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Dynamic Mode Decomposition (Schmid, ’12)

Dynamic Mode Decomposition
Suppose we have a dynamical system and compute snapshots
{(y(t0), . . . , y(tm)} and two sets of data

Y=

y(t0) y(t1) · · · y(tm−1)

 , Y′=

y(t1) y(t2) · · · y(tm)


with y(tj) an initial condition of the dynamical system and y(tj+1) its
corresponding output⇒ Y′ = AYY with AY ∈ Rn×n unknown

The DMD modes are eigenvectors of

Ay = Y′Y†

where † denotes the Moore-Penrose pseudoinverse
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Dynamic Mode Decomposition (Schmid, ’12)

DMD produces a regression procedure whereby the data snapshots in
time are used to produce the best-fit linear dynamical system for Y.
DMD procedure constructs approximate linear evolution

d ỹ
dt

= Âyỹ

with ỹ(0) = ỹ0 and whose solution is

ỹ(t) =
n∑

i=1

biψi exp(ωi t)

ψi and ωi are the eigenfunctions and eigenvalues of the matrix Ây
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Dynamic Mode Decomposition

DMD allows to build this approximation system:

Mẏ(t) = Ay(t) + f(t ,y(t)) ≈ Ay(t) + Âyy(t)

Ây approximates the nonlinearity over the snapshots collected

PROBLEM

The matrix Ây is, highly ill-conditioned and when the state dimension
n is large can be even intractable to analyze directly

SOLUTION

DMD circumvents the eigendecomposition of Ây by considering a
rank-reduced representation in terms of a POD-projected matrix Ãy
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DMD algorithm

Require: Snapshots {y(t0), . . . ,y(tm)}
1: Set Y = [y(t0), . . . ,y(tm−1)] and Y′ = [y(t1), . . . ,y(tm)]
2: Compute the (reduced) SVD of Y, Y = UΣVT

3: Define Ãy := U∗Y′VΣ−1

4: Compute eigenvalues and eigenvectors of ÃyW = WΛ
5: Set ΨDMD = Y′VΣ−1W
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2D Viscous Burgers

yt −
1

100
∆y + y · ∇y = 0, x ∈ Ω = [0,1]× [0,1], t ∈ [0,T ]

y(x , t) = 0, x ∈ ∂Ω

y(x ,0) = sin(πx) x ∈ Ω
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2D Viscous Burgers
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Figure: Top: Reference Solution for Burgers’ equation at time t = 0.4875 (left)
and t = 0.9875 (right). Bottom: absolute difference between exact solution
and DMD reconstruction with data ∆t = 0.1 at time t = 0.4875 (left) and
t = 0.9875 (right).
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Problem Settings

Dynamical System
M ẏ(t) = Ay(t) + f(t ,y(t)), t ∈ (0,T ]

y(0) = y0

Assumptions

y0 ∈ Rn is a given initial data
M,A ∈ Rn×n given matrices
f : [0,T ]× Rn → Rn a continuous function in both arguments and
locally Lipschitz-type with respect to the second variable

WARNING: High dimensional problems are computationally expensive
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Proper Orthogonal Decomposition and SVD

Given snapshots (y(t0), . . . , y(tn)) ∈ Rm

We look for an orthonormal basis {ψi}`i=1 in Rm with `� min{n,m} s.t.

J(ψ1, . . . , ψ`) =
n∑

j=1

αj

∥∥∥∥∥yj −
∑̀
i=1

〈yj , ψi〉ψi

∥∥∥∥∥
2

=
d∑

i=`+1

σ2
i

reaches a minimum where {αj}nj=1 ∈ R+.

min J(ψ1, . . . , ψ`) s.t .〈ψi , ψj〉 = δij

Singular Value Decomposition: Y = ΨΣV T

For ` ∈ {1, . . . ,d = rank(Y )}, {ψi}`i=1 are called POD basis of rank `

ERROR INDICATOR: E(`) =

∑̀
i=1

σi

d∑
i=1

σi

with σi singular values of the SVD
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Reduced Order System

POD-Galerkin ansatz

y(t) ≈ ΨPODy`(t), ΨPOD ∈ Rn×`

POD dynamical system
M`ẏ`(t) = A`y`(t) + (ΨPOD)T f (t ,ΨPODy`(t))

y`(0) = y`
0

Dimension of the entries

(M`)ij = 〈Mψi ,ψj〉 ∈ R`×`

(A`)ij = 〈Aψi ,ψj〉 ∈ R`×`

y`
0 = (ΨPOD)T y0 ∈ R`
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POD-DMD method (A., Kutz, ’17)

MAIN IDEA
The evaluation of the nonlinearity is the most expensive part in model
order reduction. We aim faster approximation of the nonlinear term

We need snapshots!

{y(t0), . . . ,y(tm)}, to compute the POD basis functions
{f(t0,y(t0)), . . . , f(tm,y(tm))} to compute the DMD basis functions

Compact notation

f̃DMD(t , y(t)) ≈ ΨDMDdiag(eωDMDt )b

b = (ΨDMD)†f(t1,y(t1)) ∈ Rk

diag(eωDMDt )b ∈ Rk reduced approximation wrt DMD modes
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Reduced Order Dynamics

POD method
M`ẏ`(t) = A`y`(t) + (ΨPOD)T f (t ,ΨPODy`(t))

y`(0) = y`
0

POD-DEIM method (low-rank approximation of the nonlinear term)
M`ẏ`(t) = A`y`(t) + (ΨPOD)TΨDEIMf(t ,yDEIM)

y`(0) = y0
`

POD-DMD method (NO EVALUATION OF THE NONLINEARITY) M`ẏ`(t) = A`y`(t) + (ΨPOD)TΨDMDdiag(eωDMDt )b

y`(0) = y0
`
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Example: Semi-Linear Parabolic Equation

yt − θ∆y + µ(y − y3) = 0 (x , t) ∈ Ω× [0,T ]

y(x ,0) = y0(x) x ∈ Ω

y(·, t) = 0 x ∈ ∂Ω, t ∈ [0,T ]

Parameters:
Ω = [0,1]× [0,1],T = 3
y0(x) = 0.1 if 0.1 ≤ x1x2 ≤ 0.6 and 0 elsewhere
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Example: Semi-Linear Parabolic Equation
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Figure: Solution at time t = {0,0.1} (top) and t = {1.5,3} (bottom)
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Example: Semi-Linear Parabolic Equation
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Example: Semi-Linear Parabolic Equation
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Human Mobility

Dataset
The Italian telecommunication company TIM provided the data
The data are estimates of mobile phones presence in a given area
The area under analysis is the province of Milan (Italy), divided in
511×389 = 198,779 cells
We have six months of data, divided into time intervals of 15
minutes, therefore we have 96 data per day per cell
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First analyses on data

Figure: 3D-plot of the number of TIM users in each cell of Milan’s province on
April 18, 2017 at 10:00 a.m.
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DMD model

DMD error on the TIM data
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Monge-Kantorovich Problem

Monge–Kantorovich mass transfer problem

Given a sandpile with mass distribution ρ0 and a pit with equal volume
and mass distribution ρ1, find a way to minimize the cost of
transporting sand into the pit

Figure: Sand to be moved into the pits
The cost for moving mass depends on:

the distance from the point of origin to the point of arrival
the amount of mass to be moved
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Wasserstein Distance

Wasserstein Distance: Definition in Rn

In the space Rn equipped with the euclidean metrics, let ρ0 and ρ1 be
two density functions such that

∫
Rn ρ

0 =
∫
Rn ρ

1. For all p ∈ [1,+∞), the
Lp-Wasserstein distance between ρ0 and ρ1 is

Wp(ρ0, ρ1) =

(
min
T∈T

∫
Rn
‖T (x)− x‖pRn ρ

0(x)dx
) 1

p

where

T :=

{
T : Rn → Rn :

∫
B

ρ1(x)dx =

∫
{x :T (x)∈B}

ρ0(x)dx , ∀B ⊂ Rn bounded

}

T is the set of all possible maps which transfer the mass from one
configuration to the other
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Approximation of Wasserstein Distance

We reformulate the mass transfer problem on a graph G with N nodes.
We denote by:

m0
j the initial mass distributed on the graph nodes

m1
j the final mass distributed on the graph nodes

cjk the cost to transfer a unit mass from node j to node k
xjk the (unknown) mass moving from node j to node k

Rearranging in an optimal manner the first mass in the second one
Minimize

H :=
N∑

j,k=1

cjkxjk

subject to ∑
k

xjk = m0
j ∀j

∑
j

xjk = m1
k ∀k and xjk ≥ 0
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Approximation of Wasserstein Distance

We define

x = (x11, x12, . . . , x1N , x21, . . . , x2N , . . . , xN1, . . . , xNN)T

c = (c11, c12, . . . , c1N , c21, . . . , c2N , . . . , cN1, . . . , cNN)T

b = (m0
1, . . . ,m

0
N ,m

1
1, . . . ,m

1
N)T

and the matrix

A =



1N 0 0 . . . 0
0 1N 0 . . . 0
0 0 1N . . . 0
...

...
...

. . .
...

0 0 0 . . . 1N

IN IN IN IN IN


where IN is the N × N identity matrix and 1N = (1 1 . . . 1)︸ ︷︷ ︸

N times
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Approximation of Wasserstein Distance

Linear Programming problem

Minimize cT x , under the conditions Ax = b and x ≥ 0.
The result of the algorithm is a vector x∗ := arg min cT x whose
elements x∗jk represent how much mass moves from node j to node k
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Application of the Algorithm to Human Mobility Flows

The nodes of the graph G are the centers of the cells of the
province of Milan. Each node is connected to all the others.
The amount of people located in each cell j represents the mass
mj to be moved.
The initial mass m0 and the final one m1 represent presence data
on two consecutive quarters of an hour.
We assume that people can move in any direction of the space
neglecting obstacles and that they aim at minimizing the total
displacement as a whole.

Idea

Solving the LP problem with two consecutive mass distributions m0

and m1, we get the optimal path followed by people to move from the
first configuration to the second one.
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Input and Output

Input: the pairs (m0,m1) corresponding to the number of people at
two consecutive quarters of an hour.
Output: x∗ solution of the LP problem between two consecutive
quarters of an hour.
We represent the movements with arrows and we draw only those
larger than the daily average.
We analyze small areas or we aggregate the cells into groups to
reduce the computational cost.
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Why DMD?

Problem
LP helps us to understand the flow which moves the mass from every
single couple of nodes =⇒ Computationally Expensive

Solution
DMD model allows to choose ∆t small enough, to impose the mass
on a generic node to move only towards d adjacent cells or not
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Reduced Linear Programming problem

Reduced Linear Programming problem

Minimize c̃T x̃ , under the conditions Ãx̃ = b and x̃ ≥ 0,

with |x̃ | = |c̃| ≤ dN, |b| = 2N and |Ã| ≤ 2dN2

Algoritm Vectors Dimension Matrix Dimension
Global N2 2N3

Local dN 2dN2
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Figure: Flows of commuters during the morning of a generic working day.
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Figure: Flows of commuters during the evening of a generic working day.
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Goal

so far...
we have computed a linear model through DMD

now...
we want to extract physical laws from experimental data in the form of
PDEs using machine learning methods:

ut = N(u,ux ,uxx , . . . , µ(t)) t ∈ [0,T ]

N(·) : characterizes the evolution of the system

µ(t) : [0,T ]→ R its parametric dependencies
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Identification of PDEs

To identify constant coefficient PDEs, we have a dataset U, which is a
discretization of a function u(x , t) that we assume satisfies the PDE of
the form given in:

ut = N(u,ux ,uxx , . . . ) =
d∑

j=1

Nj(u,ux ,uxx , . . . )ξj

Assumptions

Nonlinear expression N(·) may be expanded as a sum of simple
monomial basis functions Nj of u and its derivatives
We build a (complete) library of many possible monomial basis
functions and regresses to find ξ
Sparsity is used to ensure that basis functions that do not appear
in the PDE are set to zero in the sum
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Identification of PDEs

Given a dataset U ∈ Rn×m representing m timesteps of a PDE
discretized with n gridpoints, we numerically differentiate in both x and
t to form the linear regression problem given by

ut (x1, t1)
ut (x2, t1)

...
ut (xn, tm)


︸ ︷︷ ︸

Ut

=


1 u(x1, t1) ux (x1, t1) . . . u3uxxx (x1, t1)
1 u(x2, t1) ux (x2, t1) . . . u3uxxx (x2, t1)
...

...
...

...
1 u(xn, tm) ux (xn, tm) . . . u3uxxx (xn, tm)


︸ ︷︷ ︸

Θ(U)

ξ

which is a large, overdetermined linear system of equations Ax = b

Library
We have shown derivatives up to third order are multiplied by powers
of u up to cubic order, but one could include arbitrarily many library
functions. Solving for ξ and ensuring sparsity gives the PDE.
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Sparse Optimization

LASSO (Least Absolute Shrinkage and Selection Operator)

x̂ = arg min
w

‖b− Aw‖22 + λ ‖w‖21

Ridge regression

x̂ = arg min
w

‖b− Aw‖22 + λ‖w‖22

Reference
S.L. Brunton, J.L. Proctor, J.N. Kutz. Discovering governing
equations from data by sparse identification of nonlinear
dynamical systems, 2016
S.H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz. Data-driven
discovery of partial differential equations, 2017
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Identification of parametric PDEs

In the identification of parametric PDEs, we consider equations as

ut = N(u,ux , . . . , µ(t)) =
d∑

j=1

Nj(u,ux , . . .)ξj(t)

Some more details
To capture spatial variation in the coefficients, we simply replace
ξ(t) with ξ(x)

Determine which coefficients are nonzero and find the values of
the coefficients for each ξj at each timestep (group sparsity)
Prior knowledge of an appropriate set of basis functions may be
helpful. In what follows we assume the true dynamics N to lie in
the span of our candidate functions {Nj}dj=1
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Mathematical formulation

u(j)
t = Θ

(
u(j)
)
ξ(j), j = 1, . . . ,m .

where

Θ
(

u(j)
)

=

1 u(j) . . . u3u(j)
xxx




u(1)
t

u(2)
t
...

u(m)
t

 =


Θ
(
u(1))

Θ
(
u(2))

. . .
Θ
(
u(m)

)


︸ ︷︷ ︸
Θ̃


ξ(1)

ξ(2)

...
ξ(m)

 .



Discovery Nonlinear PDEs (with. S. Rudy, S. Brunton, J.N. Kutz) Identification of parametric PDEs

Identification of parametric PDEs

We use the notion of group sparsity to find time series representing
each parameter in the PDE, rather than single values.

Group LASSO

x̂ = arg min
w

∥∥∥∥∥∥b−
∑
g∈G

A(g)w(g)

∥∥∥∥∥∥
2

2

+ λ
∑
g∈G
‖w(g)‖21

Here G is a collection of groups, each of which contains a subset of the
indices of the snapshots

Group Ridge

x̂ = arg min
w

∥∥∥∥∥∥b−
∑
g∈G

A(g)w(g)

∥∥∥∥∥∥
2

2

+ λ
∑
g∈G
‖w(g)‖22
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Sequential thresholding method on ridge regression
(for group sparisty)

Algorithm 1: SGTR(A,b,G, λ, ε,maxit, f (x) = ‖x‖2)

# Solves x ≈ A−1b with sparsity imposed on groups in G
# Initialize coefficients with ridge regression
x = arg minw‖b− Aw‖22 + λ‖w‖22
# Threshold groups with small f and repeat
for iter = 1, . . . ,maxit:

# Remove groups with sufficiently small f (x(g))
G = {g ∈ G : f (x(g)) > ε}
# Refit these groups (note this sets x(g) = 0 for g 6∈ G)
x = arg minw‖b−

∑
g∈G A(g)w(g)‖22 + λ‖w‖22

# Get unbiased estimates of coefficients after finding sparsity
x(G) = arg minw‖b−

∑
g∈G A(g)w(g)‖22

return x
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Sequential thresholding method on ridge regression
(for group sparisty)

Remarks
Throughout the training, G tracks the groups that have nonzero
coefficients, and it is paired down as we threshold coefficients with
sufficiently small relevance, as measured by f
For m timesteps and d candidate functions in the library, groups
are defined as G = {j + d · i : i = 0, . . . ,m − 1 : j = 1, . . . ,d}
We use the 2-norm of the coefficients in each group for f but one
could also consider arbitrary functions
We normalize each column of A and b so that differences in scale
between the groups do not affect the result of the algorithm



Discovery Nonlinear PDEs (with. S. Rudy, S. Brunton, J.N. Kutz) Identification of parametric PDEs

Numerical Tests

We tested the method after introducing white noise with mean
magnitude equal to 1% of the L2-norm of the dataset.
Noise is added directly to the data, U prior to numerical
differentiation in order to replicate the effects of sensor noise.
A comparison with group LASSO regression is also given for a
number of the examples.
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Viscous Burgers’ Equation

ut = a(t)uux + 0.1uxx , x ∈ [−8,8], t ∈ [0,10]

a(t) = −
(

1 +
sin(t)

4

)

Parameters
Library: powers of u up to cubic order, which can be multiplied by
derivatives of u up to fourth order
Noise-free dataset we use the discrete Fourier transform for
computing derivatives
Noisy dataset, we use polynomial interpolation to smooth the
derivatives
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Viscous Burgers’ Equation

Figure: Time series discovered for the coefficients of the parametric Burgers’
equation. Top row: SGTR method, which correctly identifies the two terms.
Bottom row: group LASSO method which adds several additional (incorrect)
terms to the model. The left panels are noise-free, while the right panels
contain 1% noise.
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Spatially Dependent Advection-Diffusion Equation

ut = (c(x)u)x + εuxx = c(x)ux + c′(x)u + εuxx

Parameters
x ∈ [−5,5], t ∈ [0,5], ε = 0.1, and c(x) = −1.5 + cos(2πx/L) using a
spectral method with n = 256 and m = 256.
Library: powers of u up to cubic, multiplied by derivatives of u up to
fourth order.
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Spatially Dependent Advection-Diffusion Equation

Figure: Spatial dependence of advection diffusion equation. Left: no noise.
Right: 1% noise. Both SGTR and group LASSO correctly identified the active
terms.



Discovery Nonlinear PDEs (with. S. Rudy, S. Brunton, J.N. Kutz) Identification of parametric PDEs

Conclusions and Future Directions

Conclusions
We have presented DMD and its applications

Extrapolation of data
Reduction of the complexity of PDEs
Human mobility

We have presented a method for identifying governing laws for
physical systems which exhibit either spatially or temporally
dependent behavior.

Outlook
Solid mathematical background for DMD
Identification of Stochastic Differential Equation
(ongoing with Y. Sapurito)
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