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Dynamic Mode Decomposition (Schmid, ’12)

Dynamic Mode Decomposition

Suppose we have a dynamical system and compute snapshots
{(y(to), ..., y(tm)} and two sets of data

Y=1y(b) y(t) - Y(Tm1)]7 Y= {V(ﬁ) y() - V(l‘m)]

with y(#) an initial condition of the dynamical system and y({,+) its
corresponding output = Y’ = AyY with Ay € R™*" unknown

The DMD modes are eigenvectors of
Ay =YY

where 1 denotes the Moore-Penrose pseudoinverse
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Dynamic Mode Decomposition (Schmid, ’12)

DMD produces a regression procedure whereby the data snapshots in
time are used to produce the best-fit linear dynamical system for Y.
DMD procedure constructs approximate linear evolution

& 4
at =AY

with y(0) = yo and whose solution is

V(1) = bih;exp(wit)

=1

1; and w; are the eigenfunctions and eigenvalues of the matrix Ay
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Dynamic Mode Decomposition

DMD allows to build this approximation system:
My(t) = Ay(t) + (£, y(1)) ~ Ay(t) + Ayy(1)

i\y approximates the nonlinearity over the snapshots collected

PROBLEM

The matrix lf\y is, highly ill-conditioned and when the state dimension
nis large can be even intractable to analyze directly

SOLUTION

DMD circumvents the eigendecomposition of Ay by considering a
rank-reduced representation in terms of a POD-projected matrix Ay

v
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DMD algorithm

Require: Snapshots {y(%),...,Y(tm)}

a R wh=2

: SetY = [y(lo),....Y(tm—)]and Y' = [y(t;), ..., y(tm)]
Compute the (reduced) SVDofY,Y = UZVT

Define Ay := uxY'vz-'

Compute eigenvalues and eigenvectors of AyW = WA
Set w*° = Y'VE~'W
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2D Viscous Burgers

1
yt—mAy+y-Vy:O, x€Q=[0,1]x[0,1],t € [0, T]
y(x,t)=0, xe0Q
y(x,0) =sin(mx) xe€Q
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2D Viscous Burgers
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Problem Settings

Dynamical System
{ My(t) = Ay(t) + (1, y(t)), t<(0,T]

y(0) = Yo

Assumptions
@ yp € R" is a given initial data
@ M. A € R"™" given matrices

e f: [0, T] x R” — R" a continuous function in both arguments and
locally Lipschitz-type with respect to the second variable

v

WARNING: High dimensional problems are computationally expensive ]
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Proper Orthogonal Decomposition and SVD

Given snapshots (y(fp),...,y(f)) € R™
We look for an orthonormal basis {¢;}¢_; in R™ with £ < min{n, m} s.t.

l
zﬂh ")1/}@ Zaj Zijwl ZO’,
i=1

2

=041
reaches a minimum where {o;}; € R*.
minJ(¢1,...,00) 8.4 (Yi, ¥y) = 0y
Singular Value Decomposition- Yy=vxv’
For¢e {1,...,d =rank(Y)}, {1/1, _4 are called POD basis of rank ¢

Z oi
ERROR INDICATOR: £(¢) = =!

> 0
i=1

i singular values of the SVD
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Reduced Order System

POD-Galerkin ansatz

y(t) ~ wPooye(t), wPOD c Rnxe

POD dynamical system
{ MY (1) = ATy (1) + (WFP) TH(E, WPy (1))

y/(0) = yg

Dimension of the entries
o (M) = (M, ;) € R
o (A9 = (A, ;) € R
° yh = (W) Ty, € R
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POD-DMD method (A., Kutz, ’17)

MAIN IDEA

The evaluation of the nonlinearity is the most expensive part in model
order reduction. We aim faster approximation of the nonlinear term

We need snapshots!

@ {y(fh),...,Y(tm)}, to compute the POD basis functions
o {f(t,y(h)),-..,f(tm, y(tm))} to compute the DMD basis functions

v

Compact notation

MDt

(¢, y (1)) ~ W™ diag(e*”™" )b

@ b = (W")f(t, y(ty)) € R¥
e diag(e“"""!)b € R¥ reduced approximation wrt DMD modes
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Reduced Order Dynamics

POD method
{ MAyE(t) = AfYE(t) + (WP°) TH(t, wPPyE(t))

y'(0) = v§

POD-DEIM method (low-rank approximation of the nonlinear term)
{ Méyé(t) — Aeyz(t) + (wPOD)T‘uDEIMf(t’ yDEIM)

y“(0) = yo*

POD-DMD method (NO EVALUATION OF THE NONLINEARITY)
{ M@vf(t) = Aé’ye(t) + (wPOD)TwDMDdiag(ewDMDt)b

y“(0) = yo°
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Example: Semi-Linear Parabolic Equation

(x,1) e 2x [0, T]
(x) xeQ
xe€0Q,te[0,T]

Ye— 00y + pu(y — v°)
y(x,0)
y(, 1)

Parameters:
=[0,1] x [0,1], T =3
Yo(x) =0.1if 0.1 < xyx2 < 0.6 and 0 elsewhere
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Example: Semi-Linear Parabolic Equation

Figure: Solution at time t = {0,0.1} (top) and t = {1.5,3} (bottom)
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Example: Semi-Linear Parabolic Equation
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Figure: CPU-time online stage (left) and Relative Error wrt Frobenius norm.
Number of POD modes and DEIM/DMD points are the same
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Example: Semi-Linear Parabolic Equation

A fair comparison
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Human Mobility

Dataset
@ The ltalian telecommunication company TIM provided the data
@ The data are estimates of mobile phones presence in a given area
@ The area under analysis is the province of Milan (ltaly), divided in
511x389 = 198,779 cells

@ We have six months of data, divided into time intervals of 15
minutes, therefore we have 96 data per day per cell
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First analyses on data

Figure: 3D-plot of the number of TIM users in each cell of Milan’s province on
April 18, 2017 at 10:00 a.m.
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DMD model

DMD error on the TIM data
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Monge-Kantorovich Problem

Monge—Kantorovich mass transfer problem

Given a sandpile with mass distribution py and a pit with equal volume
and mass distribution p4, find a way to minimize the cost of
transporting sand into the pit

Figure: Sand to be moved into the pits
The cost for moving mass depends on:

@ the distance from the point of origin to the point of arrival
@ the amount of mass to be moved
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Wasserstein Distance

Wasserstein Distance: Definition in R”

In the space R” equipped with the euclidean metrics, let p° and p' be
two density functions such that [, p° = [z. p'. Forall p € [1,+c0), the
LP-Wasserstein distance between p° and p' is

B
W) = (in [ 1700 - x18 P00k
where
T::{T:R”—>R”:/p1(x)dx: / p°(x)dx, VB C R" bounded
B {x:T(x)eB}

T is the set of all possible maps which transfer the mass from one
configuration to the other

—
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Approximation of Wasserstein Distance

We reformulate the mass transfer problem on a graph G with N nodes.
We denote by:
° m](.’ the initial mass distributed on the graph nodes

° m} the final mass distributed on the graph nodes

@ cj the cost to transfer a unit mass from node j to node k

@ Xj the (unknown) mass moving from node j to node k
Rearranging in an optimal manner the first mass in the second one
Minimize

N
Hi= > X
jk=1

subject to

> xg=mP ¥ > xk=mj Vk and xx >0
K J
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Human Mobility (with C. Balzotti, M. Briani, E. Cristiani)

Approximation of Wasserstein Distance

We define
X = (X141, X125 - -+, XIN, X21, - - -, X2N,
¢ =(C1,C12,...,CIN, C21,- - -, Can,

0

— (0 1 1I\T
b=(my,....my,my,...,Mmy)

and the matrix

1y 0 O
0 1y O
0 0 1y
A=
0O 0 O
In In In In

---7XNN)T

o)

s XN

... Ot

In

where Iy is the N x N identity matrixand 1y = (11... 1)

N———
N times



Dynamic Mode Decomposition and its applications Human Mobility (with C. Balzotti, M. Briani, E. Cristiani)

Approximation of Wasserstein Distance

Linear Programming problem

Minimize ¢ x, under the conditions Ax = b and x > 0.
The result of the algorithm is a vector x* := arg min ¢’ x whose
elements xj represent how much mass moves from node j to node k
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Application of the Algorithm to Human Mobility Flows

@ The nodes of the graph G are the centers of the cells of the
province of Milan. Each node is connected to all the others.

@ The amount of people located in each cell j represents the mass
mj to be moved.

@ The initial mass m° and the final one m' represent presence data
on two consecutive quarters of an hour.

@ We assume that people can move in any direction of the space
neglecting obstacles and that they aim at minimizing the total
displacement as a whole.

Idea

Solving the LP problem with two consecutive mass distributions m°
and m', we get the optimal path followed by people to move from the
first configuration to the second one.
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Input and Output

@ Input: the pairs (m°, m") corresponding to the number of people at
two consecutive quarters of an hour.

@ Output: x* solution of the LP problem between two consecutive
quarters of an hour.

@ We represent the movements with arrows and we draw only those
larger than the daily average.

@ We analyze small areas or we aggregate the cells into groups to
reduce the computational cost.
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Problem
LP helps us to understand the flow which moves the mass from every
single couple of nodes —> Computationally Expensive

Solution
DMD model allows to choose At small enough, to impose the mass
on a generic node to move only towards d adjacent cells or not

10
11 15

16 20

21 22 23 24 25
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Reduced Linear Programming problem

Reduced Linear Programming problem

Minimize ¢”x, under the conditions Ax = b and x > 0,
with |X| = |¢| < dN, |b| = 2N and |A| < 2dN?

Algoritm Vectors Dimension Matrix Dimension

Global N2 2N3
Local dN 2adN?
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Figure: Flows of commuters during the morning of a generic working day.
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Goal

so far...
we have computed a linear model through DMD

now...

we want to extract physical laws from experimental data in the form of
PDEs using machine learning methods:

Ut:N(U,UX,UXX,.-.,,U/(t)) tE[O, T]

N(-) : characterizes the evolution of the system

w(t) : [0, T] — R its parametric dependencies
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Identification of PDEs

Identification of constant coefficient PDEs

To identify constant coefficient PDEs, we have a dataset U, which is a

discretization of a function u(x, t) that we assume satisfies the PDE of
the form given in:

d
ur = N(u, Uy, Uxy, ... ) = Z Ni(u, Uy, U, - .. )&
=

Assumptions

@ Nonlinear expression N(-) may be expanded as a sum of simple
monomial basis functions N; of u and its derivatives

@ We build a (complete) library of many possible monomial basis
functions and regresses to find ¢

@ Sparsity is used to ensure that basis functions that do not appear
in the PDE are set to zero in the sum
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Identification of PDEs

Given a dataset U € R™ " representing m timesteps of a PDE
discretized with n gridpoints, we numerically differentiate in both x and
t to form the linear regression problem given by

ur(xy, t) 1 u(xg, b)) ux(xi,t) ... Puox(xi,t)

ube, ) | |1 ubet) uxOet) ... WCuox(xe, t)

Ut(Xn, tm) 1 u()(n7 tm) U)(()(n7 tm) P USUXX)((XH, tm)
U o)

which is a large, overdetermined linear system of equations Ax = b

Library

We have shown derivatives up to third order are multiplied by powers
of u up to cubic order, but one could include arbitrarily many library
functions. Solving for £ and ensuring sparsity gives the PDE.
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Sparse Optimization

LASSO (Least Absolute Shrinkage and Selection Operator)

% = argmin b — Aw||3 + X w3
w

Ridge regression

X = argmin ||b — Aw||3 + \||w||3
w

Reference
@ S.L. Brunton, J.L. Proctor, J.N. Kutz. Discovering governing
equations from data by sparse identification of nonlinear
dynamical systems, 2016
@ S.H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz. Data-driven
discovery of partial differential equations, 2017
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Identification of parametric PDEs

In the identification of parametric PDEs, we consider equations as

ur = N(u, uy, ..., u( N;(u, ux, ...)&(t)

IIMQ

Some more details

@ To capture spatial variation in the coefficients, we simply replace
&(t) with £(x)

@ Determine which coefficients are nonzero and find the values of
the coefficients for each ¢; at each timestep (group sparsity)

@ Prior knowledge of an appropriate set of basis functions may be
helpful. In what follows we assume the true dynamics N to lie in
the span of our candidate functions {I\I/}/@’:1




Discovery Nonlinear PDEs (with. S. Rudy, S. Brunton, J.N. Kutz) Identification of parametric PDEs

Mathematical formulation

ugf) :G)(U(j)> D j=1,....,m.

where ‘ ‘ ‘ ‘
0] (u(j)) = (1 T u3u)((QX>
I .
u§1) O (uM) 3
UEZ) B ) (U(2)) ¢@
ul{m> o (um)) \em
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Identification of parametric PDEs

We use the notion of group sparsity to find time series representing
each parameter in the PDE, rather than single values.

Group LASSO

2
+AY WO

5 geg

X = arg min

ZAQ)W

geg

Here G is a collection of groups, each of which contains a subset of the
indices of the snapshots

v

Group Ridge

X = arg min

ZA g)w 9)

geg

+AY w93

5 geg
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Sequential thresholding method on ridge regression
(for group sparisty)

Algorithm 1: SGTR(A, b, G, \, e, maxit, f(X) = ||x]|2)

# Solves x ~ A~'b with sparsity imposed on groups in G
# Initialize coefficients with ridge regression
X = argminy,[|b — Awl|3 + ||

# Threshold groups with small f and repeat

for jiter =1, ..., maxit:
# Remove groups with sufficiently small £(x(9))
G={geG:f(x9)>¢}
# Refit these groups (note this sets x(9) = 0 for g & G)
x = argmin, [[b — 3 ;e g AW |2+ \||w]3

# Get unbiased estimates of coefficients after finding sparsity
x(9) = argmin, |b — 3, .; AOW) |2
return x
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Sequential thresholding method on ridge regression
(for group sparisty)

Remarks

@ Throughout the training, G tracks the groups that have nonzero
coefficients, and it is paired down as we threshold coefficients with
sufficiently small relevance, as measured by f

@ For mtimesteps and d candidate functions in the library, groups
aredefinedas G={j+d-i:i=0,....m—1:j=1,...,d}

@ We use the 2-norm of the coefficients in each group for f but one
could also consider arbitrary functions

@ We normalize each column of A and b so that differences in scale
between the groups do not affect the result of the algorithm
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Numerical Tests

@ We tested the method after introducing white noise with mean
magnitude equal to 1% of the L2-norm of the dataset.

@ Noise is added directly to the data, U prior to numerical
differentiation in order to replicate the effects of sensor noise.

@ A comparison with group LASSO regression is also given for a
number of the examples.
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Viscous Burgers’ Equation

ur = a(t)uuy + 0.1uxy, x € [-8,8],t € [0,10]

a(t) = - (1 + Si”f))

Parameters
Library: powers of u up to cubic order, which can be multiplied by

derivatives of u up to fourth order
Noise-free dataset we use the discrete Fourier transform for

computing derivatives
Noisy dataset, we use polynomial interpolation to smooth the

derivatives
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Viscous Burgers’ Equation
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Identification of parametric PDEs
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Figure: Time series discovered for the coefficients of the parametric Burgers
equation. Top row: SGTR method, which correctly identifies the two terms.
Bottom row: group LASSO method which adds several additional (incorrect)
terms to the model. The left panels are noise-free, while the right panels
contain 1% noise.
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Spatially Dependent Advection-Diffusion Equation
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X

Ur = (c(X)U)x + elxx = c(X)Uy + ' (X)U + elxyx

Parameters

x € [-5,5],t €[0,5],e = 0.1, and ¢(x) = —1.5 4 cos(27rx/L) using a
spectral method with n = 256 and m = 256.

Library: powers of u up to cubic, multiplied by derivatives of u up to
fourth order.




Discovery Nonlinear PDEs (with. S. Rudy, S. Brunton, J.N. Kutz) Identification of parametric PDEs

Spatially Dependent Advection-Diffusion Equation
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Figure: Spatial dependence of advection diffusion equation. Left: no noise.
Right: 1% noise. Both SGTR and group LASSO correctly identified the active
terms.
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Conclusions and Future Directions

Conclusions

@ We have presented DMD and its applications
o Extrapolation of data
o Reduction of the complexity of PDEs
e Human mobility
@ We have presented a method for identifying governing laws for
physical systems which exhibit either spatially or temporally
dependent behavior.

Outlook
@ Solid mathematical background for DMD

@ l|dentification of Stochastic Differential Equation
(ongoing with Y. Sapurito)
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