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Statement of the problem


Du
Dt

= −
∇p
ρ0

+ ν∇2u + f

∇ · u = 0

x ∈ D


u(x, 0) = u0(x) x ∈ D,

u(xb) = ub x ∈ ∂DB ,

u(x, t) → u∞(t) |x| → ∞,
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Splitting approach and projection method for
NSE
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Solving NSE in ω − u
Vorticity formulation of NS for incompressible fluid:

∇×
(Du

Dt
= −
∇p
ρ

+ ν∇2u
)

ω = ∇× u ∇ · u = 0

}
⇒

Dω
Dt

= ω · ∇u + ν∇2ω,

I in 2D the stretching term ω · ∇u is zero{ Dω
Dt

= ν∇2ω, on D,

ω(x, 0) = ω0(x), for all x ∈ D,

I Use Operator Splitting to get the two sub–problems of advection and diffusion

ADVECTION


Dω
Dt

= 0,

Dx
Dt

= u(x, t),
∇2u = −∇× ω

DIFFUSION


∂tω = ν∇2ω, in D

ν
∂ω

∂n
= −γ̇, on ∂DB
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Alexandre Joel Chorin. “Numerical study of slightly viscous flow”. In: Journal of fluid mechanics 57.4 (1973),
pp. 785–796
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Representation of potential flow through an IBEM (ω − u)

ADVECTION


Dω
Dt

= 0,

Dx
Dt

= u(x, t),
∇2u = −∇× ω,

I Decompose velocity field using Helmholtz-Hodge decomposition

u(x, t) = ∇φ+∇× ψ = u∞(t) + uφ(x, t) + uω(x, t),

I Assign the rotational part to uω where

uω =
∫

D
K(x, y)ω(y) dy

I Represent irrotational part through an IBEM and use it to enforce the no-slip BCs

uφ(x, t) = −
∫
∂DB

σ(y, t)
Unknown source density

∇G(x, y) dly +
∫
∂DB

γ(y, t)
Unknown circulation density

K(x, y) dly ,

where G(x, y) = − 1
2π log(|x− y|), K(x, y) = ∇× (Ge3) are in free space
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Representation of potential flow through an IBEM (ω − u)

Evaluation of σ:
I Assign a constant density circulation

γ(y, t) = γ̂(t) = −Γ(t)
/
P, Γ(t) =

∫
D
ω(y, t) dy .

I this leads to

u′φ(x, t) = −
∫
∂DB

σ(y, t)∇G(x, y) dly + γ̂(t)
∫
∂DB

K(x, y) dly ,

I Apply no through condition for potential flow to find σ

(u′φ · n)(s, t) = [ub(s, t)− u∞(t)] · n(s, t) − uω(s, t) · n(s, t), s ∈ ∂DB .

I Discretize the boundary into N panels with constant strength γ̂:

[A]{σ} = [C]{γ̂} − {ub · n}+ {u∞ · n}+ {uω · n}

I Solve the N × N system to get σ using LDU decomposition
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Representation of potential flow through an IBEM (ω − u)

Evaluation of γ:
I Generation of circulation density to enforce no-slip BC

γ(s, t) = [ub(s, t)− u∞(t)] · τ (s, t) − [u′φ(s, t) + uω(s, t)] · τ (s, t), s ∈ ∂DB ,

I The discretized form is

{γ} = [A]{γ̂}+ [C]{σ} − {ub · n}+ {u∞ · n}+ {uω · n}

γ is diffused during the diffusion step into the flow using the Neumann bc

uφ(x, t) = −
∫
∂DB

σ(y, t)∇G(x, y) dly +
∫
∂DB

γ(y, t)K(x, y) dly ,

I Particles are advected during the next advection step with velocity that satisfies
the no-slip BC

u(x, t) = u∞(t) +
∫
∂DB

[
K(x, y)γ(y)−e3×K(x, y)σ(y)

]
dly +

∫
D

K(x, y)ω(y) dy .
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Evaluation of hydrodynamic loads (ω − u)

I Total force: Drag and Lift coefficients

FB =
∫
∂DB

(−pn + µωτ )→


CD =

FBx
1
2ρu2
∞S

CL =
FBy

1
2ρu2
∞S

,

I Torque around the center of mass xcm

TB =
∫
∂DB

(x− xcm)× (−pn + µωτ ),

I Pressure
1
ρ0

∂p
∂s

= τ (s) · [u̇∞ − u̇b(s)] + γ̇(s), s ∈ ∂DB .
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Solving NSE in u − p
I Apply the divergence operator on NSE

D
Dt

(∇ · u)− ω2 +∇u : ∇u = −
∇2p
ρ0

+ ν∇2(∇ · u),

Method 1
I Use incompressibility condition to get a Pressure Poisson equation

∇2p = ρ0
(
ω2 −∇u : ∇u

)
,

∂p
∂n

= −n · [u̇b − u̇∞] + ν
∂ω

∂τ
, on ∂DB ,

Main drawback
I The method does not guarantee divergence free flow field, because

D
Dt

(∇ · u) = ν∇2(∇ · u),

∇ · u
∣∣∣

t=0
= 0,

I If incompressibility is not satisfied at t = 0 or on the boundary, then ∇ · u 6= 0 in
the field
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Solving NSE in u − p
Method 2

I Evaluate velocity from momentum equation ignoring viscous contributions and
the divergence constraint

u∗ = un + ν∇2un ∆t.

I Decompose resulting velocity using Helmholtz - Hodge decomposition (HHD)

u∗ = ∇×Ψ + ∇Φ.

I Assign the rotational part to the velocity at next level and the irrotational to the
pressure gradient

∇×Ψ = un+1, ∇Φ =
(∇p
ρ0

)n+1
∆t.

I The velocity at next level is divergent free

un+1 = u∗ −
(∇p
ρ0

)n+1
∆t

I Apply divergence operator

∇2pn+1 = ρ0
(∇ · u∗)

∆t
.

Alexandre Joel Chorin. “Numerical solution of the Navier-Stokes equations”. In: Mathematics of computation
22.104 (1968), pp. 745–762
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Solving NSE in u − p

Method 3
I The divergence constraint is coupled to the momentum equation by introducing

the pressure field 
∂u
∂τ

+
Du
Dt

= −
∇p
ρ0

+ ν∇2u,

∂p
∂τ

+ β∇ · u = 0,

where β: pseudo-compressibility parameter, τ : pseudo-time,
√
β: pseudo-sound speed

I Use Dual Time Stepping
I At each iteration in real time we do sub-iterations in pseudo-time to enforce

incompressibility
I Obtain a solution that satisfies ∇ · u when steady state is reached in τ

Alexandre Joel Chorin. “A numerical method for solving incompressible viscous flow problems”. In: Journal of
computational physics 2.1 (1967), pp. 12–26
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Brief description on the numerical schemes
adopted
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Diffused Vortex Hydrodynamics: The advection step

I Discretization of vorticity field

ωε(x, t) ≈
Nv∑
j=1

Γj (t)δε(x− xj (t))

I Evaluation of velocity that satisfies no - slip condition

u(xi , t) = u∞(t) +
Nb∑

k=1

[Kε(xi , yk )γk (t)− e3 × Kε(xi , yk )σk (t)]∆s

uφ(t)

+
Nv∑
j=1

Γj (t)Kε(xi , yj )

uω(t)

I Advect particles using 4th order Runge
- Kutta 

dxi (t)
dt

= u(xi , t)

DΓi (t)
Dt

= 0

Advection Time step

∆ta = Ka
∆rmin

U

Ka ∼ O(10−1)
∆rmin: size of the smallest particle
U: reference velocity
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Diffused Vortex Hydrodynamics: Diffusion

I Diffusion is performed in deterministic way
I Truncate the exact solution of the heat equation within Rd

(diffusive radius).
I Then each particle diffuses according to

ω(x, t+∆t) =


Γi

4πν∆td
exp
(
−
|x− xi |2

4ν∆td

)
|x− xi | ≤ Rd ,

0 otherwise,

I The truncation introduces a relative error of circulation
conservation:

ξ = exp
(
−

R2
d

4ν∆td

)
.

I To respect the conservation of circulation a redistribution
procedure is performed
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Packing Algorithm

I Generates a body fitted distribution of
points around the boundary

⇓

Allows to model flows around arbitrary
geometries without the need of
generating a mesh

I The distribution of particles is regular
(all particles have a uniform mean
distance)

⇓

Can be used to address the problem of
Lagrangian distortion

I We call this distribution Regular Point
Distribution (RPD)

Andrea Colagrossi et al. “Particle packing algorithm for SPH schemes”. In: Computer Physics
Communications 183.8 (2012), pp. 1641–1653
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Diffused Vortex Hydrodynamics: The Diffusion step

I Diffusion of a vortex is performed on a Regular Point Distribution (RPD)

I Start with a single point vortex
I Find the points with |x − x0| ≤ Rd
I Use approx. solution of heat eq. to

diffuse circulation over the nodes
I Conserve circulation with a

redistribution procedure
I The nodes of the RPD become the

new vortices

Diffusion Time step

∆td = 0.021
R2

d
ν

= 0.34
∆r2

j

ν
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Adaptive Particle Refinement

I Close to the body we have the finest
resolution (small particles)

I Far from the body the resolution in
decreased

I In this way we contain the growth of
particles during diffusion
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FVM: Discretization

I The computational domain D is split into subdomains, each discretized by a
block-structured grid subdivided into Ni × Nj subdomains Dij . The NSEs are
written in integral form on each volume Dij :

∫
∂Dij

u · n dS = 0,∫
Dij

∂u
∂t

dV +
∫
∂Dij

F · n dS = 0,

F = u⊗ u +
p
ρ0

I − T

T = ν
(
∇u +∇T u

)
,

I: unit tensor, T: stress tensor.

Setting:

uij =
1

Vij

∫
Dij

u dV ,

Fl =
∫

Sl

F · n dS,

Ul =
∫

Sl

u · n dS,


∑
l∈Lij

Ul = 0,

Vij
duij

dt
+
∑
l∈Lij

Fl = 0,

I Lij is the subset of the cell interfaces
for subdomain Dij .
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FVM: Pseudo-Compressibility

I Implicit Crank Nicolson in time

∑
l∈Lij

Un+1
l = 0,

Vij
vn+1

ij − vn
ij

∆t
+

1
2

∑
l∈Lij

Fn+1
l +

∑
l∈Lij

Fn
l

 = 0,

I Pseudo-Compressibility in pseudo-time

∂pn+1

∂τ
+ ρ0β

∑
l∈Lij

Un+1
l

 = 0,

∂vn+1

∂τ
+

Vij
vn+1

ij − vn
ij

∆t
+

1
2

∑
l∈Lij

Fn+1
l +

∑
l∈Lij

Fn
l

 = 0.
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FVM: Grid structure

Figure: Discretization of the computational domain used for the FVM. Top: fluid domain from
-20L to 20L to enforce the radiation condition for the pressure; the three chimera blocks in
different colors. Bottom: view around the solid body; the color is representative of the local spatial
resolution L/∆r , where ∆r is the square root of the cell volume.
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Comparison between FVM and DVH method
through benchmark tests
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Flow past a circular cylinder in an unsteady current

u∞(t) =
{

U
2

[
1− cos

(
π t
tr

)]
t ≤ tr

U t > tr

CDp =

∫
∂DB
−pn·e1 ds

1
2 ρU2D

, CDv =

∫
∂DB

µωτ ·e1 ds

1
2 ρU2D
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Flow past a circular cylinder in an unsteady current
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Flow past a circular cylinder in an unsteady current
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Flow past a circular cylinder in an unsteady current

Comparison with FVM for Re = 4000
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Flow around an ellipse with incidence
Vorticity Fields, Re = 1000

AoA: α = 20◦
Axis ratio : b/a = 0.4

24 / 30



Flow around an ellipse with incidence
Comparison with FVM for Re = 1000, Pressure coeff.

Pressure coefficient: Cp = (p− p∞)
12 ρU2
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Flow around an ellipse with incidence

Comparison with FVM for Re = 200, 500, 1000. Convergence results

ε21 =
∫ tf

t0

|f2 − f1| dt

Convergence rate

C(CD) = log
(
ε32
ε21

)/
log(2)

C(CD)
Re DVH FVM
200 4.1 4.2
500 2.7 4.1
1000 2.0 2.4
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Flow around a cylinder with triangular section Re=100
Vorticity fields and forces

27 / 30



Flow around a cylinder with triangular section Re=100

C(CD)
tU/L∈ [0, 30] tU/L>30

DVH 2.0 1.0
FVM 2.8 1.0
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Flow around a cylinder with triangular section Re=1000
Vorticity fields and forces
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Conclusions
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Conclusions

1. Chorin’s approaches for solving NSEs in (ω − u ) and (u − p) were presented
I A meshless Particle Vortex Method based on operator splitting and a mesh-based FVM

based on pseudo - compressibility
2. The numerical behaviour of DVH was investigated for three geometries

I All test cases were unsteady characterized by flow separation and shear layer formation

3. First two geometries: the simulations are accurate, capturing the separation point
and the flow characteristics for increasing Re. Third case: sharp edges freeze the
separation point and boundary singularities induce strong, localized gradients.

4. For each test case the convergence rates were studied for increasing Re
I For smooth boundaries the rate degrades with increasing Re but is always at least 2 for

both solvers
I For non-smooth boundary the rate is O(1) for both solvers

5. Comparison with FVM - Pseudo Compressibility
I Matching of the solutions in both local and global forces
I Differences only for high Re for flow past a triangle, in the vortex positions in the far

wake (different far wake resolution, transition to chaotic flow beahaviour)
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Thank you for your attention!
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