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Figure 6: The circle of Willis test case.
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(a) real image (312 ⇥ 454 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 8: The hand test case.
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(a) real image (312 ⇥ 454 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 8: The hand test case.
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Figure 4: Square lab: anisotropic (left) vs isotropic (right) mesh adaptation at time step 30, for increasing magnification
(top-bottom).

Figure 5: Square slab: 3D views of the phase field overlapped to the adapted mesh at time t = tF .

Figure 4 contrasts the two adaptive procedures, highliting the poor tracking of the bands in
the case of the isotropic approach. In Figure 6, left, we compare the evolution of the number
of elements for the isotropic and anisotropic mesh adaptation. The reduction provided by the
anisotropic procedure is remarkable for the whole time span, with greater extent during the last
steps. On average, about half the elements are required by the anisotropic meshes. Moreover,
in Figure 7, we compare the performance of the two approaches, in terms of total and average
(total time/# loops) time spent in the optimization phase, in correspondence with the last six time
steps. In particular, the large discrepancy in terms of the average time can be ascribed to the con-
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Fig. 6. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zoom-ins around the hole for Algorithm 2 (top right) and for Algorithm 3
(bottom right).

Fig. 7. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3.

Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 6,
left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
3 is provided in Figure 8, together with a detail of the second mesh. Notice that the
anisotropic adaptive procedure is able to detect the presence of a very fine structure
inside the crack in correspondence with the ridges. Moreover, the cardinality of the
two meshes is very different: Algorithm 2 employs 48,599 elements, in contrast to
Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2

h and sK = 1469.9 for T algo3
h .

Figure 9 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterward, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),
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of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.
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the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
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⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space
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where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
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Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by
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v ∈ H1(Ω; [0, 1])
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  (body displacement) 
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),

: 
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),

B634 ARTINA, FORNASIER, MICHELETTI, AND PEROTTO

that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),

elastic energy fictitious crack energy 

®   convergence to Francfort-Marigo functional; 
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),

[B. Bourdin, G.A. Francfort, J.-J. Marigo (2000)] 
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as

(1.2) Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx,

where 0 < η ≪ ε ≪ 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ A(g(t)). The first integral of (1.2) represents the elastic energy Ee of the
body, while the second one is the fictitious crack energy Ef . As proved in [10], this
functional Γ-converges in L1(Ω)×L1(Ω) to the energy functional driving the evolution
of the Francfort–Marigo model, as ε → 0. This proof is built upon the original
result of convergence made by Ambrosio and Tortorelli in [1] for the approximation
of the Mumford–Shah functional [37]. Moreover, in [2], the proof of the existence of
minimizers for (1.2) is provided for all ε, η > 0. Alternative Γ-approximations results
are addressed, e.g., in [6, 23].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < · · · < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),

[L. Ambrosio, V.M. Tortorelli (1990,1992)] 
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that represents the crack formation cost, typically assumed to be proportional to the
surface of the created crack [30]. While in the original model of Francfort and Marigo
the existence of the crack evolution is assumed, only with the works of Francfort and
Larsen [26] and Dal Maso and Toader [21] was the existence of a continuous time
evolution of the quasi-static model proved.

Despite the success of this model for its mathematical well-posedness and, at
the same time, its rather general framework, mechanical engineers and physicists of
solids tend to favor more realistic models, where a smoother process toward fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by Ambrosio and Tortorelli in [2]
of the energy functional driving the quasi-static evolution of the Francfort–Marigo
model is very interesting because the crack is identified by a smooth phase field
v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on
the Ambrosio–Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω → R, is such that

(1.1) g(t) =

⎧
⎨

⎩

t on ΩD+ ,
−t on ΩD− ,
0 elsewhere,

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|ΩD± = g(t)|ΩD± }

of the admissible solutions. We define the functional Iε : H
1(Ω) ×H1(Ω; [0, 1]) → R

as
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whereas for subsequent times t = tk, for k = 1, . . . , F , we seek a pair (uε(tk), vε(tk))
such that

(1.3) (uε(tk), vε(tk)) ∈ argmin
u ∈ A(g(tk)),

v ∈ H1(Ω; [0, 1]), v ≤ vε(tk−1)

Iε(u, v).

The two components of the solution to (1.3) represent the displacement of the body
and the phase field of the fracture. In particular, the fracture is identified by the
subset of the domain where vε(tk) is close to zero. The transition layer between
the two regions has a thickness of order ε and the condition v ≤ vε(tk−1) enforces the
irreversibility of the crack [29].

While the existence of a continuous time evolution for the model evolving along
global minimizers, as defined in (1.3), has been shown in [26, 21], it is more delicate
to address the system development when it is evolving along local minimizers or
critical points of the energy. In this paper, we actually consider a reliable numerical
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫
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∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is
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for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation
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8 Tempi di calcolo

Ho aggiornato tutte le tabelle con i tempi di calcolo sulla mia workstation (mentre
prima in alcune tabelle c’erano i CPU time sul PC di Alessandro), in modo che sia
tutto consistente.

Questi dati sono menzionati a volte anche nel testo e vanno aggiornati con i nuovi
valori, in particolare in:

– pagina 10, sezione 2.3.2, una volta verso la fine della seconda colonna
– pagina 11, sezione 2.3.2, una volta all’inizio della prima colonna
– pagina 11, sezione 2.3.3, una volta nella prima colonna ed una volta nella seconda.
– pagina 16, alla fine della sezione 3.1.1
– pagina 17, alla fine della sezione 3.1.2. Qui anche il valore dell’errore e’ cambiato

leggermente e va aggiornato.
– pagina 18, alla fine della sezione 3.1.3. Qui anche il valore dell’errore e’ cambiato

leggermente e va aggiornato.

��J(u)� J(u
h

)
��  TOL ⌧ = TOL/card(T (j)
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)
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where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation
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on the function v. In fact, the condition
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enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
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for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
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anisotropic a posteriori error estimator. Then, two different adaptation algorithms
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allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
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enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
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provided by an equality constraint. In particular, if at time t = tk−1 the set
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the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
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problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =
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[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω
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+
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ΩD±
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where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)
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+
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
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∫
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+
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where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫
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+
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8 Tempi di calcolo

Ho aggiornato tutte le tabelle con i tempi di calcolo sulla mia workstation (mentre
prima in alcune tabelle c’erano i CPU time sul PC di Alessandro), in modo che sia
tutto consistente.

Questi dati sono menzionati a volte anche nel testo e vanno aggiornati con i nuovi
valori, in particolare in:

– pagina 10, sezione 2.3.2, una volta verso la fine della seconda colonna
– pagina 11, sezione 2.3.2, una volta all’inizio della prima colonna
– pagina 11, sezione 2.3.3, una volta nella prima colonna ed una volta nella seconda.
– pagina 16, alla fine della sezione 3.1.1
– pagina 17, alla fine della sezione 3.1.2. Qui anche il valore dell’errore e’ cambiato

leggermente e va aggiornato.
– pagina 18, alla fine della sezione 3.1.3. Qui anche il valore dell’errore e’ cambiato

leggermente e va aggiornato.

��J(u)� J(u
h

)
��  TOL ⌧ = TOL/card(T (j)
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1
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∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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prima in alcune tabelle c’erano i CPU time sul PC di Alessandro), in modo che sia
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Questi dati sono menzionati a volte anche nel testo e vanno aggiornati con i nuovi
valori, in particolare in:

– pagina 10, sezione 2.3.2, una volta verso la fine della seconda colonna
– pagina 11, sezione 2.3.2, una volta all’inizio della prima colonna
– pagina 11, sezione 2.3.3, una volta nella prima colonna ed una volta nella seconda.
– pagina 16, alla fine della sezione 3.1.1
– pagina 17, alla fine della sezione 3.1.2. Qui anche il valore dell’errore e’ cambiato

leggermente e va aggiornato.
– pagina 18, alla fine della sezione 3.1.3. Qui anche il valore dell’errore e’ cambiato

leggermente e va aggiornato.

��J(u)� J(u
h

)
��  TOL ⌧ = TOL/card(T (j)

h

)

u, v 2 H1(⌦) 6= ;

B636 ARTINA, FORNASIER, MICHELETTI, AND PEROTTO

on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1
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∫

ΩD±

(g(tk)− u)2 dx+
1
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∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
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∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:
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where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
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2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1
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(1− v)2 + ε|∇v|2

]
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+
1

γA

∫
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(g(tk)− u)2 dx+
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∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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If                                        is a critical point,  
then                a.e. in Ω.       
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with α = (4ε)−1. Henceforth, we refer to (2.6) as the modified Ambrosio–Tortorelli
functional. Throughout the remaining part of this section, we mimic the analysis in
Burke, Ortner, and Süli [11] by suitably modifying it to deal with functional (2.6).

Using a truncation argument, it can be checked that any local minimizer (u, v)
of I(·, ·) in the H1(Ω)×H1(Ω) topology is such that 0 ≤ v ≤ 1 a.e. in Ω. Hence, we
allow ourselves to restrict the trial space for v to L∞(Ω) ∩H1(Ω).

Proposition 2.1. The functional I(·, ·) is Fréchet-differentiable in H1(Ω) ×
(H1(Ω) ∩ L∞(Ω)).

Proof. The proof follows directly from Proposition 1.1 in [11]. In particular, the
differentiability of the additional penalty terms is trivial and thus the penalty terms
do not change the regularity of the functional I(·, ·).

Let us introduce now the Fréchet derivative of I(w, z) in the direction (ϕ,ψ), i.e.,

(2.7)

I ′(w, z;ϕ,ψ) = 2

(∫

Ω
(z2 + η)∇w · ∇ϕ dx +

1

γA

∫

ΩD±

(w − g(tk))ϕ dx

)

+2

(∫

Ω

[
zψ|∇w|2 + α(z − 1)ψ + ε∇z · ∇ψ

]
dx+

1

γB

∫

CRk−1

zψ dx

)

=: 2aγA(z;w,ϕ) + 2bγB(w; z,ψ),

where we have split the derivative into two parts, the first one, aγA , associated with
the derivative in the direction ϕ, and the second one, bγB , related to the direction ψ.
Accordingly, we define the notion of critical point for I(·, ·).

Definition 2.2. The pair (u, v) ∈ H1(Ω)× (H1(Ω) ∩L∞(Ω)) is a critical point
of I(·, ·) if I ′(u, v;ϕ,ψ) = 0 for all ϕ ∈ H1(Ω) and for all ψ ∈ (H1(Ω) ∩ L∞(Ω)).

By the following proposition, we can get rid of the constraint on v, as anticipated
above.

Proposition 2.3. If (u, v) ∈ H1(Ω) × (H1(Ω) ∩ L∞(Ω)) is a critical point of
I(·, ·), then 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω.

Proof. Following the argument of Proposition 1.3 of [11], suppose that (u, v)
is a critical point of I(·, ·) and that Ω1 and Ω2 are the two subsets of Ω such that
Ω1 = {x ∈ Ω | v(x) > 1}, Ω2 = {x ∈ Ω | v(x) < 0}, and |Ω1 ∪ Ω2| > 0. Since (u, v) is
a critical point of I(·, ·), we have

bγB (u; v,ψ) = 0 ∀ψ ∈ H1(Ω) ∩ L∞(Ω).

Then, if we choose

ψ(x) =

⎧
⎨

⎩

1− v(x) x ∈ Ω1,
−v(x) x ∈ Ω2,
0 elsewhere,

we obtain

(2.8)

bγB(u; v,ψ) =

∫

Ω1

[
v(1 − v)|∇u|2 − α(v − 1)2 − ε|∇v|2

]
dx

−
∫

Ω2

[
v2|∇u|2 + α(v − 1)v + ε|∇v|2

]
dx

− 1

γB

∫

CRk−1∩Ω2

v2 dx+
1

γB

∫

CRk−1∩Ω1

v(1 − v) dx = 0.

The left-hand side of (2.8) consists of four negative terms, leading to a
contradiction.
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From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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with α = (4ε)−1. Henceforth, we refer to (2.6) as the modified Ambrosio–Tortorelli
functional. Throughout the remaining part of this section, we mimic the analysis in
Burke, Ortner, and Süli [11] by suitably modifying it to deal with functional (2.6).
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allow ourselves to restrict the trial space for v to L∞(Ω) ∩H1(Ω).
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Proof. The proof follows directly from Proposition 1.1 in [11]. In particular, the
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Let us introduce now the Fréchet derivative of I(w, z) in the direction (ϕ,ψ), i.e.,

(2.7)

I ′(w, z;ϕ,ψ) = 2

(∫

Ω
(z2 + η)∇w · ∇ϕ dx +

1

γA

∫

ΩD±

(w − g(tk))ϕ dx

)

+2

(∫

Ω

[
zψ|∇w|2 + α(z − 1)ψ + ε∇z · ∇ψ

]
dx+

1

γB

∫

CRk−1

zψ dx

)

=: 2aγA(z;w,ϕ) + 2bγB(w; z,ψ),

where we have split the derivative into two parts, the first one, aγA , associated with
the derivative in the direction ϕ, and the second one, bγB , related to the direction ψ.
Accordingly, we define the notion of critical point for I(·, ·).

Definition 2.2. The pair (u, v) ∈ H1(Ω)× (H1(Ω) ∩L∞(Ω)) is a critical point
of I(·, ·) if I ′(u, v;ϕ,ψ) = 0 for all ϕ ∈ H1(Ω) and for all ψ ∈ (H1(Ω) ∩ L∞(Ω)).

By the following proposition, we can get rid of the constraint on v, as anticipated
above.

Proposition 2.3. If (u, v) ∈ H1(Ω) × (H1(Ω) ∩ L∞(Ω)) is a critical point of
I(·, ·), then 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω.

Proof. Following the argument of Proposition 1.3 of [11], suppose that (u, v)
is a critical point of I(·, ·) and that Ω1 and Ω2 are the two subsets of Ω such that
Ω1 = {x ∈ Ω | v(x) > 1}, Ω2 = {x ∈ Ω | v(x) < 0}, and |Ω1 ∪ Ω2| > 0. Since (u, v) is
a critical point of I(·, ·), we have

bγB (u; v,ψ) = 0 ∀ψ ∈ H1(Ω) ∩ L∞(Ω).

Then, if we choose

ψ(x) =

⎧
⎨

⎩

1− v(x) x ∈ Ω1,
−v(x) x ∈ Ω2,
0 elsewhere,

we obtain

(2.8)

bγB(u; v,ψ) =

∫

Ω1

[
v(1 − v)|∇u|2 − α(v − 1)2 − ε|∇v|2

]
dx

−
∫

Ω2

[
v2|∇u|2 + α(v − 1)v + ε|∇v|2

]
dx

− 1

γB

∫

CRk−1∩Ω2

v2 dx+
1

γB

∫

CRk−1∩Ω1

v(1 − v) dx = 0.

The left-hand side of (2.8) consists of four negative terms, leading to a
contradiction.

Looking for critical points : Fréchet differentiable   
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2.1. The finite element discretization. We introduce the discrete counter-
part of the minimization problem (2.5) in a finite element setting. Thus, we denote
by {Th}h>0 a family of meshes of the domain Ω, with Nh the index set of the vertices
of Th and Eh the skeleton of Th. Henceforth, we assume that the boundary of ΩD±

coincides with the union of consecutive edges in Eh. With {Th}h>0 we associate the
space Xh of the continuous piecewise linear finite elements [16].

We denote by Ih(uh, vh) the discrete correspondent of I(u, v) in (2.6), given by

(2.9)

Ih(uh, vh) =

∫

Ω

[ (
Ph(v

2
h) + η

)
|∇uh|2 dx+ αPh((1− vh)

2) + ε|∇vh|2
]
dx

+
1

γA

∫

ΩD±

Ph

(
(gh(tk)− uh)

2
)
dx+

1

γB

∫

CRk−1

Ph

(
v2h
)
dx,

where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) ∈ Xh a suitable discrete approximation of g(tk). In particular, we pick gh(tk)
such that

(2.10)

∫

ΩD±

gh(tk)wh dx =

∫

ΩD±

g(tk)wh dx ∀wh ∈ Xh,

i.e., gh(tk) is the L2(ΩD±)-projection of g(tk) onto Xh. The action of the operator
Ph is equivalent to a mass lumping [40] and it allows us to extend Proposition 2.3 to
the critical points of Ih(·, ·) as well.

In what follows, we assume that the off-diagonal entries of the stiffness matrix
K = [kij ] associated with the space Xh are nonpositive, i.e.,

(2.11) kij =

∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i ̸= j ∈ Nh,

where {ξl}#Nh

l=1 denotes the finite element basis of Xh. This condition is related to the
discrete maximum principle as discussed, for instance, in [17, 32, 39]. The discrete
analogue to (2.5) is

(uh(tk), vh(tk)) ∈ argmin
ûh ∈ Xh,
v̂h ∈ Xh

Ih(ûh, v̂h).

Analogously to Definition 2.2, we have the following.
Definition 2.4. The pair (uh, vh) ∈ Xh × Xh is a critical point of Ih(·, ·) if

I ′h(uh, vh;ϕh,ψh) = 0 for all (ϕh,ψh) ∈ Xh ×Xh, where

I ′h(uh, vh;ϕh,ψh) = 2

(∫

Ω
(Ph(v

2
h) + η)∇uh ·∇ϕh dx+

1

γA

∫

ΩD±

Ph((uh − gh(tk))ϕh) dx

)

+2

(∫

Ω

[
Ph(vhψh)|∇uh|2 + αPh((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+
1

γB

∫

CRh
k−1

Ph (vhψh) dx

)
=: 2ahγA(vh;uh,ϕh) + 2bhγB (uh; vh,ψh).

Proposition 2.3 can be adapted to the discrete case, suitably relying on assumption
(2.11) and the properties of Ph as shown in the following

Proposition 2.5. Let (uh, vh) ∈ Xh × Xh be a critical point of Ih(·, ·); then
0 ≤ vh ≤ 1 for all x ∈ Ω.
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(Lagrangian interpolant)   +  hypotheses on     and on the 
   stiffness matrix  
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is a critical point, then              in Ω.       
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0 ≤ vh ≤ 1 for all x ∈ Ω.
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2.1. The finite element discretization. We introduce the discrete counter-
part of the minimization problem (2.5) in a finite element setting. Thus, we denote
by {Th}h>0 a family of meshes of the domain Ω, with Nh the index set of the vertices
of Th and Eh the skeleton of Th. Henceforth, we assume that the boundary of ΩD±
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(2.9)

Ih(uh, vh) =

∫

Ω

[ (
Ph(v

2
h) + η

)
|∇uh|2 dx+ αPh((1− vh)

2) + ε|∇vh|2
]
dx

+
1

γA

∫

ΩD±

Ph

(
(gh(tk)− uh)

2
)
dx+

1

γB

∫

CRk−1

Ph

(
v2h
)
dx,

where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) ∈ Xh a suitable discrete approximation of g(tk). In particular, we pick gh(tk)
such that

(2.10)

∫

ΩD±

gh(tk)wh dx =

∫

ΩD±

g(tk)wh dx ∀wh ∈ Xh,

i.e., gh(tk) is the L2(ΩD±)-projection of g(tk) onto Xh. The action of the operator
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(2.11) kij =

∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i ̸= j ∈ Nh,
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l=1 denotes the finite element basis of Xh. This condition is related to the
discrete maximum principle as discussed, for instance, in [17, 32, 39]. The discrete
analogue to (2.5) is

(uh(tk), vh(tk)) ∈ argmin
ûh ∈ Xh,
v̂h ∈ Xh

Ih(ûh, v̂h).
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Ω
(Ph(v

2
h) + η)∇uh ·∇ϕh dx+

1

γA

∫

ΩD±

Ph((uh − gh(tk))ϕh) dx

)

+2
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Ω

[
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]
dx

+
1

γB

∫

CRh
k−1

Ph (vhψh) dx

)
=: 2ahγA(vh;uh,ϕh) + 2bhγB (uh; vh,ψh).

Proposition 2.3 can be adapted to the discrete case, suitably relying on assumption
(2.11) and the properties of Ph as shown in the following

Proposition 2.5. Let (uh, vh) ∈ Xh × Xh be a critical point of Ih(·, ·); then
0 ≤ vh ≤ 1 for all x ∈ Ω.
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Fig.4.Thestraightcrack:finalanisotropicadaptedmeshprovidedbyAlgorithm2(left);final
anisotropicadaptedmesh(center)andzoomin(right)deliveredbyAlgorithm3.
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Fig.5.Thestraightcrack:v-field(left),finaladaptedmesh(center),andzoom-in(right)at
thefinaltimeinthecaseoftheisotropiccounterpartofAlgorithm2.

Figure5providesthev-fieldandthefinaladaptedmeshforanisotropicadap-
tation,obtainedbyenforcingsK=1forallK∈ThinAlgorithm2.Thecrackis
detectedalsointhiscaseeventhoughtherequirednumberofelementsisfarlarger,
i.e.,78,025trianglesversus38,299.Moreover,aslightlywavierpathisexhibitedwith
respecttoFigure3,left.

5.2.Thecurvedcrack.Thissecondtestcaseismeanttoassesswhetherthe
fracturechangesdirectionifthedomainexhibitsaweakinset,suchasahole.The
computationaldomainisthesameasintheprevioustestcasewiththeadditional
presenceofacircularholeofradius0.2,centeredat(0.3,0.3)(seeFigure2,right).
Thepresenceoftheholeintroducesanelementofweaknessinthematerial.Asa
consequence,duetoenergyarguments,weexpectthatthefracturebendsitspath
towardtheholeinsteadofproceedingalongastraightline.Asobservedin[11],this
testcaseismorechallengingthanthepreviousone.Therefore,wechooseatighter
tolerance,i.e.,REFTOL=10−3.Thesimulatedcrackpathisverystablewithrespect
tothechoiceoftheparameters,aslongastheyarenotlargerthanthoseinTable1
(wereferto[3]foranextensivesensitivityanalysistotheparametertuningwhichwe
summarizeinRemark5.1).

InFigure6,weshowthev-fieldatthefinaltimeyieldedbythetwoalgorithms.
Inbothcases,thecrackentersthehole.Asalreadyobservedintheprevioustestcase,

anisotropic adapted meshes 
sharply capture these features 
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[L. Formaggia, S.P. (2001)] 

With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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with r = 0, 1, and

||w � Qh(w)||L2(@K) < C2
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interpolation error 
 estimates 

[L. Formaggia, S.P. (2001,2003)] 
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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||w � Qh(w)||L2(@K) < C2

 

hK

�1,K�2,K

!1/2
2

6

6

6

6

6

6

4

2
X

i=1

�2
i,K(rT

i,KG�K (w)ri,K)

3

7

7

7

7

7

7

5

1/2

, (10)

4

®   

With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦
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⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
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(uh � f ) �h d⌦ + 2�
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(Ph(v2
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Ph((vh � 1) h) d⌦

+ 2�✏
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⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives
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(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
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(uh � f ) �h d⌦ + 2�
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(Ph(v2
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(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
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(Ph(v2
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(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
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⌦

(uh � f ) �h d⌦ + 2�
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(Ph(v2
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Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z
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(Ph(v2
h) + ⌘)ruh · r�h d⌦
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Ph((vh � 1) h) d⌦

+ 2�✏
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rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives
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(uh � f ) �h d⌦ + 2�
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⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏
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⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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ANISOTROPICMESHADAPTATIONFORCRACKDETECTIONB653
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Fig.4.Thestraightcrack:finalanisotropicadaptedmeshprovidedbyAlgorithm2(left);final
anisotropicadaptedmesh(center)andzoomin(right)deliveredbyAlgorithm3.
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Fig.5.Thestraightcrack:v-field(left),finaladaptedmesh(center),andzoom-in(right)at
thefinaltimeinthecaseoftheisotropiccounterpartofAlgorithm2.

Figure5providesthev-fieldandthefinaladaptedmeshforanisotropicadap-
tation,obtainedbyenforcingsK=1forallK∈ThinAlgorithm2.Thecrackis
detectedalsointhiscaseeventhoughtherequirednumberofelementsisfarlarger,
i.e.,78,025trianglesversus38,299.Moreover,aslightlywavierpathisexhibitedwith
respecttoFigure3,left.

5.2.Thecurvedcrack.Thissecondtestcaseismeanttoassesswhetherthe
fracturechangesdirectionifthedomainexhibitsaweakinset,suchasahole.The
computationaldomainisthesameasintheprevioustestcasewiththeadditional
presenceofacircularholeofradius0.2,centeredat(0.3,0.3)(seeFigure2,right).
Thepresenceoftheholeintroducesanelementofweaknessinthematerial.Asa
consequence,duetoenergyarguments,weexpectthatthefracturebendsitspath
towardtheholeinsteadofproceedingalongastraightline.Asobservedin[11],this
testcaseismorechallengingthanthepreviousone.Therefore,wechooseatighter
tolerance,i.e.,REFTOL=10−3.Thesimulatedcrackpathisverystablewithrespect
tothechoiceoftheparameters,aslongastheyarenotlargerthanthoseinTable1
(wereferto[3]foranextensivesensitivityanalysistotheparametertuningwhichwe
summarizeinRemark5.1).

InFigure6,weshowthev-fieldatthefinaltimeyieldedbythetwoalgorithms.
Inbothcases,thecrackentersthehole.Asalreadyobservedintheprevioustestcase,
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looking for  
anisotropic information 

[L. Formaggia, S.P. (2001)] 

With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
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2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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[L. Formaggia, S.P. (2001,2003)] 

®   

With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
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⌦

|ruh|2Ph(vh h) d⌦ +
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⌦

Ph((vh � 1) h) d⌦

+ 2�✏
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⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)
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|ruh|2Ph(vh h) d⌦ +
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Ph((vh � 1) h) d⌦

+ 2�✏
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rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have

||w � Qh(w)||Hr(K) < Cr
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
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⌦

|ruh|2Ph(vh h) d⌦ +
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2✏
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⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT

K⇤KRK , with RT
K = [r1,K , r2,K]

and ⇤K = diag(�1,K , �2,K), where RK 2 R2⇥2 is the eigenvector matrix, and ⇤K 2 R2⇥2 collects
the eigenvalues of BK , with �1,K � �2,K . The geometric interpretation of these quantities iden-
tifies the eigenvectors ri,K with the direction of the two semi-axes of EK , while the eigenvalues
�i,K meausure the corresponding length. The deformation of K is quantified by the aspect ratio,
sK = �1,K/�2,K � 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic estimates for
the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.

Lemma 3.1. Let w 2 H1(⌦). If the cardinality #�K < N , for someN 2 N+, and if diam(T�1
K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
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With a view to the minimization of I✏,h(uh, vh), we are led to define the derivatives

I✏,h,u(uh, vh) = 2
Z

⌦

(uh � f ) �h d⌦ + 2�
Z

⌦

(Ph(v2
h) + ⌘)ruh · r�h d⌦

=: 2 ah(vh; uh, �h)

I✏,h,v(uh, vh) = 2�
Z

⌦

|ruh|2Ph(vh h) d⌦ +
�

2✏

Z

⌦

Ph((vh � 1) h) d⌦

+ 2�✏
Z

⌦

rvh · r h d⌦ =: 2 bh(uh; vh, h),

(7)

for any (�h, h) 2 V2
h . Analogously to [3, Proposition 2.5], the following statement can be proved.

Proposition 2.2. If (uh, vh) 2 V2
h is a critical point of I✏,h(·, ·), i.e., ah(vh; uh, �h)+bh(uh; vh, h) =

0, for any (�h, h) 2 V2
h , then 0  vh  1 in ⌦.

3. Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive a sharp seg-
mentation procedure of the true image. For this purpose, we first lay the anisotropic back-
ground according to [11, 18]. In particular, we exploit the spectral properties of the a�ne map,
TK : K̂ ! K, from the equilateral reference triangle, K̂, inscribed in the unit circle, to the generic
element, K, of Th, defined by

TK(ˆ

x) = MK ˆ

x + tK , (8)

with MK 2 R2⇥2, tK 2 R2, x = (x1, x2)T 2 K, ˆ

x 2 K̂.
With this aim, we first decompose MK as MK = BKZK with BK , ZK 2 R2⇥2, a symmet-

ric positive-definite and an orthogonal matrix, respectively. The two matrices, providing the
so-called polar decomposition, deform and rotate K̂ into K and the circle into an ellipse, EK ,
circumscribed to K. Matrix BK is further decomposed as BK = RT
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K = [r1,K , r2,K]
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sK = �1,K/�2,K � 1.
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the interpolation error associated with the quasi-interpolant Clément operator, Qh : L2(⌦) ! Vh
[9], referring to [13, 14, 17] for all the details.
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K (�K)) <

C� ' O(1), where �K = {T 2 Th : T \ K , ;}, then there exist constants Cs = Cs(N ,C�), with
s = 0, 1, 2, such that, for any K 2 Th, we have
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2.1. The finite element discretization. We introduce the discrete counter-
part of the minimization problem (2.5) in a finite element setting. Thus, we denote
by {Th}h>0 a family of meshes of the domain Ω, with Nh the index set of the vertices
of Th and Eh the skeleton of Th. Henceforth, we assume that the boundary of ΩD±

coincides with the union of consecutive edges in Eh. With {Th}h>0 we associate the
space Xh of the continuous piecewise linear finite elements [16].

We denote by Ih(uh, vh) the discrete correspondent of I(u, v) in (2.6), given by

(2.9)

Ih(uh, vh) =

∫

Ω

[ (
Ph(v

2
h) + η

)
|∇uh|2 dx+ αPh((1− vh)

2) + ε|∇vh|2
]
dx

+
1

γA

∫

ΩD±

Ph

(
(gh(tk)− uh)

2
)
dx+

1

γB

∫

CRk−1

Ph

(
v2h
)
dx,

where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) ∈ Xh a suitable discrete approximation of g(tk). In particular, we pick gh(tk)
such that

(2.10)

∫

ΩD±

gh(tk)wh dx =

∫

ΩD±

g(tk)wh dx ∀wh ∈ Xh,

i.e., gh(tk) is the L2(ΩD±)-projection of g(tk) onto Xh. The action of the operator
Ph is equivalent to a mass lumping [40] and it allows us to extend Proposition 2.3 to
the critical points of Ih(·, ·) as well.

In what follows, we assume that the off-diagonal entries of the stiffness matrix
K = [kij ] associated with the space Xh are nonpositive, i.e.,

(2.11) kij =

∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i ̸= j ∈ Nh,

where {ξl}#Nh

l=1 denotes the finite element basis of Xh. This condition is related to the
discrete maximum principle as discussed, for instance, in [17, 32, 39]. The discrete
analogue to (2.5) is

(uh(tk), vh(tk)) ∈ argmin
ûh ∈ Xh,
v̂h ∈ Xh

Ih(ûh, v̂h).

Analogously to Definition 2.2, we have the following.
Definition 2.4. The pair (uh, vh) ∈ Xh × Xh is a critical point of Ih(·, ·) if

I ′h(uh, vh;ϕh,ψh) = 0 for all (ϕh,ψh) ∈ Xh ×Xh, where

I ′h(uh, vh;ϕh,ψh) = 2

(∫

Ω
(Ph(v

2
h) + η)∇uh ·∇ϕh dx+

1

γA

∫

ΩD±

Ph((uh − gh(tk))ϕh) dx

)

+2

(∫

Ω

[
Ph(vhψh)|∇uh|2 + αPh((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+
1

γB

∫

CRh
k−1

Ph (vhψh) dx

)
=: 2ahγA(vh;uh,ϕh) + 2bhγB (uh; vh,ψh).

Proposition 2.3 can be adapted to the discrete case, suitably relying on assumption
(2.11) and the properties of Ph as shown in the following

Proposition 2.5. Let (uh, vh) ∈ Xh × Xh be a critical point of Ih(·, ·); then
0 ≤ vh ≤ 1 for all x ∈ Ω.
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which enjoys one-dimensional features. It is beyond the purpose of this paper to study
the error induced by this approximation.

3. An anisotropic error estimator for the modified Ambrosio–Tortorelli
functional. The goal of this section is to provide a suitable optimization proce-
dure for minimizing functional (2.4) by successive minimizations of (2.9) on adapted
anisotropic meshes. For this purpose, we first lay down the anisotropic background
and then we derive an a posteriori estimator for |I ′(uh, vh;ϕ,ψ)| by extending the
analysis in [11].

3.1. The anisotropic background. We refer to the setting in [22, 34], where
the anisotropic information is derived from the spectral properties of the standard
affine map TK : K̂ → K with

x = TK(x̂) = MK x̂+ tK

between the equilateral reference triangle K̂ inscribed in the unit circle and the generic
triangle K of the mesh Th, with MK ∈ R2×2, tK ∈ R2, x ∈ K, x̂ ∈ K̂.

We introduce the polar decomposition of the Jacobian MK , i.e., MK = BKZK ,
where BK , ZK ∈ R2×2 are a symmetric positive-definite and an orthogonal matrix,
respectively. The first matrix models the deformation of K, while ZK rotates it
rigidly. Then, we consider the eigenvalue factorization of BK as BK = RT

KΛKRK ,
with RT

K = [r1,K , r2,K ] and ΛK = diag(λ1,K ,λ2,K). In particular, the eigenvectors
r1,K , r2,K give the directions of the semi-axes of the ellipse circumscribed to K, while
the eigevalues λ1,K , λ2,K measure the length of these semi-axes (see Figure 1). We
also define the aspect ratio of the element K by sK = λ1,K/λ2,K .

K̂

1

1,Kλ

λ

K

r

2,K

1,K
2,K
r

TK

Fig. 1. Geometric quantities associated with the map TK .

With a view to an anisotropic control of the mesh, we introduce the quasi-
interpolant Clément operatorQh : L2(Ω) → Xh [18]. We recall the following anisotrop-
ic estimate for the interpolation error.

Lemma 3.1. Let w ∈ H1(Ω). If the cardinality #∆K ≤ N for some N ∈ N, and
diam(T−1

K (∆K)) ≤ C∆ ≃ O(1), where ∆K = {T ∈ Th : T ∩K ̸= ∅}, then there exist
constants Cs = Cs(N , C∆), with s = 0, 1, 2, such that, for any K ∈ Th, it holds that

(3.1) ∥w −Qh(w)∥Hs(K) ≤ Cs

(
1

λ2,K

)s
[

2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K )

]1/2
,
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with s = 0, 1, and

(3.2) ∥w −Qh(w)∥L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K )

]1/2
,

where hK = diam(K),

(3.3) G∆K (w) =
∑

T∈∆K

GT (w)

is a symmetric positive semidefinite matrix with

(3.4) GT (w) =

⎡

⎢⎢⎢⎢⎣

∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx

⎤

⎥⎥⎥⎥⎦
,

for any T ∈ Th.
Proof. See [24, 25] for the details.
Notice that the geometrical hypotheses in Lemma 3.1 do not limit explicitly the

anisotropic features (stretching factor and orientation) of each element, but rather
they ensure some smoothness in the variation of the anisotropic features [36].

We recall an equivalence result between the standard H1(∆K)-seminorm and its
anisotropic correspondent.

Lemma 3.2. Let w ∈ H1(Ω) and K ∈ Th. For any β1,β2 > 0, it holds that

(3.5) min{β1,β2} ≤
β1(rT1,KG∆K (w)r1,K) + β2(rT2,KG∆K (w)r2,K)

|w|2H1(∆K)

≤ max{β1,β2},

where G∆K (·) is defined as in (3.3).
Proof. See [33] for the details.

3.2. An a posteriori error estimator. We can now state the main result of
this section which represents the anisotropic analogue of Proposition 3.1 in [11].

Proposition 3.3. Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.4. Then, it holds that

(3.6)

|I ′(uh, vh;ϕ,ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ,ψ ∈ H1(Ω),

where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
∥[[∇uh]]∥L∞(∂K) ∥v2h + η∥L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ∥2vh(∇vh · ∇uh)∥L2(K) +
δK,Ω±

D

γA

(
∥uh − gh(tk)∥L2(K)

+ ∥gh(tk)− g(tk)∥L2(K)

)
+

1

λ2,K

[
∥v2h − Ph(v

2
h)∥L∞(K) ∥∇uh∥L2(K)

+
|K|1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

]
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ρBK(uh, vh) = ∥(|∇uh|2 + α)vh − α∥L2(K) +
ε

2
∥[[∇vh]]∥L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
∥vh∥L2(K) +

h2
K

λ2,K

[
∥ |∇uh|2 + α∥L2(K)

+
|K|1/2 δK,CRk−1

γB

]
|vh|W 1,∞(K),

ωK(w) =
[ 2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K)
]1/2

∀w ∈ H1(Ω),

where

(3.7) [[wh]] =

{ ∣∣[∇wh · ν]
∣∣ on Eh,

∣∣∇wh · ν
∣∣ on Eh ∩ ∂Ω

denotes the absolute value of the jump of the normal derivative, with ν the unit normal
vector to the generic edge in Eh, gh is chosen as in (2.10), and δK,ϖ is such that
δK,ϖ = 1 if K ∩ϖ ̸= ∅ and δK,ϖ = 0 otherwise.

Proof. Since (uh, vh) is a critical point of Ih(·, ·), we have

(3.8) ahγA(vh;uh,ϕh) = 0 ∀ϕh ∈ Xh, bhγB (uh; vh,ψh) = 0 ∀ψh ∈ Xh.

Moreover, from (2.7), for any pair (ϕ,ψ) ∈ H1(Ω)×H1(Ω), it holds that

(3.9) |I ′(uh, vh;ϕ,ψ)| ≤ 2|aγA(vh;uh,ϕ)| + 2|bγB (uh; vh,ψ)|.

Let us deal with the two terms above, separately. We start from |aγA(vh;uh,ϕ)|.
Thanks to (3.8), we have

(3.10)
|aγA(vh;uh,ϕ)| ≤ |aγA(vh;uh,ϕ− ϕh)|

+ |aγA(vh;uh,ϕh)− ahγA(vh;uh,ϕh)| ∀ϕ ∈ H1(Ω), ∀ϕh ∈ Xh.

Concerning the first term on the right-hand side of (3.10), we get

(3.11)∣∣aγA(vh;uh,ϕ− ϕh)
∣∣

=
∣∣∣
∑

K∈Th

{∫

K
(v2h + η)∇uh · ∇(ϕ − ϕh) dx+

1

γA

∫

K
(uh − g(tk))(ϕ − ϕh)χΩ±

D
dx
}∣∣∣

=
∣∣∣
∑

K∈Th

{∫

K
−2vh(∇vh · ∇uh)(ϕ− ϕh) dx+

∫

∂K
(v2h + η)∇uh · ν(ϕ− ϕh)ds

+
1

γA

∫

K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
(ϕ− ϕh)χΩ±

D
dx
}∣∣∣

≤
∑

K∈Th

{
∥2vh(∇vh · ∇uh)∥L2(K) ∥ϕ− ϕh∥L2(K) +

1

2

∫

∂K
[[∇uh]] |v2h + η| |ϕ− ϕh|ds

critical point of Ih residual residual 
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with s = 0, 1, and

(3.2) ∥w −Qh(w)∥L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K )

]1/2
,

where hK = diam(K),

(3.3) G∆K (w) =
∑

T∈∆K

GT (w)

is a symmetric positive semidefinite matrix with

(3.4) GT (w) =

⎡

⎢⎢⎢⎢⎣

∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx

⎤

⎥⎥⎥⎥⎦
,

for any T ∈ Th.
Proof. See [24, 25] for the details.
Notice that the geometrical hypotheses in Lemma 3.1 do not limit explicitly the

anisotropic features (stretching factor and orientation) of each element, but rather
they ensure some smoothness in the variation of the anisotropic features [36].

We recall an equivalence result between the standard H1(∆K)-seminorm and its
anisotropic correspondent.

Lemma 3.2. Let w ∈ H1(Ω) and K ∈ Th. For any β1,β2 > 0, it holds that

(3.5) min{β1,β2} ≤
β1(rT1,KG∆K (w)r1,K) + β2(rT2,KG∆K (w)r2,K)

|w|2H1(∆K)

≤ max{β1,β2},

where G∆K (·) is defined as in (3.3).
Proof. See [33] for the details.

3.2. An a posteriori error estimator. We can now state the main result of
this section which represents the anisotropic analogue of Proposition 3.1 in [11].

Proposition 3.3. Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.4. Then, it holds that

(3.6)

|I ′(uh, vh;ϕ,ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ,ψ ∈ H1(Ω),

where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
∥[[∇uh]]∥L∞(∂K) ∥v2h + η∥L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ∥2vh(∇vh · ∇uh)∥L2(K) +
δK,Ω±

D

γA

(
∥uh − gh(tk)∥L2(K)

+ ∥gh(tk)− g(tk)∥L2(K)

)
+

1

λ2,K

[
∥v2h − Ph(v

2
h)∥L∞(K) ∥∇uh∥L2(K)

+
|K|1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

]
,
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with s = 0, 1, and

(3.2) ∥w −Qh(w)∥L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K )

]1/2
,

where hK = diam(K),

(3.3) G∆K (w) =
∑

T∈∆K

GT (w)

is a symmetric positive semidefinite matrix with

(3.4) GT (w) =

⎡

⎢⎢⎢⎢⎣

∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx

⎤

⎥⎥⎥⎥⎦
,

for any T ∈ Th.
Proof. See [24, 25] for the details.
Notice that the geometrical hypotheses in Lemma 3.1 do not limit explicitly the

anisotropic features (stretching factor and orientation) of each element, but rather
they ensure some smoothness in the variation of the anisotropic features [36].

We recall an equivalence result between the standard H1(∆K)-seminorm and its
anisotropic correspondent.

Lemma 3.2. Let w ∈ H1(Ω) and K ∈ Th. For any β1,β2 > 0, it holds that

(3.5) min{β1,β2} ≤
β1(rT1,KG∆K (w)r1,K) + β2(rT2,KG∆K (w)r2,K)

|w|2H1(∆K)

≤ max{β1,β2},

where G∆K (·) is defined as in (3.3).
Proof. See [33] for the details.

3.2. An a posteriori error estimator. We can now state the main result of
this section which represents the anisotropic analogue of Proposition 3.1 in [11].

Proposition 3.3. Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.4. Then, it holds that

(3.6)

|I ′(uh, vh;ϕ,ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ,ψ ∈ H1(Ω),

where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
∥[[∇uh]]∥L∞(∂K) ∥v2h + η∥L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ∥2vh(∇vh · ∇uh)∥L2(K) +
δK,Ω±

D

γA

(
∥uh − gh(tk)∥L2(K)

+ ∥gh(tk)− g(tk)∥L2(K)

)
+

1

λ2,K

[
∥v2h − Ph(v

2
h)∥L∞(K) ∥∇uh∥L2(K)

+
|K|1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

]
,
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
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2.1. The finite element discretization. We introduce the discrete counter-
part of the minimization problem (2.5) in a finite element setting. Thus, we denote
by {Th}h>0 a family of meshes of the domain Ω, with Nh the index set of the vertices
of Th and Eh the skeleton of Th. Henceforth, we assume that the boundary of ΩD±

coincides with the union of consecutive edges in Eh. With {Th}h>0 we associate the
space Xh of the continuous piecewise linear finite elements [16].

We denote by Ih(uh, vh) the discrete correspondent of I(u, v) in (2.6), given by

(2.9)

Ih(uh, vh) =

∫

Ω

[ (
Ph(v

2
h) + η

)
|∇uh|2 dx+ αPh((1− vh)

2) + ε|∇vh|2
]
dx

+
1

γA

∫

ΩD±

Ph

(
(gh(tk)− uh)

2
)
dx+

1

γB

∫

CRk−1

Ph

(
v2h
)
dx,

where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) ∈ Xh a suitable discrete approximation of g(tk). In particular, we pick gh(tk)
such that

(2.10)

∫

ΩD±

gh(tk)wh dx =

∫

ΩD±

g(tk)wh dx ∀wh ∈ Xh,

i.e., gh(tk) is the L2(ΩD±)-projection of g(tk) onto Xh. The action of the operator
Ph is equivalent to a mass lumping [40] and it allows us to extend Proposition 2.3 to
the critical points of Ih(·, ·) as well.

In what follows, we assume that the off-diagonal entries of the stiffness matrix
K = [kij ] associated with the space Xh are nonpositive, i.e.,

(2.11) kij =

∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i ̸= j ∈ Nh,

where {ξl}#Nh

l=1 denotes the finite element basis of Xh. This condition is related to the
discrete maximum principle as discussed, for instance, in [17, 32, 39]. The discrete
analogue to (2.5) is

(uh(tk), vh(tk)) ∈ argmin
ûh ∈ Xh,
v̂h ∈ Xh

Ih(ûh, v̂h).

Analogously to Definition 2.2, we have the following.
Definition 2.4. The pair (uh, vh) ∈ Xh × Xh is a critical point of Ih(·, ·) if

I ′h(uh, vh;ϕh,ψh) = 0 for all (ϕh,ψh) ∈ Xh ×Xh, where

I ′h(uh, vh;ϕh,ψh) = 2

(∫

Ω
(Ph(v

2
h) + η)∇uh ·∇ϕh dx+

1

γA

∫

ΩD±

Ph((uh − gh(tk))ϕh) dx

)

+2

(∫

Ω

[
Ph(vhψh)|∇uh|2 + αPh((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+
1

γB

∫

CRh
k−1

Ph (vhψh) dx

)
=: 2ahγA(vh;uh,ϕh) + 2bhγB (uh; vh,ψh).

Proposition 2.3 can be adapted to the discrete case, suitably relying on assumption
(2.11) and the properties of Ph as shown in the following

Proposition 2.5. Let (uh, vh) ∈ Xh × Xh be a critical point of Ih(·, ·); then
0 ≤ vh ≤ 1 for all x ∈ Ω.
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which enjoys one-dimensional features. It is beyond the purpose of this paper to study
the error induced by this approximation.

3. An anisotropic error estimator for the modified Ambrosio–Tortorelli
functional. The goal of this section is to provide a suitable optimization proce-
dure for minimizing functional (2.4) by successive minimizations of (2.9) on adapted
anisotropic meshes. For this purpose, we first lay down the anisotropic background
and then we derive an a posteriori estimator for |I ′(uh, vh;ϕ,ψ)| by extending the
analysis in [11].

3.1. The anisotropic background. We refer to the setting in [22, 34], where
the anisotropic information is derived from the spectral properties of the standard
affine map TK : K̂ → K with

x = TK(x̂) = MK x̂+ tK

between the equilateral reference triangle K̂ inscribed in the unit circle and the generic
triangle K of the mesh Th, with MK ∈ R2×2, tK ∈ R2, x ∈ K, x̂ ∈ K̂.

We introduce the polar decomposition of the Jacobian MK , i.e., MK = BKZK ,
where BK , ZK ∈ R2×2 are a symmetric positive-definite and an orthogonal matrix,
respectively. The first matrix models the deformation of K, while ZK rotates it
rigidly. Then, we consider the eigenvalue factorization of BK as BK = RT

KΛKRK ,
with RT

K = [r1,K , r2,K ] and ΛK = diag(λ1,K ,λ2,K). In particular, the eigenvectors
r1,K , r2,K give the directions of the semi-axes of the ellipse circumscribed to K, while
the eigevalues λ1,K , λ2,K measure the length of these semi-axes (see Figure 1). We
also define the aspect ratio of the element K by sK = λ1,K/λ2,K .

K̂

1

1,Kλ

λ

K

r

2,K

1,K
2,K
r

TK

Fig. 1. Geometric quantities associated with the map TK .

With a view to an anisotropic control of the mesh, we introduce the quasi-
interpolant Clément operatorQh : L2(Ω) → Xh [18]. We recall the following anisotrop-
ic estimate for the interpolation error.

Lemma 3.1. Let w ∈ H1(Ω). If the cardinality #∆K ≤ N for some N ∈ N, and
diam(T−1

K (∆K)) ≤ C∆ ≃ O(1), where ∆K = {T ∈ Th : T ∩K ̸= ∅}, then there exist
constants Cs = Cs(N , C∆), with s = 0, 1, 2, such that, for any K ∈ Th, it holds that

(3.1) ∥w −Qh(w)∥Hs(K) ≤ Cs

(
1

λ2,K

)s
[

2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K )

]1/2
,
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with s = 0, 1, and

(3.2) ∥w −Qh(w)∥L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K )

]1/2
,

where hK = diam(K),

(3.3) G∆K (w) =
∑

T∈∆K

GT (w)

is a symmetric positive semidefinite matrix with

(3.4) GT (w) =

⎡

⎢⎢⎢⎢⎣

∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx

⎤

⎥⎥⎥⎥⎦
,

for any T ∈ Th.
Proof. See [24, 25] for the details.
Notice that the geometrical hypotheses in Lemma 3.1 do not limit explicitly the

anisotropic features (stretching factor and orientation) of each element, but rather
they ensure some smoothness in the variation of the anisotropic features [36].

We recall an equivalence result between the standard H1(∆K)-seminorm and its
anisotropic correspondent.

Lemma 3.2. Let w ∈ H1(Ω) and K ∈ Th. For any β1,β2 > 0, it holds that

(3.5) min{β1,β2} ≤
β1(rT1,KG∆K (w)r1,K) + β2(rT2,KG∆K (w)r2,K)

|w|2H1(∆K)

≤ max{β1,β2},

where G∆K (·) is defined as in (3.3).
Proof. See [33] for the details.

3.2. An a posteriori error estimator. We can now state the main result of
this section which represents the anisotropic analogue of Proposition 3.1 in [11].

Proposition 3.3. Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.4. Then, it holds that

(3.6)

|I ′(uh, vh;ϕ,ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ,ψ ∈ H1(Ω),

where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
∥[[∇uh]]∥L∞(∂K) ∥v2h + η∥L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ∥2vh(∇vh · ∇uh)∥L2(K) +
δK,Ω±

D

γA

(
∥uh − gh(tk)∥L2(K)

+ ∥gh(tk)− g(tk)∥L2(K)

)
+

1

λ2,K

[
∥v2h − Ph(v

2
h)∥L∞(K) ∥∇uh∥L2(K)

+
|K|1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

]
,

critical point of Ih 
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)2

dx

∫

T
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∂x1

∂w

∂x2
dx

∫
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∂x2
dx
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)2

dx

⎤
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Proof. See [24, 25] for the details.
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≤ max{β1,β2},

where G∆K (·) is defined as in (3.3).
Proof. See [33] for the details.

3.2. An a posteriori error estimator. We can now state the main result of
this section which represents the anisotropic analogue of Proposition 3.1 in [11].

Proposition 3.3. Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.4. Then, it holds that

(3.6)

|I ′(uh, vh;ϕ,ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ,ψ ∈ H1(Ω),

where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
∥[[∇uh]]∥L∞(∂K) ∥v2h + η∥L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ∥2vh(∇vh · ∇uh)∥L2(K) +
δK,Ω±

D

γA

(
∥uh − gh(tk)∥L2(K)

+ ∥gh(tk)− g(tk)∥L2(K)

)
+

1

λ2,K

[
∥v2h − Ph(v

2
h)∥L∞(K) ∥∇uh∥L2(K)

+
|K|1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

]
,

weight 
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ρBK(uh, vh) = ∥(|∇uh|2 + α)vh − α∥L2(K) +
ε

2
∥[[∇vh]]∥L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
∥vh∥L2(K) +

h2
K

λ2,K

[
∥ |∇uh|2 + α∥L2(K)

+
|K|1/2 δK,CRk−1

γB

]
|vh|W 1,∞(K),

ωK(w) =
[ 2∑

i=1

λ2i,K(rTi,KG∆K (w)ri,K)
]1/2

∀w ∈ H1(Ω),

where

(3.7) [[wh]] =

{ ∣∣[∇wh · ν]
∣∣ on Eh,

∣∣∇wh · ν
∣∣ on Eh ∩ ∂Ω

denotes the absolute value of the jump of the normal derivative, with ν the unit normal
vector to the generic edge in Eh, gh is chosen as in (2.10), and δK,ϖ is such that
δK,ϖ = 1 if K ∩ϖ ̸= ∅ and δK,ϖ = 0 otherwise.

Proof. Since (uh, vh) is a critical point of Ih(·, ·), we have

(3.8) ahγA(vh;uh,ϕh) = 0 ∀ϕh ∈ Xh, bhγB (uh; vh,ψh) = 0 ∀ψh ∈ Xh.

Moreover, from (2.7), for any pair (ϕ,ψ) ∈ H1(Ω)×H1(Ω), it holds that

(3.9) |I ′(uh, vh;ϕ,ψ)| ≤ 2|aγA(vh;uh,ϕ)| + 2|bγB (uh; vh,ψ)|.

Let us deal with the two terms above, separately. We start from |aγA(vh;uh,ϕ)|.
Thanks to (3.8), we have

(3.10)
|aγA(vh;uh,ϕ)| ≤ |aγA(vh;uh,ϕ− ϕh)|

+ |aγA(vh;uh,ϕh)− ahγA(vh;uh,ϕh)| ∀ϕ ∈ H1(Ω), ∀ϕh ∈ Xh.

Concerning the first term on the right-hand side of (3.10), we get

(3.11)∣∣aγA(vh;uh,ϕ− ϕh)
∣∣

=
∣∣∣
∑

K∈Th

{∫

K
(v2h + η)∇uh · ∇(ϕ − ϕh) dx+

1

γA

∫

K
(uh − g(tk))(ϕ − ϕh)χΩ±

D
dx
}∣∣∣

=
∣∣∣
∑

K∈Th

{∫

K
−2vh(∇vh · ∇uh)(ϕ− ϕh) dx+

∫

∂K
(v2h + η)∇uh · ν(ϕ− ϕh)ds

+
1

γA

∫

K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
(ϕ− ϕh)χΩ±

D
dx
}∣∣∣

≤
∑

K∈Th

{
∥2vh(∇vh · ∇uh)∥L2(K) ∥ϕ− ϕh∥L2(K) +

1

2

∫

∂K
[[∇uh]] |v2h + η| |ϕ− ϕh|ds

weight 
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we have

∥I ′(uh, vh)∥(H1(Ω)×H1(Ω))∗ = sup
(ϕ,ψ)∈H1(Ω)×H1(Ω)

|I ′(uh, vh;ϕ,ψ)|
[
∥ϕ∥2H1(Ω) + ∥ψ∥2H1(Ω)

]1/2

≤ C

[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2
]

×
[ (

∥ϕ∥H1(Ω) + ∥ψ∥H1(Ω)

)

(∥ϕ∥2H1(Ω) + ∥ψ∥2H1(Ω))
1/2

]
,

i.e.,

(3.20)

∥I ′(uh, vh)∥(H1(Ω)×H1(Ω))∗

≤ C
[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2]
,

with C = C(N , C∆). Nevertheless, the right-hand side of (3.20) turns out to be a
very poor error estimator in terms of driving efficient anisotropic mesh adaptation.
Thus, we cannot pursue the approach in [11].

Since estimate (3.6) holds for any pair of test functions (ϕ,ψ) ∈ H1(Ω)×H1(Ω),
we make a specific choice, which allows us to write the left-hand side of (3.6) in terms
of an energy estimate.

Corollary 3.4. We have that

I(u, v)− I(uh, vh) =
1

2
I ′(uh, vh;u− uh, v − vh) +R

with R a third-order remainder in u− uh, v − vh.
Proof. The result follows by picking ϕ = u − uh and ψ = v − vh and using the

arguments in Proposition 2.1 in [5].
As a consequence, the error estimator that we propose is

(3.21) η(uh, vh) =
∑

K∈Th

ηK(uh, vh)

with ηK(uh, vh) = ρAK(vh, uh)ω
R
K(u− uh) + ρBK(uh, vh)ω

R
K(v − vh), where

ωR
K(z) =

[ 2∑

i=1

λ2i,K(rTi,KGR
∆K

(z)ri,K)
]1/2

with z = u− uh, v − vh,

with GR
∆K

(z) the matrix G∆K defined as in Lemma 3.1 applied to the recovered
gradient from zh [42, 34, 35]. In particular, due to the dependence of the weights
ωR
K on the first-order derivatives of the error, we approximate the entries of matrix

(3.4) by computable quantities, resorting to the well-known Zienkiewicz–Zhu recovery
procedure, as detailed in [22, formula (33) and Remark 9].

4. The numerical procedure. The numerical minimization of the functional
(2.6) by successive minimizations of (2.9) is not a trivial task. In fact, the presence
of the term v2|∇u|2 makes it nonconvex. Therefore, it is not possible, in general, to
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i.e.,

(3.20)

∥I ′(uh, vh)∥(H1(Ω)×H1(Ω))∗

≤ C
[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2]
,

with C = C(N , C∆). Nevertheless, the right-hand side of (3.20) turns out to be a
very poor error estimator in terms of driving efficient anisotropic mesh adaptation.
Thus, we cannot pursue the approach in [11].

Since estimate (3.6) holds for any pair of test functions (ϕ,ψ) ∈ H1(Ω)×H1(Ω),
we make a specific choice, which allows us to write the left-hand side of (3.6) in terms
of an energy estimate.

Corollary 3.4. We have that

I(u, v)− I(uh, vh) =
1

2
I ′(uh, vh;u− uh, v − vh) +R

with R a third-order remainder in u− uh, v − vh.
Proof. The result follows by picking ϕ = u − uh and ψ = v − vh and using the

arguments in Proposition 2.1 in [5].
As a consequence, the error estimator that we propose is

(3.21) η(uh, vh) =
∑

K∈Th

ηK(uh, vh)

with ηK(uh, vh) = ρAK(vh, uh)ω
R
K(u− uh) + ρBK(uh, vh)ω

R
K(v − vh), where

ωR
K(z) =

[ 2∑

i=1

λ2i,K(rTi,KGR
∆K

(z)ri,K)
]1/2

with z = u− uh, v − vh,

with GR
∆K

(z) the matrix G∆K defined as in Lemma 3.1 applied to the recovered
gradient from zh [42, 34, 35]. In particular, due to the dependence of the weights
ωR
K on the first-order derivatives of the error, we approximate the entries of matrix

(3.4) by computable quantities, resorting to the well-known Zienkiewicz–Zhu recovery
procedure, as detailed in [22, formula (33) and Remark 9].

4. The numerical procedure. The numerical minimization of the functional
(2.6) by successive minimizations of (2.9) is not a trivial task. In fact, the presence
of the term v2|∇u|2 makes it nonconvex. Therefore, it is not possible, in general, to

third order  
remainder 
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on its regularity. In section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in section 4 and numerically validated on two test cases in section 5.

2. The modified Ambrosio–Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids our selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.

Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

(2.1) v ≤ vε(tk−1),

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [7], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

(2.2) CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL}

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

(2.3) vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F.

Moving from this idea, we propose minimizing the following penalized functional:

(2.4)

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(2.5) (uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v)

for k = 1, . . . , F . Notice that even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

         + gradient recovery procedures 
[O.C. Zienkiewicz, J.Z. Zhu (1987,1992)] 
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the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [7, 11], we observe that for t = t0, we can still use (2.5) as
a starting minimization, as the last penalization term vanishes. Since the constraints
are clearly continuous, convex, and always nonnegative, the proof of the convergence
of the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0
follows from the Γ-convergence theory [19].

From now on, we refer only to functional (2.4), and we simplify the notation by
setting κ = 1 and by adopting the shorthand notation

(2.6)

I(u, v) =

∫

Ω

[
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The numerical procedure [M. Artina, M. Fornasier, S. Micheletti, S.P. (2015a)] 
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two separate 
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construct an algorithm with polynomial complexity guaranteeing convergence to the
global minimizers. The methods in the literature in general only ensure convergence
to local minima (see [4] and references therein).

In the first part of this section, we provide the algorithm employed for the mini-
mization of (2.6) in H1(Ω) ×H1(Ω). The discrete version of this algorithm coupled
with the mesh adaptive procedure is introduced in section 4.2.

4.1. The minimization algorithm. To minimize (2.6), we resort to the alter-
nate minimization algorithm proposed in [10]. This method exploits the convexity
of the functional with respect to the two separate variables. Thus, after fixing a
termination tolerance VTOL≪ 1, the algorithm is the following.

Algorithm 1.

1. Set k = 0;
2. If k = 0, set v1 = 1; else v1 = v(tk−1).
3. Set i = 1; err = 1;
while err ≥ VTOL do

4. ui = argmin
z∈H1(Ω)

I(z, vi);

5. vi+1 = argmin
z∈H1(Ω)

I(ui, z);

6. err = ∥vi+1 − vi∥L∞(Ω);
7. i ← i+ 1;

end while
8. u(tk) = ui−1; v(tk) = vi;
9. k ← k + 1;
10. if k > F , stop; else goto 2.

Steps 4 and 5 involve the two separate convex minimizations.
In the literature, several examples of implementations of this algorithm are avail-

able (see, e.g., [7, 8, 10, 11]) and a corresponding convergence proof can be obtained
by exploiting [7, Theorem 1] and [11, Theorems 4.1 and 4.2].

With a view to the numerical implementation, we will consider the discrete coun-
terpart of Algorithm 1. Since, in general, we expect the crack propagation to be a
strongly anisotropic process, characterized by very steep gradients of both the fields
u and v, we will resort to a finite element discretization based on anisotropic adapted
meshes, driven by the a posteriori error estimator derived in Proposition 3.3. The
challenge is to properly merge the minimization algorithm with an anisotropic adap-
tive procedure, as shown in the next section.

4.2. The mesh adaptive procedure. Following [33, 34, 35], we use a metric-
based mesh adaptive approach (see, e.g., [28]). In particular, for a fixed accuracy
tolerance TOL, we “predict” the optimal mesh with the least number of elements.

A metric is a symmetric positive-definite tensor field M : Ω → R2×2 which, for any
x ∈ Ω, provides the sizes that the optimal mesh should have along all the directions
around x. In practice, we approximate M via a piecewise-constant metric on a given
mesh Th, i.e., M|K = MK = RT

KL−2
K RK , for any K ∈ Th, where the matrices RK

and LK share the same structure as RK and ΛK in section 3, respectively.
Actually, there exists a strict link between metrics and meshes. We can associate

with an assigned mesh Th a corresponding piecewise-constant metric identified by
MK = RT

KΛ−2
K RK , for any K ∈ Th, where matrices RK and ΛK are exactly the same

as in section 3.1. Vice versa, for a given metric M, we can build a mesh, say, TM,

[B. Bourdin (2007), B. Bourdin, G.A. Francfort, J.-J. Marigo (2000), 
S. Burke, Ch. Ortner, E. Süli (2010)] 
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Algorithm 2. Optimize-then-adapt.

1. Set k = 0, j = 0, T (0)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set j = 0; errmesh= 1;
while errmesh ≥ MESHTOL do

4. Set i = 1; err = 1;
while err ≥ VTOL do

5. ui
h = argmin

zh∈X(j)
h

I(zh, v
i
h);

6. vi+1
h = argmin

zh∈X
(j)
h

I(ui
h, zh);

7. err = ∥vi+1
h − vih∥L∞(Ω);

8. i ← i+ 1;
end while
9. Compute the new metric M(j+1) based on ui−1

h and vih with TOL = REFTOL;

10. Build the adapted mesh T (j+1)
h ;

11. errmesh = |#T (j+1)
h −#T (j)

h |/#T (j)
h ;

12. Set v1h = Πj→j+1(v
i
h);

13. j ← j + 1;
end while
14. uh(tk) = Πj−1→j(u

i−1
h ); vh(tk) = Πj−1→j(v

i
h); T k

h = T (j)
h ;

15. Set T (0)
h = T k

h ;
16. k ← k + 1;
17. if k > F , stop; else goto 2.

The convergence of the mesh adaptivity is checked by monitoring the variation
of the number of elements during the adaptivity process. Although this check is not
rigorously sound, in practice it provides an effective stopping criterion.

An interpolation step between two successive adapted meshes is also employed
before restarting any new optimization or time loop. This is carried out by a suitable
interpolation operator, Πn→n+1(wh), which maps a finite element function wh defined
on T n

h onto the new mesh T n+1
h .

This algorithm performs well if the tip of the fracture moves sufficiently slow in
time. Indeed, since the coupling between optimization and adaptation is not so tight,
a time adaptivity could be desirable to restrain a fast mesh evolution. Nevertheless,
time adaptivity is not able to contain the final evolution steps when the actual fracture
leads to a sudden breakdown of the material which splits into two separate parts. This
limit can be ascribed also to the deficiency of the employed quasi-static model, which
clearly fails in describing very fast dynamics.

To dampen the crack propagation, we propose a second algorithm, which intro-
duces a tighter alternation of the optimization and mesh adaptation phases. The
meaning of all the involved parameters is the same as in Algorithm 2.

Algorithm 3. Optimize-and-adapt.

1. Set k = 0, T (1)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set i = 1; errmesh= 1; err= 1;
while errmesh ≥ MESHTOL & err ≥ VTOL do

4. ui
h = argmin

zh∈X(i)
h

I(zh, v
i
h);

minimization 
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5. vi+1
h = argmin

zh∈X
(i)
h

I(ui
h, zh);

6. Compute the new metric M(i+1) based on ui
h and vi+1

h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ∥vi+1
h − vih∥L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T (i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i ← i+ 1;
end while
12. uh(tk) = Πi−1→i(u

i−1
h ); vh(tk) = v1h; T k

h = T (i)
h ;

13. Set T (1)
h = T k

h ;
14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. The goal of this section is to assess the robustness
of the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test cases proposed in [11].
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Fig. 2. Domain and initial mesh for the straight crack (left pair) and for the curved crack
(right pair).

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)× (0, 2.2), containing a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.

As an initial grid, we pick the uniform unstructured mesh in Figure 2, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 1.

Table 1
The straight crack: parameters involved in Algorithms 2 and 3.

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2

mesh adaptation 
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Algorithm 2. Optimize-then-adapt.

1. Set k = 0, j = 0, T (0)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set j = 0; errmesh= 1;
while errmesh ≥ MESHTOL do

4. Set i = 1; err = 1;
while err ≥ VTOL do

5. ui
h = argmin

zh∈X(j)
h

I(zh, v
i
h);

6. vi+1
h = argmin

zh∈X
(j)
h

I(ui
h, zh);

7. err = ∥vi+1
h − vih∥L∞(Ω);

8. i ← i+ 1;
end while
9. Compute the new metric M(j+1) based on ui−1

h and vih with TOL = REFTOL;

10. Build the adapted mesh T (j+1)
h ;

11. errmesh = |#T (j+1)
h −#T (j)

h |/#T (j)
h ;

12. Set v1h = Πj→j+1(v
i
h);

13. j ← j + 1;
end while
14. uh(tk) = Πj−1→j(u

i−1
h ); vh(tk) = Πj−1→j(v

i
h); T k

h = T (j)
h ;

15. Set T (0)
h = T k

h ;
16. k ← k + 1;
17. if k > F , stop; else goto 2.

The convergence of the mesh adaptivity is checked by monitoring the variation
of the number of elements during the adaptivity process. Although this check is not
rigorously sound, in practice it provides an effective stopping criterion.

An interpolation step between two successive adapted meshes is also employed
before restarting any new optimization or time loop. This is carried out by a suitable
interpolation operator, Πn→n+1(wh), which maps a finite element function wh defined
on T n

h onto the new mesh T n+1
h .

This algorithm performs well if the tip of the fracture moves sufficiently slow in
time. Indeed, since the coupling between optimization and adaptation is not so tight,
a time adaptivity could be desirable to restrain a fast mesh evolution. Nevertheless,
time adaptivity is not able to contain the final evolution steps when the actual fracture
leads to a sudden breakdown of the material which splits into two separate parts. This
limit can be ascribed also to the deficiency of the employed quasi-static model, which
clearly fails in describing very fast dynamics.

To dampen the crack propagation, we propose a second algorithm, which intro-
duces a tighter alternation of the optimization and mesh adaptation phases. The
meaning of all the involved parameters is the same as in Algorithm 2.

Algorithm 3. Optimize-and-adapt.

1. Set k = 0, T (1)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set i = 1; errmesh= 1; err= 1;
while errmesh ≥ MESHTOL & err ≥ VTOL do

4. ui
h = argmin

zh∈X(i)
h

I(zh, v
i
h);
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Algorithm 3. Optimize-and-adapt.

1. Set k = 0, T (1)
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: mesh stagnation : minimization check 
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5. vi+1
h = argmin

zh∈X
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h
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6. Compute the new metric M(i+1) based on ui
h and vi+1

h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
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i+1
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h = T (i)
h ;

13. Set T (1)
h = T k
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14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. The goal of this section is to assess the robustness
of the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test cases proposed in [11].
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Fig. 2. Domain and initial mesh for the straight crack (left pair) and for the curved crack
(right pair).

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)× (0, 2.2), containing a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.

As an initial grid, we pick the uniform unstructured mesh in Figure 2, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 1.

Table 1
The straight crack: parameters involved in Algorithms 2 and 3.

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2

: accuracy on the functional 
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5. vi+1
h = argmin

zh∈X
(i)
h

I(ui
h, zh);

6. Compute the new metric M(i+1) based on ui
h and vi+1

h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ∥vi+1
h − vih∥L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T (i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i ← i+ 1;
end while
12. uh(tk) = Πi−1→i(u

i−1
h ); vh(tk) = v1h; T k

h = T (i)
h ;

13. Set T (1)
h = T k

h ;
14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. The goal of this section is to assess the robustness
of the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test cases proposed in [11].
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Fig. 2. Domain and initial mesh for the straight crack (left pair) and for the curved crack
(right pair).

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)× (0, 2.2), containing a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.

As an initial grid, we pick the uniform unstructured mesh in Figure 2, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 1.

Table 1
The straight crack: parameters involved in Algorithms 2 and 3.

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2
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Figure 3 compares the crack path yielded by the two algorithms. Notice that
the final part of the crack delivered by Algorithm 3 is slightly straighter and more
regular. This is likely due to the fact that Algorithm 2 is more sensitive to the
possible coarseness of the mesh ahead of the tip. As a consequence, when the crack
reaches the final stage, it tries to enter a region where the mesh has not been modified
yet. Conversely, the tighter interplay between optimization and mesh adaptation in
Algorithm 3 lets the crack find an already properly adapted mesh. An additional
difference is the time when the breakdown is detected, i.e., t = 1.36 for Algorithm 2
and t = 1.33 in the case of Algorithm 3, compared with t = 1.24 in [11]. Indeed, since
in the first algorithm we do not update the mesh during the minimization process, it
can happen that the crack growth is slowed down in order to find a good compromise
between the actual mesh and the fracture evolution. We additionally observe that
for both Algorithms 2 and 3, the time of initiation of the fracture actually occurs
later, i.e., at time t = 0.35, than the experiments in [11], where t = 0.25. We ascribe
this discrepancy to the finite-width representation of the initial crack path via the
vertical slit, while in [11] this is modeled via an actual one-dimensional manifold.
Concerning the computational effort, the run time of Algorithms 2 and 3 is 1541.30 s
and 1639.29 s, respectively.

Fig. 3. The straight crack: v-field at the final time yielded by Algorithms 2 (left) and 3 (right).

Figure 4 shows the adatpted mesh T algo2
h and T algo3

h obtained by the two al-
gorithms at the final time. The meshes, consisting of 38,299 and 33,927 elements,
respectively, exhibit really stretched elements which closely follow the crack path,
whereas the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1. The
maximum aspect ratio is sK = 2154.3 for T algo2

h and sK = 1891.5 for T algo3
h . The

close up in Figure 4 at time t = 1.21 highlights the strong anisotropy of the mesh
far from the crack tip. We observe instead that the triangles closer to the tip are
still rather isotropic. This should guarantee that the next advancing step of the crack
is not biased by the directionality of the elements. After [9, 15], there has been
the perception that anisotropic mesh adaptation may influence the propagation of
the fracture, in particular its initiation [14]. However, it seems that the numerical
procedure that we propose is in practice robust and stable thanks to its automatic
capability of yielding a rounded tip.
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Fig.4.Thestraightcrack:finalanisotropicadaptedmeshprovidedbyAlgorithm2(left);final
anisotropicadaptedmesh(center)andzoomin(right)deliveredbyAlgorithm3.
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Fig.5.Thestraightcrack:v-field(left),finaladaptedmesh(center),andzoom-in(right)at
thefinaltimeinthecaseoftheisotropiccounterpartofAlgorithm2.

Figure5providesthev-fieldandthefinaladaptedmeshforanisotropicadap-
tation,obtainedbyenforcingsK=1forallK∈ThinAlgorithm2.Thecrackis
detectedalsointhiscaseeventhoughtherequirednumberofelementsisfarlarger,
i.e.,78,025trianglesversus38,299.Moreover,aslightlywavierpathisexhibitedwith
respecttoFigure3,left.

5.2.Thecurvedcrack.Thissecondtestcaseismeanttoassesswhetherthe
fracturechangesdirectionifthedomainexhibitsaweakinset,suchasahole.The
computationaldomainisthesameasintheprevioustestcasewiththeadditional
presenceofacircularholeofradius0.2,centeredat(0.3,0.3)(seeFigure2,right).
Thepresenceoftheholeintroducesanelementofweaknessinthematerial.Asa
consequence,duetoenergyarguments,weexpectthatthefracturebendsitspath
towardtheholeinsteadofproceedingalongastraightline.Asobservedin[11],this
testcaseismorechallengingthanthepreviousone.Therefore,wechooseatighter
tolerance,i.e.,REFTOL=10−3.Thesimulatedcrackpathisverystablewithrespect
tothechoiceoftheparameters,aslongastheyarenotlargerthanthoseinTable1
(wereferto[3]foranextensivesensitivityanalysistotheparametertuningwhichwe
summarizeinRemark5.1).

InFigure6,weshowthev-fieldatthefinaltimeyieldedbythetwoalgorithms.
Inbothcases,thecrackentersthehole.Asalreadyobservedintheprevioustestcase,

33927 elements 
max aspect ratio : 1891.5 
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5. vi+1
h = argmin

zh∈X
(i)
h

I(ui
h, zh);

6. Compute the new metric M(i+1) based on ui
h and vi+1

h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ∥vi+1
h − vih∥L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T (i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i ← i+ 1;
end while
12. uh(tk) = Πi−1→i(u

i−1
h ); vh(tk) = v1h; T k

h = T (i)
h ;

13. Set T (1)
h = T k

h ;
14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. The goal of this section is to assess the robustness
of the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test cases proposed in [11].
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Fig. 2. Domain and initial mesh for the straight crack (left pair) and for the curved crack
(right pair).

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)× (0, 2.2), containing a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.

As an initial grid, we pick the uniform unstructured mesh in Figure 2, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 1.

Table 1
The straight crack: parameters involved in Algorithms 2 and 3.

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2
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Figure 3 compares the crack path yielded by the two algorithms. Notice that
the final part of the crack delivered by Algorithm 3 is slightly straighter and more
regular. This is likely due to the fact that Algorithm 2 is more sensitive to the
possible coarseness of the mesh ahead of the tip. As a consequence, when the crack
reaches the final stage, it tries to enter a region where the mesh has not been modified
yet. Conversely, the tighter interplay between optimization and mesh adaptation in
Algorithm 3 lets the crack find an already properly adapted mesh. An additional
difference is the time when the breakdown is detected, i.e., t = 1.36 for Algorithm 2
and t = 1.33 in the case of Algorithm 3, compared with t = 1.24 in [11]. Indeed, since
in the first algorithm we do not update the mesh during the minimization process, it
can happen that the crack growth is slowed down in order to find a good compromise
between the actual mesh and the fracture evolution. We additionally observe that
for both Algorithms 2 and 3, the time of initiation of the fracture actually occurs
later, i.e., at time t = 0.35, than the experiments in [11], where t = 0.25. We ascribe
this discrepancy to the finite-width representation of the initial crack path via the
vertical slit, while in [11] this is modeled via an actual one-dimensional manifold.
Concerning the computational effort, the run time of Algorithms 2 and 3 is 1541.30 s
and 1639.29 s, respectively.

Fig. 3. The straight crack: v-field at the final time yielded by Algorithms 2 (left) and 3 (right).

Figure 4 shows the adatpted mesh T algo2
h and T algo3

h obtained by the two al-
gorithms at the final time. The meshes, consisting of 38,299 and 33,927 elements,
respectively, exhibit really stretched elements which closely follow the crack path,
whereas the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1. The
maximum aspect ratio is sK = 2154.3 for T algo2

h and sK = 1891.5 for T algo3
h . The

close up in Figure 4 at time t = 1.21 highlights the strong anisotropy of the mesh
far from the crack tip. We observe instead that the triangles closer to the tip are
still rather isotropic. This should guarantee that the next advancing step of the crack
is not biased by the directionality of the elements. After [9, 15], there has been
the perception that anisotropic mesh adaptation may influence the propagation of
the fracture, in particular its initiation [14]. However, it seems that the numerical
procedure that we propose is in practice robust and stable thanks to its automatic
capability of yielding a rounded tip.
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Fig.4.Thestraightcrack:finalanisotropicadaptedmeshprovidedbyAlgorithm2(left);final
anisotropicadaptedmesh(center)andzoomin(right)deliveredbyAlgorithm3.
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Fig.5.Thestraightcrack:v-field(left),finaladaptedmesh(center),andzoom-in(right)at
thefinaltimeinthecaseoftheisotropiccounterpartofAlgorithm2.

Figure5providesthev-fieldandthefinaladaptedmeshforanisotropicadap-
tation,obtainedbyenforcingsK=1forallK∈ThinAlgorithm2.Thecrackis
detectedalsointhiscaseeventhoughtherequirednumberofelementsisfarlarger,
i.e.,78,025trianglesversus38,299.Moreover,aslightlywavierpathisexhibitedwith
respecttoFigure3,left.

5.2.Thecurvedcrack.Thissecondtestcaseismeanttoassesswhetherthe
fracturechangesdirectionifthedomainexhibitsaweakinset,suchasahole.The
computationaldomainisthesameasintheprevioustestcasewiththeadditional
presenceofacircularholeofradius0.2,centeredat(0.3,0.3)(seeFigure2,right).
Thepresenceoftheholeintroducesanelementofweaknessinthematerial.Asa
consequence,duetoenergyarguments,weexpectthatthefracturebendsitspath
towardtheholeinsteadofproceedingalongastraightline.Asobservedin[11],this
testcaseismorechallengingthanthepreviousone.Therefore,wechooseatighter
tolerance,i.e.,REFTOL=10−3.Thesimulatedcrackpathisverystablewithrespect
tothechoiceoftheparameters,aslongastheyarenotlargerthanthoseinTable1
(wereferto[3]foranextensivesensitivityanalysistotheparametertuningwhichwe
summarizeinRemark5.1).

InFigure6,weshowthev-fieldatthefinaltimeyieldedbythetwoalgorithms.
Inbothcases,thecrackentersthehole.Asalreadyobservedintheprevioustestcase,
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5. vi+1
h = argmin

zh∈X
(i)
h

I(ui
h, zh);

6. Compute the new metric M(i+1) based on ui
h and vi+1

h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ∥vi+1
h − vih∥L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T (i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i ← i+ 1;
end while
12. uh(tk) = Πi−1→i(u

i−1
h ); vh(tk) = v1h; T k

h = T (i)
h ;

13. Set T (1)
h = T k

h ;
14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. The goal of this section is to assess the robustness
of the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test cases proposed in [11].
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Fig. 2. Domain and initial mesh for the straight crack (left pair) and for the curved crack
(right pair).

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)× (0, 2.2), containing a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.

As an initial grid, we pick the uniform unstructured mesh in Figure 2, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 1.

Table 1
The straight crack: parameters involved in Algorithms 2 and 3.

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2
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5. vi+1
h = argmin

zh∈X
(i)
h

I(ui
h, zh);

6. Compute the new metric M(i+1) based on ui
h and vi+1

h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ∥vi+1
h − vih∥L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T (i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i ← i+ 1;
end while
12. uh(tk) = Πi−1→i(u

i−1
h ); vh(tk) = v1h; T k

h = T (i)
h ;

13. Set T (1)
h = T k

h ;
14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. The goal of this section is to assess the robustness
of the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test cases proposed in [11].
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Fig. 2. Domain and initial mesh for the straight crack (left pair) and for the curved crack
(right pair).

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)× (0, 2.2), containing a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.

As an initial grid, we pick the uniform unstructured mesh in Figure 2, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 1.

Table 1
The straight crack: parameters involved in Algorithms 2 and 3.

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2
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Fig. 6. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zoom-ins around the hole for Algorithm 2 (top right) and for Algorithm 3
(bottom right).

Fig. 7. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3.

Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 6,
left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
3 is provided in Figure 8, together with a detail of the second mesh. Notice that the
anisotropic adaptive procedure is able to detect the presence of a very fine structure
inside the crack in correspondence with the ridges. Moreover, the cardinality of the
two meshes is very different: Algorithm 2 employs 48,599 elements, in contrast to
Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2

h and sK = 1469.9 for T algo3
h .

Figure 9 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterward, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.
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Fig. 6. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zoom-ins around the hole for Algorithm 2 (top right) and for Algorithm 3
(bottom right).

Fig. 7. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3.

Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 6,
left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
3 is provided in Figure 8, together with a detail of the second mesh. Notice that the
anisotropic adaptive procedure is able to detect the presence of a very fine structure
inside the crack in correspondence with the ridges. Moreover, the cardinality of the
two meshes is very different: Algorithm 2 employs 48,599 elements, in contrast to
Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2

h and sK = 1469.9 for T algo3
h .

Figure 9 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterward, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.
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Fig. 12. The curved crack: CPU time (s) involved in the minimization and adaptation phases
at each time level, for both Algorithms 2 (left) and 3 (right).

Table 2
The curved crack: Cumulative CPU time (s) involved in the minimization and adaptation

phases for both Algorithms 2 and 3.

Algorithm 2 Algorithm 3
Minimization Adaptation Total Minimization Adaptation Total

Aniso 217 245 462 192 344 536
Iso 646 605 1251 452 765 1217

Remark 5.1. In [3], we use this test case to study the sensitivity of the results
to some of the parameters involved in the simulation. We start from the two penalty
constants in (2.4). The higher the values of γA, γB, the larger the deviation of the
crack path with respect to the correct one. For example, picking γA = γB = 5 · 10−5,
the crack even misses the hole.

Concerning the tolerance REFTOL, a trade-off between accuracy and computa-
tional effort is involved. The value REFTOL= 10−2 is the maximum tolerance which
yields the expected curved path. On the contrary, too small a tolerance increases the
computational effort without improving the crack path tracking.

Finally, the dependence on the parameter ε is investigated. The width of the
crack is affected by this parameter, i.e., larger values widen the crack boundaries.
Moreover, also the crack trajectory may change as a function of ε. For instance, for
ε = 5 · 10−2, the crack suddenly turns left, entering the hole directly, independently
of REFTOL (compare Figures 3 and 4 in [3]).

Remark 5.2. Condition (2.11) essentially ensures a discrete min-max principle
for vh, i.e., 0 ≤ vh ≤ 1. According to [41], a sufficient condition to guarantee (2.11) is
that the mesh Th be of Delaunay type (plus an additional constraint on the boundary
elements).

In general, this is not the case of an anisotropic grid. For this reason, we have
numerically checked the possible violation of relation 0 ≤ vh ≤ 1. The minimum value
is 4.68 · 10−7, whereas the maximum value 1.00155 is reached only at a single time
level. The average of the maximum values of vh over the time levels is 1.0001. Likely,
this value can be related to the selected tolerances.

Future developments of the proposed approach concern the modeling of fractures
under plane-strain elasticity as well as more general mathematical models such as the
ones introduced in [13].
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Figure 3 compares the crack path yielded by the two algorithms. Notice that
the final part of the crack delivered by Algorithm 3 is slightly straighter and more
regular. This is likely due to the fact that Algorithm 2 is more sensitive to the
possible coarseness of the mesh ahead of the tip. As a consequence, when the crack
reaches the final stage, it tries to enter a region where the mesh has not been modified
yet. Conversely, the tighter interplay between optimization and mesh adaptation in
Algorithm 3 lets the crack find an already properly adapted mesh. An additional
difference is the time when the breakdown is detected, i.e., t = 1.36 for Algorithm 2
and t = 1.33 in the case of Algorithm 3, compared with t = 1.24 in [11]. Indeed, since
in the first algorithm we do not update the mesh during the minimization process, it
can happen that the crack growth is slowed down in order to find a good compromise
between the actual mesh and the fracture evolution. We additionally observe that
for both Algorithms 2 and 3, the time of initiation of the fracture actually occurs
later, i.e., at time t = 0.35, than the experiments in [11], where t = 0.25. We ascribe
this discrepancy to the finite-width representation of the initial crack path via the
vertical slit, while in [11] this is modeled via an actual one-dimensional manifold.
Concerning the computational effort, the run time of Algorithms 2 and 3 is 1541.30 s
and 1639.29 s, respectively.

Fig. 3. The straight crack: v-field at the final time yielded by Algorithms 2 (left) and 3 (right).

Figure 4 shows the adatpted mesh T algo2
h and T algo3

h obtained by the two al-
gorithms at the final time. The meshes, consisting of 38,299 and 33,927 elements,
respectively, exhibit really stretched elements which closely follow the crack path,
whereas the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1. The
maximum aspect ratio is sK = 2154.3 for T algo2

h and sK = 1891.5 for T algo3
h . The

close up in Figure 4 at time t = 1.21 highlights the strong anisotropy of the mesh
far from the crack tip. We observe instead that the triangles closer to the tip are
still rather isotropic. This should guarantee that the next advancing step of the crack
is not biased by the directionality of the elements. After [9, 15], there has been
the perception that anisotropic mesh adaptation may influence the propagation of
the fracture, in particular its initiation [14]. However, it seems that the numerical
procedure that we propose is in practice robust and stable thanks to its automatic
capability of yielding a rounded tip.
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Fig. 6. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zoom-ins around the hole for Algorithm 2 (top right) and for Algorithm 3
(bottom right).

Fig. 7. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3.

Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 6,
left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
3 is provided in Figure 8, together with a detail of the second mesh. Notice that the
anisotropic adaptive procedure is able to detect the presence of a very fine structure
inside the crack in correspondence with the ridges. Moreover, the cardinality of the
two meshes is very different: Algorithm 2 employs 48,599 elements, in contrast to
Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2

h and sK = 1469.9 for T algo3
h .

Figure 9 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterward, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.
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and t = 1.33 in the case of Algorithm 3, compared with t = 1.24 in [11]. Indeed, since
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this discrepancy to the finite-width representation of the initial crack path via the
vertical slit, while in [11] this is modeled via an actual one-dimensional manifold.
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gorithms at the final time. The meshes, consisting of 38,299 and 33,927 elements,
respectively, exhibit really stretched elements which closely follow the crack path,
whereas the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1. The
maximum aspect ratio is sK = 2154.3 for T algo2

h and sK = 1891.5 for T algo3
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close up in Figure 4 at time t = 1.21 highlights the strong anisotropy of the mesh
far from the crack tip. We observe instead that the triangles closer to the tip are
still rather isotropic. This should guarantee that the next advancing step of the crack
is not biased by the directionality of the elements. After [9, 15], there has been
the perception that anisotropic mesh adaptation may influence the propagation of
the fracture, in particular its initiation [14]. However, it seems that the numerical
procedure that we propose is in practice robust and stable thanks to its automatic
capability of yielding a rounded tip.
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Fig. 6. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zoom-ins around the hole for Algorithm 2 (top right) and for Algorithm 3
(bottom right).

Fig. 7. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3.

Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 6,
left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
3 is provided in Figure 8, together with a detail of the second mesh. Notice that the
anisotropic adaptive procedure is able to detect the presence of a very fine structure
inside the crack in correspondence with the ridges. Moreover, the cardinality of the
two meshes is very different: Algorithm 2 employs 48,599 elements, in contrast to
Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2

h and sK = 1469.9 for T algo3
h .

Figure 9 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterward, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.
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Nevertheless, the minimization of JH is quite unpractical, at least in order to perform nu-
merical simulations due to the di↵erent geometric dimensionality of the terms involved in (2),
and to the evolutive nature of �(t). This justifies the introduction in the literature of Gri�th-
like energy functionals, simpler to deal with from both an analytical and a computational view-
point [22, 23, 24, 25]. In particular, following [1, 2], the energy-like functional employed in this
work is based on the one proposed by L. Ambrosio and V.M. Tortorelli [9], enriched with a ther-
mal contribution, with a view to modeling the thermal shock e↵ect. The temperature evolution
due to the shock is described by the heat equation for the temperature field T = T (x, t),
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with T0 the initial temperature (before cooling down the body), tF the final time, kc the thermal
di↵usivity, �T the temperature drop applied to the boundary portion �shock.

The coupled thermo-mechanical model is based on the minimization of the functional
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where "(u) = 1/2(ru+(ru)T ) is the total strain tensor, cw =
R 1

0

p
sds is a normalization constant,

A is the sti↵ness tensor, "th = "th(T ) = µ(T0 � T )I is the inelastic strain due to a thermal shock, µ
being the thermal volumetric expansion coe�cient, T0�T the temperature drop and I the identity
tensor, and ↵ : ⌦ ! [0, 1] is the phase field tracking the crack, with ↵ = 0 where the material is
perfectly sound, ↵ = 1 where the material is fully damaged. In practice, the phase field exhibits a
sharp variation on a spatial scale on the order of l, which represents the so-called internal length.
Notice that functional J involves only the pure elastic strain, "(u) � "th.

In addition to the constraint 0  ↵  1, we still have to enforce the physical irreversibility of
crack propagation, i.e., no healing is allowed. This leads to add a further constraint on ↵, namely,
↵(t) � ↵(t̄) for any t � t̄, t̄ being any time in (0, tF).

Finally, we emphasize that model (3)–(4), in contrast to Gri�th’s model, does not necessarily
require a pre-existing notch in the domain, the thermal shock being responsible for both crack
initiation and propagation [1, 2]. In more detail, we may distinguish two main phases separated
by a characteristic time t⇤, such that, for t  t⇤, the damage field ↵ is uniformly distributed along
the boudary �shock, where it exhibits a sharp gradient; vice versa, for t > t⇤, the damage field
bifurcates and band-like cracks form and propagate.

2.1. The minimization of the functional
We observe that the energy functional J in (4) is not convex with respect to the pair (u,↵),

even though it is convex with respect to each variable, separately. This will represent an issue
with a view to the numerical optimization algorithm.

Before dealing with the minimization of J , we provide the following result, whose proof is
straightforward:
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crack propagation, i.e., no healing is allowed. This leads to add a further constraint on ↵, namely,
↵(t) � ↵(t̄) for any t � t̄, t̄ being any time in (0, tF).

Finally, we emphasize that model (3)–(4), in contrast to Gri�th’s model, does not necessarily
require a pre-existing notch in the domain, the thermal shock being responsible for both crack
initiation and propagation [1, 2]. In more detail, we may distinguish two main phases separated
by a characteristic time t⇤, such that, for t  t⇤, the damage field ↵ is uniformly distributed along
the boudary �shock, where it exhibits a sharp gradient; vice versa, for t > t⇤, the damage field
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↵(t) � ↵(t̄) for any t � t̄, t̄ being any time in (0, tF).

Finally, we emphasize that model (3)–(4), in contrast to Gri�th’s model, does not necessarily
require a pre-existing notch in the domain, the thermal shock being responsible for both crack
initiation and propagation [1, 2]. In more detail, we may distinguish two main phases separated
by a characteristic time t⇤, such that, for t  t⇤, the damage field ↵ is uniformly distributed along
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bifurcates and band-like cracks form and propagate.
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Nevertheless, the minimization of JH is quite unpractical, at least in order to perform nu-
merical simulations due to the di↵erent geometric dimensionality of the terms involved in (2),
and to the evolutive nature of �(t). This justifies the introduction in the literature of Gri�th-
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being the thermal volumetric expansion coe�cient, T0�T the temperature drop and I the identity
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In addition to the constraint 0  ↵  1, we still have to enforce the physical irreversibility of
crack propagation, i.e., no healing is allowed. This leads to add a further constraint on ↵, namely,
↵(t) � ↵(t̄) for any t � t̄, t̄ being any time in (0, tF).

Finally, we emphasize that model (3)–(4), in contrast to Gri�th’s model, does not necessarily
require a pre-existing notch in the domain, the thermal shock being responsible for both crack
initiation and propagation [1, 2]. In more detail, we may distinguish two main phases separated
by a characteristic time t⇤, such that, for t  t⇤, the damage field ↵ is uniformly distributed along
the boudary �shock, where it exhibits a sharp gradient; vice versa, for t > t⇤, the damage field
bifurcates and band-like cracks form and propagate.

2.1. The minimization of the functional
We observe that the energy functional J in (4) is not convex with respect to the pair (u,↵),
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with a view to the numerical optimization algorithm.
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In addition to the constraint 0  ↵  1, we still have to enforce the physical irreversibility of
crack propagation, i.e., no healing is allowed. This leads to add a further constraint on ↵, namely,
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initiation and propagation [1, 2]. In more detail, we may distinguish two main phases separated
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with a view to the numerical optimization algorithm.

Before dealing with the minimization of J , we provide the following result, whose proof is
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directional features of the damage [12, 13, 14, 15, 16]. These meshes are known as anisotropic
adapted grids. We provide an automatic tool to generate these customized meshes, moving from
a rigorous theoretical analysis, cast in the framework of a posteriori discretization error con-
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matical-physical model, formulated in a variational framework as the minimization of an energy
functional comprising the elastic and the fracture contributions. Section 3 steps to the discrete
counterpart of the variational setting and rigorously derives the anisotropic a posteriori error
estimator. In Section 4, the actual algorithm (MACProX =Mesh Adaptation for Crack Propagation
with thermal shocKS) assembling the minimization of the functional and the mesh adaptation
procedure is set, and numerically investigated in Section 5. Finally, some conclusions are drawn
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JG(t; u,�(t)) =
Z

⌦\�
W(")dx +Wext(t,u) +D(�(t)), (1)

where ⌦ ⇢ Rd, with d = 2, 3, is the volume occupied by the continuum in the reference configu-
ration, W(") is the elastic energy density out of the fracture, Wext(t,u) is the work of the external
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JH(t; u,�(t)) =
Z

⌦\�
W(")dx +Wext(t,u) +GcHd�1(�(t)), (2)

whereHd�1(�) is the Haussdorf measure of �, and Gc is the so-called body toughness.

2
(body toughness) 

®   
(stiffness tensor) 

Nevertheless, the minimization of JH is quite unpractical, at least in order to perform nu-
merical simulations due to the di↵erent geometric dimensionality of the terms involved in (2),
and to the evolutive nature of �(t). This justifies the introduction in the literature of Gri�th-
like energy functionals, simpler to deal with from both an analytical and a computational view-
point [22, 23, 24, 25]. In particular, following [1, 2], the energy-like functional employed in this
work is based on the one proposed by L. Ambrosio and V.M. Tortorelli [9], enriched with a ther-
mal contribution, with a view to modeling the thermal shock e↵ect. The temperature evolution
due to the shock is described by the heat equation for the temperature field T = T (x, t),
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bifurcates and band-like cracks form and propagate.
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Brittle fractures induced by a thermal shock. 
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B652 ARTINA, FORNASIER, MICHELETTI, AND PEROTTO

Figure 3 compares the crack path yielded by the two algorithms. Notice that
the final part of the crack delivered by Algorithm 3 is slightly straighter and more
regular. This is likely due to the fact that Algorithm 2 is more sensitive to the
possible coarseness of the mesh ahead of the tip. As a consequence, when the crack
reaches the final stage, it tries to enter a region where the mesh has not been modified
yet. Conversely, the tighter interplay between optimization and mesh adaptation in
Algorithm 3 lets the crack find an already properly adapted mesh. An additional
difference is the time when the breakdown is detected, i.e., t = 1.36 for Algorithm 2
and t = 1.33 in the case of Algorithm 3, compared with t = 1.24 in [11]. Indeed, since
in the first algorithm we do not update the mesh during the minimization process, it
can happen that the crack growth is slowed down in order to find a good compromise
between the actual mesh and the fracture evolution. We additionally observe that
for both Algorithms 2 and 3, the time of initiation of the fracture actually occurs
later, i.e., at time t = 0.35, than the experiments in [11], where t = 0.25. We ascribe
this discrepancy to the finite-width representation of the initial crack path via the
vertical slit, while in [11] this is modeled via an actual one-dimensional manifold.
Concerning the computational effort, the run time of Algorithms 2 and 3 is 1541.30 s
and 1639.29 s, respectively.

Fig. 3. The straight crack: v-field at the final time yielded by Algorithms 2 (left) and 3 (right).

Figure 4 shows the adatpted mesh T algo2
h and T algo3

h obtained by the two al-
gorithms at the final time. The meshes, consisting of 38,299 and 33,927 elements,
respectively, exhibit really stretched elements which closely follow the crack path,
whereas the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1. The
maximum aspect ratio is sK = 2154.3 for T algo2

h and sK = 1891.5 for T algo3
h . The

close up in Figure 4 at time t = 1.21 highlights the strong anisotropy of the mesh
far from the crack tip. We observe instead that the triangles closer to the tip are
still rather isotropic. This should guarantee that the next advancing step of the crack
is not biased by the directionality of the elements. After [9, 15], there has been
the perception that anisotropic mesh adaptation may influence the propagation of
the fracture, in particular its initiation [14]. However, it seems that the numerical
procedure that we propose is in practice robust and stable thanks to its automatic
capability of yielding a rounded tip.
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Fig. 6. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zoom-ins around the hole for Algorithm 2 (top right) and for Algorithm 3
(bottom right).

Fig. 7. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3.

Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 6,
left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
3 is provided in Figure 8, together with a detail of the second mesh. Notice that the
anisotropic adaptive procedure is able to detect the presence of a very fine structure
inside the crack in correspondence with the ridges. Moreover, the cardinality of the
two meshes is very different: Algorithm 2 employs 48,599 elements, in contrast to
Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2

h and sK = 1469.9 for T algo3
h .

Figure 9 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterward, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.

anti-plane case:  
the force applied is  

orthogonal to the domain 

®    Brittle fractures induced by a thermal shock effect. 
[J.-J. Marigo, C. Maurini, P. Sicsic (2013), B. Bourdin, J.-J. Marigo, C. Maurini, P. Sicsic (2014) ]  

Three phases : 
®   the very early stage : a uniform strip propagates orthogonally  

to the immersed surface; 

®    at some critical time : a bifurcation occurs and the damage  
exhibits periodically distributed bands of equal length and grows 
 at the center of these bands;   

®   later: a selective crack arrest takes place, some bands stop 
the others keep on propagating. 

Homogeneous uniformly heated specimen, free at the boundary, no pre-stress  
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far from the crack tip. We observe instead that the triangles closer to the tip are
still rather isotropic. This should guarantee that the next advancing step of the crack
is not biased by the directionality of the elements. After [9, 15], there has been
the perception that anisotropic mesh adaptation may influence the propagation of
the fracture, in particular its initiation [14]. However, it seems that the numerical
procedure that we propose is in practice robust and stable thanks to its automatic
capability of yielding a rounded tip.
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provided by Algorithm 3.
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left, with Figure 6, center, and the corresponding zoom-ins).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37 (left)
and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident where
the tearing apart is exerted. The mesh in both cases follows very closely the crack
propagation. A top view of the final adapted meshes generated via Algorithms 2 and
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Algorithm 3, which demands only 15,987 triangles. The maximum aspect ratio is
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[N. Ferro, S.Micheletti, S.P., 2018 ] 
Figure 2: Square slab: phase field at t = tF (left) and enlarged views at time steps 10, 30 and 50 (right, top-bottom).

Figure 3: Square slab: temperature profile at x1 = 25 [mm] as a function of depth for three di↵erent time steps.

is evident. In particular, the maximum aspect ratio over the elements of this mesh is 933. This
figure emphasizes the strong anisotropy of the mesh along the crack path, whereas the triangles
closer to the tip are still rather isotropic. This should ensure that the crack advancing is not
a↵ected by the directionality of the elements. A comparison with an isotropic mesh adaptation
is performed to check the advantages of the anisotropic counterpart. In particular, the isotropic
metric is obtained by enforcing sK = 1, for any K 2 Th, in Proposition 4, i.e., eMK = (1/�2

K)I,
with I 2 R2⇥2 the identity matrix and

�K =

 

1
|K̂|p2
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Figure 4: Square lab: anisotropic (left) vs isotropic (right) mesh adaptation at time step 30, for increasing magnification
(top-bottom).

Figure 5: Square slab: 3D views of the phase field overlapped to the adapted mesh at time t = tF .

Figure 4 contrasts the two adaptive procedures, highliting the poor tracking of the bands in
the case of the isotropic approach. In Figure 6, left, we compare the evolution of the number
of elements for the isotropic and anisotropic mesh adaptation. The reduction provided by the
anisotropic procedure is remarkable for the whole time span, with greater extent during the last
steps. On average, about half the elements are required by the anisotropic meshes. Moreover,
in Figure 7, we compare the performance of the two approaches, in terms of total and average
(total time/# loops) time spent in the optimization phase, in correspondence with the last six time
steps. In particular, the large discrepancy in terms of the average time can be ascribed to the con-
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Image segmentation 

Goal: identification of subregions of interest  
       in a greyscale image.  

®                        thresholding/clustering/edge-detection/region-growing methods; 

®                        

®   

PDE-based methods (e.g., level set method); 

variational methods. 



Goal: identification of subregions of interest  
       in a greyscale image.  

(a) true image

(b) � = 1.5: indicator vh (c) � = 1.5: adapted mesh

(d) � = 1: indicator vh (e) � = 1: adapted mesh

(f) � = 5 · 10�1: indicator vh (g) � = 5 · 10�1: adapted mesh

Figure 3: The pirate flag test case: indicator vh and adapted mesh for di↵erent �.

5.1.3. Sensitivity to �
The numerical investigation is carried out on the image in Fig. 4, showing the Kármán vortex

sheet on the cover of [22]. The images shows the streaklines exhibited by water flowing at 1.4
cm/s past a cylinder of diameter 1 cm at a Reynolds number equal to 140.
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strong gradients across the image edges 

 anisotropic adapted meshes sharply  
capture these features 
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reduce the dofs (or increase the 
accuracy) by tuning size, shape and 

orientation of mesh elements 
[e.g., M. Fortin, J. Dompierre, W.G. 

Habashi, M.G. Vallet et al. (2000,2002)] 

Mesh adaptation-aided image segmentation 

(a) true image

(b) � = 1.5: indicator vh (c) � = 1.5: adapted mesh

(d) � = 1: indicator vh (e) � = 1: adapted mesh

(f) � = 5 · 10�1: indicator vh (g) � = 5 · 10�1: adapted mesh

Figure 3: The pirate flag test case: indicator vh and adapted mesh for di↵erent �.

5.1.3. Sensitivity to �
The numerical investigation is carried out on the image in Fig. 4, showing the Kármán vortex

sheet on the cover of [22]. The images shows the streaklines exhibited by water flowing at 1.4
cm/s past a cylinder of diameter 1 cm at a Reynolds number equal to 140.
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Image segmentation: a variational model 

as the minimization part is concerned. However, despite mentioning the possibility to implement
some adaptation techniques, he does not provide any suggestion about how to do it. Instead, he
uses a mesh that coincides with the pixel grid. This solution, however, makes the algorithm very
computationally expensive for even slightly complex images. This is the reason why we focus
our research on the mesh adaptation, as it both increases the resolution of the edges and greatly
reduces the computational cost.
In this paper we follow an approach that has already been exploited in [3] for a di↵erent problem,
the crack detection in brittle materials. Our problem can be treated in a similar way and solved
with analogous techniques. + COMMENTO CRACKS + throughout the paper we refer to the
portion of f to be segmented as to edges of f.

Among the available variational methods, one of the most known is that proposed by D. Mum-
ford and J. Shah in [16], whose energy functional is

I(u, E) =
Z

⌦

(u � f )2 d⌦ + �
Z

⌦\E
|ru|2 d⌦ + �H(E), (1)

where ⌦ ⇢ R2 represents the computational domain associated with the original image f 2
L1(⌦) (the true gray-level image), E is a closed one-dimensional (1D) subset of ⌦ of Hausdor↵
measureH(E), defining the separating edge, u 2 H1(⌦\E) is the variational approximation to f ,
and �, � are positive parameters to be tuned. The first term enforces that the approximation u be
close to the original image f in the L2-norm, while the second and third terms add regularization
by penalizing the gradient of u and the length of E, respectively. In practice, this should ensure
that the approximation u be quite flat in ⌦ \ E, and that the edge set be as short as possible.

This mimimization problem, however, is very hard to be numerically tackled, mainly because
of the presence of the low dimensional feature E, involving an unknown 1D entity embedded in
a two-dimensional (2D) framework. In order to overcome this drawback, one can resort to the
approximation introduced in [1, 2] by L. Ambrosio and V.M. Tortorelli, relying on the families
of funtionals {I✏}✏ , depending on the positive parameter ✏, defined by

I✏(u, v) =
Z

⌦

(u � f )2 d⌦ + �
Z

⌦

(v2 + ⌘)|ru|2 d⌦ + �
Z

⌦

 

✏ |rv|2 + 1
4✏

(v � 1)2
!

d⌦, (2)

with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
a sharp variation of the image occurs. On the other hand, the last integral forces v to be close to
one almost everywhere. Overall, we expect that v be approximately constant with value 1, except
across the edge, where it undergoes a steep drop to zero on a region on the order of ✏.

From a theoretical viewpoint, it can be proved that the sequence of functionals {I✏}✏ is �-
convergent to the functional in (1), for ✏ ! 0 [1, 2] LAYOUT + CONTRIBUTION

2. The minimization process

The functional I✏ is clearly not jointly convex because of the term v2 |ru|2 so that the existence
of a unique minimum cannot be trivially guaranteed. On the other hand, I✏ is convex with respect
to both u and v, separately, which suggests proceeding with an alternating minimization, i.e.,
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
a sharp variation of the image occurs. On the other hand, the last integral forces v to be close to
one almost everywhere. Overall, we expect that v be approximately constant with value 1, except
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as the minimization part is concerned. However, despite mentioning the possibility to implement
some adaptation techniques, he does not provide any suggestion about how to do it. Instead, he
uses a mesh that coincides with the pixel grid. This solution, however, makes the algorithm very
computationally expensive for even slightly complex images. This is the reason why we focus
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that the approximation u be quite flat in ⌦ \ E, and that the edge set be as short as possible.
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
a sharp variation of the image occurs. On the other hand, the last integral forces v to be close to
one almost everywhere. Overall, we expect that v be approximately constant with value 1, except
across the edge, where it undergoes a steep drop to zero on a region on the order of ✏.
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as the minimization part is concerned. However, despite mentioning the possibility to implement
some adaptation techniques, he does not provide any suggestion about how to do it. Instead, he
uses a mesh that coincides with the pixel grid. This solution, however, makes the algorithm very
computationally expensive for even slightly complex images. This is the reason why we focus
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In this paper we follow an approach that has already been exploited in [3] for a di↵erent problem,
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by penalizing the gradient of u and the length of E, respectively. In practice, this should ensure
that the approximation u be quite flat in ⌦ \ E, and that the edge set be as short as possible.
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
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we fix alternately one of the two unknown functions and solve the minimization problem with
respect to the other one. As a consequence, thanks to the Gâteaux di↵erentiability of functional
I✏ in H1(⌦) ⇥ (H1(⌦) \ L1(⌦)), we compute the two partial derivatives at (u, v) in the direction
� and  , respectively,
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Minimization is obtained by setting

I0✏(u, v; �, ) := 2 (a(v; u, �) + b(u; v, )) = 0 8(�, ) 2 H1(⌦) ⇥ (H1(⌦) \ L1(⌦)). (4)

Before setting the discrete couterpart, we highlight an important property of v which supports
the intepretation of such a function as a smoothed indicator of the edges of f . Indeed, it holds:

Proposition 2.1. If (u, v) 2 H1(⌦)⇥ (H1(⌦)\ L1(⌦)) is a critical point of I✏(·, ·), then 0  v  1
a.e. in ⌦.

For a proof of this result, we can adopt the same arguments as in [3, Proposition 2.3] and in
[7, Proposition 1.3].

Remark 2.1. An alternative proof of Proposition 2.1 can be obtained. Assume by contradiction
the existence of a set ⌦1 ⇢ ⌦, with positive measure, where v > 1, so that v = 1 + k in ⌦1, with k
a positive function. It is readily checked that

v̂ =
(

v in ⌦ \⌦1
1 � k in ⌦1

still belongs to H1(⌦)\L1(⌦). On comparing I✏(u, v̂) with I✏(u, v), it holds that I✏(u, v̂) < I✏(u, v),
since v̂2 < v2, all the other terms being unchanged, which contradicts that (u, v) is a critical point
of I✏(·, ·). A similar argument can be employed to show that v � 0.

We now move to the discrete setting, by introducing a family {Th}h>0 of triangular conformal
meshes of the domain ⌦ [8]. We associate with Th the space

Vh = {v 2 C0(⌦) : v|K 2 P1, 8K 2 Th}, (5)

of continuous piecewise linear finite elements.
We denote by I✏,h(·, ·) the discrete counterpart of I✏(·, ·), given by
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for any (uh, vh) 2 V2
h , where Ph : C0(⌦) ! Vh is the Lagrangian interpolant onto the space Vh

[8]. Operator Ph is here introduced to guarantee the discrete analogue of the maximum principle
in Proposition 2.1.
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of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
a sharp variation of the image occurs. On the other hand, the last integral forces v to be close to
one almost everywhere. Overall, we expect that v be approximately constant with value 1, except
across the edge, where it undergoes a steep drop to zero on a region on the order of ✏.
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2. The minimization process
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of a unique minimum cannot be trivially guaranteed. On the other hand, I✏ is convex with respect
to both u and v, separately, which suggests proceeding with an alternating minimization, i.e.,
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as the minimization part is concerned. However, despite mentioning the possibility to implement
some adaptation techniques, he does not provide any suggestion about how to do it. Instead, he
uses a mesh that coincides with the pixel grid. This solution, however, makes the algorithm very
computationally expensive for even slightly complex images. This is the reason why we focus
our research on the mesh adaptation, as it both increases the resolution of the edges and greatly
reduces the computational cost.
In this paper we follow an approach that has already been exploited in [3] for a di↵erent problem,
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close to the original image f in the L2-norm, while the second and third terms add regularization
by penalizing the gradient of u and the length of E, respectively. In practice, this should ensure
that the approximation u be quite flat in ⌦ \ E, and that the edge set be as short as possible.

This mimimization problem, however, is very hard to be numerically tackled, mainly because
of the presence of the low dimensional feature E, involving an unknown 1D entity embedded in
a two-dimensional (2D) framework. In order to overcome this drawback, one can resort to the
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
a sharp variation of the image occurs. On the other hand, the last integral forces v to be close to
one almost everywhere. Overall, we expect that v be approximately constant with value 1, except
across the edge, where it undergoes a steep drop to zero on a region on the order of ✏.
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2. The minimization process
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of a unique minimum cannot be trivially guaranteed. On the other hand, I✏ is convex with respect
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as the minimization part is concerned. However, despite mentioning the possibility to implement
some adaptation techniques, he does not provide any suggestion about how to do it. Instead, he
uses a mesh that coincides with the pixel grid. This solution, however, makes the algorithm very
computationally expensive for even slightly complex images. This is the reason why we focus
our research on the mesh adaptation, as it both increases the resolution of the edges and greatly
reduces the computational cost.
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with analogous techniques. + COMMENTO CRACKS + throughout the paper we refer to the
portion of f to be segmented as to edges of f.

Among the available variational methods, one of the most known is that proposed by D. Mum-
ford and J. Shah in [16], whose energy functional is

I(u, E) =
Z

⌦

(u � f )2 d⌦ + �
Z

⌦\E
|ru|2 d⌦ + �H(E), (1)

where ⌦ ⇢ R2 represents the computational domain associated with the original image f 2
L1(⌦) (the true gray-level image), E is a closed one-dimensional (1D) subset of ⌦ of Hausdor↵
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by penalizing the gradient of u and the length of E, respectively. In practice, this should ensure
that the approximation u be quite flat in ⌦ \ E, and that the edge set be as short as possible.

This mimimization problem, however, is very hard to be numerically tackled, mainly because
of the presence of the low dimensional feature E, involving an unknown 1D entity embedded in
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
a sharp variation of the image occurs. On the other hand, the last integral forces v to be close to
one almost everywhere. Overall, we expect that v be approximately constant with value 1, except
across the edge, where it undergoes a steep drop to zero on a region on the order of ✏.
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
involved. The term v2 |ru|2 forces v to get close to zero in the neighborhood of an edge, where
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and �, � are positive parameters to be tuned. The first term enforces that the approximation u be
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by penalizing the gradient of u and the length of E, respectively. In practice, this should ensure
that the approximation u be quite flat in ⌦ \ E, and that the edge set be as short as possible.
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with ⌘ = O(✏2) a positive parameter. The new function v, taking values in [0, 1], plays the role
of an approximate indicator of the set E, whose “thickness” has order ✏. Moreover, both u and v
are defined on the whole domain ⌦, and no topological optimization of the geometric entity E is
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5. Results

In this section, we apply Algorithm 1 to two types of images, starting from synthetic tests,
where the edges are clearly detectable, and then moving on to real images, representing more
challenging configurations.

5.1. Synthetic images
The focus of this section is to investigate the sensitivity of the Ambrosio-Tortorelli functional

to the most relevant model parameters. For this purpose, we resort to three synthetic images to
check the e↵ect of changing one parameter at a time.

5.1.1. Sensitivity to ✏
The first test case deals with a famous French cartoon (see Figure 1 (a)). Algorithm 1 is

run with the data, ✏ = 5 · 10�2, ⌘ = 10�4, � = 10�2, � = 4, TOL = 50, TOLs = 10�2, TOLfp =
5 · 10�3, Ns = 10, Nfp = 30. After 7 iterations, the adaptive procedure stops. Figure 1 (b)-(d)
collects some associated information. A cross comparison between the true image, consisting of

(a) true image (b) approximate image uh

(c) anisotropic adapted mesh (d) approximate indicator vh

Figure 1: The Tintin test case.

128 ⇥ 128 pixels, and the approximate image shows a very good match. Small detais, such as
the sideburns and the dimple on the chin, are correctly detected. The final adapted mesh consists
of 16472 nodes and 32855 elements and is characterized by a maximum aspect ratio of 381.39.
Notice that, with fewer vertices, the approximate image is as sharp as the original one. The
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Synthetic images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 
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(e) ✏ = 10�1: indicator vh (f) ✏ = 10�1: adapted mesh

(g) ✏ = 5 · 10�2: indicator vh (h) ✏ = 5 · 10�2: adapted mesh

Figure 2: The Tintin test case: indicator vh and adapted mesh for di↵erent ✏.
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✏ max
K

sK # vertices # elements

1 38.71 2654 5236
5 · 10�1 34.43 4455 8834

10�1 140.91 11426 22752
5 · 10�2 381.39 16472 32855

Table 1: The Tintin test case: sensitivity to ✏.

double edge contour of vh is due to the capability of the error estimator to detect the gradient of
the grayscale (for instance, the gray-black and black-white transition across the ear).

We now investigate the role played by ✏, the other parameters being held fixed. In particular,
we consider the additional values 1, 5 · 10�1, and 10�1. Table 1 collects the associated maximum
aspect ratio, number of vertices and elements, provided after 6 iterations of Algorithm 1 required
to converge. As expected, the number of vertices and elements increases as ✏ decreases, while
the anisotropic shape of the triangles becomes more and more stretched.
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Synthetic images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

(sensitivity to model parameters) 
sensitivity to β 

� max
K

sK # vertices # elements

1.5 97.78 19560 39077
1 66.01 16572 33097

5 · 10�1 107.31 12294 24553

Table 2: The pirate flag test case: sensitivity to �.

5.1.2. Sensitivity to �
The role of the parameter � in (1) is investigated on the synthetic image in Fig. 3 (top),

showing a pirate flag. This parameter weights the regularization term based on the gradient of
the approximate image u, outside of the edges. Consequently, we expect that for larger values of
�, sharper contours are detected. For this purpose, we run Algorithm 1 with ✏ = 10�1, ⌘ = 10�4,
� = 4, TOL = 80, TOLs = 10�2, TOLfp = 5·10�3, Ns = 10, Nfp = 50, and picking three values of �,
i.e., 1.5, 1, and 5 ·10�1. In Fig. 3 and in Tab. 2, we provide the qualitative and quantitative results
of this analysis, respectively. In particular, Fig. 3 shows the indicator vh and the corresponding
anisotropic adapted mesh, while Tab. 2 collects the value of the maximum aspect ratio, and the
number of vertices and triangles of the final adapted mesh. It is evident that, the thicknesss of
the edge set decreases as � gets larger, and that the number of elements and vertices increases as
well.
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The numerical investigation is carried out on the image in Fig. 4, showing the Kármán vortex
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sheet on the cover of [22]. The images shows the streaklines exhibited by water flowing at 1.4
cm/s past a cylinder of diameter 1 cm at a Reynolds number equal to 140.

12

� max
K

sK # vertices # elements

1.5 97.78 19560 39077
1 66.01 16572 33097

5 · 10�1 107.31 12294 24553

Table 2: The pirate flag test case: sensitivity to �.

5.1.2. Sensitivity to �
The role of the parameter � in (1) is investigated on the synthetic image in Fig. 3 (top),

showing a pirate flag. This parameter weights the regularization term based on the gradient of
the approximate image u, outside of the edges. Consequently, we expect that for larger values of
�, sharper contours are detected. For this purpose, we run Algorithm 1 with ✏ = 10�1, ⌘ = 10�4,
� = 4, TOL = 80, TOLs = 10�2, TOLfp = 5·10�3, Ns = 10, Nfp = 50, and picking three values of �,
i.e., 1.5, 1, and 5 ·10�1. In Fig. 3 and in Tab. 2, we provide the qualitative and quantitative results
of this analysis, respectively. In particular, Fig. 3 shows the indicator vh and the corresponding
anisotropic adapted mesh, while Tab. 2 collects the value of the maximum aspect ratio, and the
number of vertices and triangles of the final adapted mesh. It is evident that, the thicknesss of
the edge set decreases as � gets larger, and that the number of elements and vertices increases as
well.

11



Synthetic images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

(sensitivity to model parameters) 
sensitivity to γ 

� max
K

sK # vertices # elements

4 145.09 23455 46727
1 149.50 16246 32299

0.25 218.44 11109 22033

Table 3: The Kármán vortex sheet test case: sensitivity to �.

1. The MRI of a brain
https://it.m.wikipedia.org/wiki/File:Pkan-basal-ganglia-MRI.JPG

2. The MRA of the circle of Willis
https://www.spandidos-publications.com/br/3/1/55

3. The X-ray of a knee
https://www.howardluksmd.com/orthopedic-social-media/medial-joint-space-narrowing/

4. The X-ray of a hand
https://it.wikipedia.org/wiki/File:Artrite_psoriasica_Rx_Mano_Sn.PNG

Figures 5-8 (top-left) show the original images along with the corresponding resolution in pixels
(px). Table 4 collects the input parameters to Algorithm 1. For this choice of parameters, a fast
convergence is always attained and, in all cases, the fixed point method takes a few iterations.
In Table 5, we gather the main output values of Algorithm 1, namely, the maximun aspect ratio,
the number of vertices and triangles of the last adapted mesh, the number of global iterations
and the corresponding number of fixed point iterations. The quality of the segmented images,
provided in Fig. 5-8 (top-right), is high, despite the relative small number of elements and ver-
tices, as compared with the number of pixels in the original images. In more detail, in Fig. 5, the
segmentation procedure identifies the plural gyri and sulci of the grey matter, together with the
white matter, the ventricles and the corpus callosum. Figure 6 clearly displays the circle of Willis
and the slender posterior cerebral artery. Figure 7 reveals the three main bones, femur, tibia and
fibula, and some parts of muscles and soft tissues. In the last Fig. 8, the joint deformation asso-
ciated with a psoriatic arthritis is detected, together with the carpals, metacarpals, and the three
phalanges.

The indicator function vh, for a threshold set to 0.1, highlights essentially the high-contrast
areas, as shown in Figures 5-8 (bottom-left).

Finally, concerning the adapted meshes, shown in Figures 5-8 (bottom-right), they all ensure
a high quality segmentation, although being quite coarse, in particular for the knee and hand
images, and mildly anisotropic.
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The parameter � controls the regularization term of the length of the edges in (1). As a con-
sequence, we expect that, for values of � smaller and smaller, the outcome of the segmentation
becomes blurred and the adapted mesh around the streaklines are thicker. These trends are con-
firmed by Fig. 4, collecting the indicator vh of the edge set (left), its thresholded (below 0.1)
version (center), and the adapted mesh (right), and Tab. 3 gathering the same quantities as in
Tables 2 and 1.

(a) true image

(b) � = 4: indicator vh (c) � = 4: thresholded indicator (d) � = 4: adapted mesh

(e) � = 1: indicator vh (f) � = 1: thresholded indicator (g) � = 1: adapted mesh

(h) � = 0.25: indicator vh (i) � = 0.25: thresholded indicator (j) � = 0.25: adapted mesh

Figure 4: The Kármán vortex sheet test case: indicator vh, thresholded indicator, and adapted mesh for di↵erent �.

5.2. Real images
We now consider the segmentation of real images. We focus on medical images due to their

strong impact on the health and social care. Moreover, the presence of both soft tissues and bones
makes this analysis extremely challenging.

In particular, we pick the following images:
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Figure 4: The Kármán vortex sheet test case: indicator vh, thresholded indicator, and adapted mesh for di↵erent �.

5.2. Real images
We now consider the segmentation of real images. We focus on medical images due to their

strong impact on the health and social care. Moreover, the presence of both soft tissues and bones
makes this analysis extremely challenging.

In particular, we pick the following images:
13

Algorithm 1 are ✏ = 10�1, ⌘ = 10�4, � = 5 · 10�2, TOL = 80, TOLs = 10�2, TOLfp = 5 · 10�3, Ns =
10, Nfp = 50, and selecting three values of �, i.e., 4, 1, and 2.5 · 10�1. The parameter � controls
the regularization term of the length of the edges in (1). As a consequence, we expect that,
for values of � smaller and smaller, the outcome of the segmentation becomes blurred and the
adapted mesh around the streaklines are thicker. These trends are confirmed by Fig. 4, collecting
the indicator vh of the edge set (left), its thresholded (below 0.1) version (center), and the adapted
mesh (right), and Tab. 3 gathering the same quantities as in Tables 2 and 1.

(a) true image

(b) � = 4: indicator vh (c) � = 4: thresholded indicator (d) � = 4: adapted mesh

(e) � = 1: indicator vh (f) � = 1: thresholded indicator (g) � = 1: adapted mesh

(h) � = 0.25: indicator vh (i) � = 0.25: thresholded indicator (j) � = 0.25: adapted mesh
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Table 2: The pirate flag test case: sensitivity to �.

5.1.2. Sensitivity to �
The role of the parameter � in (1) is investigated on the synthetic image in Fig. 3 (top),

showing a pirate flag. This parameter weights the regularization term based on the gradient of
the approximate image u, outside of the edges. Consequently, we expect that for larger values of
�, sharper contours are detected. For this purpose, we run Algorithm 1 with ✏ = 10�1, ⌘ = 10�4,
� = 4, TOL = 80, TOLs = 10�2, TOLfp = 5·10�3, Ns = 10, Nfp = 50, and picking three values of �,
i.e., 1.5, 1, and 5 ·10�1. In Fig. 3 and in Tab. 2, we provide the qualitative and quantitative results
of this analysis, respectively. In particular, Fig. 3 shows the indicator vh and the corresponding
anisotropic adapted mesh, while Tab. 2 collects the value of the maximum aspect ratio, and the
number of vertices and triangles of the final adapted mesh. It is evident that, the thicknesss of
the edge set decreases as � gets larger, and that the number of elements and vertices increases as
well.
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Real images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 
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Figures 5-8 (top-left) show the original images along with the corresponding resolution in pixels
(px). Table 4 collects the input parameters to Algorithm 1. For this choice of parameters, a fast
convergence is always attained and, in all cases, the fixed point method takes a few iterations.
In Table 5, we gather the main output values of Algorithm 1, namely, the maximun aspect ratio,
the number of vertices and triangles of the last adapted mesh, the number of global iterations
and the corresponding number of fixed point iterations. The quality of the segmented images,
provided in Fig. 5-8 (top-right), is high, despite the relative small number of elements and ver-
tices, as compared with the number of pixels in the original images. In more detail, in Fig. 5, the
segmentation procedure identifies the plural gyri and sulci of the grey matter, together with the
white matter, the ventricles and the corpus callosum. Figure 6 clearly displays the circle of Willis
and the slender posterior cerebral artery. Figure 7 reveals the three main bones, femur, tibia and
fibula, and some parts of muscles and soft tissues. In the last Fig. 8, the joint deformation asso-
ciated with a psoriatic arthritis is detected, together with the carpals, metacarpals, and the three
phalanges.

The indicator function vh, for a threshold set to 0.1, highlights essentially the high-contrast
areas, as shown in Figures 5-8 (bottom-left).

Finally, concerning the adapted meshes, shown in Figures 5-8 (bottom-right), they all ensure
a high quality segmentation, although being quite coarse, in particular for the knee and hand
images, and mildly anisotropic.
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(a) real image (385 ⇥ 479 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 5: The brain test case.
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Real images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

� max
K

sK # vertices # elements

4 145.09 23455 46727
1 149.50 16246 32299

0.25 218.44 11109 22033

Table 3: The Kármán vortex sheet test case: sensitivity to �.

1. The MRI of a brain
https://it.m.wikipedia.org/wiki/File:Pkan-basal-ganglia-MRI.JPG

2. The MRA of the circle of Willis
https://www.spandidos-publications.com/br/3/1/55

3. The X-ray of a knee
https://www.howardluksmd.com/orthopedic-social-media/medial-joint-space-narrowing/

4. The X-ray of a hand
https://it.wikipedia.org/wiki/File:Artrite_psoriasica_Rx_Mano_Sn.PNG

Figures 5-8 (top-left) show the original images along with the corresponding resolution in pixels
(px). Table 4 collects the input parameters to Algorithm 1. For this choice of parameters, a fast
convergence is always attained and, in all cases, the fixed point method takes a few iterations.
In Table 5, we gather the main output values of Algorithm 1, namely, the maximun aspect ratio,
the number of vertices and triangles of the last adapted mesh, the number of global iterations
and the corresponding number of fixed point iterations. The quality of the segmented images,
provided in Fig. 5-8 (top-right), is high, despite the relative small number of elements and ver-
tices, as compared with the number of pixels in the original images. In more detail, in Fig. 5, the
segmentation procedure identifies the plural gyri and sulci of the grey matter, together with the
white matter, the ventricles and the corpus callosum. Figure 6 clearly displays the circle of Willis
and the slender posterior cerebral artery. Figure 7 reveals the three main bones, femur, tibia and
fibula, and some parts of muscles and soft tissues. In the last Fig. 8, the joint deformation asso-
ciated with a psoriatic arthritis is detected, together with the carpals, metacarpals, and the three
phalanges.

The indicator function vh, for a threshold set to 0.1, highlights essentially the high-contrast
areas, as shown in Figures 5-8 (bottom-left).

Finally, concerning the adapted meshes, shown in Figures 5-8 (bottom-right), they all ensure
a high quality segmentation, although being quite coarse, in particular for the knee and hand
images, and mildly anisotropic.
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(a) real image (663 ⇥ 804 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 6: The circle of Willis test case.
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Real images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

� max
K

sK # vertices # elements

4 145.09 23455 46727
1 149.50 16246 32299

0.25 218.44 11109 22033

Table 3: The Kármán vortex sheet test case: sensitivity to �.

1. The MRI of a brain
https://it.m.wikipedia.org/wiki/File:Pkan-basal-ganglia-MRI.JPG

2. The MRA of the circle of Willis
https://www.spandidos-publications.com/br/3/1/55

3. The X-ray of a knee
https://www.howardluksmd.com/orthopedic-social-media/medial-joint-space-narrowing/

4. The X-ray of a hand
https://it.wikipedia.org/wiki/File:Artrite_psoriasica_Rx_Mano_Sn.PNG

Figures 5-8 (top-left) show the original images along with the corresponding resolution in pixels
(px). Table 4 collects the input parameters to Algorithm 1. For this choice of parameters, a fast
convergence is always attained and, in all cases, the fixed point method takes a few iterations.
In Table 5, we gather the main output values of Algorithm 1, namely, the maximun aspect ratio,
the number of vertices and triangles of the last adapted mesh, the number of global iterations
and the corresponding number of fixed point iterations. The quality of the segmented images,
provided in Fig. 5-8 (top-right), is high, despite the relative small number of elements and ver-
tices, as compared with the number of pixels in the original images. In more detail, in Fig. 5, the
segmentation procedure identifies the plural gyri and sulci of the grey matter, together with the
white matter, the ventricles and the corpus callosum. Figure 6 clearly displays the circle of Willis
and the slender posterior cerebral artery. Figure 7 reveals the three main bones, femur, tibia and
fibula, and some parts of muscles and soft tissues. In the last Fig. 8, the joint deformation asso-
ciated with a psoriatic arthritis is detected, together with the carpals, metacarpals, and the three
phalanges.

The indicator function vh, for a threshold set to 0.1, highlights essentially the high-contrast
areas, as shown in Figures 5-8 (bottom-left).

Finally, concerning the adapted meshes, shown in Figures 5-8 (bottom-right), they all ensure
a high quality segmentation, although being quite coarse, in particular for the knee and hand
images, and mildly anisotropic.
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(a) real image (261 ⇥ 448 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 7: The knee test case.
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Real images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

� max
K

sK # vertices # elements

4 145.09 23455 46727
1 149.50 16246 32299

0.25 218.44 11109 22033

Table 3: The Kármán vortex sheet test case: sensitivity to �.

1. The MRI of a brain
https://it.m.wikipedia.org/wiki/File:Pkan-basal-ganglia-MRI.JPG

2. The MRA of the circle of Willis
https://www.spandidos-publications.com/br/3/1/55

3. The X-ray of a knee
https://www.howardluksmd.com/orthopedic-social-media/medial-joint-space-narrowing/

4. The X-ray of a hand
https://it.wikipedia.org/wiki/File:Artrite_psoriasica_Rx_Mano_Sn.PNG

Figures 5-8 (top-left) show the original images along with the corresponding resolution in pixels
(px). Table 4 collects the input parameters to Algorithm 1. For this choice of parameters, a fast
convergence is always attained and, in all cases, the fixed point method takes a few iterations.
In Table 5, we gather the main output values of Algorithm 1, namely, the maximun aspect ratio,
the number of vertices and triangles of the last adapted mesh, the number of global iterations
and the corresponding number of fixed point iterations. The quality of the segmented images,
provided in Fig. 5-8 (top-right), is high, despite the relative small number of elements and ver-
tices, as compared with the number of pixels in the original images. In more detail, in Fig. 5, the
segmentation procedure identifies the plural gyri and sulci of the grey matter, together with the
white matter, the ventricles and the corpus callosum. Figure 6 clearly displays the circle of Willis
and the slender posterior cerebral artery. Figure 7 reveals the three main bones, femur, tibia and
fibula, and some parts of muscles and soft tissues. In the last Fig. 8, the joint deformation asso-
ciated with a psoriatic arthritis is detected, together with the carpals, metacarpals, and the three
phalanges.

The indicator function vh, for a threshold set to 0.1, highlights essentially the high-contrast
areas, as shown in Figures 5-8 (bottom-left).

Finally, concerning the adapted meshes, shown in Figures 5-8 (bottom-right), they all ensure
a high quality segmentation, although being quite coarse, in particular for the knee and hand
images, and mildly anisotropic.
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(a) real image (312 ⇥ 454 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 8: The hand test case.
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Real images [A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

image ✏ � � ⌘ TOL TOLs TOLfp Ns Nfp

brain 10�3 10�1 5 · 10�1 10�6 70 10�2 5 · 10�3 10 40
Willis 10�3 10�1 5 10�6 100 10�2 5 · 10�3 10 40
knee 10�3 2 · 10�1 10 10�6 60 10�2 5 · 10�3 10 40
hand 10�3 10�1 10 10�6 60 10�2 5 · 10�3 10 40

Table 4: Real images: input parameters to Algorithm 1.

image max
K

sK # vertices # elements # ITs # ITfp

brain 71.94 19726 39334 4 4 � 8 � 9 � 25
Willis 56.51 24845 49544 3 2 � 4 � 4
knee 82.01 5683 11175 4 3 � 5 � 7 � 6
hand 38.01 8592 17056 5 2 � 3 � 2 � 2 � 2

Table 5: Real images: output of Algorithm 1.

6. Comparison with the isotropic mesh adaptation

The advantages due to anisotropic mesh adaptation with respect to fixed or isotropically
adapted meshes are well established [? ]. For the sake of completeness, we run again some of
the previous test cases in an isotropic setting to confirm these improvements.

In general, for the same accuracy TOL, the isotropic metric is obtained by enforcing sK = 1,
for any K 2 Th, i.e., replacing the recipes in Proposition 4.1 by

�̃1,K = �̃2,K =
✓ 1
|bK|
p

2

✓ 2
g1,K + g2,K

◆1/2 TOL

#Th

◆1/3
, r̃1,K = [1, 0]T , r̃2,K = [0, 1]T . (21)

We have performed two series of checks. The results of the first check, provided in Fig. 9, refer
to the test case in Section 5.1.1. The isotropic mesh in the left panel consists of 62023 triangles.
Despite the large number of elements, the quality of the approximate indicator vh, thresholded at
0.1 (center panel), is low compared with the corresponding function (right panel) computed on
the anisotropic mesh in Fig. 1 (c). Actually, the main features of the image are captured but some
of the details are lost and detected discontinuously.

image E-time AD-time FP-time
brain 170.74 43.77 � 24.95 � 19.45 � 17.58 11.26 � 12.57 � 10.62 � 25.51
Willis 102.78 29.76 � 24.12 � 22.93 3.63 � 5.78 � 5.3
knee 56.29 23.56 � 7.66 � 5.56 � 4.64 4.87 � 2.31 � 2.24 � 1.54
hand 79.90 29.83 � 11.32 � 8.53 � 7.48 � 7.3 4.14 � 2.01 � 0.97 � 0.87 � 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.
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Table 5: Real images: output of Algorithm 1.
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Comparison with a pixel mesh 

[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

67679 
triangles 

[B. Bourdin (1999)] 

(a) real image (512 ⇥ 512 px) (b) approximate image uh

(c) thresholded indicator vh (d) adapted mesh

Figure 9: The Lena test case.

7. Comparison with the isotropic mesh adaptation

The advantages due to anisotropic mesh adaptation with respect to fixed or isotropically
adapted meshes are well established [? ]. For the sake of completeness, we run again some of
the previous test cases in an isotropic setting to confirm these improvements.

In general, for the same accuracy TOL, the isotropic metric is obtained by enforcing sK = 1,
for any K 2 Th, i.e., replacing the recipes in Proposition 4.1 by

�̃1,K = �̃2,K =
✓ 1
|bK|
p

2

✓ 2
g1,K + g2,K

◆1/2 TOL

#Th

◆1/3
, r̃1,K = [1, 0]T , r̃2,K = [0, 1]T . (21)

We have performed two series of checks. The results of the first check, provided in Fig. 10, refer
to the test case in Section 5.1.1. The isotropic mesh in the left panel consists of 62023 triangles.
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image ✏ � � ⌘ TOL TOLs TOLfp Ns Nfp

brain 10�3 10�1 5 · 10�1 10�6 70 10�2 5 · 10�3 10 40
Willis 10�3 10�1 5 10�6 100 10�2 5 · 10�3 10 40
knee 10�3 2 · 10�1 10 10�6 60 10�2 5 · 10�3 10 40
hand 10�3 10�1 10 10�6 60 10�2 5 · 10�3 10 40

Table 4: Real images: input parameters to Algorithm 1.

image max
K

sK # vertices # elements # ITs # ITfp

brain 71.94 19726 39334 4 4 � 8 � 9 � 25
Willis 56.51 24845 49544 3 2 � 4 � 4
knee 82.01 5683 11175 4 3 � 5 � 7 � 6
hand 38.01 8592 17056 5 2 � 3 � 2 � 2 � 2

Table 5: Real images: output of Algorithm 1.

6. Comparison with a pixel mesh

We refer to the test case of Fig. 8 in [6], dealing with the well-known Lena image benchmark
(see Fig. 9 (top-left)). We adopt the following parameters, ✏ = 10�1, ⌘ = 10�2, � = 2, � = 10�2,
to match those in [6], in addition to TOL = 50, TOLs = 10�2, TOLfp = 5 ·10�3, Ns = 10, Nfp = 50.
The thresholding is performed by truncating the approximate indicator vh at the value 8 · 10�5.
Figure 9 collects the outcomes of Algorithm 1, at convergence (after 7 iterations), represented
by the approximation to the original image, the edge set, and the final adapted mesh, consisting
of 67679 anisotropic triangles with a maximum aspect ratio equal to 75.58. The quality of the
edge set is thoroughly comparable with the one in the reference paper, although the number of
elements is considerably lower for the adaptive strategy.

image E-time AD-time FP-time
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knee 56.29 23.56 � 7.66 � 5.56 � 4.64 4.87 � 2.31 � 2.24 � 1.54
hand 79.90 29.83 � 11.32 � 8.53 � 7.48 � 7.3 4.14 � 2.01 � 0.97 � 0.87 � 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.
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Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.
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Willis 102.78 29.76 � 24.12 � 22.93 3.63 � 5.78 � 5.3
knee 56.29 23.56 � 7.66 � 5.56 � 4.64 4.87 � 2.31 � 2.24 � 1.54
hand 79.90 29.83 � 11.32 � 8.53 � 7.48 � 7.3 4.14 � 2.01 � 0.97 � 0.87 � 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.
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image ✏ � � ⌘ TOL TOLs TOLfp Ns Nfp

brain 10�3 10�1 5 · 10�1 10�6 70 10�2 5 · 10�3 10 40
Willis 10�3 10�1 5 10�6 100 10�2 5 · 10�3 10 40
knee 10�3 2 · 10�1 10 10�6 60 10�2 5 · 10�3 10 40
hand 10�3 10�1 10 10�6 60 10�2 5 · 10�3 10 40

Table 4: Real images: input parameters to Algorithm 1.

image max
K

sK # vertices # elements # ITs # ITfp

brain 71.94 19726 39334 4 4 � 8 � 9 � 25
Willis 56.51 24845 49544 3 2 � 4 � 4
knee 82.01 5683 11175 4 3 � 5 � 7 � 6
hand 38.01 8592 17056 5 2 � 3 � 2 � 2 � 2

Table 5: Real images: output of Algorithm 1.

6. Comparison with a pixel mesh

We refer to the test case of Fig. 8 in [6], dealing with the well-known Lena image benchmark
(see Fig. 9 (top-left)). We adopt the following parameters, ✏ = 10�1, ⌘ = 10�2, � = 2, � = 10�2,
to match those in [6], in addition to TOL = 50, TOLs = 10�2, TOLfp = 5 ·10�3, Ns = 10, Nfp = 50.
The thresholding is performed by truncating the approximate indicator vh at the value 8 · 10�5.
Figure 9 collects the outcomes of Algorithm 1, at convergence (after 7 iterations), represented
by the approximation to the original image, the edge set, and the final adapted mesh, consisting
of 67679 anisotropic triangles with a maximum aspect ratio equal to 75.58. The quality of the
edge set is thoroughly comparable with the one in the reference paper, although the number of
elements is considerably lower for the adaptive strategy.

image E-time AD-time FP-time
brain 170.74 43.77 � 24.95 � 19.45 � 17.58 11.26 � 12.57 � 10.62 � 25.51
Willis 102.78 29.76 � 24.12 � 22.93 3.63 � 5.78 � 5.3
knee 56.29 23.56 � 7.66 � 5.56 � 4.64 4.87 � 2.31 � 2.24 � 1.54
hand 79.90 29.83 � 11.32 � 8.53 � 7.48 � 7.3 4.14 � 2.01 � 0.97 � 0.87 � 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.
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[A.S. Chiappa, S. Micheletti, R. Peli, S.P., submitted] 

(a) ✏ = 1: indicator vh (b) ✏ = 1: adapted mesh

(c) ✏ = 5 · 10�1: indicator vh (d) ✏ = 5 · 10�1: adapted mesh

(e) ✏ = 10�1: indicator vh (f) ✏ = 10�1: adapted mesh

(g) ✏ = 5 · 10�2: indicator vh (h) ✏ = 5 · 10�2: adapted mesh

Figure 2: The Tintin test case: indicator vh and adapted mesh for di↵erent ✏.
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48829 
triangles 

39334  
triangles 

� max
K

sK # vertices # elements

1.5 97.78 19560 39077
1 66.01 16572 33097

5 · 10�1 107.31 12294 24553

Table 2: The pirate flag test case: sensitivity to �.

5.1.2. Sensitivity to �
The role of the parameter � in (1) is investigated on the synthetic image in Fig. 3 (top),

showing a pirate flag. This parameter weights the regularization term based on the gradient of
the approximate image u, outside of the edges. Consequently, we expect that for larger values of
�, sharper contours are detected. For this purpose, we run Algorithm 1 with ✏ = 10�1, ⌘ = 10�4,
� = 4, TOL = 80, TOLs = 10�2, TOLfp = 5·10�3, Ns = 10, Nfp = 50, and picking three values of �,
i.e., 1.5, 1, and 5 ·10�1. In Fig. 3 and in Tab. 2, we provide the qualitative and quantitative results
of this analysis, respectively. In particular, Fig. 3 shows the indicator vh and the corresponding
anisotropic adapted mesh, while Tab. 2 collects the value of the maximum aspect ratio, and the
number of vertices and triangles of the final adapted mesh. It is evident that, the thicknesss of
the edge set decreases as � gets larger, and that the number of elements and vertices increases as
well.
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image ✏ � � ⌘ TOL TOLs TOLfp Ns Nfp

brain 10�3 10�1 5 · 10�1 10�6 70 10�2 5 · 10�3 10 40
Willis 10�3 10�1 5 10�6 100 10�2 5 · 10�3 10 40
knee 10�3 2 · 10�1 10 10�6 60 10�2 5 · 10�3 10 40
hand 10�3 10�1 10 10�6 60 10�2 5 · 10�3 10 40

Table 4: Real images: input parameters to Algorithm 1.

image max
K

sK # vertices # elements # ITs # ITfp

brain 71.94 19726 39334 4 4 � 8 � 9 � 25
Willis 56.51 24845 49544 3 2 � 4 � 4
knee 82.01 5683 11175 4 3 � 5 � 7 � 6
hand 38.01 8592 17056 5 2 � 3 � 2 � 2 � 2

Table 5: Real images: output of Algorithm 1.

6. Comparison with the isotropic mesh adaptation

The advantages due to anisotropic mesh adaptation with respect to fixed or isotropically
adapted meshes are well established [? ]. For the sake of completeness, we run again some of
the previous test cases in an isotropic setting to confirm these improvements.

In general, for the same accuracy TOL, the isotropic metric is obtained by enforcing sK = 1,
for any K 2 Th, i.e., replacing the recipes in Proposition 4.1 by

�̃1,K = �̃2,K =
✓ 1
|bK|
p

2

✓ 2
g1,K + g2,K

◆1/2 TOL

#Th

◆1/3
, r̃1,K = [1, 0]T , r̃2,K = [0, 1]T . (21)

We have performed two series of checks. The results of the first check, provided in Fig. 9, refer
to the test case in Section 5.1.1. The isotropic mesh in the left panel consists of 62023 triangles.
Despite the large number of elements, the quality of the approximate indicator vh, thresholded at
0.1 (center panel), is low compared with the corresponding function (right panel) computed on
the anisotropic mesh in Fig. 1 (c). Actually, the main features of the image are captured but some
of the details are lost and detected discontinuously.

image E-time AD-time FP-time
brain 170.74 43.77 � 24.95 � 19.45 � 17.58 11.26 � 12.57 � 10.62 � 25.51
Willis 102.78 29.76 � 24.12 � 22.93 3.63 � 5.78 � 5.3
knee 56.29 23.56 � 7.66 � 5.56 � 4.64 4.87 � 2.31 � 2.24 � 1.54
hand 79.90 29.83 � 11.32 � 8.53 � 7.48 � 7.3 4.14 � 2.01 � 0.97 � 0.87 � 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.
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(a) real image (385 ⇥ 479 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 5: The brain test case.

15

19760 
triangles 

� max
K

sK # vertices # elements

1.5 97.78 19560 39077
1 66.01 16572 33097

5 · 10�1 107.31 12294 24553

Table 2: The pirate flag test case: sensitivity to �.

5.1.2. Sensitivity to �
The role of the parameter � in (1) is investigated on the synthetic image in Fig. 3 (top),

showing a pirate flag. This parameter weights the regularization term based on the gradient of
the approximate image u, outside of the edges. Consequently, we expect that for larger values of
�, sharper contours are detected. For this purpose, we run Algorithm 1 with ✏ = 10�1, ⌘ = 10�4,
� = 4, TOL = 80, TOLs = 10�2, TOLfp = 5·10�3, Ns = 10, Nfp = 50, and picking three values of �,
i.e., 1.5, 1, and 5 ·10�1. In Fig. 3 and in Tab. 2, we provide the qualitative and quantitative results
of this analysis, respectively. In particular, Fig. 3 shows the indicator vh and the corresponding
anisotropic adapted mesh, while Tab. 2 collects the value of the maximum aspect ratio, and the
number of vertices and triangles of the final adapted mesh. It is evident that, the thicknesss of
the edge set decreases as � gets larger, and that the number of elements and vertices increases as
well.
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image ✏ � � ⌘ TOL TOLs TOLfp Ns Nfp

brain 10�3 10�1 5 · 10�1 10�6 70 10�2 5 · 10�3 10 40
Willis 10�3 10�1 5 10�6 100 10�2 5 · 10�3 10 40
knee 10�3 2 · 10�1 10 10�6 60 10�2 5 · 10�3 10 40
hand 10�3 10�1 10 10�6 60 10�2 5 · 10�3 10 40

Table 4: Real images: input parameters to Algorithm 1.

image max
K

sK # vertices # elements # ITs # ITfp

brain 71.94 19726 39334 4 4 � 8 � 9 � 25
Willis 56.51 24845 49544 3 2 � 4 � 4
knee 82.01 5683 11175 4 3 � 5 � 7 � 6
hand 38.01 8592 17056 5 2 � 3 � 2 � 2 � 2

Table 5: Real images: output of Algorithm 1.

6. Comparison with the isotropic mesh adaptation

The advantages due to anisotropic mesh adaptation with respect to fixed or isotropically
adapted meshes are well established [? ]. For the sake of completeness, we run again some of
the previous test cases in an isotropic setting to confirm these improvements.

In general, for the same accuracy TOL, the isotropic metric is obtained by enforcing sK = 1,
for any K 2 Th, i.e., replacing the recipes in Proposition 4.1 by

�̃1,K = �̃2,K =
✓ 1
|bK|
p

2

✓ 2
g1,K + g2,K

◆1/2 TOL

#Th

◆1/3
, r̃1,K = [1, 0]T , r̃2,K = [0, 1]T . (21)

We have performed two series of checks. The results of the first check, provided in Fig. 9, refer
to the test case in Section 5.1.1. The isotropic mesh in the left panel consists of 62023 triangles.
Despite the large number of elements, the quality of the approximate indicator vh, thresholded at
0.1 (center panel), is low compared with the corresponding function (right panel) computed on
the anisotropic mesh in Fig. 1 (c). Actually, the main features of the image are captured but some
of the details are lost and detected discontinuously.

image E-time AD-time FP-time
brain 170.74 43.77 � 24.95 � 19.45 � 17.58 11.26 � 12.57 � 10.62 � 25.51
Willis 102.78 29.76 � 24.12 � 22.93 3.63 � 5.78 � 5.3
knee 56.29 23.56 � 7.66 � 5.56 � 4.64 4.87 � 2.31 � 2.24 � 1.54
hand 79.90 29.83 � 11.32 � 8.53 � 7.48 � 7.3 4.14 � 2.01 � 0.97 � 0.87 � 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point (FP-time) iteration times.

19

(a) real image (261 ⇥ 448 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 7: The knee test case.
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