# Chorin's approaches revisited: Particle Vortex Method vs Finite Volume Method

Giannopoulou Ourania Advisors: Colagrossi A. (CNR - INM), Di Mascio A. (Uni. L' Aquila)

> Seminario di Modellistica Differenziale Numerica Sapienza Department of Mathematics 26.02.2019



#### Outline

#### Introduction

#### Splitting approach and projection method for NSE

Solving NSE in  $\omega-u$ Representation of potential flow through an IBEM Evaluation of hydrodynamic loads Solving NSE in u-p

#### Brief description on the numerical schemes adopted

The Diffused Vortex Hydrodynamics (Particle Vortex Method)
The advection step
The diffusion step

The Finite Volume Method

#### Comparison between FVM and DVH method through benchmark tests

Flow past a circular cylinder in an unsteady current Flow around an ellipse with incidence Flow around a cylinder with triangular section

#### Conclusions

# Introduction

# **Statement of the problem**



$$\begin{cases} & \frac{D\mathbf{u}}{Dt} = -\frac{\nabla \rho}{\rho_0} + \nu \nabla^2 \mathbf{u} + \mathbf{f} \\ & \qquad \mathbf{x} \in D \end{cases}$$
 
$$\nabla \cdot \mathbf{u} = 0$$
 
$$\begin{cases} & \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}) & \mathbf{x} \in D, \\ & \mathbf{u}(\mathbf{x}_b) = \mathbf{u}_b & \mathbf{x} \in \partial D_B, \\ & \mathbf{u}(\mathbf{x}, t) \to \mathbf{u}_\infty(t) & |\mathbf{x}| \to \infty, \end{cases}$$



# Splitting approach and projection method for NSE

## **Solving NSE in** $\omega - u$

Vorticity formulation of NS for incompressible fluid:

$$\begin{array}{l} \nabla \times \left( \frac{D \mathbf{u}}{D t} = - \frac{\nabla \rho}{\rho} + \nu \nabla^2 \mathbf{u} \right) \\ \omega = \nabla \times \mathbf{u} \qquad \nabla \cdot \mathbf{u} = 0 \end{array} \right\} \quad \Rightarrow \frac{D \omega}{D t} = \omega \cdot \nabla \mathbf{u} \ + \nu \nabla^2 \omega,$$

## **Solving NSE in** $\omega - u$

Vorticity formulation of NS for incompressible fluid:

$$\begin{array}{l} \nabla \times \left( \frac{D \mathbf{u}}{D t} = - \frac{\nabla \rho}{\rho} + \nu \nabla^2 \mathbf{u} \right) \\ \omega = \nabla \times \mathbf{u} \qquad \nabla \cdot \mathbf{u} = 0 \end{array} \right\} \quad \Rightarrow \frac{D \omega}{D t} = \omega \cdot \nabla \mathbf{u} \ + \nu \nabla^2 \omega,$$

▶ in 2D the stretching term  $\omega \cdot \nabla \mathbf{u}$  is zero

$$\left\{ \begin{array}{ll} \displaystyle \frac{D\omega}{Dt} & = \nu \nabla^2 \omega, \quad \text{on} \quad D, \\ \\ \displaystyle \omega(\mathbf{x},0) & = \omega_0(\mathbf{x}), \quad \text{for all } \mathbf{x} \in D, \end{array} \right.$$

## **Solving NSE in** $\omega - u$

Vorticity formulation of NS for incompressible fluid:

$$\begin{array}{l} \nabla \times \left( \frac{D \mathbf{u}}{D t} = - \frac{\nabla \rho}{\rho} + \nu \nabla^2 \mathbf{u} \right) \\ \omega = \nabla \times \mathbf{u} \qquad \nabla \cdot \mathbf{u} = 0 \end{array} \right\} \quad \Rightarrow \frac{D \omega}{D t} \, = \, \omega \cdot \nabla \mathbf{u} \, + \, \nu \nabla^2 \omega,$$

▶ in 2D the stretching term  $\omega \cdot \nabla \mathbf{u}$  is zero

$$\left\{ \begin{array}{ll} \displaystyle \frac{D\omega}{Dt} & = \nu \nabla^2 \omega, \quad \text{on} \quad D, \\ \\ \displaystyle \omega(\mathbf{x},0) & = \omega_0(\mathbf{x}), \quad \text{for all } \mathbf{x} \in D, \end{array} \right.$$

▶ Use Operator Splitting to get the two sub-problems of advection and diffusion

$$ADVECTION \begin{cases} \frac{D\omega}{Dt} &= 0, \\ \frac{D\mathbf{x}}{Dt} &= \mathbf{u}(\mathbf{x}, t), \end{cases}$$

$$DIFFUSION \begin{cases} \partial_t \omega &= \nu \nabla^2 \omega, & \text{in } D \\ \nu \frac{\partial \omega}{\partial n} &= -\dot{\gamma}, & \text{on } \partial D_B \end{cases}$$

Alexandre Joel Chorin. "Numerical study of slightly viscous flow". In: Journal of fluid mechanics 57.4 (1973), pp. 785–796

$$ADVECTION \left\{ \begin{array}{lll} \dfrac{D\omega}{Dt} & = & 0, \\ \dfrac{D\mathbf{x}}{Dt} & = & \mathbf{u}(\mathbf{x},t), \end{array} \right. \quad \nabla^2\mathbf{u} \quad = & -\nabla\times\omega,$$

▶ Decompose velocity field using Helmholtz-Hodge decomposition

$$\mathbf{u}(\mathbf{x},t) = \nabla \phi + \nabla \times \psi = \mathbf{u}_{\infty}(t) + \mathbf{u}_{\phi}(\mathbf{x},t) + \mathbf{u}_{\omega}(\mathbf{x},t),$$

ightharpoonup Assign the rotational part to  $\mathbf{u}_{\omega}$  where

$$\mathbf{u}_{\omega} = \int_{D} K(\mathbf{x}, \mathbf{y}) \omega(\mathbf{y}) \, d\mathbf{y}$$

▶ Represent irrotational part through an IBEM and use it to enforce the no-slip BCs

$$\mathbf{u}_{\phi}(\mathbf{x},t) = -\int_{\partial D_{B}} \underbrace{\left[ \boldsymbol{\sigma}(\mathbf{y},t) \right]}_{\text{Unknown source density}} \nabla G(\mathbf{x},\mathbf{y}) \, dl_{y} + \int_{\partial D_{B}} \underbrace{\left[ \boldsymbol{\gamma}(\mathbf{y},t) \right]}_{\text{Unknown circulation density}} \mathsf{K}(\mathbf{x},\mathbf{y}) \, dl_{y},$$

where 
$$G(\mathbf{x},\mathbf{y}) = -\frac{1}{2\pi} \log(|\mathbf{x}-\mathbf{y}|)$$
,  $K(\mathbf{x},\mathbf{y}) = \nabla \times (G\mathbf{e}_3)$  are in free space

#### Evaluation of $\sigma$ :

Assign a constant density circulation

$$\gamma(\mathbf{y},t) = \hat{\gamma}(t) = -\Gamma(t)/\mathcal{P}, \qquad \Gamma(t) = \int_{\Omega} \omega(\mathbf{y},t) \, d\mathbf{y}.$$

▶ this leads to

$$\mathbf{u}_{\phi}'(\mathbf{x},t) = -\int_{\partial D_B} \boldsymbol{\sigma}(\mathbf{y},t) \nabla G(\mathbf{x},\mathbf{y}) \, dl_y \, + \, \hat{\gamma}(t) \, \int_{\partial D_B} \mathsf{K}(\mathbf{x},\mathbf{y}) \, dl_y,$$

#### Evaluation of $\sigma$ :

Assign a constant density circulation

$$\gamma(\mathbf{y},t) = \hat{\gamma}(t) = -\Gamma(t)/\mathcal{P}, \qquad \Gamma(t) = \int_{\Omega} \omega(\mathbf{y},t) \, d\mathbf{y}.$$

▶ this leads to

$$\mathbf{u}_{\phi}'(\mathbf{x},t) = -\int_{\partial D_B} \sigma(\mathbf{y},t) \nabla G(\mathbf{x},\mathbf{y}) \, dl_y + \hat{\gamma}(t) \int_{\partial D_B} \mathbf{K}(\mathbf{x},\mathbf{y}) \, dl_y,$$

ightharpoonup Apply no through condition for potential flow to find  $\sigma$ 

$$(\mathbf{u}_{\phi}' \cdot \mathbf{n})(s,t) = [\mathbf{u}_b(s,t) - \mathbf{u}_{\infty}(t)] \cdot \mathbf{n}(s,t) - \mathbf{u}_{\omega}(s,t) \cdot \mathbf{n}(s,t), \qquad s \in \partial D_B.$$

#### Evaluation of $\sigma$ :

Assign a constant density circulation

$$\gamma(\mathbf{y},t) = \hat{\gamma}(t) = -\Gamma(t)/\mathcal{P}, \qquad \Gamma(t) = \int_{D} \omega(\mathbf{y},t) \, d\mathbf{y}.$$

▶ this leads to

$$\mathbf{u}_{\phi}'(\mathbf{x},t) = -\int_{\partial D_B} \sigma(\mathbf{y},t) \nabla G(\mathbf{x},\mathbf{y}) \, dl_y + \hat{\gamma}(t) \int_{\partial D_B} \mathbf{K}(\mathbf{x},\mathbf{y}) \, dl_y,$$

ightharpoonup Apply no through condition for potential flow to find  $\sigma$ 

$$(\mathbf{u}'_{\phi}\cdot\mathbf{n})(s,t)=[\mathbf{u}_{b}(s,t)-\mathbf{u}_{\infty}(t)]\cdot\mathbf{n}(s,t)-\mathbf{u}_{\omega}(s,t)\cdot\mathbf{n}(s,t), \qquad s\in\partial D_{B}.$$

▶ Discretize the boundary into N panels with constant strength  $\hat{\gamma}$ :

$$[\mathbf{A}]\{\boldsymbol{\sigma}\} = [\mathbf{C}]\{\hat{\boldsymbol{\gamma}}\} - \{\mathbf{u}_b \cdot \mathbf{n}\} + \{\mathbf{u}_{\infty} \cdot \mathbf{n}\} + \{\mathbf{u}_{\omega} \cdot \mathbf{n}\}$$

▶ Solve the  $N \times N$  system to get  $\sigma$  using LDU decomposition

#### Evaluation of $\gamma$ :

► Generation of circulation density to enforce no-slip BC

$$\gamma(s,t) = [\mathbf{u}_b(s,t) - \mathbf{u}_\infty(t)] \cdot \tau(s,t) - [\mathbf{u}_\phi'(s,t) + \mathbf{u}_\omega(s,t)] \cdot \tau(s,t), \quad s \in \partial D_B,$$

► The discretized form is

$$\{\gamma\} = [\mathbf{A}]\{\hat{\gamma}\} + [\mathbf{C}]\{\sigma\} - \{\mathbf{u}_b \cdot \mathbf{n}\} + \{\mathbf{u}_\infty \cdot \mathbf{n}\} + \{\mathbf{u}_\omega \cdot \mathbf{n}\}$$

 $\gamma$  is diffused during the diffusion step into the flow using the Neumann bc

#### Evaluation of $\gamma$ :

▶ Generation of circulation density to enforce no-slip BC

$$\gamma(s,t) = [\mathsf{u}_b(s,t) - \mathsf{u}_\infty(t)] \cdot \tau(s,t) - [\mathsf{u}_\phi'(s,t) + \mathsf{u}_\omega(s,t)] \cdot \tau(s,t), \quad s \in \partial D_B,$$

The discretized form is

$$\{\gamma\} = [\mathbf{A}]\{\hat{\gamma}\} + [\mathbf{C}]\{\sigma\} - \{\mathbf{u}_b \cdot \mathbf{n}\} + \{\mathbf{u}_\infty \cdot \mathbf{n}\} + \{\mathbf{u}_\omega \cdot \mathbf{n}\}$$

 $\gamma$  is diffused during the diffusion step into the flow using the Neumann bc

$$\mathbf{u}_{\phi}(\mathbf{x},t) = -\int_{\partial D_{\mathcal{B}}} \sigma(\mathbf{y},t) \nabla G(\mathbf{x},\mathbf{y}) \, dl_{y} + \int_{\partial D_{\mathcal{B}}} \gamma(\mathbf{y},t) \mathsf{K}(\mathbf{x},\mathbf{y}) \, dl_{y},$$

#### Evaluation of $\gamma$ :

▶ Generation of circulation density to enforce no-slip BC

$$\gamma(s,t) = [\mathsf{u}_b(s,t) - \mathsf{u}_\infty(t)] \cdot \tau(s,t) - [\mathsf{u}_\phi'(s,t) + \mathsf{u}_\omega(s,t)] \cdot \tau(s,t), \quad s \in \partial D_B,$$

▶ The discretized form is

$$\{\gamma\} = [\mathbf{A}]\{\hat{\gamma}\} + [\mathbf{C}]\{\sigma\} - \{\mathbf{u}_b \cdot \mathbf{n}\} + \{\mathbf{u}_\infty \cdot \mathbf{n}\} + \{\mathbf{u}_\omega \cdot \mathbf{n}\}$$

 $\gamma$  is diffused during the diffusion step into the flow using the Neumann bc

$$\mathbf{u}_{\phi}(\mathbf{x},t) = -\int_{\partial D_{B}} \sigma(\mathbf{y},t) \nabla G(\mathbf{x},\mathbf{y}) \, dl_{y} + \int_{\partial D_{B}} \gamma(\mathbf{y},t) \mathsf{K}(\mathbf{x},\mathbf{y}) \, dl_{y},$$

 Particles are advected during the <u>next advection step</u> with velocity that satisfies the no-slip BC

$$\mathbf{u}(\mathbf{x},t) = \mathbf{u}_{\infty}(t) + \int_{\partial D_R} \left[ \mathbf{K}(\mathbf{x},\mathbf{y})\gamma(\mathbf{y}) - \mathbf{e}_3 \times \mathbf{K}(\mathbf{x},\mathbf{y})\sigma(\mathbf{y}) \right] dl_y + \int_D \mathbf{K}(\mathbf{x},\mathbf{y})\omega(\mathbf{y}) d\mathbf{y}.$$

# Evaluation of hydrodynamic loads ( $\omega - u$ )

► Total force: Drag and Lift coefficients

$$\mathbf{F}_{B} = \int_{\partial D_{B}} (-\rho \mathbf{n} + \mu \omega \boldsymbol{\tau}) \rightarrow \begin{cases} C_{D} = \frac{F_{B_{x}}}{\frac{1}{2}\rho u_{\infty}^{2} S} \\ C_{L} = \frac{F_{B_{y}}}{\frac{1}{2}\rho u_{\infty}^{2} S}, \end{cases}$$

ightharpoonup Torque around the center of mass  $x_{cm}$ 

$$\mathsf{T}_B = \int_{\partial D_B} (\mathsf{x} - \mathsf{x}_{cm}) \times (-p\mathsf{n} + \mu\omega\tau),$$

Pressure

$$\boxed{\frac{1}{\rho_0}\frac{\partial p}{\partial s} = \tau(s)\cdot [\dot{\mathsf{u}}_{\infty} - \dot{\mathsf{u}}_b(s)] + \dot{\gamma}(s), \quad s \in \partial D_B.}$$

# **Solving NSE in** u - p

Apply the divergence operator on NSE

$$\frac{D}{Dt}(\nabla \cdot \mathbf{u}) - \omega^2 + \nabla \mathbf{u} : \nabla \mathbf{u} = -\frac{\nabla^2 p}{\rho_0} + \nu \nabla^2 (\nabla \cdot \mathbf{u}),$$

#### Method 1

Use incompressibility condition to get a Pressure Poisson equation

$$\left\{ \begin{array}{l} \nabla^2 p \, = \, \rho_0 \left( \omega^2 - \nabla \mathbf{u} : \nabla \mathbf{u} \right), \\ \\ \frac{\partial p}{\partial n} \, = \, -\mathbf{n} \cdot \left[ \dot{\mathbf{u}}_b \, - \, \dot{\mathbf{u}}_\infty \right] \, + \, \nu \frac{\partial \omega}{\partial \tau}, \quad \text{on} \quad \partial D_B, \end{array} \right.$$

#### Main drawback

▶ The method does not guarantee divergence free flow field, because

$$\begin{aligned} & \frac{D}{Dt}(\nabla \cdot \mathbf{u}) = \nu \nabla^2 (\nabla \cdot \mathbf{u}), \\ & \nabla \cdot \mathbf{u} \Big|_{t=0} = 0, \end{aligned}$$

If incompressibility is not satisfied at t=0 or on the boundary, then  $\nabla \cdot \mathbf{u} \neq 0$  in the field

# **Solving NSE in** u - p

#### Method 2

 Evaluate velocity from momentum equation ignoring viscous contributions and the divergence constraint

$$\mathbf{u}^* = \mathbf{u}^n + \nu \nabla^2 \mathbf{u}^n \Delta t.$$

▶ Decompose resulting velocity using Helmholtz - Hodge decomposition (HHD)

$$\mathbf{u}^* = \nabla \times \mathbf{\Psi} + \nabla \Phi.$$

 Assign the rotational part to the velocity at next level and the irrotational to the pressure gradient

$$\nabla \times \Psi = \mathbf{u}^{n+1}, \qquad \nabla \Phi = \left(\frac{\nabla p}{\rho_0}\right)^{n+1} \Delta t.$$

► The velocity at next level is divergent free

$$\mathbf{u}^{n+1} = \mathbf{u}^* - \left(\frac{\nabla p}{\rho_0}\right)^{n+1} \Delta t$$

Apply divergence operator

$$\nabla^2 p^{n+1} = \rho_0 \frac{(\nabla \cdot \mathbf{u}^*)}{\Delta t}.$$

Alexandre Joel Chorin. "Numerical solution of the Navier-Stokes equations". In: *Mathematics of computation* 22.104 (1968), pp. 745–762

# **Solving NSE in** u - p

#### Method 3

➤ The divergence constraint is coupled to the momentum equation by introducing the pressure field

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial \tau} + \frac{D\mathbf{u}}{Dt} = -\frac{\nabla p}{\rho_0} + \nu \nabla^2 \mathbf{u}, \\ \frac{\partial p}{\partial \tau} + \beta \nabla \cdot \mathbf{u} = 0, \end{cases}$$

where  $\beta$ : pseudo-compressibility parameter,  $\tau$ : pseudo-time,  $\sqrt{\beta}$ : pseudo-sound speed

- Use Dual Time Stepping
- At each iteration in real time we do sub-iterations in pseudo-time to enforce incompressibility
- lacktriangle Obtain a solution that satisfies  $\nabla \cdot {f u}$  when steady state is reached in au

# Brief description on the numerical schemes adopted

#### Diffused Vortex Hydrodynamics: The advection step

Discretization of vorticity field

$$\omega_{\epsilon}(\mathbf{x},t)pprox\sum_{j=1}^{N_{
m v}}\Gamma_{j}(t)\delta_{\epsilon}(\mathbf{x}-\mathbf{x}_{j}(t))$$



► Evaluation of velocity that satisfies no - slip condition

$$\mathbf{u}(\mathbf{x}_i,t) = \mathbf{u}_{\infty}(t) + \left[ \sum_{k=1}^{N_b} [\mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_k)\gamma_k(t) - \mathbf{e}_3 \times \mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_k)\sigma_k(t)]\Delta s \right] + \left[ \sum_{j=1}^{N_v} \Gamma_j(t)\mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_j) \right]$$

$$\mathbf{u}_{\phi}(t)$$

#### Diffused Vortex Hydrodynamics: The advection step

Discretization of vorticity field

$$\omega_{\epsilon}(\mathbf{x},t)pprox\sum_{j=1}^{N_{
m v}}\Gamma_{j}(t)\delta_{\epsilon}(\mathbf{x}-\mathbf{x}_{j}(t))$$



Evaluation of velocity that satisfies no - slip condition

$$\mathbf{u}(\mathbf{x}_i,t) = \mathbf{u}_{\infty}(t) + \left[ \sum_{k=1}^{N_b} [\mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_k)\gamma_k(t) - \mathbf{e}_3 \times \mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_k)\sigma_k(t)] \Delta s \right] + \left[ \sum_{j=1}^{N_v} \Gamma_j(t)\mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_j) \right] \mathbf{u}_{\omega}(t)$$

- ► Advect particles using 4<sup>th</sup> order Runge
  - Kutta

$$\begin{cases} \frac{dx_i(t)}{dt} &= u(x_i, t) \\ \\ \frac{D\Gamma_i(t)}{Dt} &= 0 \end{cases}$$

#### Diffused Vortex Hydrodynamics: The advection step

Discretization of vorticity field

$$\omega_{\epsilon}(\mathbf{x},t)pprox\sum_{j=1}^{N_{
m v}}\Gamma_{j}(t)\delta_{\epsilon}(\mathbf{x}-\mathbf{x}_{j}(t))$$



Evaluation of velocity that satisfies no - slip condition

$$\mathbf{u}(\mathbf{x}_i,t) = \mathbf{u}_{\infty}(t) + \left[ \sum_{k=1}^{N_b} [\mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_k)\gamma_k(t) - \mathbf{e}_3 \times \mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_k)\sigma_k(t)]\Delta s \right] + \left[ \sum_{j=1}^{N_v} \Gamma_j(t)\mathbf{K}_{\epsilon}(\mathbf{x}_i,\mathbf{y}_j) \right]$$

$$\mathbf{u}_{\phi}(t)$$

Advect particles using 4<sup>th</sup> order Runge
 Kutta

$$\begin{cases} \frac{d\mathbf{x}_{i}(t)}{dt} &= \mathbf{u}(\mathbf{x}_{i}, t) \\ \\ \frac{D\Gamma_{i}(t)}{Dt} &= 0 \end{cases}$$

#### Advection Time step

$$\Delta t_a = K_a \frac{\Delta r_{min}}{II}$$

$$K_a \sim \mathit{O}(10^{-1})$$

 $\Delta r_{min}$ : size of the smallest particle

U: reference velocity

#### **Diffused Vortex Hydrodynamics: Diffusion**



- ▶ Diffusion is performed in deterministic way
- Truncate the exact solution of the heat equation within R<sub>d</sub> (diffusive radius).
- ▶ Then each particle diffuses according to

$$\omega(\mathbf{x}, t + \Delta t) = \begin{cases} \frac{\Gamma_i}{4\pi\nu\Delta t_d} \exp\left(-\frac{|\mathbf{x} - \mathbf{x}_i|^2}{4\nu\Delta t_d}\right) & |\mathbf{x} - \mathbf{x}_i| \leq R_d, \\ \\ 0 & \text{otherwise}, \end{cases}$$

 The truncation introduces a relative error of circulation conservation:

$$\xi = \exp\left(-\frac{R_d^2}{4\nu\Delta t_d}\right).$$

 To respect the conservation of circulation a redistribution procedure is performed

# **Packing Algorithm**



 Generates a body fitted distribution of points around the boundary

1

Allows to model flows around arbitrary geometries without the need of generating a mesh

 The distribution of particles is regular (all particles have a uniform mean distance)

1

Can be used to address the problem of Lagrangian distortion

► We call this distribution Regular Point Distribution (RPD)

#### Diffused Vortex Hydrodynamics: The Diffusion step

▶ Diffusion of a vortex is performed on a Regular Point Distribution (RPD)



- ► Start with a single point vortex
- ▶ Find the points with  $|x x_0| \le R_d$
- Use approx. solution of heat eq. to diffuse circulation over the nodes
- Conserve circulation with a redistribution procedure
- The nodes of the RPD become the new vortices

#### Diffusion Time step

$$\Delta t_d = 0.021 \frac{R_d^2}{\nu} = 0.34 \frac{\Delta r_j^2}{\nu}$$

# **Adaptive Particle Refinement**



- Close to the body we have the finest resolution (small particles)
- Far from the body the resolution in decreased
- In this way we contain the growth of particles during diffusion



#### **FVM:** Discretization

▶ The computational domain D is split into subdomains, each discretized by a block-structured grid subdivided into  $N_i \times N_j$  subdomains  $D_{ij}$ . The NSEs are written in integral form on each volume  $D_{ij}$ :

$$\left\{ \begin{array}{l} \displaystyle \int_{\partial D_{ij}} \mathbf{u} \cdot \mathbf{n} \, dS = 0, \\ \\ \displaystyle \int_{D_{ij}} \frac{\partial \mathbf{u}}{\partial t} \, dV + \int_{\partial D_{ij}} \mathbf{F} \cdot \mathbf{n} \, dS = 0, \\ \\ \mathbb{T} = \nu \left( \nabla \mathbf{u} + \nabla^T \mathbf{u} \right), \\ \mathbb{T} : \text{ unit tensor, } \mathbb{T} : \text{ stress tensor.} \end{array} \right.$$

#### **FVM:** Discretization

▶ The computational domain D is split into subdomains, each discretized by a block-structured grid subdivided into  $N_i \times N_i$  subdomains  $D_{ii}$ . The NSEs are written in integral form on each volume  $D_{ij}$ :

$$\begin{cases} \int_{\partial D_{ij}} \mathbf{u} \cdot \mathbf{n} \, dS = 0, & \mathbf{F} = \mathbf{u} \otimes \mathbf{u} + \frac{p}{\rho_0} \mathbb{I} - \mathbb{T} \\ \int_{D_{ij}} \frac{\partial \mathbf{u}}{\partial t} \, dV + \int_{\partial D_{ij}} \mathbf{F} \cdot \mathbf{n} \, dS = 0, & \mathbb{T} = \nu \left( \nabla \mathbf{u} + \nabla^T \mathbf{u} \right), \\ \mathbf{Setting}. & \mathbb{I}: \text{ unit tensor, } \mathbb{T}: \text{ stress tensor.} \end{cases}$$

$$\mathbf{u}_{ij} = \frac{1}{V_{ij}} \int_{D_{ij}} \mathbf{u} \, dV,$$

$$\mathbf{F}_I = \int_{S_I} \mathbf{F} \cdot \mathbf{n} \, dS,$$

$$\mathbf{U}_I = \int_{S_I} \mathbf{u} \cdot \mathbf{n} \, dS,$$

Setting:

#### **FVM:** Discretization

▶ The computational domain D is split into subdomains, each discretized by a block-structured grid subdivided into  $N_i \times N_j$  subdomains  $D_{ij}$ . The NSEs are written in integral form on each volume  $D_{ii}$ :

$$\begin{cases} \int_{\partial D_{ij}} \mathbf{u} \cdot \mathbf{n} \, dS = 0, \\ \int_{\partial D_{ij}} \frac{\partial \mathbf{u}}{\partial t} \, dV + \int_{\partial D_{ij}} \mathbf{F} \cdot \mathbf{n} \, dS = 0, \\ \text{Setting:} \end{cases}$$

$$\mathbf{u}_{ij} = \frac{1}{V_{ij}} \int_{D_{ij}} \mathbf{u} \, dV,$$

$$\mathbf{F}_{I} = \int_{S_{I}} \mathbf{F} \cdot \mathbf{n} \, dS,$$

$$\mathbf{U}_{I} = \int_{S} \mathbf{u} \cdot \mathbf{n} \, dS,$$

$$\begin{aligned} \mathbf{F} &= \mathbf{u} \otimes \mathbf{u} + \frac{\rho}{\rho_0} \mathbb{I} - \mathbb{T} \\ \mathbb{T} &= \nu \left( \nabla \mathbf{u} + \nabla^T \mathbf{u} \right), \\ \mathbb{I} &: \text{ unit tensor, } \mathbb{T} \text{: stress tensor.} \end{aligned}$$

$$\begin{cases} \sum_{l \in L_{ij}} \mathbf{U}_l = 0, \\ V_{ij} \frac{d\mathbf{u}_{ij}}{dt} + \sum_{l \in L_{ii}} \mathbf{F}_l = 0, \end{cases}$$

▶  $L_{ij}$  is the subset of the cell interfaces for subdomain  $D_{ii}$ .

# **FVM: Pseudo-Compressibility**

► Implicit Crank Nicolson in time

$$\left\{ \begin{array}{l} \displaystyle \sum_{l \in L_{ij}} \mathbf{U}_{l}^{n+1} = 0, \\ \\ V_{ij} \frac{\mathbf{v}_{ij}^{n+1} - \mathbf{v}_{ij}^{n}}{\Delta t} + \frac{1}{2} \left( \sum_{l \in L_{ij}} \mathbf{F}_{l}^{n+1} + \sum_{l \in L_{ij}} \mathbf{F}_{l}^{n} \right) = 0, \end{array} \right.$$

Pseudo-Compressibility in pseudo-time

$$\begin{cases}
\frac{\partial \boldsymbol{p}^{n+1}}{\partial \tau} + \rho_0 \beta \left( \sum_{l \in L_{ij}} \mathbf{U}_l^{n+1} \right) = 0, \\
\frac{\partial \mathbf{v}^{n+1}}{\partial \tau} + \left[ V_{ij} \frac{\mathbf{v}_{ij}^{n+1} - \mathbf{v}_{ij}^n}{\Delta t} + \frac{1}{2} \left( \sum_{l \in L_{ij}} \mathbf{F}_l^{n+1} + \sum_{l \in L_{ij}} \mathbf{F}_l^n \right) \right] = 0.
\end{cases}$$

## **FVM:** Grid structure



Figure: Discretization of the computational domain used for the FVM. Top: fluid domain from -20L to 20L to enforce the radiation condition for the pressure; the three chimera blocks in different colors. Bottom: view around the solid body; the color is representative of the local spatial resolution  $L/\Delta r$ , where  $\Delta r$  is the square root of the cell volume.

# Comparison between FVM and DVH method through benchmark tests

$$\begin{split} u_{\infty}(t) &= \begin{cases} \frac{U}{2} \left[ 1 - \cos \left( \frac{\pi \, t}{t_r} \right) \right] & t \leq t_r \\ U & t > t_r \end{cases} \\ C_{D\rho} &= \frac{\int_{\partial D_B} - \rho \mathbf{n} \cdot \mathbf{e}_1 \, ds}{\frac{1}{2} \rho U^2 D}, \quad C_{Dv} &= \frac{\int_{\partial D_B} \mu \omega \tau \cdot \mathbf{e}_1 \, ds}{\frac{1}{2} \rho U^2 D} \end{split}$$







#### Comparison with FVM for Re = 4000



# Flow around an ellipse with incidence

Vorticity Fields, Re = 1000



AoA:  $\alpha = 20^{\circ}$ 

Axis ratio : b/a = 0.4

# Flow around an ellipse with incidence

Comparison with FVM for Re = 1000, Pressure coeff.



Pressure coefficient:  $C_p = \frac{(p - p_{\infty})}{12 \rho U^2}$ 

# Flow around an ellipse with incidence

#### Comparison with FVM for Re = 200, 500, 1000. Convergence results



$$\epsilon_{21} = \int_{t_0}^{t_f} |f_2 - f_1| dt$$

Convergence rate

$$C(C_D) = \log\left(\frac{\epsilon_{32}}{\epsilon_{21}}\right) / \log(2)$$

|      | $C(C_D)$ |     |
|------|----------|-----|
| Re   | DVH      | FVM |
| 200  | 4.1      | 4.2 |
| 500  | 2.7      | 4.1 |
| 1000 | 2.0      | 2.4 |

#### Flow around a cylinder with triangular section Re=100

#### Vorticity fields and forces



### Flow around a cylinder with triangular section Re=100



|     | $C(C_D)$      |         |
|-----|---------------|---------|
|     | tU/L∈ [0, 30] | tU/L>30 |
| DVH | 2.0           | 1.0     |
| FVM | 2.8           | 1.0     |

#### Flow around a cylinder with triangular section Re=1000

#### Vorticity fields and forces



- 1. Chorin's approaches for solving NSEs in  $(\omega u)$  and (u p) were presented
  - A meshless Particle Vortex Method based on operator splitting and a mesh-based FVM based on pseudo - compressibility
- 2. The numerical behaviour of DVH was investigated for three geometries
  - ▶ All test cases were unsteady characterized by flow separation and shear layer formation
- 3. First two geometries: the simulations are accurate, capturing the separation point and the flow characteristics for increasing Re. Third case: sharp edges freeze the separation point and boundary singularities induce strong, localized gradients.
- 4. For each test case the convergence rates were studied for increasing Re
  - For smooth boundaries the rate degrades with increasing Re but is always at least 2 for both solvers
  - For non-smooth boundary the rate is O(1) for both solvers
- 5. Comparison with FVM Pseudo Compressibility
  - Matching of the solutions in both local and global forces
  - Differences only for high Re for flow past a triangle, in the vortex positions in the far wake (different far wake resolution, transition to chaotic flow beahaviour)

- 1. Chorin's approaches for solving NSEs in  $(\omega u)$  and (u p) were presented
  - A meshless Particle Vortex Method based on operator splitting and a mesh-based FVM based on pseudo - compressibility
- 2. The numerical behaviour of DVH was investigated for three geometries
  - ▶ All test cases were unsteady characterized by flow separation and shear layer formation
- 3. First two geometries: the simulations are accurate, capturing the separation point and the flow characteristics for increasing Re. Third case: sharp edges freeze the separation point and boundary singularities induce strong, localized gradients.
- 4. For each test case the convergence rates were studied for increasing Re
  - For smooth boundaries the rate degrades with increasing Re but is always at least 2 for both solvers
  - For non-smooth boundary the rate is O(1) for both solvers
- 5. Comparison with FVM Pseudo Compressibility
  - Matching of the solutions in both local and global forces
  - Differences only for high Re for flow past a triangle, in the vortex positions in the far wake (different far wake resolution, transition to chaotic flow beahaviour)

Giannopoulou O., Colagrossi A., Di Mascio A., Mascia C.: Chorin's approaches revisited: Particle Vortex Method vs Finite Volume Method, submitted to Engineering Analysis with Boundary Elements

- 1. Chorin's approaches for solving NSEs in  $(\omega u)$  and (u p) were presented
  - A meshless Particle Vortex Method based on operator splitting and a mesh-based FVM based on pseudo - compressibility
- 2. The numerical behaviour of DVH was investigated for three geometries
  - ▶ All test cases were unsteady characterized by flow separation and shear layer formation
- **3.** First two geometries: the simulations are accurate, capturing the separation point and the flow characteristics for increasing Re. Third case: sharp edges freeze the separation point and boundary singularities induce strong, localized gradients.
- 4. For each test case the convergence rates were studied for increasing Re
  - For smooth boundaries the rate degrades with increasing Re but is always at least 2 for both solvers
  - For non-smooth boundary the rate is O(1) for both solvers
- 5. Comparison with FVM Pseudo Compressibility
  - Matching of the solutions in both local and global forces
  - Differences only for high Re for flow past a triangle, in the vortex positions in the far wake (different far wake resolution, transition to chaotic flow beahaviour)

Giannopoulou O., Colagrossi A., Di Mascio A., Mascia C.: Chorin's approaches revisited: Particle Vortex Method vs Finite Volume Method, submitted to Engineering Analysis with Boundary Elements

## Thank you for your attention!