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Statement of the problem

D
Du_ _Vp +uViu+f
Dt Po x €D
V-u=0
u(x,0) = up(x) x € D,
u(xb) = up x € 0Dg,

u(x,t) —  uso(t) [x| = oo,



Splitting approach and projection method for
NSE

30



Solving NSE in w — u

Vorticity formulation of NS for incompressible fluid:

D v
V x (—":——p+uv2u> Dw 5
Dt p :E:w-Vu + vViw,
w=VxXu V.-u=0
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Vorticity formulation of NS for incompressible fluid:

D v
V x (—":——p+uv2u> Dw 5
Dt p :E:w-Vu + vViw,
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> in 2D the stretching term w - Vu is zero

0w
Dt
w(x,0) =wo(x), forallxe D,

=vV2w, on D,
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Solving NSE in w — u

Vorticity formulation of NS for incompressible fluid:
D
vV x (—":—@Jwvzu) Dw
Dt p =
w=VXu V-u=0

= w-Vu + VVzw,

» in 2D the stretching term w - Vu is zero
Dw
Dt
w(x,0) =wo(x), forallxe D,

=vV2w, on D,

» Use Operator Splitting to get the two sub—problems of advection and diffusion

D
bw o _
Dt s
ADVECTION Viu = —-Vxw
Dx u(x, t)
Dt o
Orw = Z/VQw, in D
DIFFUSION
Ow .
v— —%, on 0Dg
on
Alexandre Joel Chorin. “Numerical study of slightly viscous flow”. In: Journal of fluid mechanics 57.4 (1973),

pp. 785-796
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Representation of potential flow through an IBEM (w — v)

D
bw _
Dt 5
ADVECTION Viu = -V Xuw,
Dx (x, £)
— = u(x,t),
Dt ’

» Decompose velocity field using Helmholtz-Hodge decomposition

u(x,t) = Vo +V X 9 = uco(t) + up(x, t) + uw(x, t),
> Assign the rotational part to u,, where

uw:/K(X7Y)W(Y)dy
D

> Represent irrotational part through an IBEM and use it to enforce the no-slip BCs

ug(x,t) = — / VG(x,y) dly+/ K(x,y)dl,
15}

DB Unknown source density h B Unknown circulation density

where G(x,y) = —5= log(|x — y|), K(x,y) = V x (Ges) are in free space

27
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Representation of potential flow through an IBEM (w — v)

Evaluation of o:

> Assign a constant density circulation
Wy, t) =4(t) = =T()/P,  T(t) :/ w(y, t)dy.
D

> this leads to

uy(x, t) = — / a(y, t)VG(x,y) dl, + 4(t) K(x,y) dly,
9D oDg
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Representation of potential flow through an IBEM (w — v)

Evaluation of o:

> Assign a constant density circulation
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D

> this leads to

uy(x, t) = — / a(y, t)VG(x,y) dl, + 4(t) K(x,y) dly,
9D oDg

> Apply no through condition for potential flow to find o

(u;5 ‘n)(s,t) = [up(s,t) —uso(t)] - n(s,t) — uu(s,t)-n(s,t), s € 0Dg.
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Representation of potential flow through an IBEM (w — v)

Evaluation of o:

> Assign a constant density circulation

Ay ) =4(0) = —[(1) /P, T(t)= / wly. 1) dy.
D

> this leads to
uy(x, t) = — / a(y, t)VG(x,y) dl, + 4(t) K(x,y) dly,
aDg oDg
> Apply no through condition for potential flow to find o
(u;5 ‘n)(s,t) = [up(s,t) —uso(t)] - n(s,t) — uu(s,t)-n(s,t), s € 0Dg.

> Discretize the boundary into N panels with constant strength 4:

[Al{o} = [C{A} — {up - n} + {uco - n} + {ue, - n}

v

Solve the N x N system to get o using LDU decomposition
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Representation of potential flow through an IBEM (w — v)

Evaluation of ~:

> Generation of circulation density to enforce no-slip BC
7 (S‘ t) = [ub(57 t) - uOO(t)] . T(57 t) - [U;S(S, t) + uW(Sv t)] : T(S, t)v s € 0Dg,
> The discretized form is
{7} =[AKA} + [CHo} — {up - n} + {ueo - n} +{ug, - n}

~ is diffused during the diffusion step into the flow using the Neumann bc

7/30



Representation of potential flow through an IBEM (w — v)

Evaluation of ~:

> Generation of circulation density to enforce no-slip BC
7 (S‘ t) = [ub(57 t) - uOO(t)] . T(57 t) - [U;S(S, t) + uW(Sv t)] : T(S, t)v s € 0Dg,
> The discretized form is

{7} = [Al{4} + [C{o} — {up - n} + {uco - n} + {us, - n}

~ is diffused during the diffusion step into the flow using the Neumann bc

ug(x, t) :—/ a(y, t)VG(x,y) d/y+/ Yy, t)K(x,y) dly,
aDg oDg

7/30



Representation of potential flow through an IBEM (w — v)

Evaluation of ~:

> Generation of circulation density to enforce no-slip BC
7 (S‘ t) = [ub(57 t) - uOO(t)] . T(57 t) - [U;S(S, t) + uW(Sv t)] : T(S, t)v s € 0Dg,

» The discretized form is

{7} = [Al{4} + [C{o} — {up - n} + {uco - n} + {us, - n}

~ is diffused during the diffusion step into the flow using the Neumann bc

ug(x, t) :—/ a(y, t)VG(x,y) d/y+/ Yy, t)K(x,y) dly,
aDg oDg

> Particles are advected during the next advection step with velocity that satisfies
the no-slip BC

u(x, £) = o (£) + / [K<x, y)r(y) —es x K(x, y)om] dl, + / K(x, y)(y) dy .
oDg D
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Evaluation of hydrodynamic loads (w — v)

» Total force: Drag and Lift coefficients

Fg,
Cp = T >c
Fg = / (—pn + pwt) —
dDg

F
CL=—2"

b
5pu3,S
» Torque around the center of mass xcm

Tg= / (x = Xem) x (—pn + pwr),
oDg

> Pressure

1op _
po Os

7(s) - [ioc — Up(s)] + A(s),

se 8DB
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Solving NSE in v — p

> Apply the divergence operator on NSE

D 2
E(V-u)fw2+Vu:VuzfﬂJrVVz(V-u),

Po

» Use incompressibility condition to get a Pressure Poisson equation

V2p = 0 (w2 —Vu: Vu)7

ap

= —n-[0p — Uso] + ua—w, on 0Dg,
on

or
Main drawback

> The method does not guarantee divergence free flow field, because

%(V ‘u) = vV(V - u),
V-u =0,
=0

» If incompressibility is not satisfied at t = 0 or on the boundary, then V - u # 0 in

the field
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Solving NSE in v — p

» Evaluate velocity from momentum equation ignoring viscous contributions and
the divergence constraint

ut = u" 4+ vV At.
» Decompose resulting velocity using Helmholtz - Hodge decomposition (HHD)
ut =V xW 4+ Vo,

> Assign the rotational part to the velocity at next level and the irrotational to the
pressure gradient

n+1
VXxW=u"l Vo = (@> At.
Po

> The velocity at next level is divergent free
n+1
u™t = ut — (E) At
PO

> Apply divergence operator

*
2 ntl _ (V-u")
Vep'tt = po ———.
At
Alexandre Joel Chorin. “Numerical solution of the Navier-Stokes equations”. In: Mathematics of computation

22.104 (1968), pp. 745-762
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Solving NSE in v — p

» The divergence constraint is coupled to the momentum equation by introducing
the pressure field

Ou Du Vp 5

e - _ _Yr V2u,
8T+ Dt £o T "
0P 45V .u=0,

or

where (3: pseudo-compressibility parameter, 7: pseudo-time, \/B: pseudo-sound speed

> Use Dual Time Stepping

> At each iteration in real time we do sub-iterations in pseudo-time to enforce
incompressibility

> Obtain a solution that satisfies V - u when steady state is reached in 7

Alexandre Joel Chorin. "A numerical method for solving incompressible viscous flow problems”. In: Journal of
computational physics 2.1 (1967), pp. 12-26
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Brief description on the numerical schemes
adopted
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Diffused Vortex Hydrodynamics: The

advection step

» Discretization of vorticity field
Ny
welx, ) & Y Tj(t)de(x = xi(t))
j=1

» Evaluation of velocity that satisfies no - slip condition

u(xj, t) = uso(t) +

Np

Z[Ke(xf',)lk)“/k(f) —e3 X Ke(xi, yi)ok(t)]As

k=1

ug(t)

+

Ny
PLOLACE)
j=1

uw(t)




Diffused Vortex Hydrodynamics: The advection step

» Discretization of vorticity field

VAT
i

Ny
we(x, 1) & Y Ti(£)0e(x = (1))
j=1

» Evaluation of velocity that satisfies no - slip condition

Np Ny
u(xi, 1) = oo (£) + | Y [Kelxi, yi)7(t) — €3 x Kelxi, yi)ow(6)]As |+ | D Fi(0K(xi,y;)
k=1 j=1
ué(t) Uw(t)
» Advect particles using 4t" order Runge
- Kutta
dx;(t)
=u(x;, t
dt (xi, )
DF,—(t) —0

Dt




Diffused Vortex Hydrodynamics: The advection step

» Discretization of vorticity field

Ny
welx, ) & Y Tj(t)de(x = xi(t))
j=1

» Evaluation of velocity that satisfies no - slip condition

Np Ny
u(xi, 1) = oo (£) + | Y [Kelxi, yi)7(t) — €3 x Kelxi, yi)ow(6)]As |+ | D Fi(0K(xi,y;)
k=1 j=1
u¢(t) Uw(t)
> Advect particles using 4™ order Runge Advection Time step
- Kutta
Arm/'n
. At; = K.
dX,(t) _ U(X,’, t) a a U
dt
K, ~ O(1071)
Dri(t) -0 Arpmin: size of the smallest particle
Dt U: reference velocity



Diffused Vortex Hydrodynamics: Diffusion

» Diffusion is performed in deterministic way

> Truncate the exact solution of the heat equation within Ry
(diffusive radius).

» Then each particle diffuses according to
F,— |X — X,‘|2
——exp | ————— Ix — xi| < Rq,
ArvAty dvAty
w(x, t+At) =
0 otherwise,

» The truncation introduces a relative error of circulation

conservation:
R
=exp | — .
¢ P dvAty

» To respect the conservation of circulation a redistribution
procedure is performed




Packing Algorithm

> Generates a body fitted distribution of
points around the boundary

\

Allows to model flows around arbitrary
geometries without the need of
generating a mesh

» The distribution of particles is regular
(all particles have a uniform mean
distance)

I

Can be used to address the problem of
Lagrangian distortion

» We call this distribution Regular Point
Distribution (RPD)

Andrea Colagrossi et al. “Particle packing algorithm for SPH schemes”. In: Computer Physics
Communications 183.8 (2012), pp. 1641-1653
14 /30



Diffused Vortex Hydrodynamics: The Diffusion step

> Diffusion of a vortex is performed on a Regular Point Distribution (RPD)

> Start with a single point vortex

> Find the points with |x — xp| < Ry

Foele oot ere ool > Use approx. solution of heat eq. to
. o ! °, . diffuse circulation over the nodes

» Conserve circulation with a
redistribution procedure

» The nodes of the RPD become the
new vortices

Diffusion Time step

[ Solid Body ey R? Ar?
L L L 1 L Aty = 0.021—= = 0.34
14 14
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Adaptive Particle Refinement
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FVM: Discretization

» The computational domain D is split into subdomains, each discretized by a
block-structured grid subdivided into ; x N; subdomains Dj;. The NSEs are
written in integral form on each volume D;;:

/ u-ndS =0, :u®u+£]1,'ﬂ*
oDjj PO
O _ T
/ F?dv+/ F-ndS=0, T=v(Vu+V'u),
Dj ODj; I: unit tensor, T: stress tensor.
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FVM: Discretization

» The computational domain D is split into subdomains, each discretized by a
block-structured grid subdivided into ; x N; subdomains Dj;. The NSEs are
written in integral form on each volume D;;:

/ u-ndS =0,
aD;

0
/ ldv+/
b, 9t aD
Setting:
uj =
-
S
U = /
S

F-ndS=0,

:u®u+£]17'11‘
o

T:u(Vu—i—VTu),

I: unit tensor, T: stress tensor.
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FVM: Discretization

» The computational domain D is split into subdomains, each discretized by a
block-structured grid subdivided into ; x N; subdomains Dj;. The NSEs are

written in integral form on each volume D;;:

/ u-ndS =0,
aD;

0
/ ldv+/
b, 9t aD
Setting:
uj =
-
S
U = /
S

F-ndS=0,

:u®u+£]17'11‘
o

T:u(Vu—i—VTu),

I: unit tensor, T: stress tensor.

Zu,:o,

leL;

du,--
Vil +Y Fi=0,

leL;

> Lj; is the subset of the cell interfaces

for subdomain Dj;.
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FVM: Pseudo-Compressibility

> Implicit Crank Nicolson in time
1
§ Uit =o,
leL;

n+l _ .n
i
Vi

Vij 1 n+1 n| _

IeL; IeL;

» Pseudo-Compressibility in pseudo-time

8n+1
P pop [ DUt | =o,

or
IeL;
Hyntl vt vi o1 .
el A SRS F || =0
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FVM: Grid structure

10 19 36 69 131 250

Figure: Discretization of the computational domain used for the FVM. Top: fluid domain from
-20L to 20L to enforce the radiation condition for the pressure; the three chimera blocks in
different colors. Bottom: view around the solid body; the color is representative of the local spatial

resolution L/Ar, where Ar is the square root of the cell volume.
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Comparison between FVM and DVH method
through benchmark tests
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Flow past a circular cylinder in an unsteady current

Uoo(t):{g [lfcos(

v

Cp, =
Dp %pU2D

—pn-e; ds
faDB pn-e;

’ CDv

)] es<o

tr
t>t

wT-ey ds
Jop, 1o

%pU2D

y/D

tU/D=3.00 wb/U

TEERETreEe e

-0.5 0 0.5 1 x/D 1.5
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Flow past a circular cylinder in an unsteady current

y/D

tU/D=0.50  «>/U TR . yD| tU/D=3.00 «D/U TN .

320 412 03 06 15 24 321 412 03 06 15 24
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Flow past a circular cylinder in an unsteady current

Q M,,=onD/4




Flow past a circular cylinder in an unsteady current

Comparison with FVM for Re = 4000

tU/D=3.00  «D/U M T,

y/D 321 412 03 06 15 24

Re=4000
DVH, D/Ax=400

Re=4000

FVYM




Flow around an ellipse with incidence

Vorticity Fields, Re = 1000

27 wa/U
y/a S5 4 3 2 -1 025 1.25 225 325 425
1L
ok
@\ LR B
-
DVH
2 0 3 ) 6 8 x/a 10
2r wa/U I |
y/a 5 4 -3 -2 -1 025 1.25 225 3.25 425
1L
- g\ LR
e Fah, oy
s
FVM
2 0 2 i 6 § x/a_ 10
AoA: o = 20°
Axis ratio : b/a = 0.4
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Flow around an ellipse with incidence

Comparison with FVM for Re = 1000, Pressure coeff.

3 ‘v;‘: p/pU2

y/a b P 2050 040 030 -021 -0.11 001 0.08

04 02 0 02 04 xa

g _ (P=pPso)
Pressure coefficient: C, = 00




Flow around an ellipse with incidence

Comparison with FVM for Re = 200, 500, 1000. Convergence results

Re=200 FVM (finest mesh)

ose - DVH N=25

tf
621:/ |fo — fi] dt
to

4 = “ “ LTV

Convergence rate
;35-; Ress00  — l‘-)\\m 12::;; mesh)
""" DVH N=100 632
DVH N=200 C(CD) = |og == |0g(2)
€21
0o L H 6 ¥ {Ufa C ( CD)
06} Re=1000 FVM it st Re DVH EVM
c -
wb oV Nk 200 41 42
“ / / 500 2.7 41

1000 2.0 2.4
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Flow around a cylinder with triangular section Re=100

Vorticity fields and forces

[

s 10 x/, 12

3 2 -1 025 125 225 325 425

s 10 X/, 12

FVM (finest mesh)
------- DVH N=400

90 9 97 % 95
tU/L
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Flow around a cylinder with triangular section Re=100

C, i Symmetric Wake Start of the shedding Periodic Regime
8

{
1611 Re=100
i

120
e e DVH N=400
! F 0 % 0 UL
C(Cp)
tU/LE [0,30] tU/L>30
DVH 2.0 1.0
FVM 2.8 1.0
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Flow around a cylinder with triangular section Re=1000

Vorticity fields and forces

y/L wL/U

5 4 3 2 -1 025 125 225 325 425
D

-

2 T 6 3 0y 12

FVM (finest mesh)
—===DVH N=400
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Conclusions
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Conclusions

. Chorin’s approaches for solving NSEs in (w — v ) and (u — p) were presented

»> A meshless Particle Vortex Method based on operator splitting and a mesh-based FVM
based on pseudo - compressibility

. The numerical behaviour of DVH was investigated for three geometries

> All test cases were unsteady characterized by flow separation and shear layer formation

. First two geometries: the simulations are accurate, capturing the separation point
and the flow characteristics for increasing Re. Third case: sharp edges freeze the
separation point and boundary singularities induce strong, localized gradients.

. For each test case the convergence rates were studied for increasing Re

» For smooth boundaries the rate degrades with increasing Re but is always at least 2 for
both solvers
> For non-smooth boundary the rate is O(1) for both solvers

. Comparison with FVM - Pseudo Compressibility

» Matching of the solutions in both local and global forces
> Differences only for high Re for flow past a triangle, in the vortex positions in the far
wake (different far wake resolution, transition to chaotic flow beahaviour)
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Thank you for your attention!
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