

Simona Perotto

MOX-Modeling and Scientific Computing Department of Mathematics, Politecnico di Milano

cracks \cap images =energy functional minimization

image segmentation

 $\begin{aligned} \textit{Ambrosio-Tortorelli approximation to Francfort-Marigo model:} \\ I_{\varepsilon} : H^{1}(\Omega) \times H^{1}(\Omega; [0, 1]) \to \mathbb{R} \\ I_{\varepsilon}(u, v) &= \int_{\Omega} (v^{2} + \eta) |\nabla u|^{2} \, d\mathbf{x} + \kappa \int_{\Omega} \left[\frac{1}{4\varepsilon} (1 - v)^{2} + \varepsilon |\nabla v|^{2} \right] \, d\mathbf{x} \end{aligned}$

elastic energy

fictitious crack energy

0 : crack

• $0 < \eta \ll \varepsilon \ll 1$

- * $\kappa > 0$ * $v \in H^1(\Omega; [0, 1])$ (phase field) 1 : sound material
- * $u \in \mathcal{A}(g(t))$ (body displacement)
 - $$\begin{split} \mathcal{A}(g(t)) = \{ u \in H^1(\Omega) : u|_{\Omega_D^\pm} = g(t)|_{\Omega_D^\pm} \} \\ \text{admissible displacements} \end{split}$$

$$g: [0,T] \times \Omega \to \mathbb{R} : g(t) = \begin{cases} t & \text{on } \Omega_{D^+}, \\ -t & \text{on } \Omega_{D^-}, \\ 0 & \text{elsewhere,} \end{cases}$$

$$\begin{split} \textbf{Ambrosio-Tortorelli approximation} \text{ to Francfort-Marigo model:} \\ I_{\varepsilon}: H^{1}(\Omega) \times H^{1}(\Omega; [0, 1]) \to \mathbb{R} \\ I_{\varepsilon}(u, v) &= \int_{\Omega} (v^{2} + \eta) |\nabla u|^{2} \, d\mathbf{x} + \kappa \int_{\Omega} \left[\frac{1}{4\varepsilon} (1 - v)^{2} + \varepsilon |\nabla v|^{2} \right] \, d\mathbf{x} \\ \text{elastic energy} & \text{fictitious crack energy} \end{split}$$

Theoretical investigation :

Francfort-Marigo functional;
[B. Bourdin, G.A. Francfort, J.-J. Marigo (2000)]

* existence of minimizers for $I_{\varepsilon}(u,v)$ ($\varepsilon, \eta > 0$); [L. Ambrosio, V.M. Tortorelli (1992)]

$$\begin{split} \textbf{Ambrosio-Tortorelli approximation to Francfort-Marigo model:} \\ I_{\varepsilon}: H^{1}(\Omega) \times H^{1}(\Omega; [0, 1]) \to \mathbb{R} \\ I_{\varepsilon}(u, v) &= \int_{\Omega} (v^{2} + \eta) |\nabla u|^{2} \, d\mathbf{x} + \kappa \int_{\Omega} \left[\frac{1}{4\varepsilon} (1 - v)^{2} + \varepsilon |\nabla v|^{2} \right] \, d\mathbf{x} \\ & \text{elastic energy} & \text{fictitious crack energy} \end{split}$$

Crack evolution :

***** time discretization : $0 = t_0 < t_1 < \cdots < t_F = T$

minimization at each time step:

$$t = t_0$$

$$(u_{\varepsilon}(t_0), v_{\varepsilon}(t_0)) \in \underset{\substack{u \in \mathcal{A}(g(t_0)), \\ v \in H^1(\Omega; [0, 1])}}{\operatorname{arg\,min}} I_{\varepsilon}(u, v)$$

quasi-static approach

Ambrosio-Tortorelli approximation to Francfort-Marigo model: $I_{\varepsilon}: H^1(\Omega) \times H^1(\Omega; [0,1]) \to \mathbb{R}$ $I_{\varepsilon}(u,v) = \int_{\Omega} (v^2 + \eta) |\nabla u|^2 \, d\mathbf{x} + \kappa \int_{\Omega} \left[\frac{1}{4\varepsilon} (1-v)^2 + \varepsilon |\nabla v|^2 \right] \, d\mathbf{x}$ fictitious crack energy elastic energy

Crack evolution :

time discretization : $0 = t_0 < t_1 < \cdots < t_F = T$

minimization at each time step: $t = t_k$

$$(u_{\varepsilon}(t_{k}), v_{\varepsilon}(t_{k})) \in \underset{u \in \mathcal{A}(g(t_{k})), \\ v \in H^{1}(\Omega; [0, 1]), v \leq v_{\varepsilon}(t_{k-1})$$
irreversibility of the crack
[A. Giacomini (2005)]

qua

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

Idea : relax the constraints on the displacement and on the phase field via penalization:

$$u, v \in H^1(\Omega)$$

[B. Bourdin (2007)] $* v \le v_{\varepsilon}(t_{k-1}) \longrightarrow \text{equality constraint. If at } t = t_{k-1}$

$$CR_{k-1} = \{ \mathbf{x} \in \overline{\Omega} \, | \, v_{\varepsilon}(t_{k-1}) < \mathtt{CRTOL} \} \neq \emptyset$$

the irreversibility is enforced by

$$v_{\varepsilon}(\mathbf{x}, t_{i}) = 0 \quad \forall \mathbf{x} \in CR_{k-1} \text{ and } \forall i : k \leq i \leq F.$$

$$(u_{\varepsilon}(t_{k}), v_{\varepsilon}(t_{k})) \in \underset{u \in H^{1}(\Omega), \\ v \in H^{1}(\Omega; [0, 1])}{penalty}(u, v) \quad k = 1, \dots, F$$

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

Idea : relax the constraints on the displacement and on the phase field via penalization.

$$u, v \in H^1(\Omega)$$

[B. Bourdin (2007)] • $v \leq v_{\varepsilon}(t_{k-1})$ equality constraint. If at $t = t_{k-1}$ $CR_{k-1} = \{ \mathbf{x} \in \overline{\Omega} \mid v_{\varepsilon}(t_{k-1}) < \text{CRTOL} \} \neq \emptyset,$

the irreversibility is enforced by

$$v_{\varepsilon}(\mathbf{x}, t_{i}) = 0 \quad \forall \mathbf{x} \in CR_{k-1} \text{ and } \forall i : k \leq i \leq F.$$

$$I_{\varepsilon,k}^{penalty}(u, v) = \int_{\Omega} (v^{2} + \eta) |\nabla u|^{2} d\mathbf{x} + \kappa \int_{\Omega} \left[\frac{1}{4\varepsilon} (1 - v)^{2} + \varepsilon |\nabla v|^{2} \right] d\mathbf{x}$$

$$+ \frac{1}{\gamma_{A}} \int_{\Omega_{D^{\pm}}} (g(t_{k}) - u)^{2} d\mathbf{x} + \frac{1}{\gamma_{B}} \int_{CR_{k-1}} v^{2} d\mathbf{x},$$

$$(\mathbf{x}, t_{i}) = 0 \quad \forall \mathbf{x} \in CR_{k-1} \quad v \in I$$

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

Idea : relax the constraints on the displacement and on the phase field via penalization.

$$u, v \in H^1(\Omega)$$

[B. Bourdin (2007)] $\bullet v \leq v_{\varepsilon}(t_{k-1}) \longrightarrow \text{equality constraint. If at } t = t_{k-1}$

$$CR_{k-1} = \{ \mathbf{x} \in \overline{\Omega} \, | \, v_{\varepsilon}(t_{k-1}) < \texttt{CRTOL} \} \neq \emptyset,$$

the irreversibility is enforced by

$$v_{\varepsilon}(\mathbf{x}, t_{i}) = 0 \quad \forall \mathbf{x} \in CR_{k-1} \text{ and } \forall i : k \leq i \leq F.$$

$$(u_{\varepsilon}(t_{k}), v_{\varepsilon}(t_{k})) \in \underset{u \in H^{1}(\Omega), \\ v \in H^{1}(\Omega; [0, 1])}{penalty}(u, v) \quad k = 1, \dots, F$$

$$\underbrace{v \in H^{1}(\Omega; [0, 1])}_{u \text{ cutomatically fulfilled}}$$

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

$$I(u,v) = \int_{\Omega} \left[(v^2 + \eta) |\nabla u|^2 \, d\mathbf{x} + \alpha (1-v)^2 + \varepsilon |\nabla v|^2 \right] \, d\mathbf{x}$$
$$+ \frac{1}{\gamma_A} \int_{\Omega_D^{\pm}} (g(t_k) - u)^2 \, d\mathbf{x} + \frac{1}{\gamma_B} \int_{CR_{k-1}} v^2 \, d\mathbf{x}$$

[S. Burke, Ch. Ortner, E. Süli (2010)] Looking for critical points : Fréchet differentiable

$$\begin{split} I'(w,z;\varphi,\psi) &= 2\left(\int_{\Omega} (z^2+\eta)\nabla w \cdot \nabla \varphi \, d\mathbf{x} + \frac{1}{\gamma_A} \int_{\Omega_D^{\pm}} (w-g(t_k))\varphi \, d\mathbf{x}\right) \\ &+ 2\left(\int_{\Omega} \left[z\psi |\nabla w|^2 + \alpha(z-1)\psi + \varepsilon \nabla z \cdot \nabla \psi \right] d\mathbf{x} + \frac{1}{\gamma_B} \int_{CR_{k-1}} z\psi \, d\mathbf{x} \right) \\ &=: 2a_{\gamma_A}(z;w,\varphi) + 2b_{\gamma_B}(w;z,\psi) \end{split}$$

If $(u, v) \in H^1(\Omega) \times (H^1(\Omega) \cap L^{\infty}(\Omega))$ is a critical point, then $0 \le v(\mathbf{x}) \le 1$ a.e. in $\boldsymbol{\Omega}$.

discrete counterpart

The discrete modified Ambrosio-Tortorelli model

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

$$I_{h}(u_{h},v_{h}) = \int_{\Omega} \left[\left(P_{h}(v_{h}^{2}) + \eta \right) |\nabla u_{h}|^{2} d\mathbf{x} + \alpha P_{h}((1-v_{h})^{2}) + \varepsilon |\nabla v_{h}|^{2} \right] d\mathbf{x} + \frac{1}{\gamma_{A}} \int_{\Omega_{D^{\pm}}} P_{h} \left(\left(g_{h}(t_{k}) - u_{h} \right)^{2} \right) d\mathbf{x} + \frac{1}{\gamma_{B}} \int_{CR_{k-1}} P_{h} \left(v_{h}^{2} \right) d\mathbf{x}.$$

 $P_h: C^0(\overline{\Omega}) \to X_h$ (Lagrangian interpolant) + hypotheses on \mathcal{G}_h and on the stiffness matrix

Looking for critical points : Fréchet differentiable

$$\begin{split} I_{h}^{\prime}(u_{h}, v_{h}; \varphi_{h}, \psi_{h}) &= 2 \bigg(\int_{\Omega} (P_{h}(v_{h}^{2}) + \eta) \nabla u_{h} \cdot \nabla \varphi_{h} \, d\mathbf{x} + \frac{1}{\gamma_{A}} \int_{\Omega_{D^{\pm}}} P_{h}((u_{h} - g_{h}(t_{k}))\varphi_{h}) \, d\mathbf{x} \bigg) \\ &+ 2 \bigg(\int_{\Omega} \bigg[P_{h}(v_{h}\psi_{h}) |\nabla u_{h}|^{2} + \alpha P_{h}((v_{h} - 1)\psi_{h}) + \varepsilon \nabla v_{h} \cdot \nabla \psi_{h} \bigg] \, d\mathbf{x} \\ &+ \frac{1}{\gamma_{B}} \int_{CR_{k-1}^{h}} P_{h}(v_{h}\psi_{h}) \, d\mathbf{x} \bigg) =: 2a_{\gamma_{A}}^{h}(v_{h}; u_{h}, \varphi_{h}) + 2b_{\gamma_{B}}^{h}(u_{h}; v_{h}, \psi_{h}) \end{split}$$

If $(u_h, v_h) \in X_h \times X_h$, with X_h the P1-finite element space, is a critical point, then $0 \le v_h \le 1$ in Ω .

How to select the mesh?

sharp features to be captured

anisotropic adapted meshes sharply capture these features

reduce the dofs (or increase the accuracy) by tuning size, shape and orientation of mesh elements

[e.g., M. Fortin, J. Dompierre, W.G. Habashi, M.G. Vallet et al. (2000,2002)]

Anisotropic mesh adaptation

looking for anisotropic information

[L. Formaggia, S.P. (2001)]

interpolation error estimates

[L. Formaggia, S.P. (2001,2003)]

error indicators/estimators

[L. Formaggia, S.P. (2003); S. Micheletti, S.P. (2008,2010,2011); P.E. Farrell, S. Micheletti, S.P.(2010); M. Artina, M. Fornasier, S. Micheletti, S.P. (2015)]

adaptation procedure

[L. Formaggia, S.P. (2001); L. Formaggia, S. Micheletti, S.P. (2004)]

Anisotropic mesh adaptation

looking for anisotropic information

[L. Formaggia, S.P. (2001)]

interpolation error estimates

[L. Formaggia, S.P. (2001,2003)]

error indicators/estimators

[L. Formaggia, S.P. (2003); S. Micheletti, S.P. (2008,2010,2011); P.E. Farrell, S. Micheletti, S.P.(2010); M. Artina, M. Fornasier, S. Micheletti, S.P. (2015)]

adaptation procedure

[L. Formaggia, S.P. (2001); L. Formaggia, S. Micheletti, S.P. (2004)]

Anisotropic mesh adaptation

looking for anisotropic inform

[L. Formaggia, S.P. (200

interpolation en estimates

[L. Formaggia, S.P. (2001

$$\begin{aligned} & \underset{[L. Formaggia, S.P. (2001)]}{\text{interpolation error}} \\ & \underset{[L. Formaggia, S.P. (2001,2003)]}{\text{interpolation error}} \\ & \underset{[L. Formaggia, S.P. (2001,2003)]}{\text{interpolation}} \\ & \underset{[L. Formaggia, S.P. (2001,2003)]}$$

A

An anisotropic a posteriori error estimator

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

Goal : set an optimization procedure to minimize I(u, v) by successive minimizations of $I_h(u_h, v_h)$ on anisotropic meshes.

$$\begin{split} |I'(u_h, v_h; \varphi, \psi)| & [5. Burke, Ch. Ortner, E. Süli, (2010)] \\ |I'(u_h, v_h; \varphi, \psi)| &\leq C \sum_{K \in \mathcal{T}_h} \left\{ \rho_K^A(v_h, u_h) \omega_K(\varphi) + \rho_K^B(u_h, v_h) \omega_K(\psi) \right\} \\ & \text{critical point of } \mathbf{I}_h & \text{residual} \\ \\ \rho_K^A(v_h, u_h) &= \frac{1}{2} \| [\nabla u_h] \|_{L^{\infty}(\partial K)} \| v_h^2 + \eta \|_{L^2(\partial K)} \left(\frac{h_K}{\lambda_{1,K} \lambda_{2,K}} \right)^{\frac{1}{2}} \\ &+ \| 2v_h(\nabla v_h \cdot \nabla u_h) \|_{L^2(K)} + \frac{\delta_{K,\Omega_h^+}}{\gamma_A} \left(\| u_h - g_h(t_k) \|_{L^2(K)} \\ &+ \| g_h(t_k) - g(t_k) \|_{L^2(K)} \right) + \frac{1}{\lambda_{2,K}} \left[\| v_h^2 - P_h(v_h^2) \|_{L^{\infty}(K)} \| \nabla u_h \|_{L^2(K)} \\ &+ \frac{|K|^{1/2} h_K^2}{\gamma_A} \| u_h - g_h(t_k) |_{W^{1,\infty}(K)} \right]. \end{split}$$

An anisotropic a posteriori error estimator

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

Goal : set an optimization procedure to minimize I(u, v) by successive minimizations of $I_h(u_h, v_h)$ on anisotropic meshes.

$$\varphi = u - u_h$$

$$\psi = v - v_h$$

$$I(u, v) - I(u_h, v_h) = \frac{1}{2}I'(u_h, v_h; u - u_h, v - v_h) + R$$

third order
remainder

+ gradient recovery procedures [O.C. Zienkiewicz, J.Z. Zhu (1987,1992)]

The numerical procedure

$$I(u,v) = \int_{\Omega} \left[(v^2 + \eta) |\nabla u|^2 d\mathbf{x} + \alpha (1-v)^2 + \varepsilon |\nabla v|^2 \right] d\mathbf{x} + \frac{1}{\gamma_A} \int_{\Omega_D^{\pm}} (g(t_k) - u)^2 d\mathbf{x} + \frac{1}{\gamma_B} \int_{CR_{k-1}} v^2 d\mathbf{x}$$

non-convex functional

The (alternate) minimization algorithm :

1. Set
$$k = 0$$
;
2. If $k = 0$, set $v^{1} = 1$; else $v^{1} = v(t_{k-1})$.
3. Set $i = 1$; err $= 1$;
while $err \ge VTOL$ do
4. $u^{i} = \underset{z \in H^{1}(\Omega)}{\arg \min I(z, v^{i})};$
5. $v^{i+1} = \underset{z \in H^{1}(\Omega)}{\arg \min I(u^{i}, z)};$
6. $err = ||v^{i+1} - v^{i}||_{L^{\infty}(\Omega)};$
7. $i \leftarrow i + 1;$
end while
8. $u(t_{k}) = u^{i-1}; v(t_{k}) = v^{i};$
9. $k \leftarrow k + 1;$
10. if $k > F$, stop; else goto 2.

[B. Bourdin (2007), B. Bourdin, G.A. Francfort, J.-J. Marigo (2000), S. Burke, Ch. Ortner, E. Süli (2010)] How to make effective an error estimator: a metric-based approach [L. Formaggia, S.P. (2001); L. Formaggia, S. Micheletti, S. P. (2004)]

CRITERION: minimize the number of the mesh elements for a fixed accuracy + error equidistribution

estimator — metric — adapted mesh

predictive procedure: "Mesh is not a data but an unknown of the problem" (M. Fortin)

At each step of the adaptive process:

the actual mesh $T_h^{(j)}$; approximation of the differential problem

- the predicted (piecewise constant) metric $\widetilde{M}^{(j+1)}$ computed on $\mathcal{T}_{\mu}^{(j)}$;
 - the updated mesh $\mathcal{T}_{h}^{(j+1)}$.

How to make effective an error estimator: a metric-based approach [L. Formaggia, S.P. (2001); L. Formaggia, S. Micheletti, S. P. (2004)]

> CRITERION : minimize the number of the mesh elements for a fixed accuracy + error equidistribution

> > estimator \longrightarrow metric \longrightarrow adapted mesh

predictive procedure: "Mesh is not a data but an unknown of the problem" (M. Fortin)

At each step of the adaptive process:

Merging minimization with anisotropic mesh adaptation

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

1. Set
$$k = 0$$
, $\mathcal{T}_{h}^{(1)} = \mathcal{T}_{h}$;
2. If $k = 0$, set $v_{h}^{1} = 1$; else $v_{h}^{1} = v_{h}(t_{k-1})$;
3. Set $i = 1$; errmesh= 1; err= 1;
while errmesh > MESHTOL \mathcal{E} err > VTOL do
4. $u_{h}^{i} = \arg \min I(z_{h}, v_{h}^{i});$
 $z_{h} \in X_{h}^{(i)}$
5. $v_{h}^{i+1} = \arg \min I(u_{h}^{i}, z_{h});$
 $z_{h} \in X_{h}^{(i)}$
6. Compute the new metric $\mathcal{M}^{(i+1)}$ based on u_{h}^{i} and v_{h}^{i+1} with TOL = REFTOL;
7. Build the adapted mesh $\mathcal{T}_{h}^{(i+1)}$;
8. $err = ||v_{h}^{i+1} - v_{h}^{i}||_{L^{\infty}(\Omega)};$
9. $errmesh = |\#\mathcal{T}_{h}^{(i+1)} - \#\mathcal{T}_{h}^{(i)}|/\#\mathcal{T}_{h}^{(i)};$
10. $Set v_{h}^{1} = \Pi_{i \to i+1}(v_{h}^{i+1});$
11. $i \leftarrow i + 1;$
end while
12. $u_{h}(t_{k}) = \prod_{i=1 \to i}(u_{h}^{i-1}); v_{h}(t_{k}) = v_{h}^{1}; \mathcal{T}_{h}^{k} = \mathcal{T}_{h}^{(i)};$
13. $Set \mathcal{T}_{h}^{(1)} = \mathcal{T}_{h}^{k};$
14. $k \leftarrow k + 1;$
15. if $k > F$, stop; else goto 2.
MESHTOL : mesh stagnation VTOL : minimization check
REFTOL : accuracy on the functional

[S. Burke, Ch.

33927 elements max aspect ratio : 1891.5

Numerical assessment

33927 elements max aspect ratio : 1891.5

15987 elements max aspect ratio : 1469.9

131367 elements

$\varepsilon = 2 \cdot 10^{-2}$	$\eta = 10^{-5}$	$\gamma_A = \gamma_B = 10^{-5}$	$\Delta t = 10^{-2}$
$\text{CRTOL}=3\cdot 10^{-4}$	$\texttt{VTOL}=2\cdot 10^{-3}$	$\text{MESHTOL} = 10^{-2}$	$\texttt{REFTOL} = 10^{-2}$

[M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)]

anti-plane case: the force applied is orthogonal to the domain

Brittle fractures induced by a thermal shock. [J.-J. Marigo, C. Maurini, P. Sicsic (2013), B. Bourdin, J.-J. Marigo, C. Maurini, P. Sicsic (2014)]

anti-plane case: the force applied is orthogonal to the domain

Brittle fractures induced by a thermal shock. [J.-J. Marigo, C. Maurini, P. Sicsic (2013), B. Bourdin, J.-J. Marigo, C. Maurini, P. Sicsic (2014)] temperature field $\begin{cases} \frac{\partial T}{\partial t} - \nabla \cdot (k_c \nabla T) = 0 & \text{in } \Omega \times (0, t_F] \\ T = T_0 - \Delta T & \text{on } \gamma_{\text{shock}} \times (0, t_F] \\ T(\mathbf{x}, 0) = T_0 & \text{on } \Omega, \end{cases}$ temperature drop thermo-mechanical model $\mathcal{J}(\mathbf{u},\alpha) = \frac{1}{2} \int_{\Omega} (1-\alpha)^2 A(\varepsilon(\mathbf{u}) - \varepsilon_{th}) : (\varepsilon(\mathbf{u}) - \varepsilon_{th}) \, d\mathbf{x} + \int_{\Omega} \frac{G_c}{4c_w} \left(\frac{\alpha}{l} + l \, |\nabla \alpha|^2\right) d\mathbf{x}$ $\varepsilon(\mathbf{u}) = 1/2(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$ (total strain tensor)

- M loop X
- $\varepsilon_{th}(T) = \mu(T_0 T)\mathbf{I}$ (inelastic strain) μ (thermal volumetric expansion coefficient)
- G_c (body toughness)
 A (stiffness tensor)
 l (internal length)

anti-plane case: the force applied is orthogonal to the domain

Brittle fractures induced by a thermal shock effect. [J.-J. Marigo, C. Maurini, P. Sicsic (2013), B. Bourdin, J.-J. Marigo, C. Maurini, P. Sicsic (2014)]

Homogeneous uniformly heated specimen, free at the boundary, no pre-stress

Three phases :

- the very early stage : a uniform strip propagates orthogonally to the immersed surface;
- at some critical time : a bifurcation occurs and the damage exhibits periodically distributed bands of equal length and grows at the center of these bands;
- later: a selective crack arrest takes place, some bands stop the others keep on propagating.

anti-plane case: the force applied is orthogonal to the domain

Brittle fractures induced by a thermal shock effect. [J.-J. Marigo, C. Maurini, P. Sicsic (2013), B. Bourdin, J.-J. Marigo, C. Maurini, P. Sicsic (2014)]

[N. Ferro, S.Micheletti, S.P., 2018]

Image segmentation

- thresholding/clustering/edge-detection/region-growing methods;
- PDE-based methods (e.g., level set method);

variational methods.

Goal: identification of subregions of interest in a greyscale image.

Mesh adaptation-aided image segmentation

strong gradients across the image edges

anisotropic adapted meshes sharply capture these features

> reduce the dofs (or increase the accuracy) by tuning size, shape and orientation of mesh elements

863

[e.g., M. Fortin, J. Dompierre, W.G. Habashi, M.G. Vallet et al. (2000,2002)]

of interest

variational approximation

[D. Mumford, J. Shah (1989); B. Bourdin (1999); A. Chambolle (1995)]

$$I(u, E) = \int_{\Omega} (u - f)^2 d\Omega + \beta \int_{\Omega \setminus E} |\nabla u|^2 d\Omega + \gamma \mathcal{H}(E) \quad (\text{Mumford-Shah})$$
original image separating edge

• $f \in L^{\infty}(\Omega)$

- *E* closed one-dimensional subset of Ω
- $u \in H^1(\Omega \setminus E)$
- β, γ positive parameters

[D. Mumford, J. Shah (1989); B. Bourdin (1999); A. Chambolle (1995)]

numerically hard

$$I(u, E) = \int_{\Omega} (u - f)^2 d\Omega + \beta \int_{\Omega \setminus E} |\nabla u|^2 d\Omega + \gamma \mathcal{H}(E) \quad \text{(Mumford-Shah)}$$

mismatch smoothness Hausdorff measure

• $f \in L^{\infty}(\Omega)$

- E closed one-dimensional subset of Ω
- $u \in H^1(\Omega \setminus E)$
- β, γ positive parameters

object

boundary

Ambrosio-Tortorelli approximation

$$I_{\epsilon}(u,v) = \int_{\Omega} (u-f)^2 d\Omega + \beta \int_{\Omega} (v^2 + \eta) |\nabla u|^2 d\Omega + \gamma \int_{\Omega} \left(\epsilon |\nabla v|^2 + \frac{1}{4\epsilon} (v-1)^2\right) d\Omega$$

v with values in [0, 1]: approximate indicator of the set E with thickness ϵ

object and background

[L. Ambrosio, V.M. Tortorelli (1990,1992)] [P. D'Ambra, G. Tartaglione (2015)]

[D. Mumford, J. Shah (1989); B. Bourdin (1999); A. Chambolle (1995)]

numerically hard

$$I(u, E) = \int_{\Omega} (u - f)^2 d\Omega + \beta \int_{\Omega \setminus E} |\nabla u|^2 d\Omega + \gamma \mathcal{H}(E) \quad (\text{Mumford-Shah})$$

mismatch smoothness Hausdorff measure

• $f \in L^{\infty}(\Omega)$

- E closed one-dimensional subset of Ω
- $u \in H^1(\Omega \setminus E)$
- β, γ positive parameters

Ambrosio-Tortorelli approximation

$$I_{\epsilon}(u,v) = \int_{\Omega} (u-f)^2 d\Omega + \beta \int_{\Omega} (v^2 + \eta) |\nabla u|^2 d\Omega + \gamma \int_{\Omega} \left(\epsilon |\nabla v|^2 + \frac{1}{4\epsilon} (v-1)^2 \right) d\Omega$$

u and *v* defined on the whole Ω

[L. Ambrosio, V.M. Tortorelli (1990,1992)] [P. D'Ambra, G. Tartaglione (2015)]

[D. Mumford, J. Shah (1989); B. Bourdin (1999); A. Chambolle (1995)]

numerically hard

$$I(u, E) = \int_{\Omega} (u - f)^2 d\Omega + \beta \int_{\Omega \setminus E} |\nabla u|^2 d\Omega + \gamma \mathcal{H}(E) \quad (\text{Mumford-Shah})$$

mismatch smoothness Hausdorff measure

• $f \in L^{\infty}(\Omega)$

- E closed one-dimensional subset of Ω
- $u \in H^1(\Omega \setminus E)$
- β, γ positive parameters

Ambrosio-Tortorelli approximation

$$I_{\epsilon}(u,v) = \int_{\Omega} (u-f)^2 d\Omega + \beta \int_{\Omega} (v^2 + \eta) |\nabla u|^2 d\Omega + \gamma \int_{\Omega} \left(\epsilon |\nabla v|^2 + \frac{1}{4\epsilon} (v-1)^2 \right) d\Omega$$

 $\{I_{\epsilon}\}_{\epsilon}$ is Γ - convergent to I(u, E) for $\epsilon \to 0$

[L. Ambrosio, V.M. Tortorelli (1990,1992)] [P. D'Ambra, G. Tartaglione (2015)]

(sensitivity to model parameters)

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

sensitivity to ε

(a) true image

(b) approximate image u_h

16472 triangles

(c) anisotropic adapted mesh

(d) approximate indicator v_h

 $\epsilon = 5 \cdot 10^{-2}, \eta = 10^{-4}, \beta = 10^{-2}, \gamma = 4,$

TOL = 50, TOLs = 10^{-2} , TOLfp = $5 \cdot 10^{-3}$, Ns = 10, Nfp = 30

(sensitivity to model parameters)

(a) $\epsilon = 1$: indicator v_h

(e) $\epsilon = 10^{-1}$: indicator v_h

(b) $\epsilon = 1$: adapted mesh

(f) $\epsilon = 10^{-1}$: adapted mesh

(c) $\epsilon = 5 \cdot 10^{-1}$: indicator v_h

(g) $\epsilon = 5 \cdot 10^{-2}$: indicator v_h

sensitivity to ε

(d) $\epsilon = 5 \cdot 10^{-1}$: adapted mesh

(h) $\epsilon = 5 \cdot 10^{-2}$: adapted mesh

ϵ	$\max_{K} s_{K}$	# vertices	# elements
1	38.71	2654	5236
$5 \cdot 10^{-1}$	34.43	4455	8834
10 ⁻¹	140.91	11426	22752
$5 \cdot 10^{-2}$	381.39	16472	32855

(sensitivity to model parameters)

$$\epsilon = 10^{-1}, \eta = 10^{-4}, \gamma = 4,$$

TOL = 80, TOLs = $10^{-2},$
TOLfp = $5 \cdot 10^{-3},$
Ns = 10, Nfp = 50

(b) $\beta = 1.5$: indicator v_h

(d) $\beta = 1$: indicator v_h

eta	$\max_{K} s_{K}$	# vertices	# elements
1.5	97.78	19560	39077
1	66.01	16572	33097
$5 \cdot 10^{-1}$	107.31	12294	24553

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

(c) $\beta = 1.5$: adapted mesh

(e) $\beta = 1$: adapted mesh

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

(sensitivity to model parameters)

sensitivity to γ

(a) true image

$$\begin{aligned} \epsilon &= 10^{-1}, \eta = 10^{-4}, \\ \beta &= 5 \cdot 10^{-2}, \text{TOL} = 80, \\ \text{TOLs} &= 10^{-2}, \\ \text{TOLfp} &= 5 \cdot 10^{-3}, \\ \text{Ns} &= 10, \text{Nfp} = 50 \end{aligned}$$

γ	$\max_{K} s_{K}$	# vertices	# elements
4	145.09	23455	46727
1	149.50	16246	32299
0.25	218.44	11109	22033

(b) $\gamma = 4$: indicator v_h

- - (c) $\gamma = 4$: thresholded indicator

(d) $\gamma = 4$: adapted mesh

(e) $\gamma = 1$: indicator v_h

(f) $\gamma = 1$: thresholded indicator

(g) $\gamma = 1$: adapted mesh

(h) $\gamma = 0.25$: indicator v_h

(i) $\gamma = 0.25$: thresholded indicator

(j) $\gamma = 0.25$: adapted mesh

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

https://it.m.wikipedia.org/wiki/File:Pkan-basal-ganglia-MRI.JPG

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

(c) indicator v_h

(d) adapted mesh https://www.spandidos-publications.com/br/3/1/55

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

11175

https://www.howardluksmd.com/orthopedic-social-media/medial-joint-space-narrowing/

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

17056

https://it.wikipedia.org/wiki/File:Artrite_psoriasica_Rx_Mano_Sn.PNG

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

input parameters

image	ϵ	β	γ	η	TOL	TOLs	TOLfp	Ns	Nfp
brain	10^{-3}	10^{-1}	$5 \cdot 10^{-1}$	10^{-6}	70	10^{-2}	$5 \cdot 10^{-3}$	10	40
Willis	10^{-3}	10^{-1}	5	10^{-6}	100	10^{-2}	$5 \cdot 10^{-3}$	10	40
knee	10^{-3}	$2 \cdot 10^{-1}$	10	10^{-6}	60	10^{-2}	$5 \cdot 10^{-3}$	10	40
hand	10^{-3}	10^{-1}	10	10 ⁻⁶	60	10^{-2}	$5 \cdot 10^{-3}$	10	40

output data

image	$\max_{K} s_{K}$	# vertices	# elements	#ITs	#ITfp
brain	71.94	19726	39334	4	4 - 8 - 9 - 25
Willis	56.51	24845	49544	3	2 - 4 - 4
knee	82.01	5683	11175	4	3 - 5 - 7 - 6
hand	38.01	8592	17056	5	2 - 3 - 2 - 2 - 2

output data

image	E-time	AD-time	FP-time
brain	170.74	43.77 - 24.95 - 19.45 - 17.58	11.26 - 12.57 - 10.62 - 25.51
Willis	102.78	29.76 - 24.12 - 22.93	3.63 - 5.78 - 5.3
knee	56.29	23.56 - 7.66 - 5.56 - 4.64	4.87 - 2.31 - 2.24 - 1.54
hand	79.90	29.83 - 11.32 - 8.53 - 7.48 - 7.3	4.14 - 2.01 - 0.97 - 0.87 - 0.81

Comparison with a pixel mesh

[B. Bourdin (1999)]

$$\epsilon = 10^{-1}, \eta = 10^{-2},$$

 $\beta = 2, \gamma = 10^{-2}$
TOL = 50, TOLs = $10^{-2},$
TOLfp = $5 \cdot 10^{-3},$
Ns = 10, Nfp = 50

(a) real image $(512 \times 512 \text{ px})$

(b) approximate image u_h

(c) thresholded indicator v_h

(d) adapted mesh

M

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

Comparison with isotropic mesh adaptation

M

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]

Comparison with isotropic mesh adaptation

39334 triangles

TOL = 70

11175 triangles

TOL = 60

48829 triangles

19760 triangles

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted]