Convergence of a Finite Volume Scheme for Nonlocal Conservation Laws in Several Space Dimensions

Aekta Aggarwal¹ Paola Goatin ² Rinaldo M. Colombo³

¹INRIA, Sophia Antipolis
²INRIA, Sophia Antipolis ³University of Brescia

December 2, 2014

Seminario di Modellistica differenziale numerica,
Dipartimento di Matematica, La Sapienza, Università di Roma
Introduction to the class of Nonlocal systems of conservation laws we aim at.
Outline

- Introduction to the class of Nonlocal systems of conservation laws we aim at.
- Construction of Lax-Friedrichs type of algorithms.
Introduction to the class of Nonlocal systems of conservation laws we aim at.

Construction of Lax-Friedrichs type of algorithms.

Existence of weak entropy solution through convergence of this algorithm.
Outline

- Introduction to the class of **Non**local systems of conservation laws we aim at.
- Construction of Lax-Friedrichs type of algorithms.
- Existence of weak entropy solution through convergence of this algorithm.
- Application to Crowd Dynamics - Lanes Formation
Outline

- Introduction to the class of Nonlocal systems of conservation laws we aim at.
- Construction of Lax-Friedrichs type of algorithms.
- Existence of weak entropy solution through convergence of this algorithm.
- Application to Crowd Dynamics - Lanes Formation
Introduction to the problem

System of Conservation Laws

\[\partial_t U + \text{div}_x F(t, x, U) = 0 \]

\[F : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^N \rightarrow \mathbb{R}^{N \times d} \]

\[t \quad x \quad U \quad \rightarrow \quad F(t, x, U) \]
Introduction to the problem

System of Conservation Laws

\[\partial_t U + \text{div}_x F(t, x, U) = 0 \]

\[F : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^{N \times d} \]

Nonlocal systems

\[\partial_t U + \text{div}_x F(t, x, U, \eta \ast U) = 0 \]

\[F : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^N \times \mathbb{R}^m \to \mathbb{R}^{N \times d} \]

\[\eta \in (C^2 \cap W^{2, \infty})(\mathbb{R}^n; \mathbb{R}^{m \times N}) \text{ and need not have a compact support.} \]
Introduction to the problem

System of Conservation Laws

\[\partial_t U + \text{div}_x F(t, x, U) = 0 \]

\[F : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^N \rightarrow \mathbb{R}^{N \times d} \]

Nonlocal systems

\[\partial_t U + \text{div}_x F(t, x, U, \eta \ast U) = 0 \]

\[F : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^N \times \mathbb{R}^m \rightarrow \mathbb{R}^{N \times d} \]

- \(\eta \in (C^2 \cap W^{2,\infty})(\mathbb{R}^n; \mathbb{R}^{m \times N}) \) and need not have a compact support.
- Coupling – only due to nonlocal terms \(\eta \ast U \) with no coupling in \(U \).
Applications

- Crowd Dynamics: particularly suitable in describing the behavior of crowds, where each member moves according to her/his evaluation of the crowd density and its variations within her/his horizon.
- Vehicular Traffic
- Sedimentation
- Supply Chain Models
- Granular Matter
- Biological Applications
Existing Results

- **Kružkov Entropy Solutions**
 - Colombo, Herty, Mercier: ESAIM COCV, 2011

- **Measure Valued Solutions**
 - Crippa, Lécureux-Mercier: NODEA, 2011
 - Cristiani, Piccoli, Tosin: Multisc. Mod. & Simul., 2011
 - Piccoli, Tosin: ARMA, 2010
 - Piccoli, Rossi: ARMA, 2014

- **Convergence of Lax-Friedrichs type scheme, $d = 1, N = 1$:**
 - Betancourt, Bürger, Karlsen, Tory: Nonlinearity 2011
 - Blandin, Goatin: Preprint, 2014
 - Amorim, Colombo, Teixeira: To appear on ESAIM M2AN
Problem in Two Dimensions; Settings

Consider the k-th equation for $k = 1, \ldots, N$:

$$\partial_t U^k + \partial_x f^k(t, x, y, U^k, \eta \ast U) + \partial_y g^k(t, x, y, U^k, \vartheta \ast U) = 0$$
Problem in Two Dimensions; Settings

Consider the k-th equation for $k = 1, \ldots, N$:

$$
\partial_t U^k + \partial_x f^k(t, x, y, U^k, \eta \ast U) + \partial_y g^k(t, x, y, U^k, \vartheta \ast U) = 0
$$

where

$$
U(t, x, y) = (U^1, \ldots, U^N)(t, x, y) \in \mathbb{R}^N,
$$
Problem in Two Dimensions; Settings

Consider the k-th equation for $k = 1, \ldots, N$:

$$\partial_t U^k + \partial_x f^k(t, x, y, U^k, \eta \ast U) + \partial_y g^k(t, x, y, U^k, \vartheta \ast U) = 0$$

where

$$U(t, x, y) = (U^1, \ldots, U^N)(t, x, y) \quad \in \mathbb{R}^N,$$

$$\eta(x, y) = \begin{bmatrix} \eta^{11} & \ldots & \eta^{1N} \\ \vdots & \ldots & \vdots \\ \eta^{m1} & \ldots & \eta^{mN} \end{bmatrix} (x, y) \quad \in \mathbb{R}^{m \times N},$$

$$\vartheta(x, y) = \begin{bmatrix} \vartheta^{11} & \ldots & \vartheta^{1N} \\ \vdots & \ldots & \vdots \\ \vartheta^{m1} & \ldots & \vartheta^{mN} \end{bmatrix} (x, y) \quad \in \mathbb{R}^{m \times N},$$

with $U^k(t, x, y), \vartheta^{\ell,k}(x, y), \nu^{\ell,k}(x, y) \in \mathbb{R}$. And
Definition of Convolutions

\[(\eta \ast U)(t, x, y) \in \mathbb{R}^m, (\vartheta \ast U)(t, x, y) \in \mathbb{R}^m, \text{ where for } \ell = 1, \ldots, m,\]

\[(\eta \ast U)_\ell(t, x, y) = \int \int_{\mathbb{R}^2} \sum_{k=1}^{N} \eta^{\ell,k}(x - x', y - y') \ U^k(t, x', y') \ dx' \ dy',\]

\[(\vartheta \ast U)_\ell(t, x, y) = \int \int_{\mathbb{R}^2} \sum_{k=1}^{N} \vartheta^{\ell,k}(x - x', y - y') \ U^k(t, x', y') \ dx' \ dy'.\]
Hypothesis

Let \(f^k = f^k(t, x, y, u, A) \), \(g^k = g^k(t, x, y, u, B) \) for \(k = 1, \ldots, N \).

(H0): Smoothness:

\[
f^k, g^k \in C^2(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R});
\]
Hypothesis

Let $f^k = f^k(t, x, y, u, A)$, $g^k = g^k(t, x, y, u, B)$ for $k = 1, \ldots, N$.

(H0); Smoothness:

- $f^k, g^k \in C^2(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R})$;
- $\partial_u f^k, \partial_u g^k \in W^{1,\infty}(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R})$;
Hypothesis

Let \(f^k = f^k(t, x, y, u, A), \ g^k = g^k(t, x, y, u, B) \) for \(k = 1, \ldots, N \).

(H0); Smoothness :

- \(f^k, g^k \in C^2(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R}) \);
- \(\partial u f^k, \partial u g^k \in W^{1,\infty}(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R}) \);
- For all \(t \in \mathbb{R}_+, (x, y) \in \mathbb{R}^2 \) and \(A, B \in \mathbb{R}^m \),
 \(f^k(t, x, y, 0, A) = g^k(t, x, y, 0, B) = 0 \).
Introduction to the problem

Hypothesis

Let $f^k = f^k(t, x, y, u, A)$, $g^k = g^k(t, x, y, u, B)$ for $k = 1, \ldots, N$.

(H0); Smoothness:

- $f^k, g^k \in C^2(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R})$;
- $\partial_u f^k, \partial_u g^k \in W^{1,\infty}(\mathbb{R}_+ \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^m; \mathbb{R})$;
- For all $t \in \mathbb{R}_+$, $(x, y) \in \mathbb{R}^2$ and $A, B \in \mathbb{R}^m$,

 $f^k(t, x, y, 0, A) = g^k(t, x, y, 0, B) = 0$.

(H1); Uniform Bounds on Derivatives: There exists a constant $M > 0$:

\[
\max \left\{ \left| \partial_x f^k \right|, \left| \partial_y g^k \right|, \left\| \nabla_A f^k \right\|, \left\| \nabla_B g^k \right\| \right\} \leq M |u|,
\]

\[
\max \left\{ \left| \partial^2_{xx} f^k \right|, \left| \partial^2_{yy} g^k \right|, \left| \partial^2_{xy} f^k \right|, \left| \partial^2_{xy} g^k \right| \right\} \leq M |u|,
\]

\[
\max \left\{ \left\| \partial_x \nabla_A f^k \right\|, \left\| \partial_x \nabla_B g^k \right\| \right\} \leq M |u|,
\]

\[
\max \left\{ \left\| \partial_y \nabla_A f^k \right\|, \left\| \partial_y \nabla_B g^k \right\|, \left\| \nabla^2_{AA} f^k \right\|, \left\| \nabla^2_{BB} g^k \right\| \right\} \leq M |u|.
\]
Let $U_0 \in L^\infty(\mathbb{R}^2; \mathbb{R}^N)$. A map $U: [0, T] \to L^\infty(\mathbb{R}^2; \mathbb{R}^N)$ is a solution to (1) with initial datum U_0 if, for $k = 1, \ldots, N$, setting for all $w \in \mathbb{R}$

$$
\tilde{f}^k(t, x, y, w) = f^k(t, x, y, w, (\eta \ast U)(t, x, y)),
$$
$$
\tilde{g}^k(t, x, y, w) = g^k(t, x, y, w, (\vartheta \ast U)(t, x, y)),
$$

the map U^k is a Kružkov solution to the conservation law

$$
\begin{cases}
\partial_t U^k + \partial_x \tilde{f}^k(t, x, y, U^k) + \partial_y \tilde{g}^k(t, x, y, U^k) = 0 \\
U^k(0, x, y) = U_0^k(x, y).
\end{cases}
$$

Above, by Kružkov solution we refer to the definition in Kružkov: Mat.Sb., 1970.
Construction of Algorithm

Numerical Grid: Cartesian Mesh

\[x_i = i \Delta x, \quad x_{i+1/2} = \left(i + \frac{1}{2} \right) \Delta x, \quad i \in \mathbb{Z}; \]

\[y_j = j \Delta y, \quad y_{j+1/2} = \left(j + \frac{1}{2} \right) \Delta y, \quad j \in \mathbb{Z}; \]
Construction of Numerical Algorithm

Choose a time step Δt adapted according to CFL condition.

$$t^n = n \Delta t, \quad n \in \mathbb{Z} ;$$

$$\lambda_x = \Delta t / \Delta x ,$$

$$\lambda_y = \Delta t / \Delta y .$$

Let an initial datum $U_0 \in (L^\infty \cap BV)(\mathbb{R}^2; \mathbb{R}^N)$ be fixed. Define
Construction of Numerical Algorithm

Choose a time step Δt adapted according to CFL condition.

$$t^n = n \Delta t, \quad n \in \mathbb{Z}; \quad \lambda_x = \Delta t / \Delta x, \quad \lambda_y = \Delta t / \Delta y.$$

Let an initial datum $U_o \in (L^\infty \cap BV)(\mathbb{R}^2; \mathbb{R}^N)$ be fixed. Define

$$u_{ij}^{k,0} = \frac{1}{\Delta x \Delta y} \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} u_o^k(x, y) \, dx \, dy \quad \text{for } i, j \in \mathbb{Z}.$$
Construction of Numerical Algorithm

Choose a time step Δt adapted according to CFL condition.

$$t^n = n \Delta t, \ n \in \mathbb{Z} ; \quad \lambda_x = \Delta t / \Delta x , \quad \lambda_y = \Delta t / \Delta y .$$

Let an initial datum $U_o \in (L^\infty \cap BV)(\mathbb{R}^2; \mathbb{R}^N)$ be fixed. Define

$$u_{ij}^{k,0} = \frac{1}{\Delta x \Delta y} \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} U_o^k(x, y) \, dx \, dy \quad \text{for } i, j \in \mathbb{Z} .$$

Define a piecewise constant approximate solution $u_{\Delta} \equiv (u_{\Delta}^1, \ldots, u_{\Delta}^N)$ to (1) by

$$u_{\Delta}^k(t, x, y) = u_{ij}^{k,n} \quad \text{for } \begin{cases} t \in [t^n, t^{n+1}], \\ x \in [x_{i-1/2}, x_{i+1/2}], \\ y \in [y_{j-1/2}, y_{j+1/2}], \end{cases} \quad \text{where } \begin{cases} n \in \mathbb{N} \\ i \in \mathbb{Z} \\ j \in \mathbb{Z} \\ k \in \{1, \ldots, n\} \end{cases}$$
through the 5-points algorithm based on dimensional splitting, (Crandall, Majda: Math. Comp., 1980)

\[u_{ij}^{k,n+1/2} = u_{ij}^{k,n} - \lambda_x \left[F_{i+1/2,j}^{k,n}(u_{ij}^{k,n}, u_{i+1,j}^{k,n}) - F_{i-1/2,j}^{k,n}(u_{i-1,j}^{k,n}, u_{ij}^{k,n}) \right] \]
Construction of Algorithm through the 5-points algorithm based on dimensional splitting, (Crandall, Majda: Math. Comp., 1980)

\[
\begin{align*}
 u_{ij}^{k,n+1/2} &= u_{ij}^{k,n} - \lambda_x \left[F_{i+1/2,j}^{k,n}(u_{ij}^{k,n}, u_{i+1,j}^{k,n}) - F_{i-1/2,j}^{k,n}(u_{i-1,j}^{k,n}, u_{ij}^{k,n}) \right] \\
 u_{ij}^{k,n+1} &= u_{ij}^{k,n+1/2} - \lambda_y \left[G_{i,j+1/2}^{k,n}(u_{ij}^{k,n+1/2}, u_{i,j+1}^{k,n+1/2}) - G_{i,j-1/2}^{k,n}(u_{i,j-1}^{k,n+1/2}, u_{ij}^{k,n+1/2}) \right]
\end{align*}
\]
through the 5-points algorithm based on dimensional splitting, (Crandall, Majda: Math. Comp., 1980)

\[u_{ij}^{k,n+1/2} = u_{ij}^{k,n} - \lambda_x \left[F_{i+1/2,j}^{k,n}(u_{ij}^{k,n}, u_{i+1,j}^{k,n}) - F_{i-1/2,j}^{k,n}(u_{i-1,j}^{k,n}, u_{ij}^{k,n}) \right] \]

\[u_{ij}^{k,n+1} = u_{ij}^{k,n+1/2} - \lambda_y \left[G_{i,j+1/2}^{k,n}(u_{ij}^{k,n+1/2}, u_{i,j+1}^{k,n+1/2}) - G_{i,j-1/2}^{k,n}(u_{i,j-1}^{k,n+1/2}, u_{ij}^{k,n+1/2}) \right] \]

where

\[F_{i+1/2,j}^{k,n}(u, v) = \frac{f_{i+1/2,j}^{k,n}(u) + f_{i+1/2,j}^{k,n}(v)}{2} - \frac{\alpha(v - u)}{2 \lambda_x}, \]

\[G_{i,j+1/2}^{k,n}(u, v) = \frac{g_{i,j+1/2}^{k,n+1/2}(u) + g_{i,j+1/2}^{k,n+1/2}(v)}{2} - \frac{\beta(v - u)}{2 \lambda_y}, \]

\[f_{i+1/2,j}^{k,n}(u) = f^k(t^n, x_{i+1/2}, y_j, u, A_{i+1/2,j}^n) \]

\[g_{i,j+1/2}^{k,n+1/2}(u) = g^k(t^{n+1/2}, x_i, y_{j+1/2}, u, B_{i,j+1/2}^{n+1/2}). \]

where for \(\alpha, \beta \) in \([0, 2/3] \).
CFL condition

- \(\Delta t \) is chosen in order to satisfy the CFL condition

\[
\lambda_x \leq \frac{\min\{6\alpha, 4 - 6\alpha, 1\}}{1 + 6 \max_k \| \partial_u f^k \|_{L^\infty}}, \quad \lambda_y \leq \frac{\min\{6\beta, 4 - 6\beta, 1\}}{1 + 6 \max_k \| \partial_u g^k \|_{L^\infty}},
\]

with \(\Delta x, \Delta y \leq 1/(3M) \), where \(M \) is as in \((H1)\).
CFL condition

- Δt is chosen in order to satisfy the CFL condition
 \[
 \lambda_x \leq \frac{\min\{6\alpha, 4 - 6\alpha, 1\}}{1 + 6 \max_k \| \partial_u f^k \|_{L_\infty}}, \quad \lambda_y \leq \frac{\min\{6\beta, 4 - 6\beta, 1\}}{1 + 6 \max_k \| \partial_u g^k \|_{L_\infty}}, \quad (1)
 \]
 with $\Delta x, \Delta y \leq 1/(3M)$, where M is as in (H1).
- The convolution terms are computed through quadrature formulæ, i.e.,
 \[
 A^n_{i+1/2,j} = \Delta x \Delta y \left(\sum_{l,p \in \mathbb{Z}} \sum_{k=1}^N \eta_{i+1/2-l,j-p}^{s,k} u_{l+1/2,p}^{k,n} \right)_{1 \leq s \leq m},
 \]
 \[
 B^{n+1/2}_{i,j+1/2} = \Delta x \Delta y \left(\sum_{l,p \in \mathbb{Z}} \sum_{k=1}^N \vartheta_{i-l,j+1/2-p}^{s,k} u_{l,p+1/2}^{k,n+1/2} \right)_{1 \leq s \leq m}.
 \]
CFL condition

- Δt is chosen in order to satisfy the CFL condition
 \[
 \lambda_x \leq \min\{6\alpha, 4 - 6\alpha, 1\} \frac{1}{1 + 6 \max_k \|\partial_u f^k\|_{L^\infty}}, \quad \lambda_y \leq \min\{6\beta, 4 - 6\beta, 1\} \frac{1}{1 + 6 \max_k \|\partial_u g^k\|_{L^\infty}},
 \]
 (1)
 with $\Delta x, \Delta y \leq 1/(3M)$, where M is as in (H1).
- The convolution terms are computed through quadrature formulæ, i.e.,
 \[
 A_{n,i+1/2,j+1/2} = \Delta x \Delta y \left(\sum_{l,p \in \mathbb{Z}} \sum_{k=1}^N \eta_{i+1/2-l,j-p}^{s,k} u_{k,n}^{l+1/2,p} \right)_{1 \leq s \leq m},
 \]
 \[
 B_{n,i+1/2,j+1/2} = \Delta x \Delta y \left(\sum_{l,p \in \mathbb{Z}} \sum_{k=1}^N \vartheta_{i-l,j+1/2-p}^{s,k} u_{k,n+1/2}^{l,p+1/2} \right)_{1 \leq s \leq m}.
 \]
Theorem 1

Let the smoothness and boundedness assumptions and CFL conditions hold. Fix $U_o \in (L^1 \cap L^\infty \cap BV)(\mathbb{R}^2; \mathbb{R}^N)$. Then, the algorithm defines a sequence of approximate solutions which converges, up to a subsequence, to a solution $U \in C^0 \left(\mathbb{R}^+; L^1(\mathbb{R}^2; \mathbb{R}^N) \right)$ and for all k and for all positive t, we have

\[
\| U(t) \|_{L^\infty(\mathbb{R}^2;\mathbb{R}^N)} \leq e^{Ct} \| U_o \|_{L^\infty(\mathbb{R}^2;\mathbb{R}^N)} ,
\]

\[
\| U^k(t) \|_{L^1(\mathbb{R}^2;\mathbb{R})} = \| U^k_o \|_{L^1(\mathbb{R}^2;\mathbb{R})} ,
\]

\[
TV(U^k(t)) \leq e^{K_1 t} TV(U^k_o) + K_2 \left(e^{K_1 t} - 1 \right)
\]

\[
\| U(t + \tau) - U(t) \|_{L^1(\mathbb{R}^2;\mathbb{R}^N)} \leq C(t) \tau
\]
Idea of the Proof

Construct a sequence of piecewise approximate solutions u_{Δ} by the Lax-Friedrichs algorithm described above and obtain a strong BV estimate. Then the classical tools as in (Sanders: Math. Comp., 1983) or like in (Betancourt, Bürger, Karlsen, Tory: Nonlinearity 2011) allow to extract a convergent subsequence.

To prove this, we have the following Lemmas:
Throughout, let the smoothness, boundedness assumptions and CFL condition and $t \in \mathbb{R}_+$ and $(x, y) \in \mathbb{R}^2$. Then
Lemma 1 (Positivity)

\[u^k_\Delta(t, x, y) \geq 0. \]
Lemma 1 (Positivity)

\[u^k_\Delta(t, x, y) \geq 0. \]

\[\Downarrow \]

Lemma 2 (\(L^1 \) bound)

\[\left\| u^k_\Delta(t) \right\|_{L^1} = \left\| u^k_\Delta(0) \right\|_{L^1}. \]
Lemma 1 (Positivity)

\[u^k_\Delta(t, x, y) \geq 0. \]

\[\Downarrow \]

Lemma 2 (\(L^1 \) bound)

\[\left\| u^k_\Delta(t) \right\|_{L^1} = \left\| u^k_\Delta(0) \right\|_{L^1}. \]

\[\Downarrow \]

Lemma 3 (\(L^\infty \) bound)

\[\left\| u_\Delta(t) \right\|_{L^\infty} \leq e^{C t} (1 + \left\| U_o \right\|_{L^1}) \left\| U_o \right\|_{L^\infty} \]

with \(C \) depending only on \(\eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N \).
Lemma 4 (BV bound)

For all n, for all $t \in [t^n, t^{n+1}[\text{ and for all } k = 1, \ldots, N$

$$\sum_{ij} \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right)$$

$$\leq e^{\mathcal{K}_1 t} \sum_{ij} \left(|u_{i+1,j}^{k,0} - u_{ij}^{k,0}| \Delta y + |u_{i,j+1}^{k,0} - u_{ij}^{k,0}| \Delta x \right) + \mathcal{K}_2 \left(e^{\mathcal{K}_1 t} - 1 \right)$$

with \mathcal{K}_1 and \mathcal{K}_2 depending only on $\|U_0\|_{L^1}, \eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N$.
Lemma 4 (BV bound)

For all n, for all $t \in [t^n, t^{n+1}]$ and for all $k = 1, \ldots, N$

$$
\sum_{ij} \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right)
\leq e^{K_1 t} \sum_{ij} \left(|u_{i+1,j}^{k,0} - u_{ij}^{k,0}| \Delta y + |u_{i,j+1}^{k,0} - u_{ij}^{k,0}| \Delta x \right) + K_2 \left(e^{K_1 t} - 1 \right)
$$

with K_1 and K_2 depending only on $\|U_0\|_{L^1}, \eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N$.

Lemma 5 (Discrete entropy condition)

For all $k = 1, \ldots, N$ and for all $\kappa \in \mathbb{R}$ the discrete entropy inequality

$$
\left| u_{ij}^{k,n+1} - \kappa \right| - \left| u_{ij}^{k,n} - \kappa \right| + \\
\lambda_x \left(\Phi_{i+1/2,j}^{k,n,\kappa}(u_{ij}^{k,n}, u_{i+1,j}^{k,n}) - \Phi_{i-1/2,j}^{k,n,\kappa}(u_{i-1,j}^{k,n}, u_{ij}^{k,n}) \right) \\
+ \lambda_x \sgn(u_{ij}^{k,n+1/2} - \kappa) \left(f_{i+1/2,j}^{k,n}(\kappa) - f_{i-1/2,j}^{k,n}(\kappa) \right) \\
+ \lambda_y \left(\Gamma_{i,j+1/2}^{k,n,\kappa}(u_{ij}^{k,n+1/2}, u_{i,j+1}^{k,n+1/2}) - \Gamma_{i,j-1/2}^{k,n,\kappa}(u_{i,j-1}^{k,n+1/2}, u_{ij}^{k,n+1/2}) \right) \\
+ \lambda_y \sgn(u_{ij}^{k,n+1} - \kappa) \left(g_{i,j+1/2}^{k,n+1/2}(\kappa) - g_{i,j-1/2}^{k,n+1/2}(\kappa) \right) \leq 0.
$$

where the Kružkov numerical entropy flows (Amorim, Colombo, Teixeira: Preprint, 2013; Crandall, Majda, Math.Comp.1980) are given by:

$$
\Phi_{i+1/2,j}^{k,n,\kappa}(u_1, u_2) = f_{i+1/2,j}^{k,n}(u_1 \vee \kappa, u_2 \vee \kappa) - f_{i+1/2,j}^{k,n}(u_1 \wedge \kappa, u_2 \wedge \kappa),
$$

$$
\Gamma_{i,j+1/2}^{k,n,\kappa}(u_1, u_2) = g_{i,j+1/2}^{k,n+1/2}(u_1 \vee \kappa, u_2 \vee \kappa) - g_{i,j+1/2}^{k,n+1/2}(u_1 \wedge \kappa, u_2 \wedge \kappa).
$$
Lemma 6 (L^1 Lipschitz Continuity in time)

For any $n \in \mathbb{N}$ fixed, there exists a constant, for $k \in \{1, \ldots, N\}$ such that for all $n = 1, \ldots, n$, then

$$\| u_\Delta(\tau^{n+1}) - u_\Delta(\tau^n) \|_{L^1} \leq C \Delta t.$$

with C depending on $\| U_0 \|_{L^1}$, $TV(U_0)$, τ^n, λ_x, λ_y, α, β and on the functions η, φ, f^k and g^k.
Improvements from previous results

- The support of kernels need not be compact.
The support of kernels need not be compact.

Convergence of a finite volume scheme for $F(t, x, U), N = 1, d \geq 1$ with the assumption $\text{div}_x F = 0$ was given in Chinais-Hillairet: M2AN, 1999. This *Divergence Free* assumption is not needed for convergence.
Improvements from previous results

- The support of kernels need not be compact.
- Convergence of a finite volume scheme for $F(t, x, U), N = 1, d \geq 1$ with the assumption $\text{div}_x F = 0$ was given in Chinais-Hillairet: M2AN, 1999. This Divergence Free assumption is not needed for convergence.
- Convergence result for the Lax Friedrichs scheme and existence result for solutions for systems in multi dimensions for non-local conservation laws.
The support of kernels need not be compact.

Convergence of a finite volume scheme for $F(t, x, U), N = 1, d \geq 1$ with the assumption $\text{div}_x F = 0$ was given in Chinais-Hillairet: M2AN, 1999. This Divergence Free assumption is not needed for convergence.

Convergence result for the Lax Friedrichs scheme and existence result for solutions for systems in multi dimensions for non-local conservation laws.

Ensures the existence of the solutions with flows more general than in the previous studies in the framework of crowd dynamics.
A Crowd Dynamics Sample Integration

Consider the crowd dynamics model introduced in (Colombo, Herty, Mercier: ESAIM COCV, 2011):

\[\partial_t U + \nabla \cdot \left(U (1 - U) (1 - U * \mu) \vec{v} \right) = 0. \]

Lemma 7 (Fits into the Framework)

\[N = 1, \quad m = 1, \quad f(t, x, y, U, A) = U (1 - U) (1 - A) v^1(x, y) \quad \eta = \mu \]
\[m = 1, \quad g(t, x, y, U, B) = U (1 - U) (1 - B) v^2(x, y) \quad \vartheta = \mu. \]

Moreover, if \(v \in (C^2 \cap W^{2,\infty})(\mathbb{R}^2, \mathbb{R}^2) \) and \(\mu \in (C^2 \cap W^{2,\infty})(\mathbb{R}^2; \mathbb{R}) \), then the existence theorem applies to any initial datum in \((L^1 \cap L^\infty \cap BV)(\mathbb{R}^2; [0, 1]) \).

The proof essentially relies on the invariance of the interval \([0, 1]\) for the density.
A Lax Friedrichs Scheme – Systems of Nonlocal Conservation Laws
\[\Delta x = \Delta y = 0.0125, \Delta t \approx 9.62 \times 10^{-4}, \alpha = \beta = 0.3333 \]
Integration of *non-nonlocal* Analogue with standard Lax-Friedrichs scheme.

Integration of the Nonlocal analogue with $r = .4$
Numerical Integration

A Crowd Dynamics Sample Integration

<table>
<thead>
<tr>
<th>h</th>
<th>$|u_h - \frac{u_h}{2}|_{L^1}$</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.6565</td>
<td>0.2844</td>
</tr>
<tr>
<td>0.025</td>
<td>0.5389</td>
<td>0.4815</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.3860</td>
<td>0.5572</td>
</tr>
<tr>
<td>0.00625</td>
<td>0.2623</td>
<td></td>
</tr>
</tbody>
</table>

Convergence rate γ

$$\gamma = \log_2 \left(\frac{\|u_h - \frac{u_h}{2}\|_{L^1}}{\|u_h - \frac{u_h}{4}\|_{L^1}} \right)$$
An open problem in the analytical theory is whether the formal convergence to its non–nonlocal analogue $\partial_t U + \text{div}_x F(t, x, U, U) = 0$ as η tends to Dirac delta can be made rigorous.
An open problem in the analytical theory is whether the formal convergence to its non–nonlocal analogue \(\partial_t U + \text{div}_x F(t, x, U, U) = 0 \) as \(\eta \) tends to Dirac delta can be made rigorous.

Consider the classical Keyfitz-Kranzer system in 2 dimensions

\[
\begin{align*}
\partial_t U^1 + \partial_x \left(U^1 \varphi^1(U) \right) + \partial_y \left(U^1 \varphi^2(U) \right) &= 0 \\
\partial_t U^2 + \partial_x \left(U^2 \varphi^1(U) \right) + \partial_y \left(U^2 \varphi^2(U) \right) &= 0
\end{align*}
\]

- Ambrosio, Bouchut & De Lellis: Comm. PDE, 2004

with its non-local generalization

\[
\begin{align*}
\partial_t U^1 + \partial_x \left(U^1 \varphi_1(U * \mu) \right) + \partial_y \left(U^1 \varphi_2(U * \mu) \right) &= 0 \\
\partial_t U^2 + \partial_x \left(U^2 \varphi_1(U * \mu) \right) + \partial_y \left(U^2 \varphi_2(U * \mu) \right) &= 0
\end{align*}
\]
Lemma 8 (Fits into the framework)

\[
N = 2, \quad f(t, x, y, U, A) = U \varphi(A), \quad g(t, x, y, U, B) = U \varphi(B), \quad \eta = \vartheta = \begin{bmatrix} \mu & 0 \\ 0 & \mu \end{bmatrix}.
\]

Moreover, if \(\varphi_1, \varphi_2 \in (C^2 \cap W^{2,\infty})(\mathbb{R}^2; \mathbb{R}) \) and \(\mu \in (C^2 \cap W^{2,\infty})(\mathbb{R}^2; \mathbb{R}) \), then for any compactly supported initial datum \((U_1^1, U_2^1) \in (L^1 \cap L^\infty \cap BV)(\mathbb{R}^2; \mathbb{R}^2_+) \), the existence theorem holds.
Take

\[\varphi_1(A_1, A_2) = \sin(A_1^2 + A_2^2) \]
\[\varphi_2(B_1, B_2) = \cos(B_1^2 + B_2^2) \]

\[\tilde{\mu}(x, y) = \left(r^2 - (x^2 + y^2) \right)^3 \chi\{ (x, y): x^2 + y^2 \leq r^2 \} (x, y) \]

\[\mu(x, y) = \frac{1}{\iint_{\mathbb{R}^2} \tilde{\mu}(x, y)} \tilde{\mu}(x, y) \]

so that \(\iint_{\mathbb{R}^2} \mu(x, y) \, dx \, dy = 1 \) with the initial data.
Integration of *non-nonlocal* Analogue with standard Lax-Friedrichs scheme.

Integration of the Nonlocal analogue with $r = .0125$
Numerical Integration

Non-Local Analogue to Local??

<table>
<thead>
<tr>
<th>t</th>
<th>r</th>
<th>u_1</th>
<th>u_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.0375</td>
<td>0.025</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1137</td>
<td>0.0986</td>
<td>0.0801</td>
</tr>
<tr>
<td>0.07</td>
<td>0.1809</td>
<td>0.1493</td>
<td>0.1191</td>
</tr>
<tr>
<td>0.10</td>
<td>0.2018</td>
<td>0.1641</td>
<td>0.1305</td>
</tr>
</tbody>
</table>

Difference in L^1 norms of solutions of Nonlocal and _non-nonlocal_ Analogue
Difference in L^1 norms of solutions of Nonlocal and non-nonlocal Analogue

These can not provide any proof of the convergence of the nonlocal to non-nonlocal problem, nevertheless they suggest that a positive answer may be possible.
Lane Formation

Consider the crowd dynamics model introduced in (Colombo, Mercier: AMS, 2011) for two populations trying to avoid each other and described by their densities U^1, U^2.

\[
\begin{align*}
\partial_t U^1 + \text{div} \left(c_1 U^1 (1 - U^1) \left(1 - \varepsilon_1 \frac{U^1 \mu}{\sqrt{1 + \|U^1 \mu\|^2}} \right) \vec{v}^1(x, y) \right) &= 0, \\
\partial_t U^2 + \text{div} \left(c_2 U^2 (1 - U^2) \left(1 - \varepsilon_1 \frac{U^2 \mu}{\sqrt{1 + \|U^2 \mu\|^2}} \right) \vec{v}^2(x, y) \right) &= 0,
\end{align*}
\]

\[\begin{align*}
\partial_t U^1 + \text{div} \left(-\varepsilon_2 \frac{\nabla U^2 \mu}{\sqrt{1 + \|\nabla U^2 \mu\|^2}} \right) &= 0, \\
\partial_t U^2 + \text{div} \left(-\varepsilon_2 \frac{\nabla U^1 \mu}{\sqrt{1 + \|\nabla U^1 \mu\|^2}} \right) &= 0.
\end{align*}\]
Lemma 9

System (2) fits into (1) setting, \(N = 2, m = 6 \) and

\[
\eta = \vartheta = \begin{bmatrix}
\mu & 0 \\
\mu_x & 0 \\
\mu_y & 0 \\
0 & \mu \\
0 & \mu_x \\
0 & \mu_y
\end{bmatrix},
\]

with \(A = U^1 \ast \eta, B = U^2 \ast \vartheta \in \mathbb{R}^6 \). Moreover, if \(\bar{v}^i \in (C^2 \cap W^{2,\infty})(\mathbb{R}^2; \mathbb{R}^2) \) and \(\mu \in (C^3 \cap W^{3,\infty})(\mathbb{R}^2; \mathbb{R}) \), then for any compactly supported initial datum \((U^1_o, U^2_o) \in (L^1 \cap L^\infty \cap BV)(\mathbb{R}^2; [0, 1]^2)\), problem (2) admits a solution defined for all \(t \in \mathbb{R}^+ \) and satisfying the estimates in Theorem 1.
Crossing of two moving crowds crossing each other radially
\[\Delta x = \Delta y = 0.0125, \Delta t \approx 9.62 \times 10^{-4}, \alpha = \beta = 0.3333 \]
\Delta x = \Delta y = 0.0125, \Delta t \approx 9.62E - 4, \alpha = \beta = 0.3333, r = 20 \times 0.0125
People crossing vertically and horizontally

Vector Field u_1

Vector Field u_2
\[\Delta x = \Delta y = 0.0125, \Delta t \approx 0.00125, \alpha = \beta = 0.3333, \ r = 10 \times 0.0125 \]
Crowd Dynamics

Measure Valued Non-Local Crowd Models
Piccoli, Tosin: ARMA, 2010
Crippa, Lécureux-Mercier: NODEA, 2011
Cristiani, Piccoli, Tosin: Multisc. Mod. & Simul., 2011
Piccoli, Rossi: ARMA, 2014

Vehicular Traffic/Supply Chain Models
Blandin, Goatin: Preprint, 2014
Colombo, Herty, Mercier: ESAIM COCV, 2011

Sedimentation
Betancourt, Bürger, Karlsen, Tory: Nonlinearity 2011

Granular Matter
Amadori, Shen: JHDE, 2012

Biological Applications
Perthame: Frontiers in Mathematics, 2007
THANK YOU!
Lemma 10 (Positivity)

\[u^k_{\Delta}(t, x, y) \geq 0. \]
Lemma 10 (Positivity)

\[u^k_\Delta(t, x, y) \geq 0. \]

Write \(u^{k,n+1/2}_{ij} \) as a sum of
\[-\lambda_x \left(F^{k,n}_{i+1/2,j}(u^{k,n}_{ij}, u^{k,n}_{ij}) - F^{k,n}_{i-1/2,j}(u^{k,n}_{ij}, u^{k,n}_{ij}) \right) \]
and a convex combination of \(u^{k,n}_{ij}, u^{k,n}_{i-1,j} \) and \(u^{k,n}_{i+1,j}. \)
Lemma 10 (Positivity)

\[u^k_\Delta(t, x, y) \geq 0. \]

- Write \(u_{ij}^{k,n+1/2} \) as a sum of
 \[-\lambda_x \left(F_{i+1/2,j}^{k,n}(u_{ij}^{k,n}, u_{ij}^{k,n}) - F_{i-1/2,j}^{k,n}(u_{ij}^{k,n}, u_{ij}^{k,n}) \right) \] and a convex combination of \(u_{ij}^{k,n}, u_{i-1,j}^{k,n} \) and \(u_{i+1,j}^{k,n} \).
- Prove that coefficients of the convex combination are positive and less than 1/3 under (1).
Lemma 10 (Positivity)

\[u^k_\Delta(t, x, y) \geq 0. \]

- Write \(u^{k,n+1/2}_{ij} \) as a sum of
 \[-\lambda_x \left(F_{i+1/2,j}^{k,n}(u^{k,n}_{ij}, u^{k,n}_{ij}) - F_{i-1/2,j}^{k,n}(u^{k,n}_{ij}, u^{k,n}_{ij}) \right) \]
 and a convex combination of \(u^{k,n}_{ij}, u^{k,n}_{i-1,j} \) and \(u^{k,n}_{i+1,j} \).

- Prove that coefficients of the convex combination are positive and less than \(1/3 \) under (1).

- Use Lagrange MVT and \((H1)\) to see that first term \(\geq -1/3\lambda_x u^{k,n}_{ij} \).
Lemma 10 (Positivity)

\[u^k_{\Delta}(t, x, y) \geq 0. \]

- Write \(u^{k,n+1/2}_{ij} \) as a sum of
 \[-\lambda x \left(F^{k,n}_{i+1/2,j}(u^{k,n}_{ij}, u^{k,n}_{ij}) - F^{k,n}_{i-1/2,j}(u^{k,n}_{ij}, u^{k,n}_{ij}) \right) \] and a convex combination of \(u^{k,n}_{ij}, u^{k,n}_{i-1,j} \) and \(u^{k,n}_{i+1,j} \).

- Prove that coefficients of the convex combination are positive and less than 1/3 under (1).

- Use Lagrange MVT and (H1) to see that first term \(\geq -1/3\lambda x u^{k,n}_{ij} \).
Lemma 11 (L^∞ bound)

$$\|u_\Delta(t)\|_{L^\infty} \leq e^{C t} (1 + \|U_0\|_{L^1}) \|U_0\|_{L^\infty}.$$ \hspace{1cm} (3)

with C depending only on $\eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N$

- Write $u_{ij}^{k, n+1/2}$ as a sum of
 $$-\lambda_x \left(F_{i+1/2, j}^{k, n} (u_{ij}^{k, n}, u_{ij}^{k, n}) - F_{i-1/2, j}^{k, n} (u_{ij}^{k, n}, u_{ij}^{k, n}) \right)$$
 and a convex combination of $u_{ij}^{k, n}, u_{i-1, j}^{k, n}$ and $u_{i+1, j}^{k, n}$.
- Use Lagrange MVT and (H1), to see that the modulus of the first term
 $$\leq \lambda_x M u_{ij}^{k, n} |\Delta x| \left(\|\partial_x \eta\|_{L^\infty} \|u_\Delta(t^n)\|_{L^1} + 1 \right).$$
Lemma 11 (L∞ bound)

\[\| u_\Delta(t) \|_{L^\infty} \leq e^C t (1 + \| U_0 \|_{L^1}) \| U_0 \|_{L^\infty}. \]

(3)

with C depending only on \(\eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N \)

- Write \(u_{ij}^{k,n+1/2} \) as a sum of
 \[-\lambda_x \left(F_{i+1/2,j}^{k,n}(u_{ij}^{k,n}, u_{ij}^{k,n}) - F_{i-1/2,j}^{k,n}(u_{ij}^{k,n}, u_{ij}^{k,n}) \right) \]
 and a convex combination of \(u_{ij}^{k,n}, u_{i-1,j}^{k,n} \) and \(u_{i+1,j}^{k,n} \).

- Use Lagrange MVT and (H1), to see that the modulus of the first term \(\leq \lambda_x M |u_{ij}^{k,n}| \Delta x \left(\| \partial_x \eta \|_{L^\infty} \| u_\Delta(t^n) \|_{L^1} + 1 \right) \).

- Use that coefficients are in convex combination, positive to bound the convex combination by \(\| u_\Delta(t) \|_{L^\infty} \) and use induction to get the result.
Lemma 12 (BV bound)

For all n, for all $t \in [t^n, t^{n+1}]$ and for all $k = 1, \ldots, N$

$$
\sum_{ij} \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right)
\leq e^{K_1 t} \sum_{ij} \left(|u_{i+1,j}^{k,0} - u_{ij}^{k,0}| \Delta y + |u_{i,j+1}^{k,0} - u_{ij}^{k,0}| \Delta x \right) + K_2 \left(e^{K_1 t} - 1 \right).
$$

with K_1 and K_2 depending only on $\|U_o\|_{L^1}, \eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N$.
Lemma 12 (BV bound)

For all n, for all $t \in [t^n, t^{n+1}]$ and for all $k = 1, \ldots, N$

$$
\sum_{ij} \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right) \\
\leq e^{K_1 t} \sum_{ij} \left(|u_{i+1,j}^{k,0} - u_{ij}^{k,0}| \Delta y + |u_{i,j+1}^{k,0} - u_{ij}^{k,0}| \Delta x \right) + K_2 \left(e^{K_1 t} - 1 \right).
$$

with K_1 and K_2 depending only on $\|U_o\|_{L^1}, \eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N$.

- Obtain the bounds of
 $$
 \sum_{ij} \left(|u_{i+1,j}^{k,n+1/2} - u_{ij}^{k,n+1/2}| \Delta y + |u_{i,j+1}^{k,n+1/2} - u_{ij}^{k,n+1/2}| \Delta x \right)
 $$
 in terms of
 $$
 \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right).
 $$
 Entirely analogous estimates at t^{n+1} in terms of terms at $n + \frac{1}{2}$ lead to the result.
Lemma 12 (BV bound)

For all \(n \), for all \(t \in [t^n, t^{n+1}] \) and for all \(k = 1, \ldots, N \)

\[
\sum_{ij} \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right)
\]

\[
\leq e^{K_1 t} \sum_{ij} \left(|u_{i+1,j}^{k,0} - u_{ij}^{k,0}| \Delta y + |u_{i,j+1}^{k,0} - u_{ij}^{k,0}| \Delta x \right) + K_2 \left(e^{K_1 t} - 1 \right).
\]

with \(K_1 \) and \(K_2 \) depending only on \(\|U_o\|_{L^1}, \eta, \vartheta, f^1, \ldots, f^N, g^1, \ldots, g^N \).

- Obtain the bounds of
 \[
 \sum_{ij} \left(|u_{i+1,j}^{k,n+1/2} - u_{ij}^{k,n+1/2}| \Delta y + |u_{i,j+1}^{k,n+1/2} - u_{ij}^{k,n+1/2}| \Delta x \right) \text{ in terms of}
 \]
 \[
 \left(|u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y + |u_{i,j+1}^{k,n} - u_{ij}^{k,n}| \Delta x \right). \text{ Entirely analogous}
 \]
 estimates at \(t^{n+1} \) in terms of terms at \(n + \frac{1}{2} \) lead to the result.
Write \(u_{i+1,j}^{k,n+1/2} - u_{i,j}^{k,n+1/2} = C_{ij}^{n} - \lambda x D_{ij}^{n} \) where
Write \(u_{i+1,j}^k - u_{ij}^k = C_{ij}^n - \lambda_x D_{ij}^n \) where

\[
C_{ij}^n \text{ is a convex combination of } (u_{i+1,j}^k - u_{ij}^k), (u_{i+2,j}^k - u_{i+1,j}^k) \text{ and } (u_{i,j}^k - u_{i-1,j}^k) \text{ with coefficients in } [0, 1/3] \text{ to get}
\]

\[
\sum_{ij} |C_{ij}^n| \leq \sum_{ij} |u_{i+1,j}^k - u_{ij}^k|.
\]
Write $u_{i+1,j}^{k,n+1/2} - u_{ij}^{k,n+1/2} = C_{ij}^n - \lambda_x D_{ij}^n$ where

C_{ij}^n is a convex combination of $(u_{i+1,j}^{k,n} - u_{ij}^{k,n})$, $(u_{i+2,j}^{k,n} - u_{i+1,j}^{k,n})$ and $(u_{i,j}^{k,n} - u_{i-1,j}^{k,n})$ with coefficients in $[0, 1/3]$ to get

$$\sum_{ij} |C_{ij}^n| \leq \sum_{ij} |u_{i+1,j}^{k,n} - u_{ij}^{k,n}|.$$

$D_{i,j}$ is approximated using Lagrange MVT, (H1) and bounds on $A_{i+1/2,j}^n$ to obtain

$$\sum_{ij} \lambda_x |D_{ij}^n| \Delta y \leq \Delta t \left(K + K_1 \sum_{ij} |u_{i+1,j}^{k,n} - u_{ij}^{k,n}| \Delta y \right).$$

The sum of these two estimates gives the required estimate of

$$\sum_{ij} \left(|u_{i+1,j}^{k,n+1/2} - u_{ij}^{k,n+1/2}| \Delta y \right).$$

Analogous estimates for $\sum_{ij} \left(|u_{i,j+1}^{k,n+1/2} - u_{ij}^{k,n+1/2}| \Delta x \right)$ are proved.
Proof of Lemma 7. \(f \) and \(g \) are both of class \(C^2 \) in all their arguments. Let \(p \in C^3_c(\mathbb{R}; \mathbb{R}) \) be such that \(p(U) = U(1 - U) \) for all \(U \in [0, 1] \) and \(q \in C^3_c(\mathbb{R}; \mathbb{R}) \) be such that \(q(A) = 1 - A \) for all \(A \in [0, 1] \). Define

\[
\hat{f}(t, x, y, U, A) = p(U) q(A) v^1(x, y), \quad \hat{g}(t, x, y, U, B) = p(U) q(B) v^2(x, y).
\]

\(\hat{f} \) and \(\hat{g} \) both are of class \(C^2 \cap W^{3, \infty} \).

Then, Theorem 1 applies and yields a solution to

\[
\partial_t U + \nabla \cdot \left(p(U) q(U * \mu) v \right) = 0
\]

in the sense of definition of the solutions, \(u \) attains values inside \([0, 1]\), hence it also solves (2). \qed