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INTRODUCTION – FROM ANALOGIC TO DIGITAL

Image comparison: An analogic image of Andromeda

galaxy, taken by Edwin Hubble in 1923, which totally

revolutionized our idea of universe, followed by a

modern digital image of the same galaxy taken by

the Hubble Space Telescope.

Image comparison: "The First Photograph of a

Nebula”, 1880, photographic plate, followed by a

digital image of the same nebula, taken by an iPhone

camera + telescope 8’’.

The evolution from analogic to digital provided a lot of advantages: more sensibility for each wavelength,

better calibration of the instruments and an nearly full-automation of the analysis, no material decay, etc.



INTRODUCTION – IMAGE TYPE

Flexible Image Transport System (FITS) Images is
the standard format in astronomy, the header of
the image can store useful information:
coordinate systems, exposure time, wavelength,
etc.

Extragalactic images principal characteristics:
• Large number of objects in the image
• Large dynamical range of fluxes
• Large dynamical range of dimensions
• Multi-wavelength photons

We are mainly interested in deep-field
extragalactic images, taken by space telescopes
and earth-based observations, studying this kind of
images is fundamental in order to understand the
origin of the universe, how the galaxies were
formed and why the universe looks like the one we
observe!



INTRODUCTION – IMAGE ACQUISITION

Large Binocular Telescope
Mt. Graham, Arizona
(Italy-INAF, USA, Germany)
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INTRODUCTION – CCD CAMERA

• Photons striking a silicon surface create free electrons
through the photoelectric effect.

• The electrons are gathered from the place they were
generated by positively biasing discrete areas to attract
them.

• A charge amplifier converts the charge into a signal,
which is sampled and digitized.

• The signal is used to reconstruct the pixel matrix which
corresponds to the image projected on the CCD
surface.

Astronomical digital images are produced by modern 
telescopes through a Charge-Couple Device (CCD) 



INTRODUCTION – PSF

The point spread function (PSF) describes the response of 
an imaging system to a point-like object.

The image of an object can then be seen as a convolution 
of the true object and the PSF

The experimental determination of a PSF is often very 
straightforward due to the ample supply of point sources 
(stars and quasars). The form and source of the PSF may 
vary widely depending on the instrument and the context 
in which it is used.

The PSF for a perfect optical system, based on circular 
elements, would be an “Airy Pattern,” which is derived 
from Fraunhofer diffraction theory 



INTRODUCTION – NOISE IN ASTRONOMICAL IMAGES

• Thermal Noise: Some electrons can be generated by 
temperature oscillations, not correlated to any photon 
striking the CCD (Dark Current). Poisson Distribution.

It can be subtracted to the final image, taking images with 
the frame closed.
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INTRODUCTION – NOISE IN ASTRONOMICAL IMAGES

• Thermal Noise: Some electrons can be generated by 
temperature oscillations, not correlated to any photon 
striking the CCD (Dark Current). Poisson Distribution.

It can be subtracted to the final image, taking images with 
the frame closed.

• Pixel non-uniformity
Each pixel has a slightly different sensitivity to light, 
typically within 1% to 2% of the average signal

Pixel non-uniformity can be reduced by calibrating an image 
with a flat-field image.

• Cosmic Rays: High energy radiation mainly originating 
from outside the solar system. Salt&”NoPepper” 

Easily recognizable, sharper shape than stars and galaxies. 
(Not properly noise) 



INTRODUCTION – NOISE IN ASTRONOMICAL IMAGES

• Shot Noise: It is caused by the random arrival of 
photons. Each photon is an independent event, the 
probability of its arrival in a given time period is 
governed by a Poisson distribution

Shot Noise can be reduced by collecting more photons, 
either with a longer exposure or by combining multiple 
frames
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• Shot Noise: It is caused by the random arrival of 
photons. Each photon is an independent event, the 
probability of its arrival in a given time period is 
governed by a Poisson distribution

Shot Noise can be reduced by collecting more photons, 
either with a longer exposure or by combining multiple 
frames

• Readout Noise : It is a consequence of the imperfect 
operation of physical electronic devices. Basically, 
detectors which use an amplifier introduce this type of 
noise due to their non-perfect measurement of the 
charge in a clump of electrons.

Readout Noise exhibits a Gaussian distribution, can be 
reduced combining frames  or with denoising techniques 



INTRODUCTION – NOISE IN ASTRONOMICAL IMAGES

• Background Noise: Produced by incoming light from an 
apparently empty part of the night sky. The great 
number of sources contribute to obscure the sources 
signals, setting a ”level of background”. The background 
noise is not simply approximated by a noise model, it is 
affected not only by faintest sources in the night sky, 
but also by distortions and emissions produced by the 
atmosphere. 

Background noise, for extragalactic images, is typically 
approximated by a Gaussian distribution, in absence of 
strong sources (e.g. stars).



SOURCE DETECTION AND IMAGE SEGMENTATION

Algorithms of source detection are extremely useful in astronomy in 
order to build catalogues of objects, with related features, fluxes, 
coordinates etc.
These algorithms estimate the background noise producing a root 
mean square map (rms) of the image. 
A threshold for the detection is set to be N*σ times above the 
background rms.
Only the pixels which are above this threshold are considered real 
objects, (a minimum area of connected-above-threshold pixels is also 
considered, in order to avoid spurious detections).



DENOISING ALGORITHMS

• Linear Filters
• Non-linear Filters
• Statistical methods
• Non-local Means filter
• Total Variation algorithms
• Wavelet Transform
• Deep Learning
• Etc.

Many methods of noise reduction exist. They are based on different approaches, and they behave differently 
depending on the kind of noise in the image.  
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DENOISING ALGORITHMS

Edge-stopping functions that we have considered an tested:
!" and !#, proposed by (Perona and Malik, 1990)

!$ proposed by (Zhichang Guo et.al 2012) 

Tukey’s biweight function (!%) proposed by (Black et al.1998)

!& proposed by (J.Weickert, 1998)



DENOISING ALGORITHMS

Gaussian Filter: Using the Gaussian function for calculating 
the transformation to apply to each pixel in the image

Unfortunately, this filter doesn’t prevent lose of contours, not only 
wipes out noise, but also image details. 

Perona-Malik:  An anisotropic diffusion algorithm, with 
partial differential equations. This technique aims at 
reducing image noise without removing significant parts of 
the image content, typically edges, lines or other details in 
the image 

Very important are the edge-stopping functions, using the gradient 
of the image can partially preserve contours

Integration Time à



DENOISING ALGORITHMS

Wavelet transform: It is a multi-scale approach, an image can be decomposed into components at different scales,
well-adapted to the study of astronomical data.
It has been widely used in astronomical data analysis during the last ten years.

Works well independently on the type of noise
It represents well isotropic features, but it is far from optimal for analyzing anisotropic objects
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Astro-Total Variation Denoiser (ATVD)

u is the structural part 
v is the texture part 
λ is the splitting parameter
X is a function space (e.g. !", !#, !$)

Castellano et al. (2015)D.Ottaviani



DENOISING ALGORITHMS

Astro-Total Variation Denoiser (ATVD)

u is the structural part 
v is the texture part 
λ is the splitting parameter
X is a function space (e.g. !", !#, !$)

Castellano et al. (2015)

Original +Gauss Noise Texture Structural

Image decomposition

D.Ottaviani



DENOISING ALGORITHMS

Astro-Total Variation Denoiser (ATVD)

u is the structural part 
v is the texture part 
λ is the splitting parameter
X is a function space (e.g. !", !#, !$)

Castellano et al. (2015)

Original +Gauss Noise Texture Structural

Image decomposition

Denoised

O
ri

gi
na

l

D.Ottaviani



DENOISING ALGORITHMS
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DENOISING ALGORITHMS

u is the structural part 
v is the texture part 
λ is the splitting parameter
X is a function space (e.g. !", !#, !$)

CANDELS-DEEP HUDF CANDELS-DEEP DENOISED

Results are really interesting, although it is 
much slower than a Perona-Malik

Astro-Total Variation Denoiser (ATVD)
Castellano et al. (2015)D.Ottaviani
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How do we compare the efficiency of these denoising algorithms?

Not a trivial issue: A good metric should consider an improvement in the number of detected objects
without introducing spurious sources.

In real astronomical images, we are not able distinguish with extreme precision what is a real object 
and what is just a fluctuation of the background.

For this reason we need to consider simulated images.

Sim
ulat

ed
Real



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Using a detection algorithm on a simulated image, can provide us useful information:

1. We know the exact number of objects
2. We know the coordinates of these objects
3. We know the exact flux of every object



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Using a detection algorithm on a simulated image, can provide us useful information:

1. We know the exact number of objects
2. We know the coordinates of these objects
3. We know the exact flux of every object

Let’s define these quantities:
• !"#$% = real number of simulated objects
• !&#'#('#& = number of objects detected by a detection algorithm
• !)*+",-+) = number of objects detected by a detection algorithm, that we know for sure are not real

In order to define !)*+",-+) we need define methods, which allow us to understand if the object detected is 
spurious or not
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How do we compare the efficiency of these denoising algorithms?

Association Method: We know which are real objects, every detected object has to be associated to a real object, if 
not: that object is considered spurious

Inverted Image Method: This method is based on
the assumption that, noise is equally distributed
at negative and positive values (following a
Gaussian distribution).

Inverting the image means that real objects
become negative, while noise can be negative or
positive, running the detection algorithm
estimates how much spurious objects we are
detecting



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Flux

The quantity used in astronomy to measure fluxes 
is the magnitude.



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Flux

The quantity used in astronomy to measure fluxes 
is the magnitude.

Defined as: 

Pogson 1856



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Flux

The quantity used in astronomy to measure fluxes 
is the magnitude.

Defined as: 

Pogson 1856

I know..



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Flux

The quantity used in astronomy to measure fluxes 
is the magnitude.

Defined as: 

Pogson 1856

..absolutely not intuitive, but..



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Flux

The quantity used in astronomy to measure fluxes 
is the magnitude.

Defined as: 

Pogson 1856

..in Pogson’s time a common misconception was 
that the logarithmic nature of the scale is 
because the human eye itself has a logarithmic 
response. (Now seems to be a power law)



COMPARISON METRIC

How do we compare the efficiency of these denoising algorithms?

Flux

The quantity used in astronomy to measure fluxes 
is the magnitude.

Defined as: 

Pogson 1856

..in Pogson’s time a common misconception was 
that the logarithmic nature of the scale is 
because the human eye itself has a logarithmic 
response. (Now seems to be a power law)



COMPARISON METRIC

Flux

How do we compare the efficiency of these denoising algorithms?
Let’s  now define two functions:
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1. Original image (no_filtered)
2. Optimal Gauss filtering (gauss_0.8493)
3. Perona-Malik with different parameters (PMs) 
4. ATVD with L2 norm (TVL2)

As they are defined, completeness and purity 
compel to chose a trade-off

Catalogues which are more complete than pure are 
not interesting

From the remaining we need to understand which 
one can better suits our needs
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ATVD seems to have the best performances!
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FUTURE DEVELOPMENT

1. Testing and comparing other algorithms in order to have a more complete concept of  denoising performances
2. Extend the testing methods, considering other important parameters from the literature:

Peak-Signal-Noise-Ratio, Mean squared error, Structural similar index, Shannon entropy, etc.
3. Paper Work in progress!



Thanks for the attention!
J


