t) + d(a, t)|s @, (3.6)
where fo € L'(Qr), with 0 < v(x) < p(z) — 1 a.e. in Q and d(z,t) € L"®(Qr)
such that r(z) > m a.e. in Q.

We consider the quasilinear parabolic problem

ug + Au+ F(x,t,Vu) = f(z,t,u) inQr=Qx(0,7),
u(z,t) =0 on Sy =90 x (0,T), (3.7)
u(z,0) = up(x) in £,

with ug € Lt (Q)

4. Some technical Lemmas

Let ¢ > 0, we define the time mollification u,, of a function u € V, by

uu(z,t) = ,u/ a(xz, s)exp(pu(s —t)) ds where a(z,s) = u(x, s)x0,1)(8)

— 00
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Proposition 4.1 (see [1]).
1. Ifu € LPO(Qr), then u, € LPV)(Qr), moreover % = p(u—uy,) and
lwull oo @y < Null Loy (@r)-

2. Ifue Wol’p(')(QT), then u, — u strongly in Wol’p(')(QT) as  j — oo.

3. If u, — u strongly in Wol’p(')(QT), then (un), — u, strongly in Wol’p(')(QT)
as m— oo.

Lemma 4.2 (see [18, Theorem 13.47]). Let (uy)n be a sequence in L*(Q) and
u € LY(Q) such that

(i) u, — u a.e. in Q,

(ii) u, >0 and u >0 a.e. in §,

(iit) /un d:v—>/udx,
Q Q

then u, — u in L'(Q).

Lemma 4.3 (see [1]). Let g € LP)(Q) and g, € LPY(Q) with ||gn|l,) < C for
1 < p(z) < oo. If gn(x) — g(x) almost everywhere in Q, then g, — g weakly in
LrO(Q).

Lemma 4.4 (see [7]). Assuming that (3.1)—(3.3) hold, and let (un)nen be a se-

quence in 'V such that % e V* and u, — u weakly in V with

/ (a(az, t, Un, Vi) — a(x, t,up, Vu)) (Vu, — Vu) dz dt
T (4.1)
+/ (\un\p(x)_Qun - \u|p("”)_2u) (up, — u) dx dt — 0,

then u, — u in V for a subsequence.

5. Main results: Existence of entropy solutions

Let Ty (s) = max(—k, min(s, k)), we set

2

" ” i |r| <k
Sk(r)Z/ Tk(s)ds:{2 o Drlsk,
0

Elr| =% if |r[ > k.

Firstly, we introduce the definition of entropy solutions for our degenerated p(z)-
parabolic problem.
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Definition 5.1. A measurable function w is called entropy solution of the parabolic
problem (3.7) if Ty, (u) € V, F(z,t,Vu) € LY(Qr), f(z,t,u) € L*(Qr), and

/ Sk(u—)(T) dx—/ Sk(u —1)(0) dv + 8—Q/JT;C(u—w) dx dt

Q Q Qr ot

+ a(z,t,u, Vu) - VI (u — ) dz dt + / F(x,t,Vu)Ti(u — ) dedt  (5.1)
Qr

< j fla, t,u) T (u — ) dz dt,

for every v» € VN L>®(Qr) with %ﬁ} €V +L'(Qr).

The goal of the present paper is to prove the following existence result:

Theorem 5.2. Assuming that the conditions (3.1)—(3.6) hold true, then the parabolic
problem (3.7) has at least one entropy solution.

6. Proof of Theorem 5.2

Step 1: Weak solutions for the approximate problems.

For any n € N*, let (ug ), be a sequence in C§°(Q) such that ug ., — up in L*()
and ‘UQ,n| S ‘UO‘-
We consider the sequence of approximate problems:

(un)t + Apuy, + Fn($7t7 vun) = fn($7t7un) in QTa

un(x,t) =0 on St, (6.1)
Un(l‘,O) = Uo,n in Q,
where
Apv = —div a(z, t, T, (v), V) + 6(z, t)|v|P®) 20,
with

fa(@,t,s) =Ta(f(x,t,s))  and  Fu(,t,§) = T, (F(x,t,)).
For all u,v € V, we define the operator G,,: V. — V* by

T
/ (Gpu,v) dt = / Fo(z,t,Vu)v dz dt — fo(z,t,w)v dx dt.
0 T Qr

In view of the Holder’s and the Poincaré’s inequality, we have: for any u,v € V
r 11
| [ (G vyt < =+ ) (1Bt Vun) Lo o ol @)

+ ”fn(xvtaU)HLP’(')(QT)HUHLP(‘)(QT)) (6.2)
1

< 4(nPrmeas(Qr) + 1)7- 101 o) (@)
< Gollv|lv.
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In view of the Lemma 7.2 (see appendix) and there exists at last one weak solution
u, € V of the problem (6.1) (see [19]).

Step 2: A priori estimates.

1
p(z)(p(x) — 1)
(p(z) = D(p(z) — q(x)) = (AM(x) + )g(2)

By taking ¢(u,) as a test function for the approximate problem (6.1), we have

T ou a(x, t, Ty (un), Vuy,) - Vu
= o(uy) ) dt + 9—1/ o ona D T om0 " dx dt
/0 (S plum)) de+(6 =) or (1 [un])?
+/ Fp(z,t, Vuy)p(uy,) dr dt+/ 5(x,t)|un|p(l)_2unga(un) dx dt
Qr Qr

:/ fr(z, t,un)o(uy) de dt.
Qr

)sign(un) with 6 > 1 small enough such that

0<

< m(x).

(6.3)
We define

1 1 1
for 6 €]1,2[U]2
B(s) = |s|+9—2(1+|s|)9—2 +g—yg for 0€]1,2U)2,00],

|s| —log(1+ |s|) for 6 =2,

/OT <aaitn,cp(un)> dt = /Q/OT %@(un) dt dx
T
:/Q [q)(“”ﬂo dz (6.4)
= /Q‘I)(Un(T)) dx — /Q O (ug,pn) dz
> —|luollz1 (-

Therefore, using the growth assumptions (3.3)—(3.6), we obtain

Yu, [P .
bo(G—l)/T de dt+60/T |t |P@ Yo ()| da di

< follLr@ry + llwollzr (o) +/ c(z,1)|Vu, 1) dz dt (6.5)

Qr

+ d(z,t)|u, V@ dz dt.
Qr
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Using Young’s inequality, we find that

/ ez, )| Vu, |9 dz dt

T

p(x) (z)
< Cl/ |c($,t)\ p(m‘;ﬂ;(z) (1 + |un|)(/\(ac)+«9)p(m§7q<z) dz dt
Qr

ST G i
2 Jou (T fun P70

p(x)(p(x)—1)
< Oy |c(x,t)\ @) —D(p(@)—a@) - M=) +0a=) dr dt
Qr

60 p(z)—1 bo(9 — 1) / |Vun|p(””)
+3 /T |t du dt + == o, (4 ST da dt,

dz dt (6.6)

and 5
/ d(z, t)|un ") da dt gi’/ |t [P d it
T 8 T

p(z)—1 (67)
+Cg/ |d(z,t)|P@=1=2@ dz dt.
Qr
Having in mind that [p(u,)| > 3 for |u,| > R = 251 — 1, then
)] ,. ,
=2 Jun PO de dt < 60/ |t [P ()| da dt
2 Qr {\UnIER}
+2 |t [P~ d dt (6.8)
2 J{jun|<R}
< 50/ [t [P ()| da dt + C.
Qr
By combining (6.5)—(6.8), we deduce that
bo(0 — 1 [P 5
o )/ [Vitn| Soyre do dt + 2 | T () P da dt
2 Jor (1A |un A 4 Jor
< [[follr@r) + lluollLr () + Cz/ |e(a, )™ da dt (6.9)

T

+cg/ |d(z,t)]"® dz dt + 2|Q7| + Cj.
T

Hence,

bo(6 — 1)

8o .
[ | VTi(u,)|P® da dt + = / Ty (u,)|P®) Y da dt < Cs.
2(1 + k))\++6 ‘/QT 4 Qr ’

(6.10)
It follows that: for any k > 1,
T (un) |5 < / VT (1) |P®) daz dt —|—/ | Ty () [P®) daz dt + 2 < Cok?M,
Qr T
(6.11)
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where Cg > 0 is constant that doesn’t depend on n and k. Then, the sequence
(T (un))new is uniformly bounded in V, and there exists a subsequence still
denoted (T} (un))nenw and a measurable function v, € V' such that

Ti(u,) = vg weaklyin V (6.12)
Ti(un) — v, strongly in  LPO)(Qr) and aein Qr. '
Let k > 1, thanks to (6.10) it is obvious that
kP=~1 meas{|u,| > k} = | Tk (up) [P~ 1 da dt
{lun|>k}
< / Te(un) POV dzdt+|Qr] (619
T
< Cy.
We deduce that
C
meas{|u,| >k} < kpj—l — 0 as k— oo (6.14)
For all § > 0, we have
meas {|u, — um| > 0} < meas {|u,| > k} + meas {|un| > k}
+ meas {|Tx(un) — T (um)| > 6} .
Let £ > 0, thanks to (6.14) we can choose k = k(g) large enough such that
meas {[un| > k} < % and  meas {Junm| > k} < % (6.15)

Moreover, in view of (6.12) we can assume that (Tx(u,)), is a Cauchy sequence
in measure in Qr, then for all £k >0 and 0, € > 0 there exists ng = ng(k,J, )
such that -

meas{ | T (un) — To(um)| > 6} < 3 VYn,m > ng. (6.16)

Thanks to (6.15) and (6.16), we conclude that : for any d,e > 0, there exists
ng = ng(0, €) such that

meas {|tun — Uy | >0} <e for any n, m > ng(d, ), (6.17)

which proves that the sequence (u,,), is a Cauchy sequence in measure, then there
exists a subsequence still (u,), such that

Up —> U almost everywhere in Q7. (6.18)
Consequently, thanks to (6.12) we have
Tr(upn) — Tk (w) weakly in  V, (6.19)
and according to Lebesgue dominated convergence theorem, we get

Ti(un) = Ti(u)  strongly in  LPO(Qr). (6.20)
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Step 3: Some regularity results

Let h > k > 1, we denote by €;(n), j =1, 2,... some real valued functions which
converge to 0 when n goes to infinity, similarly we denote ¢;(n, h) and €;(n, h, u).
In this step, we will show that

1
lim limsup — / a(x,t, T (un), V) - Vu, da dt = 0. (6.21)
h=00 n—oo NV J{ju,|<n}
et h > 1 and pp(s) = (2 - W)Th(s). By taking o asa test

)
function for the approximate problem (6.1), we have

T
Oun pp(uy) 1/
/0 < 5 & >dt+ N Ta(a:,t,Tn(un),Vun) Von(uy) dx dt

1 1
+E/ F,(z,t, Vuy)pn(uy,) de dt + h/Q 5($,t)|un|p(z)*2unsﬁh(un) dz dt
B 1 T T
h

fn(f,t, un)@h(un) dx dt.
(6.22)

In view of the growth conditions (3.3)—(3.6), and since |Th(un)| < |on(us)| <
2 T (uy)| we obtain

T
Oun o (un) 1
/0 < 5 R >dt+h/Ta(x,t,Tn(un),Vun) VT (uy) dx dt

|Th (un)| dx dt + %

bo(6 — 1) |V, [P p(z)—1

M Mcearw e i o e
2 2

< 7/ fo(x,t)|Th(un)|dxdt+f/ d(z, t)|un |V Ty (uy,)| dae dt
h Qr h Qr

2
+ E/ (1) |V, |7 Ty, (uy,) | dz dt.
(6.23)

For the first term on the left-hand side of (6.23), we set Gp(s) = / ©n(7)dr then
0

Ou, pr(u ou,,
/o <W h // ——n(uy) dt dx

:E/Q Gh(un)} dz (6.24)

:l/Gh(un dac—f/GhuOn dx.
h Ja

Concerning the second and third terms on the right-hand side of (6.23), similarly
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to (6.7) we have

B}
7/ d(z, ) [un | @ Ty (uy)| da dt < i/ |t [P T, ()| daz di
h Qr 4h Qr

Cs

p(z)—
(@, t)|[FET= [Ty (un)| da dt,
h Qr

(6.25)
7/ oz, )| Vun |9 | Ty, (uy, )| de dt
hJor

<

|c(x,t)|m(w)|Th(un)| dx dt +eo(h) + E/ |un|p(I)*1|Th(un)| dx dt
Qr
bo(f — 1 VY, [P®)
I o )/ |V,
or (

L+ [t N@)F0 T (un)| do dt.

(6.26)
Combining (6.23)—(6.26), and since / Gr(un(T)) de > 0, we deduce that
Q

0—1
,/ a(z,t, Tn(uyn), V) - VI, (uy) do dt + bo( )/
" Jar h Jar

|vun|p(x)
B 1+ [y |)0+A@
) _
X |Th (uy)| dx dt + i/ |t |P@ YT, ()| daz dt
T
2 Cy _ p@-1
<= fola, )| Th(uy)| dx dt + — / |d(z, t)|P@=—1=7@ | T}, (uy,)| dx dt
h Jor h oy
C
+ =2

1
21w 0O T ) ot + - [ Gl da + eoh)
Qr Q

(6.27)
x)—
We have fo(z,t), |d(x,t)|P(mz>)*1*i(m> and |¢(z,t)|™*) are belongs to L'(Qr), and
T (un
since Thlun)| 0 weak —x in L®°(Qr), therefore
2
51(”7 h’) = E

Fola, )| Th (un)| de dt+% / (@, )| BT | Ty (un)| de dt
QT T

C

LG

N le(z, )| ™| Ty (uy)| dz dt — 0 as  n, h — oo,
Qr

(6.28)
‘We have Gn(uo.n) < [T (o)

N ||u0| € L*(Q), and since Gh(uo.n)
we conclude that

— 0 a.e. in §,

1
ea(n, h) = E/ Gr(ugpn)de —0 as n,h — oo (6.29)
Q
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Combining (6.27)—(6.29), we obtain

1 / bo(6 — 1) |V [P
- a(z, t, Ty, (un), Vuy,) - VI (uy,) dz dt + /
hJg. 2h 0p (14 uy)f+A@)

1) v
X |Th(un)| dx dt + i/ |un‘P(L)—1‘Th(un)‘ da dt

Qr
< e3(n,h).
(6.30)
We conclude that
1
lim limsup — / a(x,t, T (un), V) - Vu, da dt = 0. (6.31)
0 m—yoo {lun|<h}
Moreover, we have
. ] |Vun|p(m)
lim limsu ———— —dxdt =0, 6.32
h—ro0 Hoop/{|un>h} (1 + [y |)0 A @) (6.52)
and
lim lim sup / |t [P~ da: dt = 0. (6.33)
h—o0 n—oo {|un\2h}
Step 4: Equi-integrability of (Ju,[P*)~2u),, and (f(z,t,u,))n
In this part, we will prove that
|t [P 20, — [u|P® "2 strongly in LY(Qr), (6.34)
and
fu(@,t,un) — f(z,t,u) strongly in L'(Qr). (6.35)

Firstly, we show that (|u,|?®)~2u,), is a uniformly equi-integrable in Q7. For

any measurable subset £ C @Qp and h > 0, we have

/ |t [P L e S/ T (1 [P da dt+/ | [P 1 da dt.
E E En{|un|>h}
(6.36)

In view of (6.20), it’s clear that: for any € > 0, there exists (e, h) such that

for meas(F) < B(e, h). (6.37)

[NCRNO)

/ | T (1) |P@ Y dae dt <
E
Thanks to (6.33), we obtain: for all € > 0, there exists ho(e) such that

/ PO dzdt < VA > hole). (6.38)
B{Jun|>h) 2
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By combining (6.36)—(6.38), we conclude that: for any € > 0, there exists 8 > 0
such that

/ un|P@ Y da dt < e forany FE CQ with meas(FE) < f(g). (6.39)
E

Thus, the sequence (|u,|P*)~2u, ), is uniformly equi-integrable, and since |u,, |P(*)~2

|u[P(®*) =2y a.e. in Qr, using Vitali theorem, we conclude (6.34). Moreover, we have

Up, —

p(z)—1
| f (st un)| < | fo(w, )] + |d(w, )] 4 fup [P, (6.40)

then, (f.(x,t, u,))y is uniformly equi-integrable in Qr, and since f,(z,t,u,) —
f(z,t,u) a.e. in Qr, we deduce (6.35).

Step 5: Convergence of the gradient

_ [ Ton(s) = Ti(s)]

For any h > k > 1, we set ¢p(s) = 1 -

(Th(u)) -
By using v = wy, ,,¥n(uy,) as a test function in the approximated problem (6.1),
we obtain

T b "
/ (%,wn’ﬂwh(un» dt + / a(@, t, Tn(un), Vig) - Vg Wy, ¥ (uy) do dt
0 Qr

and wy,;, = Tk(uy) —

+/ a(z, t, Ty (un), Vi) - (VIg(un) — V(Tk(w)) ) 0n (uy) dx dt

+ / Fo(z,t, Vuy)wn n s (un) do dt + (2, )| un [P 2upwn o (uy) da dt
T Qr

= fn(xat7un)wn7u’(/)h(un) dl‘ dt
Qr
(6.41)

Tt is clear that vy (u,) = 0 on the set {|u,| > 2h} and ¥y (u,) = 1 on the set
{|un| < h}. By using the assumptions (3.5) we have
Ou,,

o Wl/}h(un)wn# dx dt

+/ a(z, t, Ty (un), Vuy) - (VIk(un) — V(Tk(w)) ) 0n (ur) do dt

< [ OV Tan )1 Ti) = (Zu)) ] o s
“ (6.42)
[ Ut ) i) = (Ti)) ] e
Qr
2k

+ - a(ﬂf, ta T’Il(un), vun) . vun dz dt
h {h<|un|<2h}

+H5($’t)||oo/ Jn [P [Ty (un) = (Ti(w)) | dee dt.

Qr
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By Lemma 7.1 (see Appendix), we have

Oup,
/ %wh(un) Wn,pu dx dt > e1(n). (6.43)

For the first term on the right-hand side of (6.42), we have c(x,t)|Tk(un) —

p(-)
(Ti(w))u| = Oace. in Qr and c(x, t)| Tk (un)—(Tk(v))u| < 2kc(z,t) € LPO=10 (Qr)
By Lebesgue dominated convergence theorem, we have

e(, )| To(un) — (Ti(w)a| = 0 strongly in L7940 (Qr).

In view of (6.19), we have (|VTap(u,)|?)),, is bounded in L%(QT), then there

p()

exists a measurable function (o, € LO (Qr) such that |VT2h(un)|q(w) — (op
()

weakly in L0 (Qr), it follows that

gz(n,u):/ e, )| T (tn) — (T (1)) 0|V T (0n)|9®) ddt — 0 as 1m0 — oo,
Qr

(6.44)
On the other hand, we have w,, , — 0 weak—x* in L*°(Qr), and thanks to (6.34)
and (6.35), we obtain

sg(n,ﬂ)/Q |t [P T (un) — (Th(u)) | dzdt — 0 as n,p— oo, (6.45)
T

and

ea(n, p) z/ | fr (2, t, un )| T (un) — (Tx (w)) y|dxdt — 0 as n,p — oco. (6.46)

From (6.31), we deduce that

1
es(n,h) = f/ a(x,t, T (un), Vuy) - Vuy, dedt -0 as n,h — oo.
I Jh<tunl <2n)
(6.47)
By combining (6.42)—(6.47), we conclude that

/ a(z,t, Tn(upn), Vuy) - (VT (un) — V(Ti(w)) w)0n(un) de dt < eg(n, p, h).

(6.48)
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It is obvious that a(z,t,s,0) = 0, it follows that

/ (a(z,t, Tk (un), VT (up)) — alx, t, Tp(un), VIE(w))) - (VT (uy)

T

— VT, (u)) dx dt + /Q a(z, t, T (un), VI (w) - (VIk(un) — VIi(u)) dz dt

—|—/ a(x,t, Ti(un), VIk(uy)) - (VIR (u) = V(Tk(u)),) dx dt

— / a(x, t, Ton(un), VI (uy)) - V(Tk(w)) pton (un) da dt
{k<l|un|<2h}

< &g (na 22 h)
(6.49)

Thanks to Lebesgue convergence theorem, we have |a(z,t, Ty (uy), VI (u))| —
la(z, t, Ty (1), VTi(u))| strongly in LP ) (Qr), and since VT (uy,) — VT (1) weakly
in (LPO)(Qr))N, we obtain

er(n) = ’ / a(z,t, Tk (un), VTg(w)) - (VT (up) — VTk(u)) dx dt

< /Q la(x, t, Th(un), VT ()| VT (un) — VTi(u))| dz dt (6.50)

— 0 as n — oo.

Concerning the third term on the left-hand side of (6.49), using (3.1) the se-
quence §|a(x7t,Tk(un),VTk(un))Dn is bounded in L¥'()(Qr), then there exists
& € LP"O(Qr) such that |a(z, t, Ty (un), VIk(un))| — & weakly in LP' O)(Qr),
and since V(T (u)), — VTk(u) strongly in (LPO(Qr))Y, we deduce that

eg(n,p) = ‘ / a(z,t, Ti(un), VIL(uy)) - (VT (u) — V(Ti(uw)),) dx dt

— 0 as n,p — oo.
(6.51)
For the last term on the left-hand side of (6.49), we have |a(z, t, Top (un), Vo (ur))]
— &, in LPO(Qr), and since V(Tj(u)), — VTi(u) strongly in (LPO)(Qr)),
we can prove that

o(n,p) =

/ a(z,t, Ton(un), VTop (un))V (Ti(w)) pton (ur) do dt
{k<|un|§2h}

< la(@, t, Ton(un), VTan (un))||V (Th(w)) u| d dt
{k<|un|<2h}

— En| VT (u)| dedt =0 as n,pu — oo.
{k<|u|<2h}
(6.52)
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By combining (6.49)—(6.52), we get

/ (a1, T (1), YTk (1)) — ., Te(tn), VT (1))
X (VT (un) — VTi(u)) de dt < eg(n, u, h).

(6.53)

Thanks to (6.20), we arrive that

/Q (a(z, t, Tk (un), VTk(un)) — a(z, t, Tk (un), VIk(w))) - (VIk(un) — VI (u)) dx dt

+/Q (1T () [P =2 T () = T () [P 2 T (w)) (T () — The(w)) dae dt
—>0T as n,u,h — oco.

(6.54)
In view of the Lemma 4.4, we deduce that
Tr(up) — T(u) in V, (6.55)
and
Vu, — Vu ae. in Qr. (6.56)

Therefore, we deduce that a(x,t, T, (un), Vuy) - Vu, — a(x,t,u, Vu) - Vu a.e. in
Q7 as n goes to infinity. In view of Fatou’s lemma and (6.21), we conclude that

1
lim — a(z,t,u, Vu) - Vu dz dt
h=oo b Jjuj<n)
1
< lim liminf — / a(x,t, Ty (up), Vuy,) - Vu, dz dt
{

1
< lim limsup — / a(x,t, Ty (un), Vuy,) - Vu, de dt = 0. (6.57)
" {Jun|<h}

Step 6: Equi-integrability of the sequence (F,(z,t, Vuy)),

We will show that the sequence (F,(z,t, Vuy,)), converges to F(x,t, Vu) strongly
in L'(Qr). Thanks to (6.56) we have

Fo(z,t,Vu,) — F(x,t,Vu) almost everywhere in Q.

In view of Vitali’s theorem, it’s sufficient to prove that the sequence (Fy,(z,t, Vuy))n
is uniformly equi-integrable.
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Indeed, for any measurable subset E in Q1 and any h > 0 we have

/|Fn(m,t,Vun)|da: dt
E
§/c(m,t)|Vun\Q(”) dx dt
E
gcm/qc(x,t)\ﬂ)m(ﬂ do dt—i—/ P i it
E E

|Vun|p(w)
+ /E —(1 T |un|)>‘(z)+9 dzx dt

(6.58)

gClo/(\c(m,t)H—l)m(“‘) do dt+/ P i it
E E

|V, [P()
‘l‘/ ‘VTh(un”P(:v) dx+/ A
o (s (ohy (LF [tn)A@F0

We have |¢(x,t)|™®) e LY(Qr) and thanks to (6.39), we have : for all € > 0, there
exists 8(g) > 0 such that: for all E C Q with meas(E) < 5(e), we find

/ (Je(z, )| + 1)™®) dz dt + / |1 |P@ Y da dt < (6.59)
E E

c
3

For the third term on the right-hand side of (6.58), thanks to (6.55) there exists
B(e) > 0 such that:

forall EFCQ with meas(E) < f(g). (6.60)

/ VT (un)|P@ dz dt < =
. 3

Concerning the last term of (6.58), thanks to (6.32), we have: for all € > 0, there
exists ho(g) > 0 such that

|V, [P(®) -
T e wdt< 5 Vh > he 6.61
/{|“n|>h} (1 + [un| @48 0 =73 > ho (6.61)

By combining (6.58)~(6.61), we obtain

/ |Fn(z,t,Vu,)|dedt <e forall ECQ with meas(E) < (). (6.62)
E

Then, (F,(z,t,Vuy)), is uniformly equi-integrable. In view of Vitali’s theorem
we conclude that

F.(z,t,Vu,) — F(z,t,Vu) strongly in  LY(Q7). (6.63)
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Step 7: The convergence of (u,), in C([0,T]; L'(2))

Let h>1 and 0 < s < T. By taking 7' (un — (Th(u))u)X[0,s] @s a test function in
for the approximate problem (6.1), we obtain

| [ i un — @), deds
QJ0
// (2,1, Ty (1), Vi) - VT (0 — (T (w)),) da dt
/ /F (2,8, V) Ty (tn — (Th(u)),) dz dt (6.64)
- / / (1) un [P 2, Ty (uy, — (Th(w)),) de dt
/ /fn t, un)Th (U, — (Th(w)),) do dt.

We have
Oup _ O(un — (Th(u))y) | O(Th(uw)y,
ot ot ot
O(un — (Th(w))u)

- 5 + #(Th(u) = (Th(u)) ),

it follows that

[ [ 2 e

/ / (ttn = T’L D) g wry — (T () dit da (6.65)
| / (Th(w) — (T (), )T (s — (T (w)),) dt de
Note that, for every s € [0, 7] and when n tends to infinity we obtain
[ [ ) = @), - (@), deds -
_>// (Th(w) — (Tn(w)),) T (u — (Th(w)),) dt de > 0. |

For the second term on the left-hand side of (6.64), we have
/O ) /Q A, t, To(tn), V) - VT4 (1 — (Th (w)),0) der it
= [ [ (0t Ta(w). Vs (w0)) = 0o Tis (). 9(Ta),)
X V() () e
+/0 /Qa(:z:,t,ThH(un), V(Th(w)),) - VI (un — (Th(w)),) do dt.

(6.67)
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In view of (3.2), the first term of (6.67) is positive. Concerning the second
term, we have a(x,t, Thy1(un), V(Th(w))u) = a(x,t, The1(u), VTi(u)) strongly
in (LPO(Qr))N and since VT (u, — (Th(u)),) — VTi(u — Th(u)) weakly in
(LPO(Qr))N, we have

/ / z,t, Thy1(un), V(Th(w)) ) - VT (uy — (Th(w)),) dz dt

a(x,t,The1(u),0)-Vudedt =0 as n,p— oo.

(6.68)
Concerning the third term on the left-hand side of (6.64) , thanks to (6.63), and
since T (un — (Th(u)),) — Ti(u — Th(u)) weak—* in L>®(Qr), we get

{h<lul<h+1}

// |Fn( t, V)| Tt — (Th(w),0)] da dt
0 Q s

(6.69)
— / / |F(z,t, Vu)||Th (u — Tp(uw))| de dt  as n,p — co.
0o Jo
On the other hand, in view of (6.34) we obtain
/ /5 2, ) [P 20 T (u — (Th(u)),) da dt
(6.70)
8(x, )| ulP@ 20Ty (u — Ty (u)) de dt  as  n, p — oo,
0o Jo
and thanks to (6.35) we have
| [t T3 (210,

(6.71)

- /0 /Q |f(z,t,w)||Ti(u — Th(w))| de dt  as n,p — oco.
By combining (6.64)—(6.71), we conclude that
[ S1tun(s) — @t e
< [ [ oot 2t~ T
[ [ 1Pl (- T d e
0

+ [ [ 1T =Tyl dedt+ [ 10— Thwn)) do + 2ol )
(6.72)
We have 6(x, t)|uP™ 24Ty (u — Tj,(u)) = 0 ae. in Qr and

|6z, ) [ul” 2T (u = Ty (u)| < 8(a, ) |[ulPO7" € LN(Qr).
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In view of Lebesgue’s dominated convergence theorem we obtain
S
/ / 8(x, )| uP@=2uTy (u — (Th(u)),) de dt — 0 as  h — oo. (6.73)
o Ja

By using the same argument, we have

/‘ / (2., V)| T (1 — T (w)| dzdt — 0 as b — oo, (6.74)
0 Q
and .
/ / (b w) [T (u — Th(u)) dzdt —0 as h—oo.  (6.75)
0 Q

Also, it’s clear that
/ S1(ug — Th(up))dz — 0 as h — oo. (6.76)
Q
By combining (6.72)—(6.76), we conclude that

| S1n(s) = (Talu()),) do < s, (6.77)
Q
On the other hand, we have

U (8) — U (S) 1
| S5 dr <5 (] Si(un(s) = (Tu(u(s)) do

Q
(6.78)
+ [ Sittn(s) = (Dufu(s)),) o)

— 0 as n,m — oo.

It follows that,

/ ‘un(s)ium(s)ﬁ dI+/ |un(5)7um(8)‘d$
{[tn () —tm (5)| <2} 2 {[ttn () =t (5)]>2} 2
s) — um(s))

Sz/zsl(une 2

¢

dr — 0 as n,m — oo.

We conclude that

/ [tn(s) — um(s)| dz
Q
- ) ~n(s)l o + () = i (5)| d
e () Zm (<2} (e (5) =t ()] 52}
3 \
= (/ [tn () = wm (s)]? dSU) - (meas(Q))=
{lun(s)—um(s)|<2}

+_/ [un(s) — Um(s)|de — 0 as n,m — oo.
{lun(8)—um(s)[>2}

(6.80)
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We deduce that
/ |un(s) — um(s)|de — 0 as  m,n — oco. (6.81)
Q

Hence (uy), is a Cauchy sequence in C([0,T]; L*(Q)), thus u € C([0,T]; L*(Q2)),
and we have u,(z,s) — u(x,s) strongly in L'(Q) for any 0 <s<T.

Step 8: Passage to the limit

Let ¢ € V N L™(Qr) with %ﬁ’ € V*+ LYQr), and M = k + ||¢||0e. By using

Tk (u, — 1) as a test function for the approximated problem (6.1), we get

T
o ot .

T

= Fulx,t,un) Tk (uy — ) da dt.
Qr
(6.82)
On the one hand, if |u,| > M then |u, — ¥| > |un| — [|[¥]|lc > k, therefore
{Jun — ¥| <k} C{|u, < M}, which implies that

/ a(x,t, T (un), Vi) - VI (uy — ) do dt
= a(x,t, Tar(un), VI (ur)) - (VT (un) — Vp) da dt

Jun—4|<k}
= / (a(@,t, Tar (un), VIn (un)) = al@, b, Tar (un), Vi) - (VT (un)
{lun—wl<k}

—V) dz dt + a(x, t, Tar(un), V) - (VT (uy) — Vo) d dt,
{lun—9|<k}

since VTar(un) — VTa(u) strongly in (LPC)(Q7))Y, and in view of Fatou’s
Lemma we obtain

Jim inf / A,y To(n), V) - VT (up — ) da di

n—oo

> / (a(e t, Tar (), VTas (w) — aa, t, Tar(u), Vi) - (Vs (w) — Vo) d dt
{lu—v|<k}

—|—/ a(x,t, Tar(u), V) - (VTa (up) — V) da dit
{lu—v|<k}

- / a(m,t,u,Vu) . VTk(U_'(/)) dx dt.
’ (6.83)
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Now, we treat the first term on the left-hand side of (6.82), we have 756“; =
I up —v)  OY
A P 77 the

ot o then

T Oy,
| G2 Titun -

—/0 <M,Tk<un—¢>>dt+/o O T — )

ot ot’
/ S (un(T) — $(T)) da: - / Si(tto.n — 16(0)) dx
Q
oy
+ ] Tl —v) dod,
since u, — u in C([0,T); L*(2)) then u, (T) — u(T) in L*(£), it follows that
/ Sk uo n — ) d$ — / Sk(’u,o — ¢(0)) d(E, (684)
Q
and
/Sk un (T) — (T)) da —>/QS;C(u(T) — (T)) da. (6.85)

Also, we have a—lf € V* + LY(Qr), and since T, (un, — 1) — Ti(u — 1)) weakly in
V and weak-* in L°°(Qr), then

) o
/Q Tkl et — [ T ) dedr (6.86)

On the other hand, in view of (6.34), (6.35) and (6.63), we conclude that

() [un [P 20, Ty (w4, — ) da dt — §(, t)|[u[P @ 20Ty (u — ) da dt,
Qr Qr
(6.87)

Fal b Tilun — ) dodt — | flotw)To(u—o) dodt,  (6.88)
QT Qr
and

/ Fo(z,t, Vuy) Ty (un, — ¢) do dt — F(z,t,Vu)Ti(u— ) dx dt. (6.89)
T Qr
By combining (6.82)—(6.88), we deduce that

/Sku— dm—/Sku— 0) dx —I—/ —Tku— ) dx dt

/ a(z,t,u, Vu) - VI (u — ) de dt + / F(z,t,Vu)T(u — ) dz dt
T Qr
+ / 5, PO 2uTy(u — o) de dt < | Fla, b, ) Th(u — v) da dt,

T Qr
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which complete proof of the Theorem 5.2.

7. Appendix

Lemma 7.1. Let wy , = Ti(un) — (Th(w)), and Yp(s) =1 — M

h )
then for any h > 1 we have
ouy,
—— p(Un )wn,p, dx dt > e1(n). (7.1)
or Ot
Proof. Let h > 1, we define
r if |r] <h,
2 2
) % it —2m<r<—h
\II == d = — 2 _ 2
w(r) /0 onls)ds = A oI,
3l 2h
?Sign(r) if |r| > 2h,
We have
ouy,
o ﬁwh(un)wn’# dx dt
(U (up) — T (tun
= [ ARl B 1y 0, (@) do e
Qr
0Ty (uy
[ O (5 ) — (@) ) e
@r . (7.2)
= [ [ (0n) = e Ti) = (B,
Ty (un)  O(Th(w))p
= ) i) (T - S ) e
0Ty (uy,
+/ %(tu ) (T (un) — (Tk(u)),) dz dt.
Qr

It’s clear that Wp(u,) — Tk (uy) have the same sign as u, on the set {|u,| > k},
we have

[ [() = Tt (Tut) = (Beta)]
> [ (W) = Tao)) (Tulunn) ~ (Tuluo)),) do (73)
{|uo,n|>k}

= - (W (uo.n) = Th(uon))(Th(uon) — Ti(uo)) dz = e1(n).
{luo,n|>k}
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On the other hand, according to the definitions of ¥,(-) and Tk(-), we have

(\I/h ('Uzn) - Tk (un))aTka(:”) - O then

OT(ua) _ O(T(w),
/Q (1) — Ti(,)) (L) OOy g

6(Tk(u))u
//|un|>k} W) — Ti(u)) S

/ /{| . (Up(un) — Ti(un)) (T (w) — (T (w)),) do dt

/ / (U (un) — Tk (un))(Ti(uw) — T (uy)) dz dt
{Iun|>k}

-H‘/ /{Iun>k} Uy (un) = T (un)) (Th(un) — (Th(w)),) dz dt

> / /{Iu ()~ T () (T4(0) — Tio)) et = 25 ()

Concerning the last term on the right-hand side of (7.2), we obtain

ot
8 Tk un)
Or ot

+/Q M(Tk(un) — (Ti(w)),,) du dt
_ [(Tk(un) — (Tk(u))u))Q}T
Q

/Q Oiltn) (7 () — (Tu(w)),.) de dt

TiluDie) (g, (4,0) — (T (u)),.) de

s / (Te(us) — (To(w)),)(Th(un) — (Ti(w)),.) de dt

Qr
_/ (Th(uo,n) — Tir(uo))?
Q 2

" /Q (Te () — (To(u)),) (T (tn) — (Ti(w)),.) d

> e3(n) + M/Q (T (u) = (Th(w)) ) (T (1) — (Th(u)) ) daw dt > £3(n).

dx

By combining (7.2) and (7.3)—(7.5), we conclude that (7.1). O

Lemma 7.2. The bounded operator B, = A, + G, acting from V into V* is
pseudo-monotone. Moreover, B, is coercive in the following sense:

T
/ (Bpu,v) dt
Jo

— 00 as |jv||,, =00 for veV.
[ollv
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Proof. In view of Holder’s inequality and the growth condition, it easy to see that
the operator A,, is bounded, and by (6.2) we conclude that B,, is bounded. For
the coercivity, for any v € V thanks to (6.2) we have

T
/ (Bpv,v) dt = / a(z,t,T,(v), Vo) - Vo dz dt + §(x, t)|v|P®) da dt
0 T

Qr
+/ F(z,t,v)vdx dt — fu(z,t,v)v de dt
T Qr
bo p(2) p(@)
bo _ _
2 W(HVUH]ZM»(QT) = 1)+ do(llull 70 gpy — D = Conllvllv
b
p— _ %
> Chllvlly = Con|lv|lv ) do.
We conclude that
T
/ (Bpv,v) dt
20 s o0 as ||y — oo (7.6)

[ollv

It remains to show that B,, is pseudo-monotone. Let (ux)r be a sequence in V
such that

Up — U in V,
Boug — Xn in V¥, (77)

lim sup (Bpug, ug) < (Xn, ) -

k—o0

We will prove that
Xn = Bpu and  (Bpug,ur) = (Xn,u) ask — oo.

In view of (2.4), we have up — u in L'(Qr) for a subsequence still de-
noted (ug)g. We have (ug)i is a bounded sequence in V', then the sequence
(alz,t, Ty (ug), Vug)p is bounded in (LP'O)(Qr))Y, then there exists a measur-
able function ¢, € (L?')(Qr))N such that

a(z, t, Ty(ur), Vug) = on  in (L7 O(Qr)N as k — . (7.8)

and ’
g [P =20, = |ufP@ 2y in  LPO(Qr). (7.9)

Similarly, since (Fy,(z,t, Vug)x is bounded in L*°(Qr), then there exists a mea-
surable function 1, € L>°(Qr) such that

F,(z,t,Vug) — ¥, weak-xin L>®(Qr) as k— oo, (7.10)
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also, we have |f,,(z,t,ur)| < n, and since fp,(z,t,ur) = fo(z,t,u) a.e. in Qr, by
Lebesgue’s dominated convergence theorem, we have

oz, tyug) = fo(z,t,u) in Lp/(')(QT) as k — oo. (7.11)
For all v € V| we have

(Xn,v) = lim (Bpug,v)
k—oo

= lim a(x,t, Ty (ug), Vug) - Vo dx dt + §(, 1) [ur|P® 2ug da dt
k=00 JQr Qr

+ lim Fo(z,t, Vug)v dz dt — klim fo(z, t,ug)v de dt

k—o0 QT — 00 QT
= / o - Vodz dt + () [ulP™ 2 up da dt
T Qr

+ [ pvdedt— fo (2, t,w)v dz dt.
Qr Qr
(7.12)

By using (7.7) and (7.12), we obtain

lim sup (B, ug, ug) = lim sup (/ a(x,t, T (uk), Vug) - Vuy, dz dt

k—o0 k—o0

+/ O(x, t)|ug|P™ dxdtJr/ F,(z,t, Vug)uy, de dt
T

T

- fn<$7t,uk)uk dx dt)
Qr

S/ gon-Vudxdt+/ (x, t)|ulP® do dt
T T

+ [ Ypudrdt— fula, t,u)u dz dt.
Qr Qr
(7.13)
Thanks to (7.10)—(7.11), and since uj, — u in L*(Qr) then
lim F,(z,t, Vug)uy, de dt = Ypu dx dt, (7.14)
k=0 JQr Qr
and
lim folz, tup)up dedt = | fo(z,t, w)u de dt. (7.15)
k=00 JQr QT
It follows that
lim sup (/ a(x,t, T (uk), Vug) - Vug do dt + 8(z, t)ug|P® da dt)
k—o0 T Qr (7 16)

S/ On-Vudrdt+ [ 8z, t)|ulP™ dz dt.
T Qr
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On the other hand, in view of (3.2) we have

/ (a(@,t, To(ug), Vur) — a(@, £, To(ug), V) - (Vg — Vo) da di
v (7.17)
- / (1) (Jug [P 2wy, — [uP™ =20 (uy, — u) dz dt > 0,

hence

/ a(x,t, T (ur), Vug) - Vug de dt + 8(x, t)|ug|P® da dt
Qr
>

/ a(x,t, T (uk), Vug) - Vu dz dt

+ (1) JurP™ 2 upu do dt + () [ulP® 2 u(uy, — u) da dt
Qr Qr

+/ a(z,t, T (uk), Vu)) - (Vur, — Vu) dz dt.
Q

In view of Lebesgue’s dominated convergence theorem we have T, (ux) — T),(u) in
LPO)(Q), then a(x,t, Ty, (ug), Vu) — a(x,t, T, (u), Vu) strongly in (LP O)(Q7))V,
and using (7.8) we get

likminf (/ a(x,t, T (uk), Vug) - Vuyg de dt + / 6(z, t)ug|P® da dt)
— 0
’ ’ (7.18)
> / on - Vudzr dt + (1) |[u[P™ da dt.
Qr Qr

Using (7.16), we conclude that

lim a(x,t, Ty (ug), Vug) - Vug, de dt
k—o0 QT
(7.19)
= / o - Vudr dt + () |[ulP™® da dt.
T Qr
By combining (7.12), (7.14)—(7.15) and (7.19), we deduce that (Bpuy, ug)
— (Xn,u) as k — oo. Now, by (7.8) and (7.19) we obtain

/ (a(z,t, Tn(ug), Vug) — a(z, t, Ty (ug), Vu)) - (Vug, — Vu) dx dt
T
+/ (Jug |P@ =20, — |uP=20) (uy, — u) dodt — 0 as k — oo,
T
Thanks to Lemma 4.4, we get up, — w in V and Vup — Vu almost every-
where in Qr, then a(z,t, T, (uz), Vug) — a(z,t, T, (u), Vu) in (LP O (Qr))N and

Fp(x,t, Vug) = F,(x,t,Vu) in L #)(Qr), and thanks to (7.9), (7.11) we deduce
that x, = Bhu. O
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