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CHAPTER 1

Introduction

Since the days of my master degree I have developed a great inter-

est in biology and medicine and therefore in mathematical modeling

related to this field. During my Phd I have worked on deepen my

knowledge about this matter through seminars, workshops and con-

gresses, keeping a link, more or less direct, between my mathematical

work and biomedical subjects. Through the years my study faced three

main problems, one of which has come out during my latest working

period in Paris.

1.1. Interface fluctuations for the D = 1 stochastic

Ginzburg-Landau equation with an asymmetric,

periodic, mean-zero, on-off external potential

Modern biology has shown that an important number of biological

processes is governed by the action of molecular complexes reminiscent

in some way of macroscopic machines, the “molecular motors”. The

word “motor” is used for proteins or protein complexes that transduce

at a molecular scale chemical energy into mechanical work. Extensive

studies have shown that a significant part of eukaryotic cellular traf-

fic relies on motor proteins that move in a deterministic way along

filaments similar in function to railway tracks; these filaments are peri-

odic, fairly rigid structures and, moreover, polar. A given motor always

moves in the same direction (towards plus or minus extremity of the

5



6 1. INTRODUCTION

filaments). There are many chemical reactions involved during individ-

ual molecular transitions. As long as these reactions occur there are

several local fluctuations, which are present also at the equilibrium.

Nonequilibrium fluctuations, brought about by an energy releasing

process, can be “absorbed” and used to do chemical or mechanical

work by an energy requiring process. In the study of molecular motor,

it was shown that zero-average oscillation or fluctuation of a chemical

potential causes net flux as long as the period of the oscillation is not

much shorter than the relaxation time of the reaction.

Theory shows that the direction of flow is governed by a combina-

tion of local spatial anisotropy of the applied potential, the diffusion

coefficient of the motor, and the specific details of how the external

modulation of the force is carried out (also stochastically). Here it’s

shown that the above mechanism also appears in a completely differ-

ent context, the dynamic of interface in phase transition theory. To

this end, it’s introduced a model in the framework of stochastically

perturbed Ginzburg-Landau (G-L) equations for phase transitions.

We study the Ginzburg-Landau equation perturbed by an additive

white noise α, of strength
√
ε, and by an external field of strength ε

∂

∂t
m =

1

2

∂2m

∂x2
− V ′(m) + ε h(x)G(εt) +

√
εα (1.1)

where ε > 0 is a small parameter that eventually goes to 0 and V (m),

m ∈ R, is the paradigmatic double well potential V (m) = m4/4−m2/2,

with minima at m±1. Finally, G(t) is a periodic function alternatively

equal to 1, during the day time TD, or to 0, during the night time TN .

We say that it switches On-Off the potential h(x), which is a peri-

odic, asymmetric and mean zero step function. We consider the above

equation in the interval Tε = [−ε−1, ε−1], with Neumann boundary

conditions (N.b.c.).
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We call pure phases the two constant functions m(x) = ±1, x ∈ Tε,

and we study the interface dynamics, that is the evolution of profiles

that are close to the two pure phases to the left and to the right of

some point, say x0.

Equation (1.1), setting ε = 0 and considering it in the whole space

R, is the deterministic Ginzburg-Landau equation, that arises as the

gradient flow associated to the Ginzburg-Landau free energy functional.

In this contest m represents the order parameter of the system, e.g. the

magnetization. It has a stationary solution m̄(x) = tanh x, x ∈ R that

we call instanton. The solution m̄ is a wavefront with speed 0, that

connects the two pure phases. The set of all the translates of m̄ is

locally attractive, that is if the initial datum is close to m̄(x − x0),

for some “center” x0, then the solution of the deterministic Ginzburg-

Landau converges to an instanton with center x′0 close to x0.

Fusco and Hale, [15], and Carr and Pego, [10], have studied the

deterministic Ginzburg-Landau equation in the finite interval Tε =

[−ε−1, ε−1] with N.b.c. and with initial datum close to the two pure

phases to the right and to the left of some point x0 respectively. They

prove that the solution relaxes in a short time to an almost station-

ary state which represents a front connecting the two stable phases,

m = ±1. This front is very close to the instanton m̄x0 = m̄(x − x0)

restricted to the finite interval. The front which has been formed in

Tε is not truly stationary, in fact it moves but extremely slowly, with

speed ≈ ecℓ, c a positive “slowly varying” factor, ℓ the distance of the

center from the boundary of Tε. During this motion the front keeps

almost the same shape.

If we take into account the stochastic term, the picture initially

does not change much: except for small deviations we still have a

short relaxation time and the formation of a profile very close to a
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front. However, under the action of the noise, the front moves in a

dramatically shorter time than in the deterministic case. At times

tε ≡ tε−1, t > 0, the displacement is finite and the motion of the center

converges as ε → 0+ to a brownian motion bt, as shown in [9].

At much longer times the picture may in principle change, for in-

stance the system could pick some drift, as it happens when the po-

tential V is not symmetric, as shown in [7]. In [8] it is shown that, for

symmetric potentials V , in Tε = [−ε−k, ε−k], k ≥ 1, with N.b.c., there

is no drift for times of order tε ≡ tε−h, t, h > 0. Roughly speaking,

the process, for k ≥ 1, is in some sense close to m̄x0+
√

εbt
with bt a

Brownian motion with diffusion σ = 3/4.

Here we prove a stability result for (1.1), showing that its solution

with the initial condition close to the restriction of some instanton to

Tε, remains close to the set of translates of m̄(x−x0), for times of order

t ≈ ε−1 log ε−1, and that its center, suitable normalized, for times of

order t ≈ ε−1, converges, as ε → 0+ to a brownian motion with a

deterministic positive drift.

Let our initial condition to equation (1.1) be a continuous function

m0,ε ∈ C(R) satisfying N.b.c. in Tǫ, such that for any η > 0

lim
ε→0

ε−
1
2
+η sup

x∈Tǫ

|m0,ε(x) − m̄0(x)| = 0.

Then, calling mt the solution to (1.1) with this initial data, we have a

first result stating the closeness of the solution to an instanton centered

in some Ft-adapted process Xε.

Theorem 1.1. Let λ = log ε−1 and x0 = x0(m0,ε) ∈ R. There

exists a Ft-adapted process Xε such that, for each τ, η > 0

lim
ε→0+

P( sup
t∈[0,λε−1τ ]

sup
x∈Tε

|mt − m̄Xε(t)| > ε
1
2
−η) = 0 (1.2)
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where P = P
ε is the probability on the basic space, where the noise α

and the process mt are constructed.

In the first section of Chapter 2 there are more details about the

construction of the initial data and of the solution mt and the previous

Theorem is rewritten in a more precise way.

As already mentioned, our motivation for studying such a problem,

with this choice of the external potential h, arises from the study of

molecular motors. The connection between our work and the molecular

motors becomes clear once we study the limit equation, as ε → 0+,

satisfied by the center Xε, suitable normalized, for times of order t ≈
ε−1. Actually, using the same notations of the previous Theorem, we

have the following statement that characterizes this limit equation.

Theorem 1.2. The real process Yε(θ) = Xε(ε
−1θ) − x0, θ ∈ R+,

converges weakly in C(R+) as ε→ 0+, to the unique strong solution Y

of the stochastic equation
{
dY (θ) = D(Y, θ)dθ + db(θ)

Y (0) = 0

where b is a Brownian motion with diffusion coefficient 3/4 and the

drift is given by

D(Y, θ)
.
= −G(θ)〈m̄′

Y , h〉.

The function D is periodic asymmetric and mean-zero .

Following the definition of [18] this stochastic equation on Y de-

scribes an On-Off molecular motor, once chosen in the correct way the

constants TD and TN in the definition of h(x, t). Quantitatively, the

asymptotic average particle current 〈Ẏ 〉 reaches a finite positive or neg-

ative value. For our choice of H(x) we have that this net current is

positive, as it is shown, in the contest of an asymptotic analysis for fast

oscillations, in the Section 2.6.
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For a more detailed introduction and for the proof, see Chapter

2. I presented this work in a poster during the thematical trimester

on “Statistical Mechanics” at the Institute Henri Poincaré in Paris, on

December 2008.

1.2. Modeling of biological pattern formation

The past decade has seen growing interest in the dynamical prop-

erties of interacting, self-propelled organisms, such as bacteria, sperm

cells, fish, marching locust, etc. This many body problem was moti-

vated by phenomena in biology but is now recognized to encompass

nonequilibrium statistical mechanics and nonlinear dynamics. A fun-

damental issue is the nature of possible transitions to collective motion

and the relation based on local interactions between elements, and the

phenomenon of collective swimming in which nonlocal hydrodynamic

interactions are obviously important. Two key questions involving col-

lective dynamics can be identified. How do spatiotemporal correlations

depend on the concentration of microorganisms? How can their con-

centration be managed as a control parameter?

One of the most studied mechanism that causes collective motion

and pattern formation in a group of organisms is the chemotaxis, i.e.

the movement of living organisms under the effect of the gradient of

the concentration of a chemical substance. This substance, which is in

case secreted by the organisms themselves, is considered a key factor in

morphogenesis, in the regulation of life cycle of some protozoan species,

in bacteria diffusion, in angiogenesis and in vascularization of tumours,

as in the seasonal migration of some animals.

It is not the aim of the present thesis to review on chemotaxis

mathematical modeling, therefore I just remember here that on the

theoretical side, the first partial differential equation based models of
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chemotaxis appeared in the early ’70s [23], and were soon followed by

hyperbolic and kinetic models.

During my Phd I faced two different problems modeling biological

pattern formations, both including chemotaxis even if in two different

ways.

1.2.1. Molecular dynamics simulation of vascular network

formation. In collaboration with professors Paolo Buttà, Livio Triolo

and Vito D. P. Servedio I went on the study of a discrete model sim-

ulating the process of vascular network formation, which I proposed

on my degree thesis. We refined this model and performed numeri-

cal simulations. Finally I presented the work in the poster session of

the international congress StatPhys23 in Genova, in July 2007, and we

published an article in 2009 [21].

Vascular networks are complex structures resulting from the inter-

action and self organization of endothelial cells (ECs). Their formation

is a fundamental process occurring in embryonic development and in

tumor vascularization. In order to optimize the function of providing

oxygen to tissues, vascular network topological structure has to involve

a characteristic length practically dictated by the diffusion coefficient

of oxygen [22]. In fact, observation of these networks reveals that they

consist of a collection of nodes connected by thin chords with approx-

imately the same length.

We study the process of formation of vascular networks by means

of two-dimensional off-lattice molecular dynamics simulations involv-

ing a finite number N of interacting simple units, modeling endothelial

cells. The interaction among cells is due to the presence of a chemical

signal, in turn produced by the cells themselves. This mechanism of

motion is what we called chemotaxis, a mechanism still object of inten-

sive experimental and theoretical research. As already mentioned, the



12 1. INTRODUCTION

relevance of chemotaxis reflects its important role in many situations

of biomedical interest such as wound healing, embryonic development,

vascularization, angiogenesis, cell aggregation, to cite a few.

We explicitely refer to in vitro experiments of Gamba et al.[29] and

shall use the same numerical values of parameters therein introduced.

Our models refers to the first 2 hours of experiments in which the ECs

self-organize into a network structure. The gradient of the chemical

signal dictates the direction of individual cell motion. Cells migrate

untill collision with other cells, while keeping approximately a round

shape. The final capillary-like network can be represented as a collec-

tion of nodes connected by thin chords of characteristic length, whose

experimentally measured average stays around 200µm for values of the

cell density between 100 to 200cells/mm2.

The peculiar advantage of mocular dynamics methods is the ex-

treme ease with which one can introduce forces acting in individual

particles. Therefore we developed our model with increasing complex-

ity, refining it by gradually adding features that would allow a closer

resemblance with experiments. Here I just mention the main steps of

our work presenting the final model, addressing the reader to Chapter

1 for more details.

Particles, which we shall also refer to as “cells” in the following, are

constrained inside a square box of given edge L with periodic bound-

ary conditions and their number is kept constant during the simula-

tions, i.e. we will consider neither cell creation nor cell destruction.

At first, we consider cells as adimensional point-like particles moving

only under the effect of the concentration gradient of the chemoattrac-

tant substance ∇c. The chemical substance is released by the particles

themselves, diffuses according to a difusive coefficient D and degrades
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within finite time τ . The combination of these two processes intro-

duces a characteristic length l. In a second time we introduced in the

system a dynamical friction FF in order to simulate the dragging force

between the substrate and the cells. To further refine the simulation,

we introduced an anelastic hardcore repulsion mechanism FIR between

cells, avoiding compenetration between cells. Every cell is no more

adimensional but possesses its own radius r. The introduction of a

cell radius changes sensibly the simulation. Above all we could use the

experimental number of cells. Our last refinement faces the problem of

the “cell persistence” of motion, i.e. the observed large inertia of cells

in changing the direction of their motion. For each i-cell, we add the

force FT, which simply reduces the component of the gradient of the

chemical field along the direction of cell motion by a factor depending

on |vi| and |∇c(xi, t)|.

All together, the dynamical system of equations we solve with i =

1 . . .N is





ẋi(t) = vi(t)

v̇i(t) = µ∇c(xi(t), t) + FIR + FT + FF

∂tc(x, t) = D∆c(x, t) − c(x,t)
τ

+ α
∑N

j=1 J(x − xj(t)),

where µ measures the strength of the cell response to the chemical

factor. Here c(x, t) is the total chemical field acting on the position x

at time t and it is set to zero at time t = 0, as the initial velocities,

while cell initial positions were extracted at random. The function J(x)

is responsible of chemoattractant production.

Without both the repulsion and persistence terms, the simulations,

far from be realistic, are although interesting since they deliver a picture

of the capillary with a characteristic chord size ℓ. Nevertheless the

organized capillary network structure arises as a brief transient, after

which cells collapse all together. The dynamical friction term helps to
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lengthen the duration of the transient. At this stage, we confirm that

the bare process of chemotaxis is capable of organizing cells in a non

trivial functional displacement.

With the addition of the cell anelastic repulsion we are able to

reproduce experiments qualitatively. However, the capillary network

still appears during a short transient and the overall visual contrast

of the filaments is not as satisfactory as it was in the bare chemotaxis

simulations with much higher densities. This lack of visual contrast of

chord structures may reflect the experimental fact that cells elongate

their shape in the act of moving, a process intimately bound to the

phenomenon of cell persistence of motion. This is the main reason

that led us to introduce the persistence force FT. With this term the

transient phase gets longer and the network visual impact becomes

more clear.

I address the reader to the first Chapter 3 for the discussion and

conclusions on the results of the simulation.

As a consequence of the Congress in Genova I had fruitfull con-

versations with professor A. Gamba (Department of Mathematics, Po-

litecnico di Torino) and doctor G. Serini (Institute for Cancer Research

and Treatment, Torino). Thanks to these discussions I found out the

most important changes and additions we have to do to our model.

Therefore, in the last year I worked to introduce these new features in

the simulations.

Actually cells elongate during the motion. They have an approx-

imately rounded shape while standing, but, as soon as they start to

move, they change their shape into an ellipse, with the long axe oriented

along the direction of the gradient of c (in some sense they polarize

themselves). They continually update their “head” and “tail”. In the

last year we produced a new model representing cells like rectangules
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and introducing a new hardcore force proportional to the overlapping

area. We deal with the updating polarization by means of our persis-

tence force. This feature would also be usefull to stabilize the network.

At this stage, this work is still in progress.

1.2.2. A model to reproduce the physical elongation of

dendrites during swarming migration and branching. In the

last eight months I had the opportunity to work in Paris with profes-

sor Benoit Perthame and one of his research groups. I worked in a

project of the network DEASE, the European Doctoral School “Differ-

ential Equations with Applications in Science and Engineering”. We

worked joint with biologists and physicists on modeling the formation of

bacterial dendrites, i.e. digital pattern formation in bacterial colonies.

During the cours of evolution, bacteria have developed sophisticated

cooperative behaviour and intricate communication capabilities. These

include: direct cell-cell physical interaction via extra-membrane poly-

mers, collective production of extracellular “wetting” fluid for move-

ment on hard surface, long range chemical signaling, such as quorum

sensing and chemotactic signaling, collective activation and deactiva-

tion of genes and an even exchange of genetic material. Utilizing these

capabilities, bacterial colonies develop complex spatio-temporal pat-

terns in response to adverse growth conditions.

In our specific case we are dealing with a problem proposed by the

biologists Simone Seror and Barry Holland, on the subject of Bacillus

Subtilis swarming, [65, 56]. This is a process involving mass move-

ment over a surface of a synthetic agar medium. This process has the

great advantage that the key stages in development occur entirely as a

monolayer.

The dendritic swarming appears to be a multistage developmental-

like process that is likely to be controlled by extracellular signaling
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mechanisms that should be amenable to genetic analysis. Bacteria are

capable of surface translocation using variety of mechanisms, and in

our case we follow the idea that the term swarming has to be reserved

for rapid cooperative movement, requiring flagella over an agar with

low-concentration of nutrient.

Swarming of B.subtilis is absolutely depending upon flagella and,

under most conditions, the production and secretion of surfactin. The

surfactin is a surfactant (which stands for surface active agent), i.e. a

cyclic lipopeptide which spreads just ahead of the migrating bacteria

throughout the swarming process. It presumably reduces surface ten-

sion, friction or viscosity, or modifies the great agar surface to maintain

a depth of fluid that is sufficient to swarming.

Summing up, the experiment we should reproduce mathematically

is the following. On an agar surface is put a drop of bacterial culture,

which, from now, we call Mother Colony (MC), after more or less 10 h

from the edge of the MC a part of the bacterial population (a fraction

that we call the Swarmers) starts to swarm, thanks to flagella and with

the emergence of surfactin zone spreading from the edge of MC. At

t ∼ 11 h, 10−14 buds appear at the edge of MC. At about 14 h, when

dendrites are approximately 2mm long, MC could be excised with no

significant effect on swarming.

At this stage the swarm migration is restricted to 1.5 cm and the

dendrites are monolayer with minimal branching. Population density

along dendrites, up to 1.4 cm, is constant, even if not completely uni-

form. And this density increases sharply, up to two folds, in the extreme

terminal from 1 to 1.2mm at the tip. The swarm migration speed is

linear with a constant rate of about 3.5mm/h.

Swarming is dependent on, at least, two distinguishable cell types,

hyper-motile swarmers (24 flagella), present in the multi-folder tips of
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the dendrites, and largely immobile supporters (12 flagella), composing

the 1−folder queues. Dead cells in the swarm are extremely rare.

The concentration of nutrients provided in a swarm plate can be re-

duced drastically, without affecting swarming. Under the experimental

conditions therefore, nutrients do not appear to be limiting. From this

observation, it follows the request of the biologists not to include any

nutrient density term in the model. This is a complete new feature in

the field of bacterial pattern formation modeling and makes our model

really different from the pre-existing ones (see [54, 69] and references

therein).

This is the experimental setting. There are many questions that

biologists addressed to us. They would understand if both supporters

and swarmers may divide or if just the supporters do, as they suspect;

which is, in case, the time of divisions of both; if the supporters also

produce surfactin or if it is sufficient the one produced at the edge

of MC. They have experimental double time for cells only in liquid

culture, but not on agar, and they expect us to find it in this case.

Here I have just summarized the most important clues they gave

us, but the questions to answer are more than these. We are actually

working on the following model partially inspired by the ones explained

in [51, 49, 50, 53].

We consider the following features. The density population of active

cells n obeys a conservation equation. The swarmers move under the

chemotactic effect of the surfactin S and of a short range chemical

substance c which has the aim to hold together the cells forming the

dendrites and to cooperate with S in the splitting mechanism.

The surfactin density is S and it is released by both supporters and

mother colony, with rates αf and αs respectively; it diffuses with a

coefficient Ds and it is degraded with a rate τs.
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The chemical concentration of the short range attractant is given by

c, which is itself produced by the swarmers, with a rate αc. It diffuses

with a coefficient Dc and decreases by a factor τc.

The trace left by the swarmers, Dm, is released by n with a rate dm;

mcol is the population density of the mother colony of bacteria.

Finally we consider the supporters density f , that diffuses according

to Dm and is produced by n, with a birth rate Bn, and by f , with a

rate Bf .

Therefore we have a system composed by five pde which we simulate

in one and two dimensions looking for the branching phenomenon and

the stable states. The whole system has the following form





∂tn+ div
(
n(1 − n)∇c− n∇S

)
= 0,

−Dc∆c + τcc = αcn,

∂tS −Ds∆S + τsS = αsmcol + αff,

∂tDm = dmn,

∂tf − div(Dm∇f) = Bff(1 − f) +Bnn,

where all the quantities are adimensionalized. This system is consid-

ered in a bounded domain Ω ⊂ R
2 and it is completed with N.b.c. for c

and S, with no-flux boundary condition for the swarmer concentration

n.

Observation 1.1. It is important to underline here that in our

contest, avoiding the presence of any nutrient, actually there is no sub-

stance generating a chemotactic movement of the bacteria which had

been identified experimentally. Biologists do not consider precisely sur-

factants as chemotactic factors. Nevertheless the structure of the digital

patterns and the ability of the dendrites to avoid each other suggest that

there should be some mechanism similar to a repulsive chemical signal.

This consideration and the main features of the phenomenon and of
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the characteristics of the surfactin lead us to model S like a chemore-

pellent. This is not wrong, but it is a mathematical representation, in

some sense it is a “mathematical chemotaxis”.

Up to now we performed numerical simulations of this model with

a resulting good picture of the first two subsequent branching from

the MC. We also studied some reduced models to work out the main

features of each term of the system. The existence and stability of

branching solutions such as the main theorems are asserted by numer-

ical results.

I address the reader to Chapter 4 for an overview of this in fieri

work.





CHAPTER 2

Interface fluctuations for the D = 1 stochastic

Ginzburg-Landau equation with an asymmetric,

periodic, mean-zero, on-off external potential

2.1. Definitions and main results

Let us consider the family of processes given as solutions of the ini-

tial value problem for the following stochastic one-dimensional Ginzburg-

Landau equation perturbed by an external field, ∀t ≥ 0, x ∈ Tε =

[−ε−1, ε−1]
{

∂
∂t
m = 1

2
∂2m
∂x2 − V ′(m) + εh(x)G(εt) +

√
εα,

m(x, 0) = m0(x),
(2.1)

with Neumann boundary conditions in Tε = [−ε−1, ε−1]. Here V (m) =

m4/4 − m2/2 is the paradigmatic double well potential, ε is a small

positive parameter which eventually goes to zero while α = α(t, x) is

a standard space-time white noise on a standard filtered probability

space (Ω,F ,Ft,P). The external field h(x)G(t) is defined as follows.

Let L > 3, h0 > 0 be constants,

h(x) =

{
Lh0 if k(L+ 1) < x ≤ k(L+ 1) + 1 k ∈ Z,

−h0 if k(L+ 1) + 1 < x ≤ (k + 1)(L+ 1) k ∈ Z,
(2.2)

therefore h(x) is an asymmetric periodic step function with mean zero.

By the way, for technical reason, we will call h(x) = hδ(x) = (h ∗φδ)(x),

with φδ ∈ C∞
c (−δ, δ) (δ small enough), its mollified version h ∈ C∞(R)

and consider its restriction to Tε. The function G is a periodic function

which has the aim to switch off, during the night time TN , the potential

21
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h and to switch it on during the day time TD (TN and TD positive

constant)

G(t) =

{
0 if k(TD + TN ) < t ≤ k(TD + TN ) + TN k ∈ Z,

1 if k(TD + TN) + TN < t ≤ (k + 1)(TD + TN ) k ∈ Z.

(2.3)

Here again we consider a mollified version of G(t).

Let us denote by H
(ε)
t the Green operator for the heat equation with

N.b.c. in Tε and by H
(ε)
t (x, y) the corresponding kernel. We say that

mt is a solution to equation (2.1) with initial condition m0 ∈ C(Tε) if

it satisfies the integral equation, with t ≥ 0 and x ∈ Tε

mt = H
(ε)
t m0 −

∫ t

0

dsH
(ε)
t−s(m

2
s −ms) +

∫ t

0

dsH
(ε)
t−sh(·)G(εs) +

√
εZ

(ε)
t

(2.4)

where Z
(ε)
t is the Gaussian process defined by the stochastic integral in

the sense of [20]

Z
(ε)
t (x) =

∫ t

0

ds

∫

Tε

dy α(s, y)H
(ε)
t−s(x, y). (2.5)

Z
(ε)
t is continuous in both variables and, by following the same argu-

ments of [13], there exists a unique Ft-adapted processm ∈ C(R, C(Tε))

which solves (2.4).

As it is explained in [9, 8] the function m̄(x)
.
= tanh(x), which we

call instanton with center 0, is a stationary solution for the determin-

istic Ginzburg-Landau on the whole line R,

1

2

∂2m̄

∂x2
= V ′(m̄) with m̄(±∞) = ±1 and m̄(0) = 0, (2.6)

and its translates,

m̄x0(x)
.
= m̄(x− x0), x, x0 ∈ R,
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are also stationary solutions, called instanton centered in x0. Fife and

McLeod ([14]) have proved that the set

M = {m̄x0 , x0 ∈ R} ⊂ C0(R)

is locally attractive under the flow mt = Tt(m0), t ≥ 0, associated to

equation (2.1) with ε = 0 in the whole line. More precisely, let ‖ · ‖
denote the sup norm in R and, for δ ≥ 0, define

Mδ
.
= {m ∈ C0(R) : dist(m,M)

.
= inf

x0∈R

‖m− m̄x0‖ ≤ δ}

then, there exists δ∗ > 0 and a real valued function x(m) defined on

Mδ∗ , called the (linear) center, such that

lim
t→∞

Tt(m) = m̄x(m) ∀m ∈ Mδ∗

in sup norm and exponentially fast.

When we restrict to Tε, we evidentely loose the notion of instanton

and one may ask why to consider Tε instead of R. Actually, by this way

we avoid to deal with unbounded processes, furthermore, by the choice

of N.b.c in Tε we have the advantage of recovering to some extent the

instanton structure present in R as proved in [15, 10] and explained

in [9, 8]. Since we are interested in studying the evolution of mt when

the initial datum is close to an instanton, and to use the stability under

the dynamics of the instanton on the whole line, it will be convenient,

in the sequel, to consider the problem in R instead of in Tε, as in [9].

To this end, given a continuous function f on Tε, we denote by f̂ its

extension to R obtained by successive reflections around the points

(2n+ 1)ε−1, n ∈ Z, and define the space of functions so obtained

Cε(R)
.
= {f : f ∈ C0(R), f is invariant by reflections around the point

(2n+ 1)ε−1, n ∈ Z}.

We define

Zt = Ẑ
(ε)
t
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and refer to Zt as the free process. We denote by Ht the Green operator

for the heat equation on the whole line, so that for any m ∈ C(Tε),

H
(ε)
t m(x) = Htm̂(x).

As proved in Proposition 2.3 of [9], as it follows for instance from [12],

for any ε > 0, given m0 ∈ C0(R) and satisfying N.b.c. in Tε, and for

any Zt continuous in both variables and satysfying N.b.c., there is a

unique continuous solution mt of the integral equation

mt = Htm0 −
∫ t

0

dsHt−s(m
2
s −ms) + ε

∫ t

0

dsHt−sĥ(·)G(εs) +
√
εZt,

(2.7)

with (t, x) ∈ R
+ × R. Where ĥ is the extension, by reflection on the

whole space, of h, once restricted to Tε. We set

mt
.
= Tt(m0, ε)

for the solution of equation (2.7) with ε 6= 0. Moreover mt = m̂
(ε)
t

where m̂
(ε)
t solves (2.4) with Z

(ε)
t and m

(ε)
0 obtained by restricting Zt

and m0 to Tε. In case m0 ∈ Cε(R), by an abuse of notation, we will also

refer to Tt(m0, ε) as the Ginzburg-Landau process in Tε with N.b.c.

With the aim of using extensively the stability properties of the in-

stantons we will take great advantage of the representation (2.7) where

the only memory of the boudary conditions is in the “small perturba-

tion”
√
εZt, in ĥ and in the initial data. The equation (2.7) is thus well

suited for a perturbative analysis of data close to instantons.

However, even if m ∈ Cε(R) is very close to an instanton in Tε,

it is not close to an instanton in the sup norm on the whole line. We

overcome this problem by using barrier lemmas that allow us to modify

the function away from Tε without changing too much its evolution in

Tε. The modified function can be taken in a neighborhood of M and

we can adopt the results of Fife and McLeod about convergence to

an instanton. The noise works against this trend by preventing the
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orbit from getting too close to m̄ and forces the solution to live in

a small neighborhood of M, whose size depends on the strength of

the noise and vanishes as ε → 0+. Nevertheless these small ’kicks’

given by the noise have the effect of changing the linear center of the

deterministic evolution. Their cumulative effect causes the Brownian

motion on M that describes the stochastic part of the limit process.

It means that there exists a stochastic process Xε(t) such that mt is

in some sense close to m̄Xε(t), as ε → 0+. This stochastic process,

opportunately rescaled, in the limit, performs a Brownian motion. On

the other hand the presence of the asymmetric periodic on-off potential

h, causes a deterministic periodic asymmetric and mean-zero drift in

the limit process. The motion of this rescaled center, as ε → 0, is

given by an equation that describes a typical on-off molecular motor

(see [18]).

Let us now give some notation and the main results. As explained

above, the first step is to change the functions in Cε(R), outside Tε, in

such a way that they are in a small neighborhood of an instanton on

the whole line. Given m ∈ C0(R), we define mε ≡ m if m /∈ Cε(R),

setting in the other case

mε(x) =

{
m(x), x ∈ Tε

m(±ε−1) x ≥ ε−1, respectively, x ≤ −ε−1
(2.8)

Before stating the main result, we need to introduce the kernel

gt,x0(x, y) which is the fundamental solution of the linearized determin-

istic Ginzburg-Landau equation in R around the instanton m̄x0 (see [8]

for more details). Its generator Lx0 acts on f ∈ C2(R) as

Lx0f(x) =
1

2

∂2f

∂x2
f(x) + [1 − 3m̄2

x0
(x)]f(x)

Denote by m̄′
x0

the derivative w.r.t. x of m̄x0 . By differentiating (2.6),

we get Lx0m̄
′
x0

= 0 for any x0 ∈ R. Denoting by 〈·, ·〉 the scalar product
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in L2(R) we set, for any x0 ∈ R,

m̃′
x0

=

√
3

2
m̄′

x0
〈m̃′

x0
, m̃′

x0
〉 = 1

Therefore 0 is an eigenvalue of Lx0 , and m̃′
x0

is the corresponding uni-

tary eigenvector in L2(R). The generator Lx0 has a spectral gap:

Lemma 2.1. There are a and C positive so that ∀f ∈ C0(R) and

x0 ∈ R

‖gt,x0[f − 〈m̃′
x0
, f〉m̃′

x0
]‖ ≤ Ce−at‖f − 〈m̃′

x0
, f〉m̃′

x0
‖ (2.9)

For the proof see [9]. Observe that the solution m(x, t) = (Ttm)(x)

of the deterministic Ginzburg-Landau equation solves the equation

∂

∂t
(m− m̄x0) = Lx0(m− m̄x0) − 3m̄x0(m− m̄x0)

2 − (m− m̄x0)
3

We introduce now the concept of linear center, called in the sequel

simply center, for a function f ∈ C0(R)

Definition 2.2. The point ξ(m) ∈ R is a linear center of m ∈
C0(R) if

〈m̄′
ξ(m), m− m̄ξ(m)〉 = 0

Existence and uniqueness of the center are stated in the next lemma

(i.e. Proposition 3.2 of [8])

Lemma 2.3. There is a δ0 > 0 so that any m ∈ Mδ0 has a unique

linear center ξ(m). Moreover there is c0 > 0 so that if m ∈ C0(R),

y0 ∈ R and

‖m− m̄y0‖ = δ ≤ δ0

then the linear center ξ(m) is such that

|ξ(m) − y0| ≤ c0δ, (2.10)

ξ(m) − y0 = −
[3
4
〈m̄′

y0
, m− m̄y0〉 +

9

16
〈m̄′

y0
, m− m̄y0〉〈m̄′′

y0
, m− m̄y0〉

]
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+R(m− m̄y0)

with

|R(m− m̄y0)| ≤ C‖m− m̄y0‖3. (2.11)

Let m and m̃ in Mδ0, ξ0, and ξ̃0 their respective linear centers and

‖m− m̃‖ ≤ δ0. Then

|ξ0 − ξ̃0| ≤
c0
2
|〈m̄′

ξ0
, m− m̃〉| ≤ c0

2

∫
dx m̄′

ξ0
|m− m̃| (2.12)

Let us state now our last definition

ξε(m)
.
=

{
ξ(mε(x)), if mε ∈ Mδ0

0 otherwise
(2.13)

which exists uniquely thanks to Lemma 2.3. Given any ℓ ∈ (0, 1),

δ ∈ (0, δ0] (δ0 as in Lemma 2.3) define

Mε
δ,ℓ = {m ∈ C(R) : mε ∈ Mδ, |ξ(mε)| ≤ (1 − ℓ)ε−1}

We are ready now to state our main result:

Theorem 2.4. Let m0 ∈ Cε(R) such that for any η > 0

lim
ε→0

ε−
1
2
+η‖mε

0(x) − m̄0(x)‖ = 0 (2.14)

Let λ = log ε−1 and x0 = ξε(m0). Then, calling mt = Tt(m0, ε),

(1) There exists a Ft-adapted process Xε such that, for each τ, η >

0

lim
ε→0+

P( sup
t∈[0,λε−1τ ]

sup
x∈Tε

|mt − m̄Xε(t)|) > ε
1
2
−η) = 0

where P = P
ε is the probability on the basic space, where the

noise α and the process mt are constructed.
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(2) The real process Yε(θ) = Xε(ε
−1θ) − x0, θ ∈ R+, converges

weakly in C(R+) as ε → 0+, to the unique strong solution Y

of the stochastic equation
{
dY (θ) = D(Y, θ)dθ + db(θ)

Y (0) = 0
(2.15)

where b is a Brownian motion with diffusion coefficient 3/4

and the drift is given by

D(Y, θ)
.
= −G(θ)〈m̄′

Y , h〉

where h is defined in (2.2), on the whole line, and G in (2.3).

The function D is periodic asymmetric and mean-zero .

The equation (2.15) describes an On-Off molecular motor, which is

a sample of brownian ratchet, see [18] for the exact definition. It is

generally appreciated that, in accordance with the second law of ther-

modynamics, usable work cannot be extracted from equilibrium fluctu-

ations. In the presence of nonequilibrium forces the situation changes

drastically. Then, directed transport of Brownian particles in asym-

metric periodic potentials (ratchets) can be induced by the application

of nonthermal forces or with the help of deterministic, periodic coher-

ent forces. Strictly speaking, a ratched system is a system that is able

to transport particles in a periodic structure with nonzero macroscopic

velocity although on average no macroscopic force is acting. These

nonequilibrium models recently gained much interest in view of their

role in describing the physics of molecular motors [18].

In an On-Off ratchet, the asymmetry is pull in the system by means

of the asymmetric and periodic potential h(x) which is switched on-off

by the periodic force G(t). A particle distribution which is initially

located in a minimum of the potential will spread symmetrically by

the brownian motion while the potential is switched off. When the
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potential is switched on again, a net part of the distribution will settle

in the minimum located to the right, if the minima of the potential

are closer to their neighboring maxima to the right than to the left,

otherwise into the negative direction. Hence, on average, there is a

particle current flows to the right (or to the left). The only request is

that the time TD during which the potential is on, it is sufficient to

let the particle fall down into a minima but not long enough to let it

escape from the basin in which is trapped.

2.2. Iterative construction

In this section we prove the first part of Theorem 2.4 and some

of the key estimates to prove the second point. Let mt0 ∈ C0(R), set

mt = Tt(m0, ε), then, for any ξ ∈ R, vt = mt − m̄ξ solves the following

integral version of the Ginzburg-Landau stochastic equation (see [9, 8])

v(t) = gt−t0,ξu0 −
∫ t

t0
ds gt−s,ξ(3m̄ξv(s)

2 + v(s)3) + ε
∫ t

t0
ds gt−s,ξĥ(·)G(εs)

+
√
εẐt−t0,ξ (2.16)

where, gt−t0,ξ was defined in Section 2.1 and

Ẑt−t0,ξ
.
= Zt−t0 −

∫ t

t0

ds gt−s,ξ

[
(3m̄2

ξ − 1)Zs−t0

]
.

Note that the process Ẑt−t0,ξ is also given (see [9]) by the stochastic

integral:

Ẑt−t0,ξ =

∫ t

t0

ds

∫

Tε

dy gε
t−s,ξ(x, y)α(s, y)

where

gε
t−s,ξ(x, y) =

∑

j∈Z

(
gt−s,ξ(x, y + 4jε−1) + gt−s,ξ(x, 4jε

−1 + 2ε−1 − y)
)

Our aim is to analize mt as long as it stays in Mε
δ,ℓ for any suitable

ℓ ∈ (0, 1). To this end we introduce an iterative procedure in which we
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linearize the equation around m̄x for a suitable x recursively defined.

First of all let we introduce the stopping time

Sδ,ℓ = inf{t ∈ R+ : mt /∈ Mε
δ,ℓ}. (2.17)

Let t0 ∈ R+ and m(t), t ≥ 0, the solution to equation (2.7) with initial

condition mt0 ∈ Cε(R), satisfying limε→0 ε
− 1

2
+η‖mε

t0
(x) − m̄0(x)‖ = 0.

By writing Tt(m
ε
t0 , ε) = m̄ξ + v(t), v(t) satisfies (2.16).

Consider now the partition R+ =
⋃

n≥0[Tn, Tn+1) where Tn = nT ,

n ∈ N, T = ε−
1
10 . We next define, by induction on n ≥ 0, reals xn

and functions vn(t) = {vn(t, x), x ∈ R} , t ∈ [Tn, Tn+1], which have the

property that for any t ∈ [Tn, Tn+1]

Tt∧Sδ,ℓ
(mε(Tn ∧ Sδ,ℓ), ε) = m̄xn + vn(t) (2.18)

where mε(Tn ∧ Sδ,ℓ) = (mTn∧Sδ,ℓ
(x))ε. Let t0 = 0, mε

0 = mε(0), x0 =

ξε(m0) and let v0(t) be the solution to (2.16) with initial data v0(0) =

mε
0 − m̄x0 , stopped at Sδ,ℓ. Suppose now, by induction, that we have

defined xn−1 and vn−1. We then define xn as the center of mε(Tn∧Sδ,ℓ)

(which exists by the definition of the stopping time Sδ,ℓ) and vn(t),

t ∈ [Tn, Tn+1], as the solution to (2.16) with initial data t0 = Tn,

ξ = xn and vn(Tn) = mε(Tn ∧ Sδ,ℓ) − m̄xn . We emphasize that in this

construction the initial condition vn(Tn) is orthogonal to m̄′
xn

, i.e.

〈vn(Tn), m̄′
xn
〉 = 0

We will use the representation (2.16) to prove in Proposition 2.5

below some a priori bounds on vn(t) and other quantities. We need first

some notation. Given τ ∈ R+, we let nε(τ) = [ε−1τ/T ], remembering

that λ = log ε−1, we define

Vn
.
= sup

t∈[Tn,Tn+1]

‖vn(t)‖, Vn,∗ = sup
k≤n

Vk, V∗(τ)
.
= Vnε(λτ),∗ (2.19)
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δ∗(τ)
.
= sup

k≤nε(λτ)

|xn − xn−1| (2.20)

and, calling Ẑn(t) = Ẑt−Tn,xn, for t ∈ [Tn, Tn+1],

Zn
.
= sup

t∈[Tn,Tn+1]

‖Ẑn(t)‖, Zn,∗ = sup
k≤n

Zk, Z∗(τ)
.
= Znε(λτ),∗ (2.21)

Given η > 0, τ ∈ R, we define the event

B1
ε,τ,η

.
=
{
Z∗(τ) ≤ ε−η

√
T
}
. (2.22)

By standard Gaussian estimate ([3] Appendix B) we have that for each

η, τ, q > 0 there is a constant C = C(η, τ, q) > 0 such that for any ε > 0

P(B1
ε,τ,η) ≥ 1 − Cεq. (2.23)

The next proposition contains the most important estimates we

need to demostrate Theorem 2.4. In this section C will denote a generic

constant whose numerical value may change from line to line.

Proposition 2.5. Let m0 ∈ Cε(R) and T = ε−
1
10 . Let mε

0 such

that for any η > 0

lim
ε→0

ε−
1
2
+η‖mε

0(x) − m̄0(x)‖ = 0 (2.24)

then there exists η0 > 0 such that, for any η ∈ (0, η0), there is a

constant C = C(τ, η) such that, for any ε > 0, on the set B1
ε,τ,η

V∗(τ) ≤
√
Tε

1
2
−2η and δ∗(τ) ≤ C

√
Tε

1
2
−η (2.25)

Proof. First of all let us observe that, from (2.24) and Lemma 2.3,

there exist C > 0 and ℓ ∈ (0, 1), such that |x0| .= |ξ(mε
0)| < Cε

1
2
−η <

(1−ℓ)ε−1. As it will be more clear later, for our purpose, it is sufficient

that ℓ is small enough that Cε
1
2
−η +log ε−1T−1/2ε−1/2−ητ < (1− ℓ)ε−1.
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Choosing δ > ε
1
2
−η we can define Sδ,ℓ, as in (2.17). From (2.19), the

first of (2.25) follows once we prove that

Vn ≤
√
Tε

1
2
−2η ∀n ≤ nε(λτ) (2.26)

in the set B1
ε,τ,η. Let us prove (2.26) by induction on n. Observe that

by definition, for t ∈ (ε−1λτ ∧ Sδ,ℓ, ε
−1λτ ], vn(t) = v[Sδ,ℓ/T ](Sδ,ℓ). For

n = 0, we have x0 = ξ(mε
0), T0 = 0 and, from (2.16), for any t ≤ T

‖v0(t)‖ ≤ C e−atε
1
2
−η+

∫ t

0

ds (3‖v0(s)‖2+‖v0(s)‖3)+C(1+t)ε+
√
Tε

1
2
−η

(2.27)

in the set B1
ε,τ,η. For the first term we use (2.9) and thatm0 ∈ Mε

ε1/2−η ,ℓ
,

for the third term we decompose
∫
gt−s,x0ĥ(·)G(εs)ds into its parallel

and its orthogonal component to m̄′
x0

and use again (2.9) and that

‖ĥ(x)G(εs)‖ ≤ C for each s. Consider now the stopping time:

β
.
= inf{t ≥ 0 : ‖v0(t)‖ =

√
Tε

1
2
−2η} (2.28)

and suppose that β ≤ T , then, for t ≤ β, equation (2.27) gives:

√
Tε

1
2
−2η ≤ Cε

1
2
−η + 3Cβ(

√
Tε

1
2
−2η)2 + Cβ(

√
Tε

1
2
−2η)3 + C(β + 1)ε

+
√
Tε

1
2
−η = (

√
Tε

1
2
−2η)

[
CT−1/2εη + 3Cβ

√
Tε

1
2
−2η + CβTε1−4η

+ C(β + 1)T− 1
2ε

1
2
+2η + εη

]

Remembering the definition of T = ε−
1
10 , for η0 < 1

10
and ε small

enough, the quantity inside the square parenthesis is smaller than 1

and this leads to a contradiction. It follows that β > T for ε small

enough. We have proved that, in B1
ε,τ,η, sup0≤t≤T ‖v0(t)‖ <

√
Tε

1
2
−2η.

Let now t = T ,

‖v0(T )‖ ≤ Cε
1
2
−η+3CT 2ε1−4η+CT

5
2 ε

3
2
−6η+CTε+Cε+

√
Tε

1
2
−η ≤ 2

√
Tε

1
2
−η

for sufficiently small ε. Then Tt(m
ε
0, ε) is in M√

Tε1/2−2η for all t ≤ T

and in M2
√

Tε1/2−η for t = T .
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From the last inequality, calling xε
1
.
= ξ(TT (mε

0, ε)), |xε
1 − x0| ≤

2C
√
Tε

1
2
−η, therefore |xε

1| ≤ Cε
1
2
−η + 2C

√
Tε

1
2
−η < (1 − ℓ)ε−1, with

the previous choice for ℓ.

Finally we need to controll the position of the center x1 = ξ(mε
T ).

The key ingredients to this aim are the Barrier Lemma (Proposition 5.3

[9]), that works also for our equation, and the stability of m ≡ 1 (see

Lemma A.2 in the Appendix of [8] which works also in our case with

little modifications). In the set B1
ε,τ,η there are two positive constants

C and V so that setting Lε
.
= ε−1 − V T , with mt = Tt(m0, ε),

sup
0≤t≤T

sup
|x|≤Lε

|mt − Tt(m
ε
0, ε)| ≤ Ce−T . (2.29)

Let next x ∈ [Lε, ε
−1] (the proof for x ∈ [−ε−1,−Lε] is similar). Since

m0 ∈ Mε
ε1/2−η ,ℓ

, using Lemma 2.3 and recalling that m̄ = tanh(x), we

have, for any ε > 0 small enough,

sup
|x−ε−1|≤2V T

|mε
0 − 1| ≤ Cε

1
2
−η + 2e−(ℓε−1−2V T )

Then, since m0 = mε
0 for any x ∈ [ε−1 − 2V T, ε−1] and m0 ∈ Cε(R)

there is a constant C such that, for any ε > 0 small enough

sup
|x−ε−1|≤2V T

|m0 − 1| ≤ C (2.30)

Recalling that m0 ∈ Cε(R), we define m̂0 ∈ C(R) as

m̂0(x) =





m0(x), if |x− ε−1| ≤ 2V T

m0(ε
−1 − 2V T ), if x ≤ ε−1 − 2V T

m0(ε
−1 + 2V T ), if x ≥ ε−1 + 2V T

(2.31)

Using again the Barrier Lemma there is a C > 0 so that in B1
ε,τ,η

sup
0≤t≤T

sup
Lε≤x≤ε−1

|mt − Tt(m̂0, ε)| ≤ Ce−T . (2.32)
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Since m ≡ 1 is stable there is a constant C > 0 so that in B1
ε,τ,η for any

t ∈ [0, T ]

‖Tt(m̂0, ε) − 1‖ ≤ C[e−t +
√
Tε

1
2
−η + C(1 + T )ε]. (2.33)

By (2.29), (2.32), (2.33) there is a C > 0 so that mε
t = (mt)

ε is in

MC
√

Tε1/2−2η for all t ≤ T and in M2C
√

Tε1/2−η for t = T . From (2.29),

(2.33) and Lemma 2.3 we have

‖mε
T − TT (mε

0, ε)‖ ≤ 2C
√
Tε1/2−η, (2.34)

therefore, remembering that, in our definition, x1
.
= ξ(mε

T ) and xε
1
.
=

ξ(TT (mε
0, ε))

|x1 − x0| ≤ |x1 − xε
1| + |xε

1 − x0| ≤ 2C
√
Tε1/2−η, (2.35)

it follows that |x1| < Cε1/2−η + 2C
√
Tε1/2−η and once again |x1| ≤

(1 − ℓ)ε−1.

By this way we have finished the proof for n = 0. Let us then

suppose that for inductive hypothesis it is valid for n, and prove that

it holds for n + 1. For t ∈ [Tn+1, Tn+2]

vn+1(t) = gt−Tn+1,xn+1vn+1(Tn+1) +

∫ t

Tn

ds gt−s,xn+1(3vn+1(s)
2 + vn+1(s)

3)

(2.36)

+ ε

∫ t

Tn

ds gt−s,xn+1ĥ(·)G(εs) +
√
εẐn+1(t)

We have to deal with the first term gt−Tn+1,xn+1vn+1(Tn+1). By defi-

nition, vn+1(Tn+1) ⊥ m̄xn+1 , therefore we can use (2.9). To this aim

we need an appropriate estimate for ‖vn+1(Tn+1)‖, using the inductive

hypotesis and working as in (2.34), (2.35),

‖vn+1(Tn+1)‖ ≤ ‖mε
Tn+1

− TT (mε
Tn
, ε)‖ + ‖TT (mε

Tn
, ε) − m̄xn‖ (2.37)

+ ‖m̄xn − m̄xn+1‖ ≤ C
√
Tε1/2−η
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taking into account (2.36),(2.37), a reason similar to that leading to

the estimate for n = 0 yelds Vn+1 ≤
√
Tε1/2−2η. Having proved this,

we have that from (2.36), on the set B1
ε,τ,η

‖vn+1(Tn+2)‖ ≤ 2
√
Tε1/2−η. (2.38)

where we used (2.9). Working in the same way that for n = 0 we have

mε
t ∈ MC

√
Tε1/2−2η for all t ∈ [Tn+1, Tn+2] and mε

Tn+2
∈ MC

√
Tε1/2−η , for

an appropriate choice of C. So the first estimate of (2.25) is proved.

Furthermore, similarly to (2.35) we can prove that |xn+1 − xn| ≤
C
√
Tε1/2−η. For inductive hypothesis, |xn+1| ≤ |x0| + nC

√
Tε1/2−η.

Observe that for any n < nε(λτ), nC
√
Tε1/2−η < log ε−1T−1/2ε−1/2−ητ <<

ε−1, therefore |xn+1|<< ε−1, in particular |xn+1| ≤ (1 − ℓ)ε−1. By this

way it is proved also the second estimate of (2.25). �

We are going to prove that the component of vn(Tn+1) orthogonal

to m̄′
xn

is bounded by Cε1/2−2η, thus considerably improving the bound

on the full vn(Tn+1) just obtained. Let

g⊥t,n
.
= gt,n

(
1 − 3

4
|m̄′

xn
〉〈m̄′

xn
|
)

the operator whose kernel is

g⊥t,n(x, y) = gt,n(x, y) −
3

4
m̄′

xn
(x)m̄′

xn
(y) (2.39)

The superscribe ⊥ recalls the L2-orthogonality w.r.t. the eigenvector

m̄′
xn

of gt,n, i.e. gt,nm̄
′
xn

= m̄′
xn

. It follows from (2.9) that there are

constants a > 0 and C <∞ so that, for any φ ∈ C0(R)

‖g⊥t,nφ‖ ≤ Ce−at‖φ‖ (2.40)

Let also

Ẑ⊥
n (t)

.
= Ẑn(t) − 3

4
〈m̄′

xn
, Ẑn(t)〉m̄′

xn
(2.41)
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be the component of Ẑn(t) orthogonal to m̄′
xn

, and

B2
ε,τ,η

.
=
{

sup
0≤n≤nε(λτ)

sup
t∈[Tn,Tn+1]

‖Ẑ⊥
n (t)‖ ≤ ε−η

}
(2.42)

with standard Gaussian estimate (see Appendix B [3]) we have that

for each η, τ, q > 0 there is a constant C = C(η, τ, q) > 0 such that for

any ε > 0

P(B2
ε,τ,η) ≥ 1 − Cεq. (2.43)

Define now

v⊥n (Tn+1)
.
= vn(Tn+1) −

3

4
〈m̄′

xn
, vn(Tn+1)〉m̄′

xn

V ⊥
∗ (τ)

.
= sup

0≤n≤nε(λτ)

‖v⊥n (Tn+1)‖. (2.44)

Let f ∈ C(R), ε > 0, x and y ∈ R, we set

‖f‖ε,n
.
= sup

|x−xn|<ε−
1
10

|f(x)|. (2.45)

With the same assumptions on m0 of Proposition 2.5, we have

Proposition 2.6. Recalling (2.22) and (2.42), set

Bε,τ,η
.
= B1

ε,τ,η ∩ B2
ε,τ,η (2.46)

by (2.23) and (2.43), for each η, τ, q > 0 there is a constant C =

C(η, τ, q) > 0 such that for any ε > 0

P(Bε,τ,η) ≥ 1 − Cεq. (2.47)

Let nε,δ,ℓ(τ) = [(ε−1τ ∧ Sδ,ℓ)/T ]. Then, for each τ, η > 0 there is a

constant C = C(τ, η) such that, for any ε > 0,

V ⊥
∗ (τ) ≤ Cε

1
2
−2η, sup

0≤n<nε,δ,ℓ(λτ)

‖vn(Tn)‖ε,n ≤ Cε
1
2
−2η, (2.48)

on the set Bε,τ,η and

sup
0≤n<nε,δ,ℓ(λτ)

|xn+1 − (x0 −
3

4

n∑

k=0

〈m̄′
xk
, vk(Tk+1)〉)| ≤ CλT−1/2ε−4η,

(2.49)
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on the set Bε,τ,η.

Proof. Let us consider first the term V ⊥
∗ (τ). Shortanding by Rn

the sum of all terms those compose vn except for
√
εẐn(Tn+1) and

calling R⊥
n its orthogonal projection, we have

v⊥n (Tn+1) = R⊥
n +

√
εẐ⊥

n (Tn+1). (2.50)

The first term is bounded by

‖R⊥
n ‖ ≤ C

[
e−aTV∗ + TV 2

∗ + TV 3
∗ + (1 + T )ε

]
(2.51)

as it follows by the estimations done in Proposition 2.5. Therefore by

(2.42), (2.51) and the first of (2.25)

‖v⊥n (Tn+1)‖ ≤ Cε
1
2
−2η (2.52)

for ε > 0 small enough, for each n ≤ nε(λτ). For reasons that will

be clear later we prefer to demonstrate before (2.49) than the estimate

on vn(Tn). To this aim we need to refine some estimation done in

Proposition 2.5. Thanks to Lemma 2.3 we know that:

xn = x0 +

n−1∑

k=0

(xk+1 − xk) = x0 +

n−1∑

k=0

[
− 3

4
〈m̄′

xk
, vk(Tk+1)〉

− 9

16
〈m̄′

xk
, vk(Tk+1)〉〈m̄′′

xk
, vk(Tk+1)〉 +R(vk(Tk+1)) + (xk+1 − xε

k+1)
]

(2.53)

where xε
k+1 = ξ(TT (mε

Tk
)) and R(vk(Tk+1)) is as in (2.11). From (2.53)

it follows that:

sup
n≤nε,δ,ℓ(λτ)

|xn − x0 +
3

4

n−1∑

k=0

〈m̄′
xk
, vk(Tk+1)〉| ≤ nε,δ,ℓ(λτ) sup

n<nε,δ,ℓ(λτ)

(2.54)

[ 9

16
〈m̄′

xn
, vn(Tn+1)〉〈m̄′′

xn
, vn(Tn+1)〉 + ‖R(vn(Tn+1))‖ + |xn+1 − xε

n+1|
]
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By its definition

sup
n≤nε,δ,ℓ(λτ)

‖R(vn(Tn+1))‖ ≤ CV∗(τ)
3 (2.55)

and since ‖m̄′‖1 = 2, we have 〈m̄′
xn
, vn(Tn+1)〉 ≤ 2V∗(τ); furthermore,

by 〈m̄′, m̄′′〉 = 0, 〈m̄′′
xn
, vn(Tn+1)〉 ≤ CV ⊥

∗ (τ). The last term requires

more attention. We need to refine the estimation done in 2.5. Actually,

we know from (2.12) that:

|xn+1 − xε
n+1| ≤

∫
dx m̄′

xn+1
(x)
∣∣mε

Tn+1
(x) − TT (mε

Tn
(x), ε)

∣∣ (2.56)

To make a better estimation, let us use Barrier Lemma, there exists a

V > 0 such that for Lε = ε−1 − V T

sup
|x|≤Lε

|mε
Tn+1

(x) − TT (mε
Tn

(x), ε)| ≤ Ce−T . (2.57)

by splitting the integral in (2.56) into two parts with, respectively

|x| > Lε and |x| ≤ Lε, using the explicit form of m̄′, and using that

|xn+1| ≤ (1−ℓ)ε−1 with ℓ ∈ (0, 1), for n < nε,δ,ℓ(λτ), such shown in the

Proposition 2.5, we have that for any N > 0 there exists ε0 > 0 such

that for any ε < ε0

|xn+1−xε
n+1| ≤ Ce−T +e−(ℓε−1−V T ) sup

x∈R

[
mε

Tn+1
(x)−TT (mε

Tn
(x), ε)

]
≤ εN ,

(2.58)

therefore:

sup
n≤nε,δ,ℓ(λτ)

|xn − x0 +
3

4

n−1∑

k=0

〈m̄′
xk
, vk(Tk+1)〉| ≤ CλτT− 1

2 ε−4η (2.59)

Consider now vn(Tn). Observe that:

vn(Tn) = mε
Tn

− m̄xn = vn−1(Tn) + m̄xn−1 − m̄xn + (mε
Tn

(x) − TT (mε
Tn−1

(x)))

= v⊥n−1(Tn) +
[3
4
〈m̄′

xn−1
, vn−1(Tn)〉m̄′

xn−1
− (m̄xn − m̄xn−1)

+ (mε
Tn

(x) − TT (mε
Tn−1

(x)))
]

(2.60)
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now, using Taylor expansion,

m̄xn − m̄xn−1 = −m̄′
xn−1

(xn − xn−1) +
1

2
m̄′′

xn−1
(xn − xn−1)

2

− 1

6
m̄′′′

xn−1
(xn − xn−1)

3 + αn−1(xn − xn−1)
4 (2.61)

where αn−1 is bounded. Thus by Lemma 2.3, using xn − xn−1 = (xε
n −

xn−1) + (xn − xε
n) and recalling that

xε
n − xn−1 = −3

4
〈m̄′

xn−1
, vn−1(Tn)〉 − 9

16
〈m̄′

xn−1
, vn−1(Tn)〉〈m̄′′

xn−1
, vn−1(Tn)〉

+R(vn−1(Tn))

m̄xn −m̄xn−1 =
3

4
〈m̄′

xn−1
, vn−1(Tn)〉m̄′

xn−1
−(xn−xε

n)m̄′
xn−1

+αn (2.62)

where

αn =
1

2
m̄′′

xn−1
(xn − xn−1)

2 − 1

6
m̄′′′

xn−1
(xn − xn−1)

3 + αn−1(xn − xn−1)
4

+ m̄′
xn−1

{ 9

16
〈m̄′

xn−1
, vn−1(Tn)〉〈m̄′′

xn−1
, vn−1(Tn)〉 − R(vn−1(Tn))

}

(2.63)

from (2.60),(2.61)

vn(Tn) = v⊥n−1(Tn) +
[
(mε

Tn
(x) − TT (mε

Tn−1
(x))) − (xn − xε

n)m̄′
xn−1

+ αn

]

Note that from (2.25), in Bε,τ,η, we have supn≤nε(λτ) |xn − xn−1| ≤
C
√
Tε

1
2
−η therefore we have |αn| ≤ CTε1−2η. Now for each n ≤ nε(λτ)

‖vn(Tn)‖ε,n <‖ v⊥n−1(Tn) ‖ +|xn − xε
n| + |αn| + ‖mε

Tn
(x) − TT (mε

Tn−1
(x))‖ε,n

(2.64)

Let us estimate last term

‖mε
Tn

− TT (mε
Tn−1

)‖ε,n ≤ ‖mε
Tn

−mTn‖ε,n + ‖mTn − TT (mε
Tn−1

)‖ε,n

using that for each n ≤ nε,δ,ℓ(λτ) |xn| < (1−ℓ)ε−1 and by the definition

ofmε
Tn

, the first term above is identically zero. For the second let we use

again the Barrier Lemma. Since mε
Tn

= mTn for |x| < ε−1 we know that

there exists a V > 0 such that sup|x|≤ε−1−V T |mTn(x)−TT (mε
Tn−1

(x))| ≤
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Ce−T . The proof is now concluded by choosing appropriately V in such

a way that {|x − xn| < ε−1/10} ⊂ {|x| ≤ ε−1 − V T} that is always

possible for each n ≤ nε,δ,ℓ(λτ). It follows, by (2.64), that

sup
0≤n≤nε,δ,ℓ(λτ)

‖vn(Tn)‖ε,n < sup
0≤n≤nε,δ,ℓ(λτ)

‖ v⊥n−1(Tn) ‖≤ ε
1
2
−2η

�

2.3. Recursive equation for the center

We define

ξn+1
.
= x0 −

3

4

n∧[Sδ,ℓ/T ]∑

k=0

〈m̄′
xk
, vk(Tk+1)〉, ξ0

.
= x0, (2.65)

σn
.
= −3

4

√
ε〈m̄′

xn
, Ẑn(Tn+1)〉, (2.66)

Fn
.
=

3

4
ε

∫ Tn+1

Tn

dt 〈m̄′
xn
, 3m̄xnẐ

2
n(t)〉, (2.67)

and

hn
.
= −3

4
ε〈m̄′

ξn
, ĥ〉
∫ Tn+1

Tn

dtG(εt). (2.68)

ξn+1, thanks to (2.11), is a linear approximation to the center xn+1, for

n < [Sδ,ℓ/T ]. Moreover, conditionally to the centers x0, x1, . . . , xn, the

random variables σ0, σ1, . . . , σn are indipendent Gaussian with mean

zero and variance 3
4
εT (1+ o(1)). We want to identify a recursive equa-

tion satisfied by ξn.

Proposition 2.7. For any n < [Sδ,ℓ/T ] we have

ξn+1 − ξn = σn + hn + Fn +Rn (2.69)

where for any τ ∈ R+ there exist η0, q > 0 such that for any η ∈ (0, η0),

on the event Bε,τ,η,

sup
n<[Sδ,ℓ/T ]

|Rn| ≤ εTλ−1εq (2.70)
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for any ε small enough. Moreover, for any τ ∈ R+ there exists q > 0

such that

lim
ε→0

( sup
n<nε(λτ)

∣∣
n∑

k=0

Fk

∣∣ > εq) = 0. (2.71)

The idea is the following. The component σn will give rise to the

Brownian motion, while the term hn will give the deterministic drift.

The remainders, Rn, Fn, are respectively deterministically and stochas-

tically negligible.

First of all, we decompose vn into five terms

vn(t) = Γ0,n(t) + Γ1,n(t) + Γ2,n(t) + Γh,n(t) + Γz,n(t) (2.72)

where

Γ0,n(t)
.
= gt−Tn,xnvn(Tn)

Γ1,n(t)
.
= −3

∫ t

Tn

ds gt−s,xn(m̄xnv
2
n(s))

Γ2,n(t)
.
= −

∫ t

Tn

ds gt−s,xn(v
3
n(s)) (2.73)

Γh,n(t)
.
= ε

∫ t

Tn

ds gt−s,xn(ĥ(·)G(εs))

Γz,n(t)
.
=

√
εẐn(t)

Define now, for i = 0, 1, 2, h, z

Ri,n
.
= −3

4
〈m̄′

xn
,Γi,n(Tn+1)〉, (2.74)

(in particular Rz,n = σn) and set

R̃h,n
.
= Rh,n +

3

4
ε〈m̄′

ξn
, ĥ〉
∫ Tn+1

Tn

dtG(εt) (2.75)

as the rest associated to Γh,n. For i = 0, 1, h, the terms Ri,n do not

contribute to the limiting equation for ξn, since n ≤ (εT )−1λτ , as we

will proof. Clearly σn is not negligible because its typical magnitude is
√
εT . It will be examined in the next section, where we shall see that,
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summed over n it gives a finite contribution because of cancellations

related to its martingale nature. The last term R1,n is not small enough

to be directely negligible even if it is smaller than the priori bound
√
Tε1/2−2η. Let us prove Proposition 2.7.

Proof. Using the notation just introduced, we are going to demon-

strate (2.70) and (2.71). Observe that R0,n is identically zero, since

vn(Tn) ⊥ m̄′
xn

, g is self-adjoint and gT,xnm̄
′
xn

= m̄′
xn

. For i = h

∣∣R̃h,n

∣∣ ≤
∣∣∣3
4
ε

∫ Tn+1

Tn

dtG(εt)〈m̄′
ξn
− m̄′

xn
, ĥ〉
∣∣∣

≤ 3

4
CεT |〈m̄′

ξn
− m̄′

xn
, ĥ〉| ≤ CKλT

1
2 ε1−4η (2.76)

where we used, as it is simple to show, that y 7→ 〈m̄′
y, ĥ〉 is globally

Lipschitz with a costant K and (2.49). Therefore R̃h,n is negligible.

It is straightforward to see that |R2,n| ≤ CTV 3
∗ so it is negligible too.

The last term we have to controll is R1,n. We divide it into a com-

ponent deterministically small and the component stochastically small

Fn. Define

R̃1,n
.
= R1,n − Fn =

9

4

∫ Tn+1

Tn

ds〈m̄′
xn
, gt−Tn,xnm̄xnv

2
n(s)〉 − Fn

=
9

4

∫ Tn+1

Tn

ds〈m̄′
xn
, m̄xn(vn(s) −

√
εẐn(s))(vn(s) +

√
εẐn(s))〉

(2.77)
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We decompose [Tn, Tn+1] = [Tn, Tn + log2 T ] ∪ [Tn + log2 T, Tn+1] and

estimate separately the two time integrals. For the first one

∣∣∣
∫ Tn+log2 T

Tn

ds〈m̄′
xn
, m̄xn(vn(s) −

√
εẐn(s))(vn(s) +

√
εẐn(s))〉

∣∣∣

≤ V∗(τ)
∣∣∣
∫ Tn+log2 T

Tn

ds〈m̄′
xn
, vn(s) −

√
εẐn(s)〉

∣∣∣

≤ V∗(τ)
∣∣∣
∫ Tn+log2 T

Tn

ds
{∫

|x−xn|<ε−1/10

dxm̄′
xn

(x)(vn(s) −
√
εẐn(s))(x)

+

∫

|x−xn|≥ε−1/10

dxm̄′
xn

(x)(vn(s) −
√
εẐn(s))(x)

}∣∣∣

≤ V∗(τ)
[
log2 T

(
‖vn(Tn)‖ε,n + e−ε−1/10‖vn(Tn)‖

)]

≤ V∗(τ) log2 T (ε
1
2
−2η + e−ε−

1
10
√
Tε

1
2
−2η)

≤
√
T log2 Tε1−4η

where we used the second of (2.48). To bound the second integral we

write, by the recursive expression of vn,

vn(t) −
√
εẐn(t) = g⊥t−Tn

vn(Tn) +Dn(t)

where supt∈[Tn+log2 T,Tn+1] ‖Dn(t)‖ ≤ CTV 2
∗ ≤ CT 2ε1−4η, while

sup
t∈[Tn+log2 T,Tn+1]

‖g⊥t−Tn
vn(Tn)‖ ≤ Ce−a log2 TV∗(τ)

therefore
∣∣∣
∫ Tn+1

Tn+log2 T

ds〈m̄′
xn
, m̄xn(vn(s) −

√
εẐn(s))(vn(s) +

√
εẐn(s))〉

∣∣∣

≤ CT
7
2 ε

3
2
−6η

putting together all the above bounds it follows that R̃1,n is negligible.

This concludes the proof of (2.70).

We are left with the proof of (2.71). By the Doob decomposition:

n−1∑

k=0

Fk = Mn −
n−1∑

k=0

γk
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where

γk
.
= E(Fk|FTk

)

and Mn is an FTn-martingale with bracket

〈M〉n =
n−1∑

k=0

{
E(F 2

k |FTk
) − γ2

k

}
.

Actually γk ≡ 0, therefore
∑n−1

k=0 Fk = Mn. In fact, using that E(Ẑk(t, x)|FTk
)=

∫ t

Tk
ds g2(t−s),xk

(x, x), for each (t, x) ∈ [Tk, Tk+1] × R

γk = −9

4
ε

∫ Tk+1

Tk

dt

∫ t

Tk

ds

∫
dx

∫
dy m̄′

xk
(x)m̄xk

(x)g2
t−s,xk

(x, y) = 0

where we exploited the identity
∫
dx

∫
dy m̄′

xk
m̄xk

g2
t−s,xk

(x, y) =

∫
dx m̄′

xk
(x)m̄xk

(x)g2(t−s),xk
(x, x) = 0

which holds because x 7→ gt(x, x) is an even function of x. Once proved

γk = 0 we are left with the bound of the martingale Mn. Given q > 0,

by Doob’s inequality,

P
(

sup
0≤n≤nε(λτ)

|Mn| ≥ εq
)
≤ ε−2q

E(〈M〉nε(λτ))

≤ ε−2q

nε(λτ)−1∑

k=0

E
[
E(F 2

k |FTk
)
]
≤ C2ε−2q nε(λτ) ε

2T 4 (2.78)

where we used that there exists C > 0 such that for any ε > 0 and

k ≤ nε(λτ),

√
E(F 2

k |FTk
) ≤ Cε

∫ Tn+1

Tn

dt

∫
dx m̄′

xk
(x)

√
E(Ẑ4

k |FTk
) ≤ CεT 2,

which follows by a Gaussian computation. By (2.78) the proof of (2.71)

follows. �

In the following lemma we prove that ξn is bounded with probability

close to one. In proving the convergence to the molecular motor we need

such a controll for n ≤ λ(εT )−1.
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Lemma 2.8. For each τ ∈ R+ we have for µ = 1, λ

lim
L→∞

lim sup
ε→0

P( sup
0≤n≤nε(µτ)

|ξn| > Lµ) = 0 (2.79)

Proof. Since for n ≥ [Sε,δ,ℓ/T ], by definition, ξn = ξ[Sε,δ,ℓ/T ], it is

enough to prove the statement for n < nε,δ,ℓ(µτ). Recall (2.69) and let

An
.
= Sn + x0 +

n−1∑

k=0

[
Fk +Rk

]
with Sn

.
=

n−1∑

k=0

σk (2.80)

we know that |x0| ≤ ε1/2−η, for any η < 0, for (2.14). Recalling the

definition of σk it is easy to show that there exists a real C > 0 such

that, for any ε > 0,

E(σk|FTk
) = 0 and E(σ2

k|FTk
) ≤ CεT. (2.81)

Given τ ∈ R+ an application of Doob’s inequality then yields

lim
L→∞

lim sup
ε→0

P( sup
0≤n≤nε(µτ)

|Sn| > L
√
µ) = 0 (2.82)

By Proposition 2.7 and (2.80) we have

ξn = −3

4
ε

n−1∑

k=0

∫ Tk+1

Tk

dsG(εs)〈m̄′
ξk
, ĥ〉 + An (2.83)

By Proposition 2.7, (2.82) and the definition of the center we have

lim
L→∞

lim sup
ε→0

P( sup
0≤n≤nε,δ,ℓ(µτ)

|An| > L
√
µ) = 0 (2.84)

and let us call L̄
.
= sup0≤n≤nε,δ,ℓ(µτ) |An|/

√
µ. Actually

sup
0≤n≤nε,δ,ℓ(µτ)

∣∣3
4
ε

n−1∑

k=0

∫ Tk+1

Tk

dsG(εs)〈m̄′
ξk
, ĥ〉
∣∣ ≤ CεTnε,δ,ℓ(µτ) ≤ Cµτ

(2.85)

so that

sup
0≤n≤nε,δ,ℓ(µτ)

|ξn| ≤ (L̄µ− 1
2 + Cτ)µ = L1µ

By (2.84) and the above bound the limit (2.79) follows. �



46 2. INTERF. FLUCT. “ON-OFF” STOCH. G-L EQ.

Proof. of Theorem 2.4 item (i) Let

Xε(t) = ξ(mε(t ∧ Sδ,ℓ))

Xε is a continuous Ft-adapted process. We have to show that for every

τ, η > 0

lim
ε→0

P( sup
t∈[0,ε−1λτ ]

‖m(t) − m̄Xε(t)‖ε > ε
1
2
−η) = 0 (2.86)

First of all, from (2.17), Proposition 2.5, and estimates therein included

we have

lim
ε→0

P(Sδ,ℓ ≤ ε−1λτ) = 0 (2.87)

therefore it is enough, instead of (2.86), to show that

lim
ε→0

P( sup
t≤ε−1λτ∧Sδ,ℓ

‖m(t) − m̄Xε(t)‖ε > ε
1
2
−η) = 0 (2.88)

which follows from Proposition 2.5 and Lemma 2.3 �

2.4. Convergence to Molecular Motor

In this section we prove Theorem 2.4 item (ii). Recalling that

nε(τ) = [ε−1τ/T ], T = ε−
1
10 and (2.65), we define the continuous pro-

cess ξε(τ), τ ∈ R+, as the piecewise linear interpolation of ξn, namely

we set

ξε(τ)
.
= ξnε(τ) + [τ − εTnε(τ)][ξnε(τ)+1 − ξnε(τ)]. (2.89)

From (2.87), (2.47) and (2.49) for any θ, ε > 0 there exists a positive q

such that

lim
ε→0

P( sup
τ∈[0,λθ]

∣∣Xε(ε
−1τ) − ξε(τ)

∣∣ > εq) = 0. (2.90)

Therefore we shall identify the limiting equation satisfied by ξε to prove

item (ii) of Theorem 2.4. Following Lemma 6.1 of [4] and Proposition

8.2 of [3] we state without proof the following lemma. Let Sε(τ) be the

continuous process defined, as in (2.89), by the linear interpolation of

Sn,
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Lemma 2.9. As ε→ 0, the process {Sε} converges weakly in C(R+)

to a Brownian motion with diffusion coefficient 3
4
.

The proof relies on standard martingale arguments and Levy’s the-

orem. We want to show that ξε converges by subsequences to a con-

tinuous process and that any limit point solves the integral equation

(2.15). The boundedness of ξε follows by Lemma 2.8, we are going to

prove its tightness in the next lemma and therefore Theorem 2.4 will

follow by the uniquenes in law of (2.15).

Lemma 2.10. For each sequence ε→ 0, the process {ξε} is tight in

C(R+).

Proof. For the initial hypotesis ξε(0) → 0. Using Theorem 8.2 of

[5] it is enough to prove that for any τ ∈ R+ and η > 0,

lim
δ→0

lim sup
ε→0

P( sup
τ1,τ2∈[0,τ ],|τ2−τ1|<δ

|ξε(τ2) − ξε(τ1)| > η) = 0. (2.91)

By (2.89) and (2.79) this follows if, for each L > 0,

lim
δ→0

lim sup
ε→0

P( sup
τ1,τ2∈[0,τ ],|τ2−τ1|<δ

|ξnε(τ2)−ξnε(τ1)| > η, sup
0≤n≤nε(τ)

|ξn| ≤ L) = 0

(2.92)

Now, from (2.47), (2.87) and Proposition 2.7

|ξnε(τ2)−ξnε(τ1)| =
∣∣∣
[
−

nε(τ2)−1∑

k=nε(τ1)

ε

∫ Tk+1

Tk

dsG(εs)〈m̄′
ξk
, ĥ〉
]
+Snε(τ2)−Snε(τ1)

+Rε(τ1, τ2)
∣∣∣,

where for each τ ∈ R+ there exists q > 0 so that

lim sup
ε→0

P( sup
τ1,τ2∈[0,τ ]

|Rε(τ1, τ2)| > εq) = 0.

By Lemma 2.9 it is now straightforward to conclude the proof of (2.92).

�
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Lemma 2.11. For each δ > 0, τ ∈ R+, for µ = 1, λ

lim
ε→0

P( sup
s∈[0,µτ ]

|ξε(s) − Sε(s) +

∫ s

0

du〈m̄′
ξε(u), h〉G(u)| > δµ) = 0 (2.93)

with h defined in (2.2) on the whole real axe.

Proof. By (2.47) and (2.49) it is enough to show that

lim
ε→0

P( sup
s∈[0,µτ ]

|ξε(s) − Sε(s) +

∫ s

0

du〈m̄′
ξε(u), h〉G(u)| > δµ,

sup
n≤nε(µτ)

|ξn| ≤ (1 − ℓ)ε−1) = 0 (2.94)

Recalling the definition of ξn in (2.65), the second bound in (2.25) and

Lemma 2.3, it yields |ξn+1 − ξn| ≤ C
√
Tε1/2−η for n ≤ nε(µτ) on a

set of probability converging to one, as ε → 0 by (2.47). By definition

(2.89), for each τ ∈ R+ and δ > 0 and L > 0 we have

lim
ε→0

P( sup
s∈[0,µτ ]

| −
nε(s)∑

k=0

ε〈m̄′
ξk
, ĥ〉
∫ Tk+1

Tk

dτ G(ετ) +

∫ s

0

du〈m̄′
ξε(u), h〉G(u)| > δµ,

sup
n≤nε(µτ)

|ξn| ≤ (1 − ℓ)ε−1) = 0

(2.95)

as it can be easily seen by the change of variable u = εt in the integral

on the second term of (2.95), (2.89), (2.90), using that ĥ = h in Tε and

that sup|ξk|≤(1−ℓ)ε−1

∣∣ ∫ dx m̄′
ξk

(x)ĥ(x) −
∫
dx m̄′

ξk
(x)h(x)

∣∣ ≤ e−ℓε−1
and

finally, using that

max
k≤nε(u)

sup
u∈[Tk,Tk+1]

|〈m̄′
ξk
, h〉 − 〈m̄′

ξε(u), h〉|nε(u) ≤ 4Cnε(u)h0L
√
Tε1/2−η.

The proof of (2.93) is now completed by using (2.69), (2.47) and (2.87).

�

Proof. of Theorem 2.4 item (ii) See proof of Theorem 2.1, item

(ii) in [4]. �
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It remains to controll that the drift D(·, τ) is in C1(R) for every τ

in R+ and that is a periodic asymmetric and mean-zero function of Y .

This follows by the same characteristics of h, as it can be easily seen

by a simple change of variable Z = X − Y

D(Y, τ) = −G(τ)

∫
dX m̄′

Y (X)h(X) = −G(τ)

∫
dZ m̄′(Z)h(Z + Y ).

(2.96)

By using the L + 1-periodicity of h it follows the L + 1-periodicity of

D; the same argument leads to the asymmetry of D. Finally
∫ 1

L

dY D(Y, τ) = −G(τ)

∫
dZ m̄′(Z)

∫ 1

L

dY h(Z + Y ) = 0 (2.97)

Therefore, following the definition in [18], equation (2.15) describes an

on-off Molecular Motor.

2.5. Net current of On-Off molecular brownian motor

In this section we prove that a positive net current arises in the

asymptotic limit for t→ ∞ of equation (2.15). The probability density

of equation

dx(t) = D(x, t)dt + db(t), with D(x, t)
.
= −G(t)V ′(x)

(where we call for semplicity V ′(x) = 〈m̄′
x, h〉) is governed by the

Fokker-Planck equation

∂tP (x, t) − ∂x

(
G(t)V ′(x) +

3

4
∂x

)
P (x, t) = 0 (2.98)

where D(x, t) is the drift and 3/4 is the diffusion. The drift is C1(R2)

and L-periodic in space while both the drift and the diffusion are T -

periodic in time. The drift has zero space mean value.

This kind of equation represents a pulsating motor. The brownian

motors have a typical transport phenomenon that is the ratchet effect,

which consists in the emergence of a unidirectional motion in 1 − d

space-periodic systems, kept out of equilbrium by zero-mean forces.
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The ratchet effect emerges in the existence of a non zero asynptotic

mean current,

I = lim
t→∞

1

t

∫
dxP (x, t)x

Restricting to the long time limit, from [11] and with some work,

it can be proven the following theorem

Theorem 2.12. There exists a unique solution P̂ (x, t) to the Fokker-

Planck equation (2.98), L−periodic in x and T−periodic in t, with

T = TN + TD. Moreover, for each L−periodic function P0(x) ≥ 0 such

that ∫ L

0

dxP0(x) = 1,

if P (x, t) is the solution to (2.98) with initial data P0(x), then

I = limt→∞
1
t

∫ t

0
ds
∫ L

0
dx(G(t)V ′(x))P (x, t) (2.99)

= − 1
T

∫ T

0
dt
∫ L

0
dx(G(t)V ′(x))P̂ (x, t)

Obviously a non vanishing current I is only possible for a periodic

V (x) with broken symmetry (ratched) as in our case. Even then, in

the fast oscillation limit T → 0, G(t) changes very quickly and the

Brownian particle (2.15) will behave like a Smoluchowsky-Feymann

ratched dx(t) = −V ′(x)dt + db(t) for which I = 0. Similarly in the

adiabatic limit, T → ∞, G(t) ≈ const and once again I → 0. It is

therefore not obvious whether directed motion I 6= 0 can be generated

at all by our ratched.

It becomes quickly clear that a closed analytical solution of (2.98),

(2.99) is really difficult or even impossible. A way to approach this

problem, focusing on (x, t)-periodic solutions to (2.98), is to solve the

Fokker-Planck equation perturbatively for fast or slow oscillation. Here

we study the asymptotic analysis for fast oscillations.
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We introduce a parameter λ ∈ (0, 1), rescaling our system, in a way

that the time period is asymptotically small in the limit for λ→ 0

Gλ(t) = G(t/λ), Gλ(t) = Gλ(t+ λT ).

By this way we can take T fixed and let λ go to zero. We introduce

the class of models dependng on λ

dx(t) = −V ′(x)Gλ(t)dt + db(t),

calling P̂λ(x, t) = P̂λ(x + L, t + λT ) the unique periodic solution that

solves

∂tPλ(x, t) − ∂x

(
Gλ(t)V

′(x) +
3

4
∂x

)
Pλ(x, t) = 0,

we have

Iλ = − 1

T

∫ T

0

dt

∫ L

0

dx(Gλ(t)V
′(x))P̂λ(x, λt).

We introduce now the new distribution

Wλ(x, t) = P̂λ(x, λt) = P̂λ(x, λ(t+ T )) = Wλ(x, t+ T ),

that solves

∂tWλ(x, t) = λ ∂x

(
G(t)V ′(x) +

3

4
∂x

)
Wλ(x, t). (2.100)

We expand Wλ(x, t) in series for small λ, Wλ =
∑n

k=0 λ
kWk +

λn+1Rn
λ, where Rn

λ(x, t) is uniformly bounded as λ converges to zero

(we omit the details). The normalization and the periodic boundary

conditions on Wλ imply

{
Wk(x+ L, t+ T ) = Wk(x, t),∫ L

0
dxWk(x, t) = δk,0,

for each k ≥ 0 and δk,0 is the Kronecker delta.
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By equation (2.101), the functions Wk can now be readily deter-

mined by comparing the coefficients of equal order of λ. The contribu-

tion of each term to the current is given by

Ik = − 1

T

∫ T

0

dt

∫ L

0

dx(G(t)V ′(x))Wk(x, t),

where we used that Gλ(t/λ) = G(t).

Here we just mention that, calling Ḡ = 1/T
∫ T

0
dtG(t), c̄ = 4Ḡ/3

and Z̄ =
∫ L

0
dx e−c̄V (x), we have

W0(x, t) = W0(x) =
e−c̄V (x)

Z̄
,

that finally yields I0 = 0, for the periodicity of V (x).

We have to compute up to order λ2 to have a non-zero contribute,

which actually is

I2 =
4LḠ〈∆1(t)

2〉
Z̄
∫ L

0
dx ec̄V (x)

∫ L

0

dx V ′(x)(V ′′(x))2

where ∆1(t) =
∫ t

0
ds (G(s) − Ḡ) − 1/T

∫ T

0
dt
∫ t

0
ds (G(s) − Ḡ).

It can be shown that our potential V (x), for L > 3, resembles

U(x) = U0[sin(2πx/L) + (1/4) sin(4πx/L)], see [18], for which it is

easy to see that I2 > 0. Therefore

I = I2 +O(λ3)

has a positive leading order. We can conclude that in the long time

asymptotics of our model, particles pick up a positive drift. For detailes

about calculations of Wk and Ik we refer to the Appendix.

2.6. Appendix

In this appendix we give further detailes on the derivation of the

terms Wk and Ik. Starting from the Fokker-Planck equation, (2.100),



2.6. APPENDIX 53

solved by Wλ, we have

∂tWλ(x, t) = λLtWλ(x, t)

where the operator Lt is defined by

Ltf(x) = ∂x

[
G(t)V ′(x) + σ∂x

]
f(x), σ = 3/4,

therefore

∂tW0 + λ∂tW1 + λ2∂tW2 + . . . = λLtW0 + λ2LtW1 + λ3LtW2 + . . .

finally we define the new operator

L̄f(x) = ∂x(ḠV
′(x)f(x)) + σ∂2

xf(x),

remembering that Ḡ = 1/T
∫ T

0
dtG(t).

For what concerns the first term W0, comparing the λ0 terms in the

right and left side of the above equality, we have ∂tW0 = 0, therefore

W0(x, t) = W0(x), and using ∂tW1 = LtW0, from the periodicity in t

of W1,

0 =
1

T

∫ T

0

dt ∂tW1(x, t) =
1

T

∫ T

0

LtW0(x) = L̄W0(x),

it follows that W0(x, t) = W0(x) = e−c̄V (x)

Z̄
, where c̄ = Ḡ/σ and Z̄ =

∫ L

0
dx e−c̄V (x). Therefore

I0 = − 1

T

∫ T

0

dt

∫ L

0

dx(G(t)V ′(x))W0(x, t) = 0.

Let us note that

Ltf(x) = L̄f(x) + ∆(t)∂x(V
′(x)f(x))

where ∆(t) = G(t) − Ḡ is a T -periodic mean-zero function.

For the next orders, we use the iterative equation,

∂tWk = ∆(t)∂x(V
′Wk−1) + L̄Wk−1
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joint with the periodic conditions. For k = 1, it gives

∂tW1 = ∆(t)∂x(V
′W0) + L̄W0(x) = ∆(t)∂x(V

′W0)

therefore

W1(x, t) = α1(x) +

∫ t

0

ds∆(s)∂x(V
′W0),

once again, we use the periodicity on t to obtain α1(x)

0 =
1

T

∫ T

0

dt ∂tW2(x, t) = L̄α1(x)+L̄ 1

T

∫ T

0

dt

∫ t

0

ds∆(s)(∂x(V
′W0))(x)

+
1

T

∫ T

0

dt∆(t)∂x(V
′α1)(x)+

1

T

∫ T

0

dt∆(t)

∫ t

0

ds∆(s)∂x(V
′∂x(V

′W0))(x).

It’s easily shown that the integral 1
T

∫ T

0
dt∆(t)

∫ t

0
ds∆(s) = 0, then

L̄
(
α1(x) +

1

T

∫ T

0

dt

∫ t

0

ds∆(s)∂x(V
′W0)(x)

)
= 0

and consequently

α1(x) +
1

T

∫ T

0

dt

∫ t

0

ds∆(s)∂x(V
′W0) = C1W0,

finally, defining the T -periodic mean-zero function ∆1(t) =
∫ t

0
ds∆(s)−

1/T
∫ T

0
dt
∫ t

0
ds∆(s), we have

W1(x, t) = C1W0(x) + ∆1(t)∂x(V
′W0)(x)

where C1 = 0 from the periodicity condition for α1(x). From the final

form of W1 easily follows that

I1 = − 1

T

∫ T

0

dt

∫ L

0

dx(G(t)V ′(x))W1(x, t) = 0.

We can now study W2,

∂tW2 = L̄W1+∆(t)∂x(V
′W1) = ∆1(t)L̄(∂x(V

′W0))+∆(t)∆1(t)∂x(V
′∂x(V

′W0))

integrating on t

W2(x, t) = α2(x) +

∫ t

0

ds∆1(s)L̄(∂x(V
′W0))(x)
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+
1

2
[∆1

2(t) − ∆1
2(0)]∂x(V

′∂x(V
′W0))(x)

Let us determine α2(x)

0 =
1

T

∫ T

0

dt ∂tW3(x, t) =
1

T

∫ T

0

dt L̄W2(x, t)+
1

T

∫ T

0

dt∆(t)∂x(V
′W2)(x, t)

= L̄
(
α2(x) + 〈

∫ t

0

ds∆1(s)〉L̄(∂x(V
′W0))(x)

+
1

2
[〈∆1

2(t)〉−〈∆1
2(0)〉]∂x(V

′∂x(V
′W0))(x)−〈∆1

2(t)〉∂x(V
′L̄∂x(V

′W0))(x)
)

Let

g(x) = α2(x) + 〈
∫ t

0

ds∆1(s)〉L̄(∂x(V
′W0))(x) +

1

2
[〈∆1

2(t)〉 − 〈∆1
2(0)〉]

∂x(V
′∂x(V

′W0))(x)

and

F (x) = 〈∆1
2(t)〉∂x(V

′L̄∂x(V
′W0))(x)

therefore

g(x) = γe−c̄V (x) + e−c̄V (x)

∫ x

0

dy
ec̄V (y)

σ

[
F (y) + c

]

where c and γ are obtained by imposing normalization and periodicity.

Therefore

α2(x) = g(x) − 〈
∫ t

0

ds∆1(s)〉L̄(∂x(V
′W0))(x)

−1

2
[〈∆1

2(t)〉 − 〈∆1
2(0)〉]∂x(V

′∂x(V
′W0))(x)

from the periodicity of α2(x), we have

c = − 〈∆1
2(t)〉∫ L

0
dx ec̄V (x)

∫ L

0

dx ec̄V (x)∂x(V
′L̄∂x(V

′W0))(x)

and

W2(x, t) = γe−c̄V + e−c̄V (x)

∫ x

0

dy
ec̄V (y)

σ

[
F (y) + c

]

+∆2(t)L̄(∂x(V
′W0)) + ∆̃2(t)∂x(V

′∂x(V
′W0))(x)
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where

∆2(t) =

∫ t

0

∆1(s)ds− 〈
∫ t

0

∆1(s)ds〉

and

∆̃2(t) =
1

2
[∆2

1(t) − 〈∆2
1(t)〉],

both periodic mean-zero functions. It follows that I2 =

− 1
T

∫ T

0
dt
∫ L

0
dx(G(t)V ′(x))W2 is such that, integrating by parts re-

peatedly

I2 =
L〈∆2

1(t)〉∫ L

0
dx ec̄V (x)

∫ L

0

dx ec̄V (x)V ′L̄(∂x(V
′W0))(x)

−
( 1

T

∫ T

0

dtG(t)∆2(t) + 〈∆2
1(t)〉

∫ L

0

dx V ′L̄(∂x(V
′W0))

)

− 1

T

∫ T

0

dtG(t)∆̃2(t)

∫ L

0

dx V ′∂x(V
′∂x(V

′W0))

=
4LḠ〈∆2

1(t)〉
Z̄
∫ L

0
dx ec̄V (x)

∫ L

0

dx V ′(x)(V ′′(x))2

Therefore the sign of the current is given by the asymmetry of the

drift through the term
∫ L

0
dx V ′(x)(V ′′(x))2. Note that if V (x) was a

symmetric function the current would be zero.



CHAPTER 3

Molecular dynamics simulation of vascular

network formation

Blood vessel formation may be divided into two different processes.

In the first stage, occurring in embryonic development, ECs organize

into a primitive vascular network (Vasculogenesis). In a second mo-

ment, existing vessels split and remodel in order to extend the circula-

tion of blood into previously avascular regions by a mechanism of con-

trolled migration and proliferation of the ECs (Angiogenesis) [35]. ECs

are the most essential component of the vessel network: each vessel,

from the largest one to the smallest one, is composed by a monolayer

of ECs (called endothelium), arranged in a mosaic pattern around a

central lumen, into which blood flows. In the capillaries the endothe-

lium may even consist of just a single EC, rolled up on itself to form

the lumen.

Although there are several mechanisms involved during vessel for-

mation, in this work we shall focus on the characteristic migration

motion of cells driven in response to an external chemical stimulus:

the chemotaxis. ECs secrete an attractive chemical factor, the Vascu-

lar Growth Factor-A (VEGF-A), while they start to migrate. Each of

them perceives the chemical signal with its receptors at its extremities

and starts to move along the chemical concentration field gradient, to-

ward areas of higher concentration corresponding to higher density of

cells. ECs are able to move extending tiny protrusions, the pseudopo-

dia, on the side of the higher concentration. The pseudopodia attach

57
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to the substratum, via adhesion molecules, and pull the cell in that

direction.

In parallel with chemotaxis, another mechanism resulting in cell

motion is the haptotaxis, i.e. the movement of cells along an adhesive

gradient: the substratum is not usually homogeneous and its varying

density can affect cell adhesion and hence migration. We will not con-

sider haptotaxis in this work. Cell-cell and cell-membrane contacts are

really essential in the process of vascular network formation and their

loss can cause cell apoptosis (death) [35, 36, 37, 38, 39, 40].

The study of the particular biological process of vascular network

formation and its relations to tumor vascularization has also been ac-

complished by means of several mathematical models. First studies

were presented by Murray et al. [25, 28], who explained the phenome-

non by focusing mainly on its mechanical aspects, i.e. on the interaction

between cells and the substrate. Gamba et al. [29, 30, 31, 32] pro-

posed a continuous model, based on chemotaxis, which applies to early

stages of in vitro vasculogenesis, performed with Human Umbilical-

Vein ECs (HUVEC) cultured on a gel matrix. More recently, some of

these authors managed to unify both the mechanical aspect and the

chemical one into a more complete model [33, 34].

3.1. Review of the experimental data

The experimental data on which all theoretical studies till now hinge,

are those collected by tracking the behavior of cells initially displaced

at random onto a proteic gel matrix, generically original living environ-

ment. In our analysis, we explicitly refer to the in vitro vasculogenesis

experiments of Gamba et al. [29], and shall use the same numerical

values of parameters therein introduced. In the experiments, HUVEC

cells are randomly dispersed and cultured on a gel matrix (Matrigel)
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of linear size l = 1,2,4,8 mm. Cells sediment by gravity on the matrix

and then move on its horizontal surface, showing the ability of self-

organizing in a structured network characterized by a natural length

scale. The whole process takes about T = 12 hours.

Four fundamental steps can be distinguished in the experiments [41]:

· During the first two hours, the ECs start to move by choosing

a particular direction dictated by the gradient of the concen-

tration of the chemical substance VEGF-A. Single ECs mi-

grate until collision with neighboring cells, keeping a practi-

cally fixed direction with a small superimposed random ve-

locity component. The peculiarity of ECs of maintaining the

same direction of motion is known as persistence, and has been

explained by cells inertia in rearranging their shapes. In fact,

in order to change direction of motion, ECs have first to elon-

gate towards the new direction, with the result that to change

path is a relatively slow process. In this phase of amoeboid mo-

tion, the mechanical interactions with the substrate are weak.

· After collision, ECs attach to their neighboring cells eventually

forming a continuous multicellular network. They assume a

more elongated shape and multiply the number of adhesion

sites. In this phase the motion is slower than in the previous

step.

· In the third phase the mechanical interactions become essential

as the network slowly moves, undergoing a thinning process

that would leave the overall structure mainly unalterated.

· Finally cells fold up to create the lumen.

The final capillary-like network can be represented as a collection of

nodes connected by chords, whose experimentally measured average

length stays around 200 µm for values of the cell density between 100 to
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200 cells/mm2. Outside this range no network develops. More precisely,

below a critical value of 100 cells/mm2, groups of disconnected struc-

tures form, while at higher densities (above 200-300 cells/mm2) the

mean chord thickness grows to hold an increasing number of cells and

the structure resembles a continuous carpet with holes (swiss cheese

pattern).

3.2. Theoretical model

In this section I better explain the model presented in the Introduction.

As already mentioned this is an off-lattice particle model of vasculo-

genesis where the equations of motion are governed by the gradient

of the concentration of a chemoattractant substance produced by the

particles themselves. The discrete N -particle system we are proposing,

gives evidence of the important role of the pure chemotaxis process

in forming well structured networks with a characteristic chord length

size.

We refined our model with increasing complexity, by gradually

adding features that would allow a closer resemblance with experi-

ments. Particles, which we shall also refer to as “cells” in the follow-

ing, are constrained inside a square box of given edge L with periodic

boundary conditions. The number of cells will be kept constant dur-

ing the simulations, i.e. we will consider neither cell creation nor cell

destruction.

At first, we consider cells as adimensional point-like particles moving

only under the effect of the concentration gradient of the chemoattrac-

tant substance ∇c(x, t). The chemoattractant is released by cells. It

diffuses according to a diffusion coefficient D ≈ 10 µm2/s and degrades

within a characteristic finite time τ ≈ 64 min. The combination of the

diffusion and degradation processes introduces a characteristic length
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A B C D

Figure 3.1. Results of the simulations of point-like

particle under the sole effect of chemotaxis inside the box

with edge 1 mm= 5ℓ; ℓ =
√
Dτ indicates the characteris-

tic length of the process. Each column involves different

particle numbers: (A) 2000 cells, (B) 3750 cells, (C) 5000

cells, (D) 11250 cells. The top row shows the initial ran-

dom particle displacement. The bottom row shows the

systems after the dynamics produced a network-like re-

sembling structure. Since this structure appears during

a brief transient before the expected structural collapse

into a single agglomerate, the simulation times of these

snapshots were chosen qualitatively after visual inspec-

tion and roughly correspond to T = 2 hours of labo-

ratory time (much less than experimental times due to

the large cell densities resulting in unrealistically large

chemo-attractant concentration gradients). In these sim-

ulations we used the dimensionless α = 1.
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ℓ =
√
Dτ in the system, with ℓ ≈ 200 µm. As a further step, we intro-

duced in the system a dynamical friction proportional to the velocity of

cells in order to simulate the dragging force to which cells are subjected

in the matrigel. The net result of this friction is to slow down the over-

all simulation time, leaving unaltered the main features of the system

history. Although point-like cells are a very simplified representation

of real cells, their motion, driven by chemotaxis, yields the formation

of the expected network of filaments with a characteristic length ℓ (see

bottom row of Fig. 3.1).

In order to further refine the simulation, we introduced an inelastic

isotropic repulsion mechanism between cells (see the following para-

graph for its definition), imitating the fact that cells do not penetrate

each other in reality. Since the chemotactic field acts as an attractive

potential between cells, the result of both processes is to stick together

cells after collision. Cells are no more adimensional but now possess

their own effective radius r ≈ 10 µm. The introduction of a cell effec-

tive radius changes sensibly the simulation. One important side effect is

that of imposing a limit on the density of cells in the simulation, which

must lie well below the close-packing density. The last refinement deals

with the problem of the “cell persistence” of motion, i.e. the observed

large inertia of cells in changing the direction of their motion. The so-

lution to this issue in terms of pure galilean inertia proposed by Gamba

et al. in their continuous model [29] has been criticized in [42], where

it was pointed out that cells must rely onto a more involved mechanism

of resistance to changes of direction. As a result some of the authors

of [29] recently proposed variations of their model to explicitly include

cell persistence [34, 41]. In our case, we use the advantage of a molec-

ular dynamic simulation to have full control of all forces acting on all

cells at each time step. For each cell, we simply reduce the component

of the gradient of the chemical field along the direction orthogonal to
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A B C D

Figure 3.2. Simulation results of particles in pres-

ence of an inelastic repulsion potential between cells and

a persistence force together with chemotaxis, inside the

box with edge 1 mm= 5ℓ; ℓ =
√
Dτ indicates the char-

acteristic length of the process. Each column involves

different particle numbers: (A) 80 cells, (B) 150 cells,

(C) 250 cells, (D) 450 cells. The first row shows the

initial random particle displacement. The second row

shows the systems after the dynamics produced a pos-

sible network-like structure. The simulation times at

which the networks form were chosen qualitatively af-

ter visual inspection, as in Fig. 3.1. The chosen final

simulation time corresponds to about T ≃ 13 hours, i.e.

a value comparable with the observed network forma-

tion times of experiments. The diameter of cells is of

20µm = 0.1ℓ and is faithfully represented in scale. In

these simulations we fixed the dimensionless constants

to α = 1, γ = 1, κ = 1000, ν = 1, η = 100.
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the direction of cell motion by a factor βi = κ|vi|/(κ|vi| + |∇c(xi)|)
with κ a constant modulating the effect of persistence and (xi,vi) the

position and velocity of the i-th cell.

To summarize, the dynamical system of equations we solve with

i = 1 . . . N is





ẋi(t) = vi(t)

v̇i(t) = µ∇c(xi(t), t) + FIR + FT + FF

∂tc(x, t) = D∆c(x, t) − c(x,t)
τ

+ α
∑N

j=1 J(x − xj(t)),

(3.1)

where D, α, and τ are respectively the diffusion coefficient, the rate

of production and the characteristic degradation time of the soluble

chemo-attractant mediator, and µ measures the strength of the cell

response to the chemical factor. Here c(x, t) is the total chemical field

acting on the position x at time t. By linearity it is given by the sum

of the chemotactic fields cj(x, t) generated by all cells
∑N

j=1 cj(x, t).

The force FIR stands for the inelastic isotropic repulsion force between

two colliding cells. Let dij be the vector joining the centers cells j and i,

we define the force FIR =
∑N

j 6=i ν(2r−dij)d̂ij−η〈vi, d̂ij〉d̂ij for dij < 2r

(overlapping cells) and zero otherwise, where r is the cell radius, ν is

an elastic constant, η is an inelastic coefficient and d̂ij = dij/dij.

FT = −βiµ∇ci,⊥v the cell persistence force discussed above, with the

symbol ∇ci,⊥v standing for the projection of the gradient ∇c(xi) or-

thogonal to the direction of vi.

FF = −γvi is the non-conservative friction term.

The function J(x) is responsible of chemo-attractant production. It is

an even non-negative function of x, normalized to unity in the whole

space. We took J(x) as a step function with constant value inside the

circle |x| < r and zero outside.

In order to match the experimental set up conditions, cell initial

positions were extracted at random with a poissonian process, while
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all velocities were set to zero. In the case of two-dimensional cells with

repulsion, cells were dropped in the random extracted position only if

no overlap with other cells occurred, otherwise another position had

to be extracted. The concentration of the chemo-attractant was also

initially set to zero.

We integrated the equations of motion by means of a standard Ver-

let algorithm [43] with time step 4×10−5τ ≃ 0.15 s, while the numerical

solution of the diffusion partial differential equation was accomplished

by using a second order explicit finite differences scheme [44] on a

square grid with step equal to 2.5 × 10−2ℓ ≃ 5µm. The edge L of the

simulation box was set to 5ℓ ≃ 1 mm. By posing x∗ = x/
√
Dτ , t∗ = t/τ

and c∗ = cµτ/D the equations can be written in terms of the dimen-

sionless starred unknowns, so that all the dependence on the constant

parameters D, µ, τ is carried upon a rescaled value of α∗ = ατ 2µ/D

and all forces F∗
{IR,T,F} = F{IR,T,F}τ

2/
√
Dτ .

As already mentioned, we performed our simulations with increas-

ing complexity. Firstly we consider point-like model cells moving inside

the chemotactic field. Secondly, we switched on the inelastic cell-cell

repulsion term FIR and the velocity dependent persistence force FT. In

both cases, we included the dynamical non-conservative friction force

FF in the simulations, the presence of which did not change substan-

tially the results.

3.3. Results

The results of the simulation of point-like cells under chemotaxis, with-

out the effect of repulsion and persistence forces, are shown in Fig. 3.1,

where the system is analyzed depending on the number of particles.

These simulations, far from representing the dynamics of real cell pop-

ulations, are nevertheless interesting since they deliver a picture of the
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Figure 3.3. Same as Fig. 3.2C but here we draw by

hand the possible resulting network. In order to com-

pare empty regions with the characteristic area ℓ 2 we

show a circle with diameter equal to ℓ. The underlying

network was drawn in a qualitative way by connecting

nearby cells. We suggest that a more realistic model with

elongating cells might reproduce the displayed network

structure.

capillary network with a characteristic chord size of length ℓ ≈ 200 µm

and uncover the different behavior of the system with respect to the

cell density. For N = 2000, network chords do not develop and after

a short transient of slow motion, in which the chemical substance dif-

fuses throughout the simulation box, cells collapse all together. The

situation improves as the number of particles increases and the best

network is obtained for N = 5000. In that case, thin filaments are vis-

ible with a thickness of very few cells. Finally, for N = 11250 chords

are obtained with a thickness of many cells. In some senses this last

situation resembles the swiss cheese pattern visible in the experiments.

The characteristic length is still detectable in the form of holes with
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characteristic area value around ℓ 2.

We notice that in the case of pointless particles, cell densities resulting

in vascular networks are very large compared to the experimental ones.

This is obviously an issue stemming from the vanishing excluded vol-

ume of the chosen model particles that represent cells. Moreover, these

unrealistic high cellular densities result in a correspondingly high pro-

duction of chemo-actractant and consequently high chemotactic field

gradients, so that the simulation runs faster than the characteristic

times of experiments. In fact, with these semplified model we find the

formation of network resembling structures after T ≃ 2 hours, much

less than the experimental value of 12 hours.

Without both the repulsion and persistence terms, the organized

capillary network structure arises as a brief transient, after which cells

collapse all together. The appearance of network structures only during

a transient is a feature shared by other different models of continuous

type [45]. At this stage, the dynamical friction term, although strictly

unnecessary, helps to lengthen the duration of the transient. Therefore,

as a first result we observe that a simple molecular dynamics model

captures the essence of the process of chemotaxis, which is capable

of organizing cells in a non-trivial functional network displacement,

although only during a brief transient.

As an attempt to stabilize the temporary capillary network, we

introduce the inelastic repulsion force FIR, intended to glue together

colliding cells of certain effective radius (in co-operation with the ac-

tractive chemotactic field) and to reduce bouncing effects (due to its

inelastic character), and the persistence force FT, which should provide

a better alignment of cells such to enhance the network-like structure.

The inelastic repulsion term FIR, because of the effective cell radius

introduced, imposes a limit on the number of cells that can be inserted



68 3. MOL. DYN. SIMUL. VASC. NETW. FORM.

in the simulation box without overlap. Our simulations were set up

with cell densities equal to the experimental values, i.e. varying from

80 cells/mm2 to 450 cells/mm2.

Despite our intention of improving the model, we find there is no

clear formation of capillary networks. By examining Fig. 3.2A and

Fig. 3.2B, we find disconnected patterns for N = 80 ∼ 150 cells, as

also foreseen by the experiments, while we do not find a clear evidence

of network formation with N = 250 cells, although empty spaces of

characteristic area ℓ 2 can be observed in Fig. 3.2C and Fig. 3.2D. In

particular, the case of N = 450 cells shows thick structures of cells

reminiscent of the swiss cheese pattern, but still disposed in a rather

unorganized geometry. In Fig. 3.3, we show the possible resulting net-

work in the case of 250 cells, by drawing cell connections by hand (by

connecting cell neighbors by eye) and by superposing a circle with di-

ameter ℓ. As in the simpler point-like cell model, the observed (unclear)

network-like structures continue to appear during a short transient, al-

though with longer lifetimes, after simulation times of T ≃ 13 hours,

comparable with the experimental ones. Thus, the introduction of the

persistence and inelastic repulsive forces tends to stabilize the network-

like geometry.

The network-like capillary structure raising only during a transient

in the simulation is an unrealistic feature common to the hydrodynam-

ical models as well [29, 45]. A possible explanation of this fact, which

may lead to more realistic simulations, is that cells have been modeled

as (quasi) static geometrical entities. In fact, in reality, cells elon-

gate their shape in the act of moving toward higher chemo-attractant

concentrations [46], which is a process intimately bound to the phe-

nomenon of cell persistence of motion. This is the main reason that led

us to introduce the persistence force FT. With this term, in fact, the
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transient phase gets longer and the network structures become slightly

more clear. In the elongated form and after they come in contact, the

real cells stick together, in some sense imitating those connections that

we added by hand in Fig. 3.3.

3.4. Conclusions and prospectives

We showed that two-dimensional molecular dynamics simulations of

point-like cells whose motion is governed by the process of chemotaxis,

reproduce the main features of real cells to form networks having chords

with a characteristic length. However, this networks are metastable

and collapse after a brief transient. Similar results are present in lit-

erature, where the problem is faced by solving PDE of hydrodynamic

type, with individual cells represented by gaussian bumps. To our

knowledge our method is the first attempt to describe endothelial cell

systems in terms of a discrete collection of particles, whose motion can

be tracked throughout the whole history of capillary network forma-

tion. The peculiar advantage of molecular dynamics methods is the

extreme ease with which one can introduce forces acting to individual

particles.

In particular, in order to stabilize the metastable network state,

we introduce both an inelastic repulsion force between cells and the so

called “persistence” force, which mimics the observed tendency of cells

to preserve the direction of their motion. Unfortunately, this model,

although more complete and closer to reality, is not fully able to re-

produce the formation of a clear capillary network in correspondence

of realistic cell densities beyond the percolation threshold. A vague

network-like structure appears during a short transient, whereas the

introduction of the persistence of motion force and the inelastic repul-

sive force helps to lengthen this metastable geometry, before all cells
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collapse in a unique large cluster. We ascribe this unsuccess to the ge-

ometry of single cells, which in reality change their shape by elongating

towards the direction of motion, a feature that we have not considered

at this stage.

As already mentioned in the Introduction this is the main rea-

son while we made a new model considering the elongation and re-

orientation of cells. We want them to elongate in the direction of mo-

tion while they move. The longer axe of cells reaches up to 100-times

the original radius length and cells continually update their “head” and

“tail”. Actually, even if in reality cells make exchange of matter with

the substratum (i.e. endocytosis) in order not to loose their lower di-

mension, we keep the conservation of mass, not considering this feature

[47]. We just put a cut off not to let the long axe exceed 100 r.

In the sequel, the model we are testing. The main idea is the same

of model (3.1), the space is the L-side periodic boundary box and the

number N of cells is kept constant. We consider cells like rectangulus.

The i-th cell is described by means of the position and velocity (xi,vi)

of its center, whose equations are conceptually the same of the spherical

case; it has a longer semi-axe ξi which elongates towards the direction of

the gradient of c. The orientation of the cell is given by the component

θi = ξ̂ix, where x is the x-axe. Finally we consider the other semi-

axe ηi and the angles ψi = v̂ix, φi = ∇̂cx. The final system, with

i = 1 . . . N is





ẋi(t) = vi(t)

v̇i = µ∇c(xi(t), t) + FT + FIR + FF

ξ̇i = K0|∇c|cos(2θi) −K1(ξi − r) −K2ξ̇i

θ̇i = −K3|∇c|sen(2(θi − φi)) −K4θ̇i

∂tc(x, t) = D∆c(x, t) − c(x,t)
τ

+ α
∑N

j=1 J(x − xj(t)),

(3.2)
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where K0,1,2,3,4 are constants. The first two equations and the one for

c are exactly the same of system (3.1).

FF = −γ ∗ ẋi is, as before, the non-conservative friction term. The

inelastic isotropic repulsion force between two colliding cells, FIR, is

set to zero if no overlap occurs and it is given by FIR =
∑

j 6=i{C0 ∗
Ai,jnij −C1 ∗ 〈vi,nij〉}, where Ai,j is the overlapping area between the

i-th cell and the j-th one and C0,1 are constants. For nij we made this

choice: we consider for each cell the side with a greater overlapping

in the other cell; then we take for the side of the i cell the outgoing

normal and we call it ni→j, and we do the same for the j-th cell’s side,

obtaining nj→i. Finally we set nij = nj→i − ni→j and nji = −nij .

The persistence force acting on the centers is given by FT = −C2 ∗
(ξi − r)(1 − cos(2(θi − ψi)))ẋi, where C2 is constant. Therefore it is

proportional to the factor (1 − cos(2(θi − ψi))) which is in [0, 2] and

whose value depends on how much the cell deviates from the direction of

the gradient ∇c: more the velocity and the gradient are aligned, weaker

it is. Actually, it is zero when the cell is perfectly directed like the

chemical field. This is consistent with the nature of the persistence force

which reflects the resistance of the skeleton in changing the direction of

motion and in re-arranging the shape of the cell. This is why the force

is also proportional to the elongation of the axe, by the term (ξi − r).

In the equation for ξi, the first component K0|∇c|cos(2θi) gives rise

to the elongation due to the chemical field, −K1(ξi − r) is a physical

resistance in elongating, due to the presence of the skeleton, while the

last term is just a dynamical friction.

In the equation for the orientation θi, the term −K3|∇c|sen(2(θi −
φi)) is a term to let the cell align with the direction of the chemical

field. Once again the last term is a non-conservative friction.
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At time 0 the angle θi and the centers xi are chosen at random,

while the two semi-axes ξi, ηi are put equal to r, which is the radius of

the cell at rest, whose value is the same of the previous model. The

semi-axe ηi it is simply given, at each time step, by the conservation

of initial area, i.e. ηi = πr2/4ξi. As in (3.1) the chemical field and the

velocities are initially set to zero.

At the moment I am performing simulations of this model and I

do not have yet any definitive result. Having a good representation of

elongating-cells model, with a better description of network, it would

let answer to an intriguing open question. In fact it would be very

interesting to understand the collective behaviour of cells once they

agglomerate. Are they acting like one big cell or are they just moving

like a colony of cells? These are open questions also in Biology [26, 27].

And it would be the next step of the problem, once obtained a stable

elongation model.



CHAPTER 4

A model to reproduce the physical elongation of

dendrites during swarming migration and

branching

4.1. Experimental results

Bacillus subtilis is a non-pathogenic but important constituent of

soil and of the plant rhizosphere. This bacterial species is also one

of the major model organisms used in the laboratory throughout the

world to study the fundamental questions concerning bacterial growth,

metabolism, physiology and enzyme production. B. subtilis is now also

an important model for studying the life style and social behaviour of

bacteria as large communities - the normal form of most bacteria in na-

ture. A particularly remarkable form of such community growth is the

ability of B. subtilis to ”swarm“ over the surface of low concentration

agar (0.7% − 1%). Swarming is a process of rapid mass migration of

cells over a surface, involving a co-operative interaction between cells

but not necessarily involving cell aggregation. The Orsay group and

scientists of IBPC in Paris are studying the swarming of strains of B.

subtilis over a fully defined medium (B-medium). This is done in a

Petri dish (a swarm plate), in which the bacteria migrate from a cen-

tral inoculum as hyper-branching dendrites, forming radiating patterns

covering several square centimeters in a few hours [59, 60].

The presence of flagella and the secretion of a surfactant (surfactin)

by the bacteria, plus the products of at least 15 genes, are absolutely

essential for swarming. Following inoculation of the plate with 104 cells,

73
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the bacteria multiply with an assumed generation time (doubling time)

of about 100min, when cells are that growing in a measured classical

shaking liquid culture. After 11 − 12 h of growth, the inoculum forms

the mother colony (MC), approximately 30µm thick, 2mm in diam-

eter. This growth period is presumably necessary to build a critical

mass and an accumulation of a chemical signal sufficient to trigger in

some cells the ability to form dendrites.

The first visible sign of initiation of swarming is the spreading out-

wards from the edge of the MC of a transparent zone of surfactin.

Approximately one hour later, hemispherical ”buds“ approximately

500−800µm in diameter, abruptly appear (burst) from the edge of the

MC. These subsequently form the heads (tips) of the rapidly elongat-

ing 10−14 dendrites. Surfactin production is essential for formation of

the pre-dendrite buds and experiments suggest that its presence mod-

ifies the surface of agar gel, presumably by inducing the formation of

a thin layer of fluid close to the agar surface. It is important to note

that at about 14 h, when dendrites are approximately 2mm long, the

MC can be excised with no significant effect on swarming. Flagella,

whose deployment presumably depends on an appropriate fluid film

on the agar surface, are also essential for development of the bud and

for driving dendrite migration. Importantly, the entire process of bud

formation and elongation of the radiating dendrites, up to a dendrite

length of 1.5 cm, occurs as a monolayer of cells. The cells in dendrites,

except at the tip, are distributed on irregular mesh-like organization,

including closely packed but clearly separated cells. Dendrites can be

divided into two distinct regions, a long stem containing largely non-

motile cells, that are termed supporters, although with an average of

10 − 12 flagella, which remarkably are maintained at an overall con-

stant population density, and the extreme 1mm at the tip where the

population density increases sharply by 2-fold. This tip region contains
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hyper-motile cells that are termed swarmers, specialized with an aver-

age 24 flagella, which appear to constitute the ’motor’ for elongation.

Other important facts to be taken into account when analyzing

the mechanism of community expansion and branching include that

dead cells in dendrites or in the MC are rare, perhaps less than 1%.

Moreover swarm migration speed is constant with a constant rate

of about 3.5mm/h. When dendrites reach approximately 1.5 cm in

length, equivalent to 5− 6 h following emergence of pre-dendrite buds,

a dramatic switch from monolayered to multilayered dendrites slowly

spreads progressively from the base of dendrites, as the swarm begins

to develop the classical biofilm form up to 50µm thick. These obser-

vations demonstrate that nutrients are in great excess for at least 24 h

encompassing the swarming process and subsequent maturation of the

bilayer. Moreover, it has been shown that diluting the nutrients in the

swarms plates at least 4−fold, prior to inoculation, has little obvious

effect on the pattern of swarming (unpublished data).

The switch from mono to multi-layers may depend on dendrites

reaching a critical length but the mechanism is not clear. However, sur-

factin is important since in cells enginereed to make less surfactin, the

switch occur early and many side branches arrest early. In liquid cul-

tures, apparently, all cells multiply exponentially with a doubling time

of 100min. Importantly the doubling time of the cells in the swarm

has not yet been measured. At this stage we have simple untemped

conjectures to explain this paradox but it is been required more exper-

imental research. One hypothesis suspects that swarmers may not be

dividing while perhaps supporters may not be growing exponentially.

Another hypothesis, more favoured, is that supporters divide but more

slowly than swarmers, which could divide to produce one swarmer and

one supporter.
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Recent studies, using genetic analysis ([56]) and now fluorescent

microscopy to measure the level of production (expression) from the

gene encoding the major flagellum subunit in situ, have identified a

specific subpopulation of hyper-flagellated cells (swarmers). These are

dominant in the formation of buds and then subsequently spearhead

dendrites in the tips. The appearance of these swarmers in the mother

colony could be a purely stochastic process but there are no experimen-

tal data on the nature of the mechanism that produces the swarmer

subpopulation. These hyper-motile cells are in contrast to the cells

forming the stem of dendrites, the supporters that are non-motile. Our

making hypothesis, based on the results indicated above and on a high

resolution film of tip migration which is still being analyzed in more

detail, is that supporters contribute to dendrite elongation by growth

and division (multiplication), while swarmers actively drive extension

from the tips, generating hydrodynamic forces dependent upon their

hyper-motility. A general prediction of such a model at the moment is

that if the swarmers go too slow or supporters ’accumulate’ too fast,

then there will be a traffic jam, with the population density in tips

becoming so high that no movement is possible. For example, instead,

this happens if the humidity is suddenly reduced and we see swarm-

ing stop and the tip cells pack tightly together in a mosaic of 5 − 6

cells. Moreover in these conditions cells in tips are induced to multi-

ply and form a multilayer, a process that spreads backwards down the

dendrites. Thus, the hypothesis proposes that the swarm front results

from the co-operative action of two sub-populations to promote den-

drite extension. In contrast to the mechanical forces, we note, however,

that the piloting mechanism or guidance system that ensures radial mi-

gration, likely depends on a self-generated chemical gradient, but so far

this remains completely unknown.
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We shall now summarize a number of notable features of the mi-

gration process and consequent pattern development that should be

taken into account when constructing mathematical models, if these

are to describe the swarming process adequately. Migrating dendrites

on encountering a large obstacle (like a cover slip on an E.coli colony)

are induced to make a ninety degrees turn but then in most cases these

return to the radial direction. In addition, dendrites rarely merge and

appear to avoid each other. This behaviour is consistent with the diffu-

sion of a chemical repellent generated by the cells, or that the cells are

constrained within a physical track that keeps dendrites well separated.

Significantly, the limited number of primary dendrites established at

the initiation of swarming are usually supplemented at much later times

by additional dendrites arising from the MC. This might indicate that

the differentiation event to form swarmers (capable of breaking out of

the MC) is based on a stochastic process that can occur more than

once. The nature of branching of B. subtilis has been little studied so

far since most studies have been restricted to analysis of 1.5 cm den-

drites, before significant amounts of branching occur. However, it is

clear that, by tip splitting, although a significant number of branches

abort and remain very short and are often restricted to one side of

the dendrite stem, this is particularly true when surfactin production

is reduced. All new branches tend quickly to adopt a radial direction

during subsequent elongation. Importantly, while the overall frequency

of branching increases towards the edge of the swarm plate, dendrite

stems progressively also become thinner (Figure 4.1).

A mathematical approach to swarming analysis is now es-

sential. A surprising characteristic of the swarming process is the

paradox that while cells are expected to grow and divide exponentially,

as cells do in a liquid culture, the rate of swarming migration remains
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Figure 4.1. An experimental swarming pattern dis-

played by B. subtilis 168 on B-medium. Bacteria were

inoculated in the centre of the plate and incubated for

24 h. dendrites elongate radially from the central mother

colony (approximately 3.5 mmper h) and begin branch-

ing after 1.5 cm. Highly reproducible patterns are ob-

tained, characterized by increased frequency of progres-

sively thinner branches. Dendrites generally appear to

evade each other and rarely fuse. Side branches tend to

be biased to one side and rather frequently abort after a

relatively short distance. Moreover they frequently com-

mence at 40− 90◦ to the main branch, but then adopt a

radial direction. Picture from [65].
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constant. This, combined with the constant population density over

most of the dendrite, clearly indicates that not all cells in the dendrites

can be growing at the same rate. This would be an extremely unusual

behaviour for a bacterial population and it is important to establish

now which subpopulations may be subject to growth rate control.

Great progress has been made in the last five years to better under-

stand the biology of the development of the swarm community. How-

ever, the major questions have emerged from the studies that we con-

clude mathematical modeling should make an essential contribution.

These observations lead us to look for answers to these three ques-

tions. What principles determine the guidance system of the cells to

promote initial migration? How do dendrites elongate (i.e. how do cells

grow in dendrites as well as what are the forces that pushes the tips

forwards)? What determines the onset of branching and its frequency?

4.2. Critical review of previous models and ongoing ideas

PDE models of cell communities auto-organization. Differ-

ent biophysical factors involved in pattern formation have given rise

to various types of modeling. One class of models concerns auto-

chemotaxis and give rise to a Fokker-Planck equation that is com-

monly called the Keller-Segel system. This model is mathematically

very challenging and has motivated numerous studies (see [57, 58, 67]

and citations therein); in particular this kind of model typically leads

to cell aggregation in one or several discrete spots and biologists will

need to know what this means.

Other models are based on the multiplication of cells resulting from

nutrients initially present in the medium and consumed by the expand-

ing community, combined with active and random motion of bacteria.

This approach has also been widely used and can generate dendritic
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patterns in the absence of oriented drift (preferred direction of motion)

in contrast to the Keller-Segel model which describes cells moving pref-

erentially towards higher concentration of the chemo attractant. Many

additional factors have been incorporated into models, such as the ob-

served higher motility of cells at the tips of dendrites, [63], or a surfac-

tant secreted by the cells that may change the liquid surface and thus

the migration of cells, [54, 61]. In what follows we consider cells in a

domain Ω and, here, we explicitly refer to [65].

The nutrient-based models used to generate dendritic patterns of

cell communities are mostly formulated in terms of three quantities

• the population density n(x, t) of active cells at the location x ∈
Ω. Under the effect of their active flagella, active cells undergo

a random movement resulting in a diffusion of intensity Dn,

and they multiply according to the nutrient available locally;

• the nutrient concentration v(x, t) diffuses according to Ein-

stein’s rule and, because the nutrient is limited, it can diminish

locally due to its consumption by multiplying cells;

• the population density of passive cells f(x, t). For these cells

the effect of their motion and multiplication is neglected. Ac-

tive cells become passive according to some rules that differ

from one model to the other, and they stay passive, i. e. they

do not move or multiply.

These assumptions lead to write general systems of the form





∂tn(x, t) −Dn∆n(x, t) = n[vG(n, v) −H(n, v)],

∂tv(x, t) −Dv∆v(x, t) = −nvG(n, v),

∂tf(x, t) = nH(n, v).

(4.1)

This kind of model has been introduced to model chemical reac-

tions, and the Gray-Scott system, [55], is the simplest and classical



4.2. CRITICAL REVIEW OF PREVIOUS MODELS AND ONGOING IDEAS 81

Figure 4.2. Final total population density (n+f) for a

simulation of the Gray-Scott model [55]. The dendritic

pattern is determined by the passive cells in this type of

model. Picture from [65].

example. It explains the instability that generates the digitation pro-

cess. It is related to concentration effects of the equation on active

cells; its solution n exhibits high values on the tip of the dendrite and

moves outwards where nutrients are replete (see numerical simulation

in [65]). These concentration points are traveling pulses that undergo

secondary instabilities which explain their branching. They leave be-

hind them the column of passive bacteria forming the dendritic pattern.

Other biophysical processes can be taken into account in this kind of

model in order to explain the behaviour of specific bacterial communi-

ties. Several interesting choices of G and H , relevant for biology, are
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Figure 4.3. Final total population density (n + f) for

a simulation of the Mimura model [66]. The dendritic

pattern is determined by the passive cells in this type of

model. Picture from [65].

due to Levine and Kessler [62] and Mimura et al. [66]. In Figure (4.3)

it is shown a solution to Mimura system compared to the Gray-Scott

model shown in Figure (4.2).

When the bacteria emit a chemoatractant or chemorepellent sub-

stance, this results in additional terms in the reaction-diffusion systems

described above. Assuming that the medium is rich enough and there-

fore the nutrient is not limiting, we arrive at systems with the form





∂tn(x, t) −Dn∆n(x, t) + div[n(∇ca −∇cr)] = n[H(n) −G(n, cr)],

∂tf(x, t) = nG(n, cr),

∂tca(x, t) −Da∆ca(x, t) + τaca = ρaHa(n, f),

∂tcr(x, t) −Dr∆cr(x, t) + τrcr = ρrHr(n, f).

(4.2)
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Here ca and cr represent the concentration of chemoattractant and

chemorepellent. These are assumed to diffuse according to Einstein’s

rule with coefficients Da and Dr, they are degraded with the rates τa

and τr (depending possibly on the cell population densities n and f),

and they are secreted by the cells with rates ρa and ρr. Their actions

are represented by Fokker-Planck terms in the equation for n, together

with the Keller-Segel model mentioned earlier.

In this combination of reaction-diffusion models together with drift

terms, the latter represent chemoattraction/chemorepulsion and have

a tendency to dominate the dynamics. This yields much more dynamic

profiles and stronger aggregation effects on active cells.

Experimental findings as a basis for new modeling ap-

proach. Whereas the models presented here clearly produce dendrites

of various shapes, a critical analysis of the experimental data reveals

that many features cannot be explained by these models. Moreover, as

we will now discuss, these observations make it clear that an entirely

new class of model will be needed for a detailed description of swarm-

ing in Bacillus subtilis and probably other bacteria. The major point

concerns the mechanism of branch formation. The models (4.1) and

(4.2), as well as most of the models found in the literature, suppose

that the proliferation of the bacteria is limited by the availability of a

chemical nutrient which satisfies a diffusion equation. In some situa-

tions described in the literature this appears to be true, and apparently

convincing agreement between patterns from models and experiments

has been obtained [54]. This however, may in reality be an illusion.

For the swarming experiments described in our studies (see Section

4.1), certainly, nutrients do not become limiting for growth, as shown

by the continued visible increase in cell numbers for many hours after

completion of the swarming process.
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The importance of this experimental observation for modeling stems

from the fact that a gradient in nutrient concentration is required in

these models to create dendrites, since this promotes faster growth of

bacteria in the tips that have easier access to the nutrients. In the

absence of nutrient limitation, the question arises which physical or

chemical effect pilots the outward migration of the bacteria and leads

to branch formation.

Two different potential alternative mechanisms can be envisaged

for Bacillus subtilis. A first hypothesis is suggested by the fact that

mutants with reduced surfactin production swarm slowly or do not ex-

hibit swarming [56]. Moreover, the normal swarming process is accom-

panied by spatial gradients of surfactin concentration. Since surfactin

is a surfactant, concentration gradients give rise to Marangoni forces,

which have been shown to create branching patterns in the spreading

of liquid droplets [70]. However under swarming conditions such sur-

factin pattern is not seen (A. Daerr, personal communication). Many

models to explain also swarming assume that the surface of the agar

is covered by a thin liquid film [54]. However, the reality is more

complex since a simple experiment shows that a droplet of pure water

deposited on the surface of the agar gel used in swarming experiments

(0.7% agar) does not spread over the surface, but remains sessile (M.

Banaha, Thesis Phd, 2009). This obviously implies that the surface of

the agar cannot be covered by a continuous liquid film. Nevertheless,

in the presence of surfactin, a very thin film develops in the vicinity

of the deposited droplet and expands slowly ([48], M. Banaha, Thesis

Phd, 2009). While the presence of this film is apparently necessary for

swarming, presumably because this allows the movement of the bac-

teria, it is unlikely alone to provide a mechanism for the formation of

branching dendrites. Minimally, a better understanding of the wetting
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properties of surfactants is needed before incorporating them into new

models, even at a qualitative level.

For example, the observed hyper motility of cells in dendrite tips

in an important factor that is likely the key to the swarming mecha-

nism. It is important to establish precisely the length of the hyper-

motility zone throughout the swarming process in normal swarms and

in a mixed swarm, for example, between a WT and an swrB mutant,

defective in producing swarmers and non swarmers (supporters) in the

dendrite stem. The results may help to distinguish the mechanisms for

the formation of the high population density/high motility zone, the

effect of surface tension, the squeezing pressure on swarmers from the

advancing supporters, or the size of the swarmer subpopulation, which

is determined in the MC (Hamze et al., in preparation). One pos-

sible idea is that supporters ’advance’ by growth, following the track

produced by swarmers; then, by multiplication, the supporters com-

pete for space with swarmers, maintaining the high population density

in tips and the forward direction of swarmers. Importantly, several

physical studies show that a high population density of bacteria in tips

is sufficient to induce hyper-motility with whirls and jets even with

no swarmers ([69]), but how is the high population density produced

during the initiation of swarming as buds form?

A second hypothesis, which was the basis for formulating models

(4.2), is that the outward migration of the bacteria is driven by a long-

range chemorepellent. Whereas, as yet, no substance generating such a

chemotactic movement of the bacteria has been identified experimen-

tally, the fact that dendrites avoid each other is consistent with the

existence of a chemorepellent.

However, the postulated mechanisms underlying branching and the

overall growth of dendrites are quite different in the existing models
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and in the experiments. In particular, the models presented in Section

4.2, as well as most of those in the literature, introduce two states of the

bacteria: active cells which diffuse and reproduce, and passive ones that

do neither move nor reproduce. And this feature, as already mentioned

in Section 4.1, is not realistic compared to most experimental studies.

In fact is not clear yet if the driving mechanism for the swarming is

cell migration, cell division or both.

The experimental observations differ markedly from models. Thus,

although the tips of the observed dendrites can be described as hot

spots (as in models), characterized by a hyper motile cells higher pop-

ulation density, the doubling time for bacteria growth under the condi-

tions considered here is much longer than the typical migration speed,

indicating that the driving mechanism for swarming is cell migration

and not cell division. Moreover, although not as highly motile, the

bacteria in the stems are by no means inactive. Some cells at least

appear to perform a random-walk type motion with a global drift to-

wards the tips that may support tip motion since cutting the stem

stops swarming advance in the tip (S. J. Séror, I. B. Holland, personal

communication).

In summary, many fundamental aspects of the swarming process are

not well reproduced by the models available at present. Furthermore,

as we have discussed above, some experimental observations indicate

that the structure of the models has to be profoundly modified.

On the other hand, mathematical modeling has clearly predicted

the participation of distinctive cell types involved in swarming, active

leaders and passive cells forming the bulk of the dendrite. Experimental

evidence from studies in P. mirabilis and now in B. subtilis (Hamze et
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al submitted), with the demonstration of distinctive cell types, swarm-

ers and supporters, formally equivalent to active and passive types

respectively, confirms the reality of these predictions.

In addition, modeling studies more importantly make the exciting

prediction of differential growth regulation for the two kind of cells and

this feature would be a novel concept in the field of bacterial commu-

nities. Nevertheless, such growth regulation could explain some, so far,

puzzling experimental observations. Future studies will be directed to

testing this hypothesis, in addition to other experiments clearly needed

to guide further model development. Moreover, a better understand-

ing of the structure of the agar surface and its consequences for the

local motility of the bacteria is desirable. Finally, models with several

different population density fields of bacteria, reflecting distinct cell

types, are certain to be required to account for the full complexity of

the swarming process.

4.3. New model and numerical results

Based on the observations done in the previous sections we present

a new class of models. Its major feature is that it does not use any

nutrient since the agar is rich enough of such substances, from the

beginning. This makes our model completely new from the pre-existing

ones.

The dendrites are represented by two types of cells. In the tip

there are active cells that follow the drift fields of both the surfactin,

that is supposed to be the major guidance mechanism for them, and

of another chemical substance (it might be also a surfactant) that acts

as a chemoattractant and pack together cells in the tips. Swarmer

cells divide, but we assume that after division, one of the two cells

becomes a supporter; this assumption is based on the experimental
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observation that the swarmers density remains constant. The tail is

made by supporters cells, which reproduce and that just follow the

trace left by the swarmers (by this way we suppose that the growth of

dendrites is due both to cell division and cell advance).

The ask is to understand if these ingredients are enough to produce

the formation of dendrites budding out from the mother colony with a

correct shape knowing that the densities of cells in the mother colony, in

the tip and in tail remain approximately constant. The mother colony

is represented as ’frozen’ cells with a density about three times as high

as the tail of supporters. Moreover we know that the length of the

active tip remains constant during the formation of dendrites. Finally,

from experiments, we know that, once a dendrite of about 1.5 cm is

formed, we can cut it at the level of mother colony and it is able to

move and to split again. We consider the surfactin, that is initially

zero, to be released by the mother colony and either by supporters or

swarmers or both (this is not clear neither at a biological level, so, for

the moment, we are just making some suppositions). We denote by

• n(x, t), the swarmers density, for which we consider a conser-

vation equation (therefore no production of active cells). The

swarmers move under the chemotactic effect of the surfactin S

and of a short range chemical substance c which has the aim

to hold together the cells forming tips and dendrites and to

cooperate with S in the splitting mechanism;

• c(x, t), the chemical concentration of a short range attractant,

which is itself produced by the swarmers, with a rate αc. It

diffuses with a coefficient Dc and decreases by a factor τc;

• S(x, t), the surfactin density that is released by both support-

ers and mother colony, with rates αf and αs respectively; it

diffuses with a coefficient Ds and it is degraded with a rate τs;
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• Dm(x, t), the trace left by the swarmers, it is released by n

with a rate dm;

• mcol, the population density of the mother colony of bacteria;

• finally f(x, t), the supporters density that diffuses according

to Dm and is produced by n, with a birth rate Bn, and by f ,

with a rate Bf(1 − f).

The whole system has the following form





∂tn+ div
(
n(1 − n)∇c− n∇S

)
= 0,

−Dcc+ τcc = αcn,

∂tS −Ds∆S + τsS = αsmcol + αff,

∂tDm = dmn,

∂tf − div(Dm∇f) = Bff(1 − f) +Bnn,

(4.3)

where all the quantities are adimensionalized. This system is consid-

ered in a bounded domain Ω ⊂ R
2 and it is completed with Neumann

boundary conditions (N.b.c.) for c and S, with no-flux boundary con-

dition for the swarmer concentration n. We have performed some sim-

ulations for x = (x1, x2) ∈ Ω = [0, L]x[0, L]. The parameters chosen

are Dc = 0.001, τc = 1, αc = 1, Ds = 0.5, τs = 10, αs = 2, αf = 30,

dm = 50, Bf = 0, Bn = 1. We observe that the main branching features

are kept putting Bf 6= 0.

For the initial guess we take n(0, x) = n0(x) = 1 on the set I =

{x = (x1, x2) : 0.16 < x2
1 + x2

2 < 0.25} and 0 elsewhere. The initial

concentration of S, S(0, x) = S0(x), is given by the solution to problem

−Ds∆S0 + τsS0 = αsmcol.

This avoids initial layers. We also take Dm(0, x) = 0, f(0, x) = 0 and

mcol(x1, x2) = 3 on the set {x = (x1, x2) : x2
1 + x2

2 < 0.16} and 0

elsewhere.
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The results are shown in Figure 4.4 where we depict five steps of

the simulation. The left column represents the supporters plus the

swarmers densities. The right part represents the surfactin concentra-

tion. The system presented above allows to obtain numerical branching

which is compatible with the observations. Moreover, from a mathe-

matical view point, the system presents a very complex structure whose

study is really difficult. Therefore in the following we will focus on sim-

plified versions that are more amenable to analysis.

Numerical scheme. We assume all quantities are known at time

t and we want to compute the solution of (4.3) at time t + dt. We

discretize c and S by piecewise linear approximation on each element

of the mesh.

• We compute c thanks to a straightforward finite element method.

And we compute S by an implicit discretization of the para-

bolic equation.

• With the updated values for c and S, we discretize the scalar

conservation law for n using a finite volume Engquist-Osher-

type scheme. From there we need to impose the CFL condition

dt < dx/(max|∇S| +max|∇c|).
• The computation of the trace Dm at time t + dt relies on an

explicit Euler scheme.

• The supporters concentration f is updated with an implicit

discretization of the parabolic equation for f and a finite ele-

ment method.

In other words we used an explicit scheme for the hyperbolic part and

an implicit one for the parabolic part.
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a)

b)

c)
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d)

e)

Figure 4.4. Time dynamic of swarmers plus supporters

density (left) and of the surfactin concentration (right)

computed with the model (4.3).a) Initial guess b-d) in-

termediate steps e) final step

4.4. Analysis of reduced models

In this section we discuss some results on a reduced version of model

(4.3) in which we do not consider the presence of any supporters, fo-

cusing explicitly on the role of the chemical substances S and c in the
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equation for the density of swarmers n. In this way we are essentially

studying the dynamics of the tip of dendrites.

The Dolak-Schmeiser model. Our model (4.3) is based on an

hyperbolic Keller-Segel system proposed by Dolak and Schmeiser [52]

{
∂tn + ∂x(n(1 − n)∂xc) = 0,

−Dc∂
2
xc+ τcc = αcn,

(4.4)

with N.b.c. on c in a bounded domain Ω ⊂ R and with no-flux bound-

ary condition for the swarmer concentration n. This model, eventually

with a small diffusivity for the swarmer concentration, has been stud-

ied in [52, 49, 50, 68]. The term n(1 − n) takes into account the

prevention of overcrowding effect, sometimes also referred as ”volume

filling” effect. The long-time asymptotics of equation (4.4) have been

studied in [52]. The observed behaviour is a coarsening process rem-

inescent of phase change models, where plateau-like peaks of the cell

density form after a short transient period and then merge exponen-

tially slow. In [52] it is shown that constant solutions n̄ = c̄ = const

with const ∈ (0, 1) are unstable. If n̄ gets sufficiently small then n̄ = 0

is attractive and a similar argument holds for n̄ = 1. Solutions ap-

proach, as t → ∞, plateaus n̄∞ = 1 alternate with vacuum regions

n̄∞ = 0. The study of stationary solutions is treated in [49, 50].

In order to single out the role of S, we consider the system

{
∂tn− ∂x(n∂xS) = 0,

∂tS − ε∂2
xS + τsS = αsn,

(4.5)

with N.b.c. for S in a bounded domain Ω ⊂ R and with no-flux bound-

ary condition for the swarmer concentration n. In this case it is known

that for ε = 0 there are traveling wave solutions (see also [64], where
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is considered the case with a small diffusivity for the swarmer concen-

tration). So, in this case, the effect of S is to push forward plateau-like

intial states.

A reduced model explaining the traveling front. The next

step is therefore to couple the two chemical substances c and S to see

their cumulative effect. Up to now we know that the presence of c

causes splitting, maintaining stable 0 − 1 plateau-like solutions, while

an appropriate shape of S let them be traveling waves.

In order to combine both effects, we consider the following model

in which the surfactin is released by the swarmers themselves





∂tn+ ∂x(n(1 − n)∂xc− n∂xS) = 0,

−Dc∂
2
xc+ τcc = n, x ∈ R

∂tS = αn.

(4.6)

In this case we study the existence and stability, under certain con-

ditions, of traveling waves which are 0 − 1 plateau-like peaks. Let

v = −∂xS, we rewrite the system (4.6) as

∂t

(
n

v

)
+ ∂xf(n, v; ∂xc) = 0, f =

(
n(1 − n)∂xc+ nv

αn

)
, (4.7)

−Dc∂
2
xc+ τcc = n. (4.8)

1. Existence of pulse wave. Traveling waves are solutions un-

der the form n(x− σt), v(x− σt) and are given by the reduced system

{
−σ∂xn+ ∂x(n(1 − n)∂xc− n∂xS) = 0,

−σ∂xS = αn.

It is easy to build a traveling pulse solution (i.e. that vanishes out of

an interval) and we have the
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Theorem 4.1 (Existence of traveling pulse solutions). There exists

a 0 − 1 plateau like traveling pulse solution to Equation (4.7) given by

n(x, t) =

{
1, σt ≤ x ≤ L+ σt,

0 otherwise,
v(x, t) =

{ √
α, σt ≤ x ≤ L+ σt,

0 otherwise,

with the shock speed σ =
√
α.

Proof. The traveling pulse system is reduced to (y = x− σt)
{

−σn+ n(1 − n)∂yc− n∂yS = 0,

−σ∂yS = αn.

Therefore

n(y, t) =

{
1, 0 ≤ y ≤ L,

0 otherwise,

is a solution if and only if
{
σ = −∂yS = α

σ
,

∂yS = −α
σ
n.

This gives the formula for v = ∂yS. �

2. Stability. The stability of these pulse solution depends on the

stability of the two shocks waves that form the pulse. This means that

we have to check if these are entropic shocks. To this end we first

compute the Jacobian.

Consider now that ∂xc is given as an external input. The Jacobian

of the flux with respect to (n, v) is given by

f ′(n, v; ∂xc) =

(
(1 − 2n)∂xc+ v n

α 0

)
, (4.9)

leading to the equation

λ2 − λ
(
(1 − 2n)∂xc+ v

)
− αn = 0, (4.10)

for its eigenvalues. The eigenvalues are

λ±(n, v) =
1

2

(
(1 − 2n)∂xc+ v ±

√
((1 − 2n)∂xc+ v)2 + 4αn

)
. (4.11)
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Thus, for given smooth c, when n is positive, (4.7) is a strictly hy-

perbolic system as long as (n, v) 6= (0,−∂xc) and λ+ > 0, λ− < 0.

An eigenvector corresponding to eigenvalue λ is given by r = (λ, α).

Differentiation of (4.10) gives

(2λ− (1 − 2n)∂xc− v)∂nλ = α− 2λ∂xc,

(2λ− (1 − 2n)∂xc− v)∂vλ = λ,

and therefore,

r· ∇(n,v)λ = ±2
(
((1 − 2n)∂xc+ v)2 + 4αn

)−1
λ(α− λ∂xc). (4.12)

The λ-field is genuinely nonlinear as long as λ(α − λ∂xc) 6= 0, which

motivates looking for shock waves solutions.

Theorem 4.2 (Stability of traveling pulse solutions). The traveling

pulse solution in Theorem 4.1 consists of two shocks. The first shock

at the location x− σt = 0 is




stable if ∂x c(−σt) >
√
α

linearly degenerate if ∂x c(−σt) =
√
α

unstable if ∂x c(−σt) <
√
α

.

The second shock at x− σt = L is unconditionally stable.

Proof. We first study the shock connecting the left state (nl, vl) =

(0, 0) to the right state (nr, vr) = (1,
√
α). As stated earlier, the

Rankine-Hugoniot conditions are

nr(σ − (1 − nr)∂xc− vr) = 0, σvr − αnr = 0.

The Hugoniot locus of the point (0, 0) consists of two curves, one is the

v-axis {(0, vr), vr ∈ R} with σ = 0 (which is linearly degenerate), and

the other is determined by

αnr − vr(1 − nr)∂xc− v2
r = 0. (4.13)
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When the shock speed is σ =
√
α, (nr, vr) = (1,

√
α) is indeed on

the Hugoniot locus. At point (0, 0) the λ−-field in (4.12) is linearly

degenerate, therefore the shock belongs to the field where the +-sign

is chosen. Assuming ∂xc > 0 at the location of the shock, therefore

λl = λ+(0, 0) = ∂xc,

λr = λ+(1,
√
α) =

1

2

(√
α− ∂xc +

√
(
√
α− ∂xc)2 + 4α

)
.

The Lax entropy condition λr < σ < λl is satisfied iff ∂xc >
√
α, so

that this shock is stable when ∂xc(−σt) >
√
α.

When ∂xc(−σt) =
√
α, λ+(nr, vr) =

√
α holds along the whole plus-

curve (4.12) of the Hugoniot locus, which means that the plus-field is

linearly degenerate in this case and, in particular, λr = σ = λl holds.

In the case ∂xc(−σt) <
√
α, the entropy condition is not satisfied and

the shock is unstable; we expect to observe a rarefaction wave (and

numerically we do observe it).

We now study the stability of the second shock connecting (nl, vl) =

(1,
√
α) to (nr, vr) = (0, 0). Assume the second shock keeps large dis-

tance to the first one, we now expect ∂xc < 0 at the shock location.

This shock again belongs to the plus-field, and we obtain

λl = λ+(1,
√
α) =

1

2

(√
α− ∂xc+

√
(
√
α− ∂xc)2 + 4α

)
,

λr = λ+(0, 0) = ∂xc.

Since α is positive, the Lax entropy condition λr < σ < λl is now

satisfied unconditionally. �

3. Small diffusion on S. Consider now the model





∂tn+ ∂x(n(1 − n)∂xc− n∂xS) = 0,

−Dc∂
2
xc+ τcc = n, x ∈ R,

∂tS − ε∂2
xS = αn.

(4.14)
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Figure 4.5. Qualitative representation of traveling

pulse solutions to equation (4.14). The left figure rep-

resents the swarmers density n where h = 1 − σ
∂xc(0)

is

the hight of the jump on the left side of the front. The

right one is the velocity v of the front.

Inspired from the case ε = 0, (4.6), we look for a traveling pulse for

the swarmers density composed by two layers in place of the shocks at

y1 = 0 and at y2 = L with possible layers at the shocks. We do this by

formal analysis.

Claim For model (4.14) there are traveling pulse solutions as de-

picted in Figure 4.5.

• Step 1: Reduction.

Here again we set in (4.14)

v = −∂xS.

The smoothness of c implying that its variations are small on

the interval of variations of n and v (for ε = 0 these are points),

therefore we assume that the chemical concentration c is given

and drop the second equation of (4.14).

We rescale the system (4.14) by the change of variable ξ =

(x−σt)/ε (σ =
√
α) is the velocity of the shock waves when ε =

0) and we still denote by (n, v) functions which now depend

on the variable ξ. For ε > 0, the equation for S is parabolic

and then we are looking for a solution v ∈ C(R).
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The rescaled system, after integration of the first equation

of (4.14), is, denoting ḟ = ∂ξf ,

{
n(1 − n)∂xc+ vn− σn = 0,

−σv + αn = v̇.
(4.15)

• Step 2: Analysis around y1 = 0.

There could be two types of layers in this case. The first one

is when n = 0 and ξ < 0. We have from the second equation

of (4.15) that v(ξ) = ce−σξ and, since v should stay bounded

for large negative ξ, we have c = 0, therefore v(ξ) = 0. There

is no boundary layer on the bottom part of the left side of the

plateau.

The second one is when n > 0 and ξ > 0 the first equation

in (4.15) gives n = 1 + (v− σ)/∂xc. By inserting the first into

the second equation of (4.15) we have

v̇ = −σv + αn = −σv + α(1 +
v − σ

∂xc
) (4.16)

= (
α

∂xc
− σ)v + α(1 − σ

∂xc
).

For v to stay bounded, we have that ( α
∂xc

− σ) has to be neg-

ative. Then, by continuity of v,

v(ξ) =
α(∂xc− σ)

σ∂xc− α
(1 − e(

α
∂xc

−σ)ξ).

Thus the boundary layer starts from (v(0), n(0)) = (0, 1 −
σ/∂xc(0)) and reaches (σ, 1) with a velocity given by (4.16).

The system presents a jump from (0, 0) to (0, 1 − σ/∂xc(0))

and a subsequent shock layer. If ( α
∂xc

− σ) > 0 there is no

bounded solution for (4.15) and therefore we have no traveling

waves as we already know from the stability analysis.

• Step 3: Analysis around y2 = L.

For the analysis of the right side of the plateau we have to
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shift ξ to y2 = L. We perform a similar analysis as for n > 0

above, imposing that v goes to σ and n to 1 for large negative

ξ, because ∂xc is always negative, v has no boundary layer

since it is always increasing to infinity. While studying n = 0

for ξ very large, the system presents the only solution (n, v) =

(0, exp(−σξ)). Therefore we have a jump in y2, on n, from 1

to 0 and a smooth layer for v.

• Step 4: Numerical results.

Finally we performed numerical simulation with x ∈ [0, 7] set-

ting ǫ = 0.01, α = 0.5, τc = 1, Dc = 0.01 and the result is

shown in Figure 4.6 in which we can clearly see Figure 4.6b the

formation of the boundary layer on the left side of the travel-

ing wave and the jump on the right one. We present in Figure

4.6b numerical simulations when the condition α
∂xc

− σ < 0 is

not satisfied. We observe that there is no shock at the left part

of the profile but a rarefaction wave appears.

4.5. Numerical branching in the reduced models

In this section we explain, based on numerical solutions, how the

reduced model is able to produce branching. In particular the source

term for S is crucial and we explore several possible forms of this term.

Splitting in one dimension with S given. In this section we

want to emphasize the origin of the splitting. Let be x ∈ [0, L], we take

a given ∂xS, not depending on time, forcing it to have the right shape

to push away the swarmers,





∂tn+ ∂x(n(1 − n)∂xc− n∂xS) = 0,

−Dc∂
2
xc+ τcc = αcn,

∂xS = −αsx,

(4.17)
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Figure 4.6. Numerical results of Eq. (4.14) with a)

ε = 0.01, αs = 0, α = 0.5, τs = 0, τc = 1 and Dc = 0.01.

On the left column we show the initial guess for swarm-

ers density (continuous black line) plus the chemical

substance c (dashed red line). In the right there is

an intermediate shape with boundary layer on the left

side for n but not for v. b) The same of a) but with

ε = 0.01, αs = 0, α = 0.01, τs = 0, τc = 1 and Dc = .01,

therefore the condition ( α
∂xc

− σ) < 0 is not satisfied. In

this case the shock becomes a rarefaction wave.

with N.b.c for c and with no-flux boundary condition for the swarmer

concentration n. In this way it is easy to obtain traveling front plus

the splitting of the wave. A main ingredient is the effect of the mother

colony which is replaced here by the term −αsx.
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The initial guess for n is a plateau-like function (in Figure 4.7) we

use n(0, x) = χ[0.5,1.5], where χI is the characteristic function on the

interval I).

With this choice of S we have that −∂xS is greater on the right side

of the plateau than in the left one, therefore it stretches the plateau

diminishing it and widening the interval I on which it is different from

0; this trend is in contrast with the conservation of mass and the action

of n(1−n)∂xc, which, as we know from Section 4.4, leads to stable 0−1

plateaus-like states. We notice that the term ∂xc, to be strong enough

to counteract −∂xS, has to be very strong on the sides of the plateau

and very small on its center (as it can be seen on Figure 4.7), this is

obtained by diminishing the diffusion coefficient Dc.

Actually, the smaller it is, more numerous are the splittings. For

the numerical simulations represented in Figure 4.7 we take αc = 1,

αs = 0.1, Dc = 0.009 and τc = 1. With this choice of the parameters

the splitting is really clear while the velocity of the front is low.

Reduced 1− d model without supporters keeping the main

features for the tips. The system (4.17) can be made closer to the

full model for the colony, setting





∂tn + ∂x(n(1 − n)∂xc− n∂xS) = 0,

−Dc∂
2
xc+ τcc = n,

∂tS −Ds∂
2
xS + τsS = αsmcol + αn,

(4.18)

which is model (4.14) with ε = Ds, a degradation term for S and the

term αsmcol in order to obtain both splitting and traveling front.

We investigate the numerical results in the case ε = Ds and α 6= 0.

We set x ∈ [0, 9], αc = 1, αs = 6, α = 3, Dc = 0.002, Ds = 7 and

τc = τs = 1, with mcol = 3χ[0,1]. The initial guess is n0 = χ[1.5,2]. The

results are shown in Figure 4.8, where in the right column are shown
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Figure 4.7. Swarmers density (continuous black line)

and chemical concentration c (dashed red line) for the

solution to equation (4.17). a) The initial state. b) In-

termediate shape. c) Splitted state.

the initial, an intermediate and the final density of n + mcol, while in

the left column there are the corresponding shapes of S.

We note that without production of surfactin from n, in one dimen-

sion, we are not able to reproduce the splitting. In this case, actually,

the surfactin would just cause transport of the plateau n0. In fact,

without the contribution αn, −∂xS would act in a completely opposite

way than the one described in Eq. (4.17), since its shape is decreas-

ing, therefore it contributes with ∂xc in packing the plateau instead of

stretching it (no splitting could occur).

We have no evidence that there will be subsequent splitting from

the two formed plateaus in Figure 4.8c.
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Figure 4.8. Numerical solutions to Eq. (4.18) with ε =

Ds = 7, αs = 6, α = 3, τs = τc = 1, αc = 1 and Dc =

0.002. a) The initial contour of n + mcol, on the right,

and of S on the left b) Intermediate shape c) Splitted

state.

Reduced 2− d model without supporters keeping the main

features for the tips. In this section we present numerical results for

the bidimensional version of (4.18), with ε = Ds and α = 0 i.e. the
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following system





∂tn + div(n(1 − n)∇c− n∇S) = 0,

−Dcc+ τcc = αcn,

∂tS −Ds∇2S + τsS = αsmcol,

(4.19)

completed by N.b.c. for c and S in a bounded domain x = (x1, x2) ∈
Ω ⊂ R

2 and with no-flux boundary condition for the swarmer concen-

tration n. We emphasize the choice α = 0: actually, in two dimensions,

we do not need production of surfactin from n to obtain the first split-

ting. This is shown in Figure 4.9. We have that −∇S acts on radially

stretching the initial plateau-like state (see Figure 4.9a) for the shape

of n(0, x)). Once the stripe is too thin, the conservation of mass and

the action of ∇c give rise to the splitting.

Here we set x ∈ [0, 2]2, α = 0, Ds = 1, τs = 10, τc = 1, αc = 1

and Dc = 0.005. The mother colony will occupy the left bottom corner

of the computational domain. Let mcol = 3, in the set {x = (x1, x2) :

(x2
1 + x2

2 < 0.22)∩ [0, 2]2}, 0 elsewhere and the initial swarmers density

is n(0, x) = 1, in the set {x = (x1, x2) : ((x1 − 0.5)2 + (x2 − 0.5)2 <

0.32) ∩ (0.42 < x2
1 + x2

2 < 0.62)} as displayed in Figure 4.9.

Reduced 2 − d model with supporters keeping the whole

main features. The system now is like





∂tn + ∇(n(1 − n)∇c− n∇S) = 0,

−Dcc + τcc = n,

−Ds∆S + S = αsmcol + αff,

∂tf = Bff(β − f) +Bnn,

(4.20)

completed by N.b.c. for c and S in a bounded domain x = (x1, x2) ∈
[0, L]2 and with no-flux boundary condition for the swarmer concen-

tration n and with Dc, Ds small.
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Figure 4.9. Numerical simulations of (4.19) with x ∈
[0, 2]2, α = 0, Ds = 1, τs = 10, τc = 1, αc = 1, Dc =

0.005. a) The initial contour of n(0, x). b) Intermediate

shape. c) Splitted state.

Let us observe that there is a strong relation between model (4.20)

and (4.3). Actually, the term f(β−f) is used here to keep the swarmers

to be constant and to avoid defining the trace Dm, while, as already

observe, the term Bff(1 − f) is not strictly necessary in (4.3), as it

is shown in Figure 4.4, where Bf = 0. By this way, this last model

is a mathematical simplification of the complete one and performs the

same main features (see Figure 4.10).
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Moreover, taking the time derivative for the equation for S, one

gets

∂tS = Ds∂t∆S + αf∂tf = Ds∂t∆S + αfBff(β − f) + αfBnn,

so that when Ds small and Bf = 0, (4.20) is a perturbation of the

reduced traveling wave model (4.6). This guarantees us the presence

of traveling wave solutions.

The numerical results are shown in Figure (4.10), here we set all the

parameters as L = 2, Ds = 0.05, Dc = 0.0005, αc = 2, αm = 1, αf =

2, Bf = 12, Bn = 4, β = 1/3, mcol = 3 in the set {x = (x1, x2) :

x2
1 + x2

2 < 0.22} and 0 elsewhere. The initial conditions are chosen

as f(0, x) = 0 initially n(0, x) = 1 in the set{x = (x1, x2) : 0.22 <

x2
1 + x2

2 < 0.32}∩ {x = (x1, x2) : (x1 − 0.2)2 + (x2 − 0.2)2 < 0.12} and

0 elsewhere.

As it can seen, this simplified model reproduces a good branching,

with a constant density of swarmers and supporters respectively in the

tip and along the dendrite.
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a) b)

c) d)

Figure 4.10. Time dynamic of swarmers plus support-

ers density computed with the model (4.20).
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