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SummaryS
ope of the present resear
h is to develop novel mathemati
al tools in orderto fa
e the 
ontinuously growing need of modern theoreti
al approa
hes fora proper development of Arti�
ial Intelligen
e.Using Statisti
al Me
hani
s and Graph Theory languages and te
hniques, wewill start this thesis by introdu
ing the mean �eld Hop�eld model as the har-moni
 os
illator in Neural Networks. This will set the referen
e frameworkin order to extend its 
apabilities: in our resear
h , we su

eed in formalizingfor the �rst time neural networks able to spontaneous parallel pro
essing (astep forward with respe
t to the original harmoni
 os
illator, where only se-quential pro
essing was allowed to emerge as a 
olle
tive feature shared overthe distributed memories a
ross the net).Indeed, the Hop�eld model (together with the related Hebb's learning rule)provides a prototypi
al asso
iative memory model that has attra
ted a greatattention by the 
ommunities of Theoreti
al Physi
ists and Mathemati
iansmainly due to its natural formalization within the 
anoni
al setting of Statis-ti
al Me
hani
s (possibly beyond the adheren
e of its pro
essing paths withthose empiri
ally found in biologi
al information pro
essing systems).Through well 
ontrolled learning pro
edures, in this attra
tor networks itis possible to store and sequentially retrieve patterns of information. Theretrieval of a stored pattern does 
oin
ide, mathemati
ally, with the ther-malization of the system in one of the several minima of the related free en-ergy (ea
h minimum 
orresponding to a pattern to be retrieved) su
h that,through the analogy between thermodynami
al relaxation and sele
tion of adistributed memory, we 
an adapt the mathemati
al tools (i.e. models andmethods) originally developed for statisti
al me
hani
al treatments of spinglasses (other 
omplex systems whose free energy lands
ape is rugged) to theanalysis of neural networks, and, in this thesis, this is the route that we aimto 
ontribute to pave, moving from serial to parallel information pro
essing.Indeed, properly modifying the stru
ture of the memories -pattern's de�nitions-(in the pertinent phase spa
e where the system dynami
s takes pla
e) or
arefully diluting the network ar
hite
ture (in the topologi
al spa
e wherespins dialogue) we will build models of neural networks able to re
all si-multaneously multiple patterns of information. We will therefore analyze indetails the mathemati
al stru
ture of these networks and dis
uss the resultingproperties.The thesis is stru
tured as follows:In the �rst Chapter we brie�y revise the Hop�eld model: after an histori-
al digression on the role of the so-
alledmean-�eld approximation in Physi
s1



(and in parti
ular in Statisti
al Me
hani
s), we will 
onstru
t its relatedHamiltonian in two novel ways (with respe
t to the original Hop�eld pro-posal). More pre
isely, starting from the paradigmati
 models for ferromag-nets and for spin-glasses (i.e., the Curie-Weiss model and the Sherrington-Kirkpatri
k model, respe
tively) we will show how to re
over the Hop�eldmodel and the underlying deep 
onne
tions among these models.The se
ond Chapter is entirely dedi
ated to parallel pro
essing networksand it is split into two main Se
tions, the former dealing with multitaskingnetwork, the latter dealing with hierar
hi
al network.We will start with purely mean �eld models, the so-
alled multitasking asso-
iative networks and we will perform an extended treatment of its 
apabilitiesand properties, mixing te
hniques stemming from Statisti
al Me
hani
s andGraph Theory (whose usage is more typi
al for Theoreti
al Phy
isists andMathemati
ians) with those of 
ommon usage in Roboti
s and Automation asSignal-to-Noise, stability analysis and other related operational approa
hes.After dis
ussing as toy-examples the simultaneous retrieval of two or threepatterns, we will explore the whole low-storage behavior of the network, that
an be de�ned in a simple way as follows: 
onsider a network built of by Nbinary spins (i.e. Ising spins), that we want to use to store and retrieve Ppatterns (i.e., N-length ve
tors of binary entries ±1). Now, as we are inter-ested in the network performan
es in the thermodynami
 limit (i.e. sending
N → ∞ in order to deal with averages, rather than full probability distribu-tions), we need to spe
ify how P s
ales with N . If su
h a s
aling is extensive,namely if P ∝ N , we talk of high storage regime, while if the amount of pat-ters s
ales sub-linearly in the number of spins (su
h that limN→∞(P/N) → 0),we talk of low storage.At a �rst glan
e, the low storage regime looks as a pathologi
al regime or asimplifying analysis avoiding the high storage, but, a
tually, this is not the
ase. The origin of this idea lies in the properties of the Hop�eld networkand, in parti
ular, in the theory of Amit, Gutfreund and Sompolinsky whoshowed how to load that original network in order to let it work in the highstorage regime. However, to understand that most modern variants of theHop�eld network 
an not handle extensive storage (i.e. P ∼ N) it is enougha simple and heuristi
al 
onsideration of Graph Theory: the Hop�eld modelis a fully 
onne
ted mean-�eld network. This implies that, as the memory isdistributed -namely it is shared over the synapses (i.e. the links 
onne
tingthe spins and whose values 
an be both positive and negative ta
itly lo
at-ing neural networks in the larger bulk of spin glasses)- we 
an feed O(N2)synapses (i.e. links) with the information 
ontained in the patterns to store.However let us now 
onsider a minimal modi�
ation of the Hop�eld modelthat makes it more biologi
ally plausible: let us 
ollapse the Hop�eld network2



on an Erdös-Rényi graph (instead of the original fully 
onne
ted network).This has the advantage of avoiding the assumption that ea
h neuron inter-a
ts with all the other neurons in the network, that is 
learly biologi
allyfalse, despite mathemati
ally 
onvenient. However, from an Arti�
ial Intelli-gen
e perspe
tive, the major di�eren
e between a random graph and a fully
onne
ted network resides in the number of links: N1 for the former, N2 forthe latter. It is then evident that, as the amount of synapsis does no longers
ale quadrati
ally with the amount of neurons, the overall network perfor-man
e 
an not remain unaltered. This is a general result when embeddingasso
iative networks on stru
tured or biologi
al interesting topologies (andit is a parti
ularly severe limitation for Hebb learning rules, as those we willinvestigate in this work).On
e understood this theoreti
al bound to the maximal storage 
apa
ity ofthe variations on the Hop�eld theme, we analyze in all details our multi-tasking extension: a key (and novel) assumption is the introdu
tion of blankentries in pattern's de�nition, that is, pattern entries may assume values ±1(
arrying information) or simply be blank (denoting la
k of information). Itis remarkable that this novel approa
h to dilution, that is seen as a must byBiologists, will play as the real 
ore of parallel pro
essing su
h that, mak-ing the network topology more adherent to biologi
al demands, we will alsoobtain -as a result- that network's performan
es also mat
h better those ofbiologi
al neural networks.On
e explored exhaustively the multitasking network, we will try to fa
e an-other fundamental and intrinsi
 limitation of the original Hop�eld s
enario:its mean-�eld nature. To over
ome this obsta
le -at least partially- we tryto adapt the hierar
hi
al ferromagnet, introdu
ed by Dyson in the Litera-ture almost four de
ades ago, implementing on its stru
ture the Hebb rulefor learning and inferring the resulting properties the network spontaneouslyshows.Con
retely, we introdu
e and investigate the statisti
al me
hani
s of hier-ar
hi
al neural networks: in these systems, spins intera
t with a strengththat is a (de
reasing) fun
tion of a suitably introdu
ed 
on
ept of distan
e,su
h that di�erent levels (i.e. hierar
hies) of degenerate-strength 
ouplingsimmediately emerge.First, we approa
h these systems à la Mattis, that is, by thinking at theDyson model as a single-pattern hierar
hi
al neural network, and, throughthis perspe
tive, we dis
uss the stability of di�erent retrievable states aspredi
ted by the related ( approximate) self-
onsisten
ies equation. Themathemati
al key argument here is properly reabsorbing �u
tuations of themagnetization related to higher levels of the hierar
hy into e�e
tive �eldsfor the lower levels: remarkably, mixing Amit's ansatz te
hnique (to sele
t3




andidate retrievable states) with the interpolation pro
edure (to solve forthe free energy of these states) we show that (due to gauge symmetry) theDyson model a

omplishes both serial and parallel pro
essing.One step forward, we extend this s
enario toward multiple stored patterns byimplementing the Hebb pres
ription for learning within the 
ouplings. Thisresults in an Hop�eld-like networks 
onstrained on a hierar
hi
al topology,for whi
h, restri
ting to the low storage regime (where the number of patternsgrows at most logarithmi
al with the amount of spins), we give an expli
itexpression of its mean �eld bound and of the related improved bound.As a result of the present investigation, the hierar
hi
al neural network (bothfor its underling topology, as well as for its emerging properties) is a
tuallymu
h 
loser to real biology with respe
t to neural network models previouslydeveloped.Finally, our general 
onsiderations on the whole strategy exploited in thisPh.D. training period will be 
olle
ted in the Con
lusions of the thesis.
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Chapter 1Introdu
tionNeural networks are su
h a fas
inating �eld of s
ien
e that its developmentis the result of 
ontributions and e�orts from an in
redibly large varietyof s
ientists, ranging from engineers (mainly involved in ele
troni
s androboti
s) [60, 70℄, physi
ists (mainly involved in statisti
al me
hani
s andsto
hasti
 pro
esses) [6, 17℄, and mathemati
ians (mainly working in logi
sand graph theory) [5, 22℄ to (neuro) biologists [34, 63℄ and (
ognitive) psy-
hologists [13, 44℄.Tra
ing the genesis and evolution of neural networks is very di�
ult,probably due to the broad meaning they have a
quired along the years1; s
i-entists 
loser to the roboti
s bran
h often refer to the W. M
Cullo
h andW. Pitts model of per
eptron [68℄ 2, or the F. Rosenblatt version [40℄, whileresear
hers 
loser to the neurobiology bran
h adopt D. Hebb's work as astarting point [21℄. On the other hand, s
ientists involved in statisti
al me-
hani
s, that joined the 
ommunity in relatively re
ent times, usually referto the seminal paper by Hop�eld [49℄ or to the 
elebrated work by AmitGutfreund Sompolinky [18℄, where the statisti
al me
hani
s analysis of theHop�eld model is e�e
tively 
arried out.Whatever the referen
e framework, at least 30 years elapsed sin
e neu-ral networks entered in the theoreti
al physi
s resear
h and mu
h of theformer results 
an now be re-obtained or re-framed in modern approa
hes,as we want to highlight in the present work. In parti
ular, we show thattoy models for paramagneti
-ferromagneti
 transition [65℄ are natural proto-1Seminal ideas regarding automation are already in the works of Lee during the XIIX
entury, if not even ba
k to Des
artes, while more modern ideas regarding spontaneous
ognition, 
an be attributed to A. Turing [7℄ and J. Von Neumann [50℄ or to the join e�ortsof M. Minsky and S. Papert [58℄, just to 
ite a few.2Note that the �rst �transistor�, 
ru
ial to swit
h from analogi
al to digital pro
essing,was developed only in 1948 [68℄. 10



types for the autonomous storage/retrieval of information patterns and playas operational ampli�ers in ele
troni
s. Then, we move further analyzing the
apabilities of glassy systems (ensembles of ferromagnets and antiferromag-nets) in storing/retrieving extensive numbers of patterns so to re
over theHebb rule for learning [21℄ in two di�erent ways (the former guided by fer-romagneti
 intuition, the latter guided by glassy 
ounterpart), both far fromthe original route 
ontained in his milestone The Organization of Behavior.1.1 Statisti
al Me
hani
sHereafter we summarize the fundamental steps that led theoreti
al physi
iststowards arti�
ial intelligen
e; despite this parenthesis may look rather dis-tant from neural network s
enarios, it a
tually allows us to outline and tohistori
ally justify the physi
ists perspe
tive.Statisti
al me
hani
s aroused in the last de
ades of the XIX 
enturythanks to its founding fathers Ludwig Boltzmann, James Clarke Maxwelland Josiah Willard Gibbs [12℄. Its �solely� s
ope (at that time) was to a
tas a theoreti
al ground of the already existing empiri
al thermodynami
s,so to re
on
ile its noisy and irreversible behavior with a deterministi
 andtime reversal mi
ros
opi
 dynami
s. While trying to get rid of statisti
alme
hani
s in just a few words is almost meaningless, roughly speaking itsfun
tioning may be summarized via toy-examples as follows. Let us 
onsidera very simple system, e.g. a perfe
t gas: its mole
ules obey a Newton-likemi
ros
opi
 dynami
s (without fri
tion -as we are at the mole
ular level- thustime-reversal as dissipative terms in di�erential equations 
apturing system'sevolution are 
oupled to odd derivatives) and, instead of fo
using on ea
hparti
ular traje
tory for 
hara
terizing the state of the system, we de�neorder parameters (e.g. the density) in terms of mi
ros
opi
 variables (theparti
les belonging to the gas). By averaging their evolution over suitablyprobability measures, and imposing on these averages energy minimizationand entropy maximization, it is possible to infer the ma
ros
opi
 behaviorin agreement with thermodynami
s, hen
e bringing together the mi
ros
opi
deterministi
 and time reversal me
hani
s with the ma
ros
opi
 strong di
-tates stemmed by the se
ond prin
iple (i.e. arrow of time 
oded in the entropygrowth). Despite famous atta
ks to Boltzmann theorem (e.g. by Zermelo orPoin
aré) [61℄, statisti
al me
hani
s was immediately re
ognized as a deepand powerful bridge linking mi
ros
opi
 dynami
s of a system's 
onstituentswith (emergent) ma
ros
opi
 properties shown by the system itself, as ex-empli�ed by the equation of state for perfe
t gases obtained by 
onsideringan Hamiltonian for a single parti
le a

ounting for the kineti
 
ontribution11



only [12℄.One step forward beyond the perfe
t gas, Van der Waals and Maxwell intheir pioneering works fo
used on real gases [52℄, where parti
le intera
tionswere �nally 
onsidered by introdu
ing a non-zero potential in the mi
ro-s
opi
 Hamiltonian des
ribing the system. This extension implied �fty-yearsof deep 
hanges in the theoreti
al-physi
s perspe
tive in order to be ableto fa
e new 
lasses of questions. The remarkable reward lies in a theoryof phase transitions where the fo
us is no longer on details regarding thesystem 
onstituents, but rather on the 
hara
teristi
s of their intera
tions.Indeed, phase transitions, namely abrupt 
hanges in the ma
ros
opi
 stateof the whole system, are not due to the parti
ular system 
onsidered, but areprimarily due to the ability of its 
onstituents to per
eive intera
tions overthe thermal noise. For instan
e, when 
onsidering a system made of by alarge number of water mole
ules, whatever the level of resolution to des
ribethe single mole
ule (ranging from 
lassi
al to quantum), by properly varyingthe external tunable parameters (e.g. the temperature3), this system eventu-ally 
hanges its state from liquid to vapor (or solid, depending on parametervalues); of 
ourse, the same applies generally to liquids.The fa
t that the ma
ros
opi
 behavior of a system may spontaneouslyshow 
ooperative, emergent properties, a
tually hidden in its mi
ros
opi
 de-s
ription and not dire
tly dedu
ible when looking at its 
omponents alone,was de�nitely appealing in neuros
ien
e. In fa
t, in the 70s neuronal dynam-i
s along axons, from dendrites to synapses, was already rather 
lear (seee.g. the 
elebrated book by Tu
kwell [45℄) and not too mu
h intri
ate than
ir
uits that may arise from basi
 human 
reativity: remarkably simpler thanexpe
ted and 
ertainly trivial with respe
t to overall 
erebral fun
tionalitieslike learning or 
omputation, thus the aptness of a thermodynami
 formu-lation of neural intera
tions -to reveal possible emergent 
apabilities- wasimmediately pointed out, despite the route was not 
lear yet.Interestingly, a big step forward to this goal was prompted by problemsstemmed from 
ondensed matter. In fa
t, theoreti
al physi
ists qui
kly re-alized that the purely kineti
 Hamiltonian, introdu
ed for perfe
t gases (or3We 
hose the temperature here (as an example of tunable parameter) be
ause in neuralnetworks we will deal with white noise a�e
ting the system. Analogously, in 
ondensedmatter, disorder is introdu
ed by thermal noise, namely temperature. There is a deepsimilarity between them. In sto
hasti
 pro
esses, prototype for white noise generatorsare random walkers, whose 
ontinuous limits are Gaussians, namely just the solutionsof the Fourier equation for di�usion. However, the same 
elebrated equation holds fortemperature spread too, indeed the latter is related to the amount of ex
hanged heat bythe system under 
onsideration, ne
essary for entropy's growth [52, 57℄. Hen
e we havethe �rst equivalen
e: white noise in neural networks mirrors thermal noise in stru
ture ofmatter. 12



Hamiltonian with mild potentials allowing for real gases), is no longer suitablefor solids, where atoms do not move freely and the main energy 
ontributionsare from potentials. An ensemble of harmoni
 os
illators (mimi
king atomi
os
illations of the nu
lei around their rest positions) was the �rst s
enariofor understanding 
ondensed matter: however, as experimentally revealed by
rystallography, nu
lei are arranged a

ording to regular latti
es hen
e mo-tivating mathemati
ians in study periodi
al stru
tures to help physi
ists inthis modeling, but merging statisti
al me
hani
s with latti
e theories resultedsoon in pra
ti
ally intra
table models4.As a paradigmati
 example, let us 
onsider the one-dimensional Isingmodel, originally introdu
ed to investigate magneti
 properties of matter:the generi
, out of N , nu
leus labeled as i is s
hemati
ally represented by aspin σi, whi
h 
an assume only two values (σi = −1, spin down and σi = +1,spin up); nearest neighbor spins intera
t re
ipro
ally through positive (i.e.ferromagneti
) intera
tions Ji,i+1 > 0, hen
e the Hamiltonian of this system
an be written as HN(σ) ∝ −∑N
1=1 Ji,i+1σiσi+1 − h

∑N
1=1 σi, where h tunesthe external magneti
 �eld and the minus sign in front of ea
h term of theHamiltonian ensures that spins try to align with the external �eld and to getparallel ea
h other in order to ful�ll the minimum energy prin
iple.Clearly, this model 
an trivially be extended to higher dimensions, how-ever, due to prohibitive di�
ulties in fa
ing the topologi
al 
onstraint of
onsidering nearest neighbor intera
tions only, soon short
uts were properlyimplemented to turn around this path. It is just due to an e�e
tive short
ut,namely the so 
alled �mean �eld approximation�, that statisti
al me
hani
sapproa
hed 
omplex systems and, in parti
ular, arti�
ial intelligen
e.1.2 The Role of Mean Field LimitationsAs anti
ipated, the �mean �eld approximation� allows over
oming prohibitivete
hni
al di�
ulties owing to the underlying latti
e stru
ture. This 
onsistsin extending the sum on nearest neighbor 
ouples (whi
h are O(N)) to in-
lude all possible 
ouples in the system (whi
h are O(N2)), properly res
al-ing the 
oupling (J → J/N) in order to keep thermodynami
al observablelinearly extensive. If we 
onsider a ferromagnet built of by N Ising spins4For instan
e the famous Ising model [62℄, dated 1920 (and 
uriously invented by Lenz)whose properties are known in dimensions one and two, is still waiting for a solution inthree dimensions.
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Figure 1.1: Example of regular latti
e (left) and 
omplete graph (right) with
N = 20 nodes. In the former only nearest-neighbors are 
onne
ted in su
ha way that the number of links s
ales linearly with N , while in the latterea
h node is 
onne
ted with all the remaining N − 1 in su
h a way that thenumber of links s
ales quadrati
ally with N .
σi = ±1 with i ∈ (1, ..., N), we 
an then write

HN (σ|J) = − 1

N

N,N∑

i<j

Jijσiσj ∼ − 1

2N

N,N∑

i,j=1

σiσj , (1.1)where in the last term we negle
ted the diagonal term (i = j) as it isirrelevant for large N . From a topologi
al perspe
tive the mean-�eld ap-proximation equals to abandon the latti
e stru
ture in favor to a 
ompletegraph (see Fig.(1.2)). When the 
oupling matrix has only positive entries,e.g. P (Jij) = δ(Jij − J), this model is named Curie-Weiss model and a
tsas the simplest mi
ros
opi
 Hamiltonian able to des
ribe the paramagneti
-ferromagneti
 transitions experien
ed by materials when temperature is prop-erly lowered. An external (magneti
) �eld h 
an be a

ounted for by addingin the Hamiltonian an extra term ∝ −h∑N
i=1 σi.A

ording to the prin
iple of minimum energy, the two-body intera
tionappearing in the Hamiltonian in Eq.(1.1) tends to make spins parallel withea
h other and aligned with the external �eld if present. However, in thepresen
e of noise (i.e. if temperature T is stri
tly positive), maximizationof entropy must also be taken into a

ount. When the noise level is mu
h14



higher than the average energy (roughly, if T ≫ J), noise and entropy-drivendisorder prevail and spins are not able to �feel� re
ipro
ally; as a result, they�ip randomly and the system behaves as a paramagnet. Conversely, if noise isnot too loud, spins start to intera
t possibly giving rise to a phase transition;as a result the system globally rearranges its stru
ture orientating all thespins in the same dire
tion, whi
h is the one sele
ted by the external �eld ifpresent, thus we have a ferromagnet.In the early '70 a s
ission o

urred in the statisti
al me
hani
s 
ommu-nity: on the one side �pure physi
ists" saw mean-�eld approximation as amerely bound to bypass in order to have satisfa
tory pi
tures of the stru
-ture of matter and they su

eeded in working out iterative pro
edures toembed statisti
al me
hani
s in (quasi)-three-dimensional reti
ula, yielding tothe renormalization group developed by Kadano� and Wilson in Ameri
a [51℄and Di-Castro and Jona-Lasinio in Europe [11℄; this proliferative bran
h gavethen rise to super
ondu
tivity, super�uidity [16℄ and many-body problems in
ondensed matter [48℄.Conversely, from the other side, the mean-�eld approximation a
ted as abrea
h in the wall of 
omplex systems: a thermodynami
al investigation ofphenomena o

urring on general stru
tures la
king Eu
lidean metri
s (e.g.Erdös-Rényi graphs [8, 31℄, small-world graphs [19, 25℄, diluted, weightedgraphs [33℄) was then possible.In general, as long as the summations run over all the inde
es (hen
emean-�eld is retained), rather 
omplex 
oupling patterns 
an be solved (seee.g., the striking Parisi pi
ture of mean-�eld glassy systems [59℄) and thispaved the strand to 
omplex system analysis by statisti
al me
hani
s, whoseinvestigation largely 
overs neural networks too.1.3 Serial Pro
essingHereafter we dis
uss how to approa
h neural networks frommodels mimi
kingferromagneti
 transition. In parti
ular, we study the Curie-Weiss model andwe show how it 
an store one pattern of information. Then, we noti
e thatsu
h a stored pattern has a very pe
uliar stru
ture whi
h is hardly natural,but we will over
ome this (fake) �aw by introdu
ing a gauge variant known asMattis model. This s
enario 
an be looked at as a primordial neural network.The su

essive step 
onsists in extending, through elementary thoughts, thispi
ture in order to in
lude and store several patterns. In this way, we re
over,via the �rst alternative route (w.r.t. the original one by Hebb), both the Hebbrule for synapti
 plasti
ity and, as a 
orollary, the Hop�eld model for neuralnetworks too. 15



1.3.1 The Curie-Weiss Paradigm.The statisti
al me
hani
al analysis of the Curie-Weiss model (CW) 
an besummarized as follows: Starting from a mi
ros
opi
 formulation of the sys-tem, i.e. N spins labeled as i, j, ..., their pairwise 
ouplings Jij ≡ J , andpossibly an external �eld h, we derive an expli
it expression for its (ma
ro-s
opi
) free energy α(β). The latter is the e�e
tive energy, namely the dif-feren
e between the internal energy U , divided by the temperature T = 1/β,and the entropy S, namely α(β) = S − βU , in fa
t, S is the �penalty� to bepaid to the Se
ond Prin
iple for using U at noise level β. We 
an thereforelink ma
ros
opi
 free energy with mi
ros
opi
 dynami
s via the fundamentalrelation
α(β) = lim

N→∞

1

N
ln

2N∑

{σ}
exp [−βHN(σ|J, h)] , (1.2)where the sum is performed over the set {σ} of all 2N possible spin 
on�gura-tions, ea
h weighted by the Boltzmann fa
tor exp[−βHN (σ|J, h)] that teststhe likelihood of the related 
on�guration. From expression (1.2), we 
anderive the whole thermodynami
s and in parti
ular phase-diagrams, thatis, we are able to dis
ern regions in the spa
e of tunable parameters (e.g.temperature/noise level) where the system behaves as a paramagnet or as aferromagnet.Thermodynami
al averages, denoted with the symbol 〈.〉, provide for a givenobservable the expe
ted value, namely the value to be 
ompared with mea-sures in an experiment. For instan
e, for the magnetizationm(σ) ≡∑N

i=1 σi/Nwe have
〈m(β)〉 =

∑
{σ}m(σ)e−βHN (σ|J)
∑

{σ} e
−βHN (σ|J) . (1.3)When β → ∞ the system is noiseless (zero temperature) hen
e spins feel re-
ipro
ally without errors and the system behaves ferromagneti
ally (|〈m〉| →

1), while when β → 0 the system behaves 
ompletely random (in�nite tem-perature), thus intera
tions 
an not be felt and the system is a paramagnet(〈m〉 → 0). In between a phase transition happens.In the Curie-Weiss model the magnetization works as order parameter:its thermodynami
al average is zero when the system is in a paramagneti
(disordered) state (→ 〈m〉 = 0), while it is di�erent from zero in a ferro-magneti
 state (where it 
an be either positive or negative, depending on thesign of the external �eld). Dealing with order parameters allows us to avoidmanaging an extensive number of variables σi, whi
h is pra
ti
ally impossibleand, even more important, it is not stri
tly ne
essary.16



Now, an expli
it expression for the free energy in terms of 〈m〉 
an beobtained 
arrying out summations in Eq.(1.2) and taking the thermodynami
limit N → ∞ as
α(β) = ln 2 + ln cosh[β(J〈m〉+ h)]− βJ

2
〈m〉2. (1.4)In order to impose thermodynami
al prin
iples, i.e. energy minimization andentropy maximization, we need to �nd the extrema of this expression withrespe
t to 〈m〉 requesting ∂〈m(β)〉α(β) = 0. The resulting expression is 
alledthe self-
onsisten
y and it reads as

∂〈m〉α(β) = 0 ⇒ 〈m〉 = tanh[β(J〈m〉+ h)]. (1.5)This expression returns the average behavior of a spin in a magneti
 �eld. Inorder to see that a phase transition between paramagneti
 and ferromagneti
states a
tually exists, we 
an �x h = 0 (and pose J = 1 for simpli
ity) andexpand the r.h.s. of Eq.(1.5) to get
〈m〉 ∝ ±

√
βJ − 1. (1.6)Thus, while the noise level is higher than one (β < βc ≡ 1 or T > Tc ≡ 1)the only solution is 〈m〉 = 0, while, as far as the noise is lowered belowits 
riti
al threshold βc, two di�erent-from-zero bran
hes of solutions appearfor the magnetization and the system be
omes a ferromagnet (see Fig.(1.2)).The bran
h e�e
tively 
hosen by the system usually depends on the sign ofthe external �eld or boundary �u
tuations: 〈m〉 > 0 for h > 0 and vi
e versafor h < 0.Clearly, the lowest energy minima 
orrespond to the two 
on�gurationswith all spins aligned, either upwards (σi = +1, ∀i) or downwards (σi =

−1, ∀i), these 
on�gurations being symmetri
 under spin-�ip σi → −σi.Therefore, the thermodynami
s of the Curie-Weiss model is solved: energyminimization tends to align the spins (as the lowest energy states are the twoordered ones), however entropy maximization tends to randomize the spins(as the higher the entropy, the most disordered the states, with half spins upand half spins down): the interplay between the two prin
iples is driven bythe level of noise introdu
ed in the system and this is in turn ruled by thetunable parameter β ≡ 1/T as 
oded in the de�nition of free energy.A 
ru
ial bridge between 
ondensed matter and neural network 
ouldnow be sighted: One 
ould think at ea
h spin as a basi
 neuron, retainingonly its ability to spike su
h that σi = +1 and σi = −1 represent �ring andquies
en
e, respe
tively, and asso
iate to ea
h equilibrium 
on�guration ofthis spin system a stored pattern of information. The reward is that, in this17



Figure 1.2: Average magnetization 〈m〉 versus temperature T for a Curie-Weiss model in the absen
e of �eld (h = 0). The 
riti
al temperature Tc = 1separates a magnetized region (|〈m〉| > 0, only one bran
h shown) from anon-magnetized region (〈m〉 = 0). The box zooms over the 
riti
al region(noti
e the logarithmi
 s
ale) and highlights the power-law behavior m ∼
(T − Tc)

β, where β = 1/2 is also referred to as 
riti
al exponent (see alsoEq.(1.6)). Data shown here (•) are obtained via Monte Carlo simulations fora system of N = 105 spins and 
ompared with the theoreti
al 
urve (solidline).way, the spontaneous (i.e. thermodynami
al) tenden
y of the network torelax on free-energy minima 
an be related to the spontaneous retrieval ofthe stored pattern, su
h that the 
ognitive 
apability emerges as a natural
onsequen
e of physi
al prin
iples.1.3.2 From Curie-Weiss to Hop�eldA
tually, the Hamiltonian (1.1) would en
ode for a rather poor model of neu-ral network as it would a

ount for only two stored patterns, 
orresponding tothe two possible minima (that in turn would represent pathologi
al network'sbehavior with all the neurons 
ontemporarily 
ompletely �ring of 
ompletelysilen
ed), moreover, these ordered patterns, seen as information 
hains, havethe lowest possible entropy and, for the Shannon-M
Millan Theorem, in the
18



large N limit5 they will never be observed.This 
riti
ism 
an be easily over
ome thanks to the Mattis-gauge, namelya re-de�nition of the spins via σi → ξ1i σi, where ξ1i = ±1 are random entriesextra
ted with equal probability:
P (ξµi ) =

1

2
δξµi −1 +

1

2
δξµi +1, (1.7)and kept �xed in the network (in statisti
al me
hani
s these are 
alled quen
hedvariables to stress that they do not 
ontribute to thermalization, a terminol-ogy reminis
ent of metallurgy [59℄). Fixing J ≡ 1 for simpli
ity, the MattisHamiltonian reads as

HMattis
N (σ|ξ) = − 1

2N

N,N∑

i,j=1

ξ1i ξ
1
jσiσj − h

N∑

i=1

ξ1i σi. (1.8)The Mattis magnetization is de�ned as m1 = 1
N

∑N
i=1 ξ

1
i σi. To inspe
tits lowest energy minima, we perform a 
omparison with the CW model:in terms of the (standard) magnetization, the Curie-Weiss model reads as

HCW
N ∼ −(N/2)m2 − Nhm and, analogously we 
an write HMattis

N (σ|ξ) interms of Mattis magnetization as HMattis
N ∼ −(N/2)m2

1 − Nhm1. It is thenevident that, in the low noise limit (namely where 
olle
tive properties mayemerge), as the minimum of free energy is a
hieved in the Curie-Weiss modelfor 〈m〉 → ±1, the same holds in the Mattis model for 〈m1〉 → ±1. How-ever, this implies that now spins tend to align parallel (or antiparallel) tothe ve
tor ξ1, hen
e if the latter is, say, ξ1 = (+1,−1,−1,−1,+1,+1) ina model with N = 6, the equilibrium 
on�gurations of the network will be
σ = (+1,−1,−1,−1,+1,+1) and σ = (−1,+1,+1,+1,−1,−1), the latterdue to the gauge symmetry σi → −σi enjoyed by the Hamiltonian. Thus, thenetwork relaxes autonomously to a state where some of its neurons are �ringwhile others are quies
ent, a

ording to the stored pattern ξ1. Note that, asthe entries of the ve
tors ξ are 
hosen randomly ±1 with equal probability,the retrieval of free energy minimum now 
orresponds to a spin 
on�gura-tion whi
h is also the most entropi
 for the Shannon-M
Millan argument,thus both the most likely and the most di�
ult to handle (as its information
ompression is no longer possible).Two remarks are in order now. On the one side, a

ording to the self-
onsisten
y equation (1.5) 〈m〉 versus h displays the typi
al graded/sigmoidal5The thermodynami
 limit N → ∞ is required for both mathemati
al 
onvenien
e,e.g. it allows saddle-point/stationary-phase te
hniques, and in order to negle
t observable�u
tuations by a 
entral limit theorem argument.19



response of a 
harging neuron [45℄, and one would be tempted to 
all thespins σ neurons. On the other side, it is de�nitely in
onvenient to build anetwork via N spins/neurons, whi
h are further meant to be diverging (i.e.
N → ∞) in order to handle one stored pattern of information only. Alongthe theoreti
al physi
s route over
oming this limitation is quite natural (andprovides the �rst derivation of the Hebbian pres
ription in this work): Ifwe want a network able to 
ope with P patterns, the starting Hamiltonianshould have simply the sum over these P previously stored6 patterns, namely

HN(σ|ξ) = − 1

2N

N,N∑

i,j=1

(
P∑

µ=1

ξµi ξ
µ
j

)
σiσj , (1.9)where we negle
t the external �eld (h = 0) for simpli
ity. As we will see in thenext se
tion, this Hamiltonian 
onstitutes indeed the Hop�eld model, namelythe harmoni
 os
illator of neural networks, whose 
oupling matrix is 
alledHebb matrix as en
odes the Hebb pres
ription for neural organization [17℄.1.3.3 From Sherrington-Kirkpatri
k to Hop�eldDespite the extension to the 
ase P > 1 is formally straightforward, theinvestigation of the system as P grows be
omes by far more tri
ky. In-deed, neural networks belong to the so-
alled �
omplex systems� realm. Wepropose that 
omplex behaviors 
an be distinguished by simple behaviorsas for the latter the number of free-energy minima of the system does nots
ale with the volume N , while for 
omplex systems the number of free-energy minima does s
ale with the volume a

ording to a proper fun
tionof N . For instan
e, the Curie-Weiss/Mattis model has two minima only,whatever N (even if N → ∞), and it 
onstitutes the paradigmati
 examplefor a simple system. As a 
ounterpart, the prototype of 
omplex system isthe Sherrington-Kirkpatri
k model (SK), originally introdu
ed in 
ondensedmatter to des
ribe the pe
uliar behaviors exhibited by real glasses [6, 59℄.This model has an amount of minima that s
ales ∝ exp(cN) with c 6= f(N),and its Hamiltonian reads as

HSK
N (σ|J) = 1√

N

N,N∑

i<j

Jijσiσj , (1.10)6The part of neural network's theory we are analyzing is meant for spontaneous retrievalof already stored information -grouped into patterns (pragmati
ally ve
tors)-. Clearly itis assumed that the network has already overpass the learning stage.20



where, 
ru
ially, 
oupling are Gaussian distributed7 as P (Jij) ≡ N [0, 1]. Thisimplies that links 
an be either positive (hen
e favoring parallel spin 
on�g-uration) as well as negative (hen
e favoring anti-parallel spin 
on�guration),thus, in the large N limit, with large probability, spins will re
eive 
on�i
t-ing signals and we speak about �frustrated networks�. Indeed frustration, thehallmark of 
omplexity, is fundamental in order to split the phase spa
e inseveral dis
onne
ted zones, i.e. in order to have several minima, or severalstored patterns in neural network language. This mirrors a 
lear request alsoin ele
troni
s, namely the need for inverters (that on
e mixed with op-amps)result in �ip-�ops (
ru
ial for information storage as we will see).The mean-�eld statisti
al me
hani
s for the low-noise behavior of spin-glasses has been �rst des
ribed by Giorgio Parisi and it predi
ts a hierar-
hi
al organization of states and a relaxational dynami
s spread over manytimes
ales (for whi
h we refer to spe
i�
 textbooks [59℄). Here we just needto know that their natural order parameter is no longer the magnetization (asthese systems do not magnetize), but the overlap qab, as we are explaining.Spin glasses are balan
ed ensembles of ferromagnets and antiferromagnets(this 
an also be seen mathemati
ally as P (J) is symmetri
 around zero)and, as a result, 〈m〉 is always equal to zero, on the other hand, a 
ompari-son between two realizations of the system (pertaining to the same 
ouplingset) is meaningful be
ause at large temperatures it is expe
ted to be zero, aseverything is un
orrelated, but at low temperature their overlap is stri
tlynon-zero as spins freeze in disordered but 
orrelated states. More pre
isely,given two �repli
as� of the system, labeled as a and b, their overlap qab 
anbe de�ned as the s
alar produ
t between the related spin 
on�gurations,namely as qab = (1/N)
∑N

i σ
a
i σ

b
i
8, thus the mean-�eld spin glass has a 
om-pletely random paramagneti
 phase, with 〈q〉 ≡ 0 and a �glassy phase� with

〈q〉 > 0 split by a phase transition at βc = Tc = 1.The Sherrington-Kirkpatri
k model displays a large number of minima asexpe
ted for a 
ognitive system, yet it is not suitable to a
t as a 
ognitivesystem be
ause its states are too �disordered�. We look for an Hamiltonianwhose minima are not purely random like those in SK, as they must representordered stored patterns (hen
e like the CW ones), but the amount of theseminima must be possibly extensive in the number of spins N (as in the SKand at 
ontrary with CW), hen
e we need to retain a �ferromagneti
 �avor�within a �glassy panorama�: we need something in between.7Couplings in spin-glasses are drawn on
e for all at the beginning and do not evolvewith system's thermalization, namely they are quen
hed variables too.8Note that, while in the Curie-Weiss model, where P (J) = δ(J−1), the order parameterwas the �rst momentum of P (m), in the Sherrington-Kirkpatri
k model, where P (J) =
N [0, 1], the varian
e of P (m) (whi
h is roughly qab) is the good order parameter.21



Figure 1.3: Phase diagram for the Hop�eld model [17℄. A

ording to theparameter setting, the system behaves as a paramagnet (PM), as a spin-glass (SG), or as an asso
iative neural network able to perform informationretrieval (R). The region labeled (SG+R) is a 
oexisten
e region where thesystem is glassy but still able to retrieve.Remarkably, the Hop�eld model de�ned by the Hamiltonian (1.9) lies ex-a
tly in between a Curie-Weiss model and a Sherrington-Kirkpatri
k model.Let us see why: When P = 1 the Hop�eld model re
overs the Mattis model,whi
h is nothing but a gauge-transformed Curie-Weiss model. Conversely,when P → ∞, (1/√N)
∑P

µ ξ
µ
i ξ

µ
j → N [0, 1], by the standard 
entral limittheorem, and the Hop�eld model re
overs the Sherrington-Kirkpatri
k one.In between these two limits the system behaves as an asso
iative network [4℄.Su
h a 
rossover between CW (or Mattis) and SK models, requires for itsinvestigation both the P Mattis magnetization 〈mµ〉, µ = (1, ..., P ) (forquantifying retrieval of the whole stored patterns, that is the vo
abulary),and the two-repli
a overlaps 〈qab〉 (to 
ontrol the glassyness growth if thevo
abulary gets enlarged), as well as a tunable parameter measuring the ra-tio between the stored patterns and the amount of available spins, namely

α = limN→∞ P/N , also referred to as network 
apa
ity.As far as P s
ales sub-linearly with N , i.e. in the low storage regime22



de�ned by α = 0, the phase diagram is ruled by the noise level β only: for
β < βc the system is a paramagnet, with 〈mµ〉 = 0 and 〈qab〉 = 0, whilefor β > βc the system performs as an attra
tor network, with 〈mµ〉 6= 0 fora given µ (sele
ted by the external �eld) and 〈qab〉 = 0. In this regime nodangerous glassy phase is lurking, yet the model is able to store only a tinyamount of patterns as the 
apa
ity is sub-linear with the network volume N .Conversely, when P s
ales linearly with N , i.e. in the high-storage regimede�ned by α > 0, the phase diagram lives in the α, β plane (see Fig.(1.3)).When α is small enough the system is expe
ted to behave similarly to α = 0hen
e as an asso
iative network (with a parti
ular Mattis magnetization posi-tive but with also the two-repli
a overlap slightly positive as the glassy natureis intrinsi
 for α > 0). For α large enough (α > αc(β), αc(β → ∞) ∼ 0.14)however, the Hop�eld model 
ollapses on the Sherrington-Kirkpatri
k modelas expe
ted, hen
e with the Mattis magnetizations brutally redu
ed to zeroand the two-repli
a overlap 
lose to one. The transition to the spin-glassphase is often 
alled �bla
kout s
enario� in neural network 
ommunity. Mak-ing these predi
tions quantitative is a non-trivial task in statisti
al me
hani
sand, nowadays several te
hniques are available, among whi
h we quote therepli
a-tri
k (originally used by the pioneers Amit-Gutfreund-Sompolinsky[18℄), the martingale method (originally developed by Pastur, Sherbina andTirozzi [53℄) and the 
avity �eld te
hnique (re
ently developed by Guerraand some of us in [2℄).
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Chapter 2Dilution in the Hebb RulesThe paradigm, introdu
ed almost three de
ades ago by Amit, Gutfreundand Sompolinsky [17, 18℄, of analyzing neural networks through te
hniquesstemmed from statisti
al me
hani
s of disordered systems (in parti
ular theRepli
a Tri
k [59℄ for the Hop�eld model [49℄) has been so proli�
 that itsappli
ations have gone far beyond Arti�
ial Intelligen
e and Roboti
s, over-lapping Statisti
al Inferen
e [9℄, System Biology [66℄, Finan
ial Market plan-ning [64℄, Theoreti
al Immunology [32℄ and mu
h more.As a result, resear
h in this �eld is under 
ontinuous development, rangingfrom the diverse appli
ations outlined above, to a deeper and deeper under-standing of the 
ore-theory behind. For the sake of rea
hing results 
loser toexperimental neuros
ien
e out
omes, s
ientists involved in the �eld tried tobypass the rather 
rude mean �eld des
ription of a fully 
onne
ted networkof intera
ting spins, embedding them in diluted topologies as Erdös-Rényigraphs [46℄, small-worlds [67℄ or even �nitely 
onne
ted graphs [10℄. Themain point was showing robustness of the mean-�eld paradigm even in thesediluted, and in some sense �
loser to biology", versions and this was indeedsu

essfully a
hieved (with the ex
eption of too extreme degrees of dilution,where the asso
iative 
apa
ities of the network trivially break down).Re
ently, a mapping between Hop�eld networks and Boltzmann ma-
hines [1℄ allowed the introdu
tion of dilution into asso
iative networks froma di�erent perspe
tive with respe
t to standard link removal à la Sompolin-sky [46℄ or à la Coolen [10, 67℄. In fa
t, while in their papers these authorsperform dilution dire
tly on the Hop�eld network, through the equivalen
ewith Boltzmann ma
hine, one may perform link dilution on the Boltzmannma
hine and then map ba
k the latter into the asso
iative Hop�eld-like net-work [30℄. Remarkably, the resulting model still works as an asso
iative per-former, as the Hebbian stru
ture is preserved, but its 
apabilities are quitedi�erent from the standard s
enario. In parti
ular, the resulting asso
iative24



network may still be fully-
onne
ted but the stored patterns of informationdisplay entries whi
h, beyond 
oding information through digital values ±1,
an also be blank [27, 30℄. In fa
t, any missing link in the bipartite Boltz-mann ma
hine 
orresponds to a blank entry in the related pattern of theasso
iative network.Now, while standard (i.e., performed dire
tly on the Hop�eld network) dilu-tion does not 
hange qualitatively the system performan
es, the behavior ofthe system resulting from hidden (i.e., performed on the underlying Boltz-mann ma
hine) dilution be
omes �multitasking" be
ause retrieval of a singlepattern, say ξ1, does not exhaust the whole spins, and the ones 
oupled withthe blank entries of ξ1 are free to align with ξ2, whose entries will partiallybe blank as well, hen
e eli
iting, in turn, the retrieval of ξ3 and so on up toa parallel logarithmi
 (with respe
t to the volume of the network N) load ofall the stored patterns.As a 
onsequen
e, by tuning the degree of dilution in the hidden Boltzmannnetwork and the level of noise in the dire
ted network, the system exhibitsa very ri
h phase diagram, whose investigation is the subje
t of the present
hapter.Let us now move on and generalize the system des
ribed above in order toa

ount for the existen
e of blank entries in the patterns ξ's. More pre
isely,we repla
e Eq.(1.7) by
P (ξµi ) =

1− d

2
δξµi −1 +

1− d

2
δξµi +1 + dδξµi , (2.1)where d en
odes the degree of �dilution� in pattern entries. Patterns are stillassumed as quen
hed and, of 
ourse, the de�nitions of the Hamiltonian (1.9)and of the overlaps (1.3), with the Glauber dynami
s provided by:

σi(t + δt) = sign[tanh[βhi(t)] + ηi(t)],(where η ∈ [−1,+1] is a random number and represent the sto
hasti
ity and
hi is the �eld a
ting on the i-th spin) still hold.As dis
ussed in [27, 30℄, this kind of extension has strong biologi
al mo-tivations and also yields highly non-trivial thermodynami
 out
omes. Infa
t, the distribution in Eq.(1.7) ne
essarily implies that the retrieval of aunique pattern does employ all the available spins, so that no resour
es areleft for further tasks. Conversely, with Eq.(2.1) the retrieval of one patternstill allows available spins (i.e., those 
orresponding to the blank entries ofthe retrieved pattern), whi
h 
an be used to re
all other patterns up to theexhaustion of all spins. The resulting network is therefore able to pro
essseveral patterns simultaneously. 25



In parti
ular, in the low-storage regime, it was shown both analyti
ally(via density of states analysis) and numeri
ally (via Monte Carlo simula-tions) [30℄, that the system evolves toward an equilibrium state where severalpatterns are simultaneously retrieved. In the noiseless limit T = 0 and for dnot too large, the equilibrium state is 
hara
terized by a hierar
hi
al overlap
mmm = (1− d)(1, d, d2, ..., 0), (2.2)hereafter referred to as �parallel ansatz�. On the other hand, in the presen
e ofnoise or for large degrees of dilution in pattern entries, this state 
eases to be astable solution for the system and di�erent states, possibly spurious, emerge.In the following highlight the equilibrium states of this system as a fun
tionof the parameters d and T , and �nally build a phase diagram; to this taskwe �rst develop a rigorous mathemati
al treatment for 
al
ulating the freeenergy of the model and then we obtain the self-
onsisten
ies 
onstraining thephase-diagram; �nally, we solve these equations both numeri
ally and with astability analysis. In this way we are able to draw the phase diagram, whosepe
uliarities lie in the stability of both even and odd mixture of spuriousstates (in proper regions of the parameters) and the formation of parallelspurious state. Both these results generalize the standard 
ounterpart of
lassi
al Hop�eld networks.Findings are double-
he
ked through Monte Carlo runs that are in agreementwith the pi
ture we obtained.2.1 Notes About the Coupling DistributionAs it is immediate to 
he
k, ea
h ξµi = 0 in the ith entry of the bit-string ξµ inthe asso
iative network, whi
h ultimately a�e
ts the intera
tion matrix J =

Jij . Of 
ourse, the larger the degree of dilution, the stronger the di�eren
ebetween su
h (random) 
oupling matrix and its Hop�eld 
ounterpart. Thisse
tion is devoted to the investigation of the properties of the matrix J.Let us 
onsider a set of N nodes labeled as i = 1, ..., N and let us asso
iateto ea
h node a string of length P and built from the alphabet {−1, 0, 1},meaning that the generi
 element ξµi , with i ∈ [1, N ] and µ ∈ [1, P ], 
an equaleither ±1 or 0. For the network des
ribed by the Hamiltonian in Eq.(1.9),the intera
tion strength between two arbitrary nodes i and j is given by
Jij =

P∑

µ=1

ξµi ξ
µ
j . (2.3)For the following treatment it is more 
onvenient not to normalize the 
ou-pling Jij, di�erently from the de�nition used in Eq.(1.9). Of 
ourse Jij ∈26



[−P, P ]. Equation (2.3) gives rise to a network of mutually and symmetri
allyintera
ting nodes, where a link between nodes i and j is drawn whenever theydo intera
t dire
tly (Jij 6= 0), either imitatively (Jij > 0) or anti-imitatively(Jij < 0).First, one 
an 
al
ulate the probability that two nodes (sin
e they arearbitrary we will drop the indexes) in the network are linked together, namely
Plink(d, P ) = P (J 6= 0; d, P ) = 1− P (J = 0; d, P ) = 1−

P∑

k=0

Psum−0(k; d, P ),(2.4)where Psum−0(k; d, P ) is the probability that two strings display (an evennumber) k of non-null mat
hings summing up to zero; otherwise stated, thereexist exa
tly k values of µ su
h that ξµi ξµj 6= 0 and they are half positive andhalf negative. In parti
ular, Psum−0(0; d, P ) = [d(2− d)]P , be
ause this is theprobability that, for any µ ∈ [1, P ], at least one entry (either ξµi or ξµj orboth) is equal to zero. More generally,
Psum−0(k; d, P ) =

(
1− d

2

)2k

[d(2− d)]P−k

(
P

k

)[
2k
(
k

k/2

)]
, (2.5)where the �rst and the se
ond fa
tors in the r.h.s. require that k entries arenon-zero and the remaining P − k entries are zero; the third fa
tor a

ountsfor permutation between zero and non-zero entries, while the last term is thenumber of 
on�gurations leading to a null sum for non-null entries. Therefore,we have

P (J = 0; d, P ) = [d(2− d)]P
P∑

k=0

[
(1− d)2

2d(2− d)

]k (
P

k

)(
k

k/2

)
, (2.6)whose plot is shown in Fig.(2.1). As for its asymptoti
 behavior, we distin-guish the following 
ases (for simpli
ity we assume P �nite and even):

P (J = 0; d, P ) = 1− P (1− d)2 +
3

4
P (P − 1)(1− d)4 +O(1− d)6 (2.7)

P (J = 0; d, P ) =
(−1)P/2

√
π

Γ(1/2− P )Γ(1 + P/2)
(1− 2P d) +O(d2)

≈ 1− 2P d

4P/2

(
P

P/2

)
+O(d2). (2.8)The average number of nearest neighbors per node 〈z〉d,P,H follows immedi-ately as 〈z〉d,P,N = NPlink(d, P ). 27



Figure 2.1: The probability P (J = 0; d;P ) is plotted as a fun
tion of thedilution d and for di�erent values of P , as shown by the legend. Noti
e thesemilogarithmi
 s
ale and that dilution is res
aled by √
p so to highlight the
ommon s
aling of the distributions.More generally, we 
an derive the 
oupling distribution P (J ; d, P ), on
ehaving de�ned P+1(k), P−1(k) and P0(k), as the probability that, given twostrings, they display k mat
hes ea
h equal to +1, −1 and 0, respe
tively,namely

P+1(k; d) = P−1(k; d) =

[
(1− d)2

2

]k
, P0(k; d) = [d(2− d)]k . (2.9)Hen
e, we 
an write

P (J ; d, P ) =

(P−J)/2∑

l=0

P+1(l + J ; d)P−1(l; d)P0(P − 2l − J ; d)P !

l!(l + J)!(P − 2l − J)!
(2.10)

∼ N (0, σJ(d, P )).The last asymptoti
 holds for large P ; the null mean value 〈J〉d,P = 0 isdue to the symmetry 
hara
terizing P (ξµi ) , while the standard deviation is
σJ =

√
〈J2〉d,P =

√
P (1− d).An expli
it, exa
t expression for this probability 
an be written for aparti
ular value of d, by exploiting Gauss's Hypergeometri
 Theorem [69℄, sothat when 4x2 = 1, 
orresponding to d = 1−

√
2/2 ≈ 0.293, we have

P (J ; 1−
√
2/2, P ) = 4−P

(
2P

P + J

)
∼ e−J2/P

√
πP

. (2.11)In the last passage we used the Stirling approximation assuming P ±J large,namely that the distribution is peaked on non-extreme values of J .It is worth underlining that P (J ; d, P ) does not depend on the size N .Indeed, patterns are drawn independently and randomly so that the 
oupling28



Jij may be regarded as the distan
e 
overed by a random walk of length
B and endowed with a waiting probability d(2 − d). Hen
e, the end-to-end distan
e is distributed normally around zero and with varian
e (meansquared distan
e) whi
h is given by the di�usion law, namely ∼ P . Thepossibility of the walker to stop simply redu
es the e�e
tive walk length to
[(1− d)(2− d)]P = (1− d)2P in agreement with results above.2.1.1 Pattern dilution versus Topologi
al dilutionDilution on pattern entries does not ne
essarily yield to a topologi
al dilu-tion for the asso
iative network, but, as we will see, 
an indu
e non-trivial
ooperative e�e
ts. On the other hand, a topologi
al dilution 
an be realizedby dire
tly 
utting the edges on a standard Hop�eld network. In this se
tionwe highlight the deep di�eren
e between these two kinds of dilution.First, we re
all that, a

ording to a mean-�eld approa
h, the network isexpe
ted to display a giant 
omponent when the average link probability islarger than 1/N . In the thermodynami
 limit and assuming a large enoughsize P (stemming from either low, i.e. P ∼ logN , or high, i.e. P ∼ N ,storage regimes) to ensure the result in Eq.(2.10) to hold, for any �nite valueof d the emergent graph turns out to be always over-per
olated. In fa
t,
Plink(d, P ) = 1 − P (J = 0; d, P ) ∼ 1 − 1/

√
2πσ2

J , so that it su�
es that
σJ > N/[

√
2π(N − 1)] → 1/

√
2π and this leads to d < 1− (2πP )−1/2 → 1.On the other hand, when P is �nite we 
an 
he
k the possible dis
on-ne
tion of the network by studying P (J = 0; d, P ) from Eq.(2.7) and we getthat Plink(d, P ) < 1/N for d > 1 − 1/

√
PN . Thus, in the thermodynami
limit, for any �nite d, the graph is still overper
olated. Repla
ing 1/N with

(logN)/N , one also �nds that the graph is even always 
onne
ted.Di�erent s
enarios may emerge if we take d properly approa
hing to 1 as
N is in
reased [25℄.Another kind of dilution 
an be realized by dire
tly 
utting edges in theresulting asso
iative network, as for instan
e early investigated in the neurals
enario by Sompolinsky on the Erdös-Rényi graph [17, 46℄ or more re
entlyby Coolen and 
oworkers on small worlds and s
ale-free stru
tures [10, 47℄.Su
h di�erent ways of performing dilution - either on links of the as-so
iative network (see [10, 17, 46, 47℄) or on pattern entries (see Eq.(1.7))- yield deeply di�erent thermodynami
 behaviors. To see this, let us 
on-sider the �eld insisting on ea
h spin, namely for the generi
 ith spin hi =
1
N

∑N
i 6=j=1 Jijσj , and analyze its distribution P (h|d) at zero noise level. Whendilution is realized on links (d is the fra
tion of links 
ut), only an averagefra
tion d of the H available spins parti
ipates to h, in su
h a way that boththe peak and the span of the distribution de
rease with d (Fig.(2.2), left).29



Figure 2.2: Left panel: Distribution of the �eld h a
ting on the spins with(Sompolinsky) dilution. Right panel: Distribution of the �eld h a
ting onthe spins with (our) dilution.Conversely, when dilution is realized on the single bit ξµi (d is the fra
tionof null entries in a pattern), as d > 0, P (h|d) gets broader and peaked atsmaller values of �elds.The latter e�e
t is due to the fa
t that 
ouplings are, on average, ofsmaller magnitude. As for the former e�e
t, we noti
e that, at β, N and
P �xed, when dilution is introdu
ed in bit-strings, 
ouplings are made uni-formly weaker (this e�e
t is analogous to a rise in the fast noise) so thatthe distribution of spin 
on�gurations, and 
onsequently also P (h|d), getsbroader. At small values of dilution this e�e
t dominates, while at largervalues the overall redu
tion of 
oupling strengths prevails and �elds get notonly smaller but also more peaked (Fig.(2.2), right).2.2 Statisti
al Me
hani
s AnalysisWe now solve the general model des
ribed by the Hamiltonian (1.9), withpatterns diluted a

ording to (2.1), in the low storage regime P ∼ logN ,su
h that the limit α = limN→∞ P/N = 0 holds1As standard in disordered statisti
al me
hani
s, we introdu
e three typesof average for an observable o(σ, ξ):1Results outlined within this s
aling 
an be extended with little e�ort to the wholeregion P ∼ Nγ , with γ < 1, su
h that the 
onstraint α = 0 is preserved, as realized in theWillshaw model [20℄ 
on
erning neural sparse 
oding.Note further that there is a deep similarity with the Potts model with pairwise intera
tion[41℄. 30



i. the Boltzmann average ω(o) =
∑

{σ} o(σ, ξ) exp[−βH(σ; ξ)]/ZN,P (β, d),where
ZN,P (β, d) =

∑

{σ}
exp [−βHN(σ, ξ)]is 
alled �partition fun
tion",

ii. the average E performed over the quen
hed disordered 
ouplings ξ,
iii. the global expe
tation Eω(o) de�ned by the bra
kets 〈o〉ξ.Given these de�nitions, for the average energy of the system E we 
an write
E ≡ limN→∞(〈HN(σ, ξ)〉/N).Also, we are interested in �nding an expli
it expression for the order param-eters of the model, namely the averaged P Mattis magnetizations

〈mµ〉 = lim
N→∞

Eω

(
1

N

N∑

j=1

ξµj σj

)
. (2.12)To this task we need to introdu
e the statisti
al pressure

α(β, d) = lim
N→∞

1

N
ln(ZN,P (β, d)),whi
h is immediately related to the free energy per site f(β, d) by the relation

f(β, d) = −α(β, d)/β be
ause, by maximizing α(β, d) with respe
t to the Pmagnetizations 〈mµ〉, we get exa
tly the self 
onsisten
e equations for theseorder parameters, whose solutions will give us a pi
ture of the phase diagram.In the past de
ades, s
ientists involved in disordered statisti
al me
han-i
s investigations, even beyond Arti�
ial Intelligen
e, paved several strandsfor solving this kind of problems, and nowadays a plethora of te
hniques isavailable. We extend early ideas of Guerra, on the line developed in [43℄,
onsisting in modeling disordered statisti
al me
hani
s through dynami
alsystem theory and in parti
ular, here, we are going to pro
eed as follows:Our statisti
al-me
hani
s problem is mapped into a di�usive problem embed-ded in a P -dimensional spa
e and with given, known, boundaries. We solvethe di�usive problem via standard Green-propagator te
hnique, and then wewill map ba
k the obtained solutions in terms of their original statisti
al me-
hani
s meaning.To this task, let us introdu
e and 
onsider a generalized Boltzmann fa
tor
BN (x, t) depending on P+1 parameters x, t (whi
h we think of as generalizedP-dimensional Eu
lidean spa
e and time)

BN (x, t; ξ, σ) = exp

(
t

2N

N∑

i 6=j

σiσj

P∑

µ=1

ξµi ξ
µ
j +

P∑

µ=1

xµ

N∑

j=1

ξµj σj

)
, (2.13)31



and the generalized statisti
al pressure
αN(x, t) = 1

N
ln



∑

{σ}
BN(x, t; ξ, σ)


 . (2.14)Noti
e that, for proper values of x, t, namely x = 0 and t = β, 
lassi
alstatisti
al me
hani
s is re
overed as

α(β, d) = lim
N→∞

αN(x = 0, t = β) = lim
N→∞

1

N
ln




∑

{σ}
BN(x = 0, t = β; ξ, σ)



 .In the same way, the average 〈·〉(x,t) will be denoted by 〈·〉, wherever evaluatedin the sense of statisti
al me
hani
s, namely
〈o〉(x,t) =

∑
{σ} o(σ, ξ)BN(x, t; ξ, σ)∑

{σ}BN(x, t; ξ, σ)
, (2.15)

〈o〉 =
∑

{σ} o(σ, ξ) exp[−βH(σ, ξ)]
∑

{σ} exp[−βH(σ, ξ)]
= 〈o〉(x=0,t=β). (2.16)It is immediate to see that the following equations hold:

∂tαN(x, t) =
1
2

∑
µ〈m2

µ〉(x,t),
∂xµ

αN(x, t) = 〈mµ〉(x,t),
(2.17)and, de�ning a ve
tor ΓN(x, t) of elements Γµ

N (x, t) ≡ −∂xµ
αN(x, t), by 
on-stru
tion Γµ

N(x, t) obeys the following equation:
∂tΓ

µ
N (x, t) +

P∑

ν=1

Γν
N(x, t)[∂xν

Γµ
N(x, t)] =

1

2N

P∑

ν=1

∂2x2
ν
Γµ
N(x, t), (2.18)whi
h happens to be in the form of a Burgers' equation for the ve
tor ΓN(x, t)with a kinemati
 vis
osity (2N)−1. As it is well-known, the Burger equation
an be mapped into a P -dimensional di�usive problem using the Cole-Hopftransformation [43℄ as follow:

ψN (x, t) = exp

[
−N

∫
dxµΓ

µ
N (x, t)

]
= exp[NαN (x, t)], (2.19)and its t and x streaming read o� as

∂tψN(x, t) = N(∂tαN (x, t))ψ(x, t),
∂xµ

ψN(x, t) = N(∂xµ
αN(x, t))ψ(x, t), (2.20)32



in su
h a way that
∂2xµxν

ψN (x, t) = NψN (x, t)
{
∂2xµxν

αN(x, t) +N [∂xµ
αN (x, t)][∂xν

αN(x, t)]
}
.(2.21)Now, from equations (2.20), (2.21) we get

∂tψN (x, t)−
1

2N

∑

µ

[
∂2x2

µ
ψN(x, t)

]
= 0. (2.22)Therefore, we established a reformulation of the problem of 
al
ulating thethermodynami
 potential α(β, d) over the equilibrium 
on�guration of theorder parameters for an attra
tors network model in terms of a di�usionequation for the fun
tion ψN (x, t), namely the Cole-Hopf transform of theMattis magnetizations, with a di�usion 
oe�
ient D = (2N)−1, that is

∂tψN(x, t)−D∇2ψN (x, t) = 0,

ψN(x, 0) =
∑

{σ}
exp

(∑

µ

xµ
∑

j

ξµj σj

)
. (2.23)We solve this Cau
hy problem (2.23) through standard te
hniques: �rst, wemap the di�usive equation in the Fourier spa
e, then we 
al
ulate the Greenpropagator for the homogenous 
on�guration, and �nally we will inverse-transform the solution.Let us 
onsider the Fourier transform:

ψ̃N (k, t) =
∫
RP d

Px exp
(
− i
∑

µ xµkµ
)
ψN (x, t),

ψN (x, t) =
1

(2π)P

∫
RP d

Pk exp
(
i
∑

µ xµkµ
)
ψ̃N (k, t),

(2.24)and the related Green problem:
∂tG̃(k, t) +Dk2G̃(k, t) = δ(t), (2.25)where G̃(k, t) is the Green propagator in the k-spa
e, whi
h 
an be de
om-posed as
G̃(k, t) = G̃R(k, t) + G̃S(k, t), (2.26)being G̃R(k, t) the general solution of the homogeneous problem and G̃S(k, t)a parti
ular solution of the non-homogeneous problem. Hen
e, the full solu-tion will be

ψN (x, t) =

∫

RP

dPx′GR(x− x
′, t)ψN (x

′, 0), (2.27)33



where the fun
tion G̃R(k, t) ful�lls
∂tG̃R(k, t)−Dk2G̃R(k, t) = 0,

G̃R(k, 0) = 1,
(2.28)hen
e

G̃(k, t) = exp(−Dk2t),
G(x, t) = 1

(2
√
πDt)P

exp(−x
2

4Dt
).

(2.29)Therefore, we get
ψN (x, t) =

(
N

2πt

)P
2
∫ ( P∏

µ=1

dx′µ

)
exp [−NΦ(x′,x, t)] , (2.30)

Φ(x′,x, t) =

∑P
µ (xµ − x′µ)

2

2t
− ln 2− 1

N

N∑

j=1

ln

[
cosh

(
P∑

µ=1

x′µξ
µ
j

)] (2.31)and
αN (x, t) =

1

N
ln [ψN(x, t)] . (2.32)We 
an solve now the saddle-point equation

α(x, t) = lim
N→∞

αN(x, t) = Extr{Φ}, (2.33)where we negle
ted O(N−1) terms, as we performed the thermodynami
limit. Finally, by repla
ing t = β and x = 0 and x′ν = β〈mν〉 (hen
e theoriginal statisti
al me
hani
s framework), we obtain the following expressionsfor the statisti
al pressure
α(β, d) =

β

2

∑

µ

〈mµ〉2 − ln(2)−
〈
ln

[
cosh

(
β
∑

µ=1

〈mµ〉ξµ
)]〉

ξ

, (2.34)whose extremization o�ers immediately the P desired self-
onsisten
y equa-tions for all the 〈mν〉,
〈mν〉 =

〈
ξν tanh

(
β
∑

µ=1

ξµ〈mµ〉
)〉

ξ

∀µ ∈ [1, P ], (2.35)where with the index ξ we emphasized on
e more that the disorder averageover the quen
hed patterns is performed as well.34



Of 
ourse, the self-
onsisten
e equations (2.35) re
over those obtainedin [30℄ via di�erent analyti
al te
hniques, where they were also shown toyield to the parallel ansatz (2.2), whi
h, in turn, 
an be formally written as
σi = ξ1i +

P∑

ν=2

ξνi

ν−1∏

µ=1

δ(ξµi ), (2.36)and it will be referred to as σ(P ).The parallel ansatz (2.2) 
an be understood rather intuitively. To �xideas let us assume zero noise level and that one pattern, say µ = 1, isperfe
tly retrieved. This means that the related average magnetization is
m1 = (1 − d), while a fra
tion d of spins is still available and they 
anarrange to retrieve a further pattern, say µ = 2. Again, not all of them 
anmat
h non-null entries in pattern ξ2 and the related average magnetization is
m2 = d(1− d). Pro
eeding in the same way, for all spins, we get the parallelstate. Noti
e that, the number K of patterns whi
h are, at least partially,retrieved does not ne
essarily equal P . In fa
t, due to dis
reteness, it mustbe dK−1(1 − d) ≤ 1/N , namely at least one spin must be aligned with ξK ,and this implies K . logN .Su
h a hierar
hi
al, parallel, fashion for alignment, providing an overallenergy (see Eq.(1.9))

E(P) = −N
P∑

k=1

[(1− d)dk−1]2 + P = −N (1− d2P )(1− d)

1 + d
+ P, (2.37)is more optimal than a uniform alignment of spins amongst the availablepatterns, as this 
ase would yield mk = (1 − d)/P for any k and an overallenergy

E(U) = −N
P∑

k=1

(
1− d

P

)2

+ P = −(1 − d)2N

P
+ P, (2.38)being (1− d2+2P ) > (1− d2)/P .On the other hand, as we will see in Se
. 2.3, when d > dc ≈ 1/2, the state(2.2) is no longer stable and spurious states do emerge.Before pro
eeding, it is worth stressing that, although the parallel state(2.2) displays non-zero overlap with several patterns, it is deeply di�erent,and must not be 
onfused with, a spurious state in standard Hop�eld net-works. In fa
t, in the former 
ase, at least one pattern is 
ompletely retrieved,while in spurious states, the overlap with ea
h memory pattern involved isonly partial. 35
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Figure 2.3: Behavior of the two Mattis magnetizations m1 and m2 versus dat two (small) noise levels, namely β−1 = 10−4 (left panel) and β−1 = 0.05(right panel).Moreover, in standard Hop�eld networks, spurious states are somehow unde-sirable be
ause they provide 
orrupted information with respe
t to the bestretrieval a
hievable where one, and only one, pattern is exa
tly retrieved.Conversely, in our model, the retrieval of more-than-one pattern is unavoid-able (for �nite d and β → ∞) and the quality of retrieval may be ex
ellent(perfe
t) in the 
ase of patterns poorly (not) overlapping.Finally, and most importantly, for β → ∞ and in a wide region of dilution,the parallel state σ(P ) 
orresponds to a global minimum for the energy. Thisis not the 
ase for an arbitrary mixture of states.2.2.1 The 
ase P = 2The self-
onsisten
ies en
oded into Eq.(2.35) for the simplest 
ase P = 2 are
m1(β, d) = d(1−d) tanh(βm1)+

(1− d)2

2

[
tanh[β(m1+m2)]+ tanh[β(m1−m2)]

]
,(2.39)

m2(β, d) = d(1−d) tanh(βm2)+
(1− d)2

2

[
tanh[β(m1+m2)]− tanh[β(m1−m2)]

]
.(2.40)The solution of these equations (m Vs d) for di�erent values of β is reportedin Fig.(2.3). In the low (fast) noise limit (β → ∞), when no dilution ispresent (d = 0) the se
ond magnetization m2 disappears and the �rst mag-netizationm1 approa
hes the value 1 as expe
ted be
ause the Hop�eld modelis re
overed. As dilution is in
reased, m1 de
reases linearly, whilem2 displaysa paraboli
 pro�le with peak at d = 0.5. In the presen
e of (fast) noise, m2starts growing for higher values of dilution be
ause (as will be 
leared by the36



signal-to-noise analysis of the next se
tion) the signal2 insisting on the latter,whi
h is proportional to d(1−d), must be higher than the noise level in orderto be e�e
tive. Also noti
e that, from intermediate dilution onwards, m1 and
m2 
ollapse and the related 
urves 
onverge at a �bifur
ation� point.Let us now deepen these results, �rst from a more intuitive point of view,and later from a more rigorous one.In the zero (fast) noise limit, let us �x ξ1 as the pattern 
orresponding tothe maximum overlap with the magneti
 
on�guration, so that the expe
tedMattis magnetization is 〈m1〉 = (1 − d). The remaining N d �free� spinswill seek for patterns to align with, namely displaying non-null entries in
orresponden
e with the null entries of ξ1. A
tually, due to dilution, oneexpe
ts that the se
ond best-mat
hing pattern only engages N d(1−d) spins,while the remainingN d2 will mat
h other patterns; in general, the k-th best-mat
hing pattern is expe
ted to engage N dk−1(1− d).Su
h a hierar
hi
al fashion for alignment is more optimal than a uni-form alignment of spins amongst the available patterns whi
h would yield
mk = d/B for any k and an overall energy −N/2∑k(d/P )

2 = −(d2N)/(2P ).Indeed, the hierar
hi
al solution is the one that minimizes the energy (re
allthat the magnetization are summed quadrati
ally) as well as the most likelyfrom a 
ombinatori
s point of view, providing an overall energy−N/2∑k[(1−
d)dk]2 = −N(1 − d2+2P )(1− d)/[2(1 + d)].Therefore, the system is able to perform the �parallel retrieval� of Kpatterns, whose magnetizations are mµ = (1/N)

∑
1=1 ξ

µ
i hi, that is 〈m1〉 =

(1− d), 〈m2〉 = d(1− d), ..., 〈mK〉 = dK(1− d). It is easy to see that it mustbe dK+1 = 0. Hen
e, for any �nite value of d, an in�nite number of patterns
an in prin
iple be retrieved, i.e. dK → 0, for K → ∞. More a

urately,taking into a

ount the dis
reteness of the system, we have that the last pat-tern to be retrieved will mat
h only one spin, whi
h yields N dK(1− d) = 1,from whi
h K = [logN + log(1 − d)]/ log(1/d) ∼ logN . In the low storageregime, with P �nite or s
aling logarithmi
ally with N , the retrieval of allpatterns 
an, in prin
iple, always be a

omplished.When noise is also introdu
ed, we have that for the i-th pattern to be re-trieved the �eld felt by spins has to be larger than the noise level, that is
[d(1 − d)i] > β−1, if this 
ondition is not ful�lled the �eld is 
onfused withthe noise and the pattern 
an not be retrieved.In the 
ase of large degree of dilution, i.e. d 
lose to 1, patterns are sosparse that not all the N spins 
an be mat
hed; assuming that patterns getorthogonal, only a fra
tion P (1 − d)/N (= α(1 − d) or = α logN(1 − d)/Nin low and high storage regime, respe
tively) of spins is aligned with a given2We use the term "�elds" for the for
es a
ting on hi and "
hannels" for those on mµ.37



pattern, the remaining are free and their mean value is zero. In this 
onditionthe emergent graph is also dis
onne
ted.Beyond 
onstraints on d, probably the most striking feature displayed by
m1, m2 is the bifur
ation o

urring at intermediate values of dilution (seeFig.(2.3)). In order to understand this phenomenon we 
an divide spinsinto four sets: S1, whi
h 
ontains spins i 
orresponding to zero entries inboth patterns (ξ1i = ξ2i = 0), therefore behaving paramagneti
ally; S2, whi
hin
ludes spins seeing only one pattern (|ξ1i | 6= |ξ2i |);

S3, whi
h 
ontains spins 
orresponding to two parallel, non-null entries(ξ1i = ξ2i 6= 0), thus being the most stable; S4, whi
h in
ludes spins i 
orre-sponding to two parallel, non-null entries (ξ1i = −ξ2i 6= 0), hen
e intrinsi
allyfrustrated.The 
ardinality of these sets are: |S1| = d2, |S2| = 2d(1−d), |S3| = (1−d)2/2,and |S4| = (1 − d)2/2. Now, the most prone spin to align with the relatedpatterns are those in S3 and in S2, and this requires (1 − d) < β−1 for the�eld to get e�e
tive. As d is further redu
ed, m1 and m2 grow paired, dueto the symmetry of the sets S2 and S3. The growth pro
eeds paired untilthe magnetizations get the value m1 = m2 = (1 − d)2/2 + d(1 − d), wherethe two 
ontributes 
ome from spins aligned with both patterns and with theunique pattern they see, respe
tively. From this dilution onwards frustratedspins also start to align so that one magnetization ne
essarily prevails overthe other. This explanation 
an be extended to any �nite B and, in general,the number of sets turns out to be P + 1 +
∑P

k=0⌊P−k
2

⌋.Now we want to quantify these bifur
ation points, and to this task let us
all
x = 〈m1〉 − 〈m2〉. (2.41)We use Eqs. (2.39) and (2.40) and expand for small values of x

x = d(1− d)[tanh(β〈m1〉)− tanh(β〈m2〉)] + (1− d)2 tanh (β〈m1〉 − 〈m2〉)(2.42)where
d(1− d) [tanh (β〈m1〉)− tanh (β〈m2〉)] ∼

d(1− d)

[
tanh(β〈m1〉)− tanh(β〈m2〉) +

βx

cosh2(β〈m1〉)

]
,

(2.43)and
(1− d)2 tanh(β〈m1〉 − 〈m2〉) ∼ (1− d)2βx+O(x3). (2.44)Thus, the leading term is

x ∼
[

d(1− d)β

cosh2(β〈m1〉)
+ β(1− d)2

]
x. (2.45)38
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Figure 2.4: Parallel retrieval of three (left panel) and of six (right panel)patterns. Behavior of the two Mattis magnetization versus d at noise level
β−1 = 0.05.The 
riti
al value of β 
orresponding to the bifur
ation point is de�ned as

βbif
c =

1

(1− d)2
[
1 + (1−d)

d
1

cosh2(βbif
c m1)

] . (2.46)This me
hanism 
an be easily generalized to the 
ase of multiple patterns.We move now to analyze the 
riti
al noise level at whi
h the magneti-zations disappear and the network dynami
s be
omes ergodi
, still in thistest-
ase of two patterns: Expanding expressions (2.40) we �nd
〈m2〉 ∼ d(1− d)[β〈m2〉] +

(1− d)2

2
[β〈m1〉+ β〈m2〉+

+
β3

3
(〈m1〉3 + 〈m2〉3 + 3〈m1〉2〈m2〉+ 3〈m1〉〈m2〉2)]+

+ d(1− d)
β3

3
〈m2〉3 −

(1− d)2

2
[β〈m1〉 − β〈m2〉+

β3

3
(〈m1〉3+

− 〈m2〉3 − 3〈m1〉2〈m2〉+ 3〈m1〉〈m2〉2)],

(2.47)
su
h that we 
an write

〈m2〉 ∼ (1− d)β〈m2〉+O(〈m2〉3). (2.48)Therefore the 
riti
al noise level turns out to be
βc =

1

1− d
. (2.49)This 
al
ulation 
an easily be generalized to several patterns, too.39
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Figure 2.5: Parallel retrieval of three strategies. Behavior of three Mattismagnetization versus d in the slow (fast) noise limit (i.e. β−1 = 10−4).Continuous lines 
orrespond to numeri
al solution of Eqs. (2.50)-(2.52), whiledashed lines 
orrespond to Monte Carlo simulations.2.2.2 The 
ase P = 3When three patterns are 
onsidered, the related self-
onsistent equations that
onstraint the system to parallel pro
essing are the following (we skip thebra
kets 〈.〉 for the sake of 
learness):
m1 = d2(1− d) tanh[βm1]− (1/4)d(1 − d)2 tanh[β(−m1−m2)]+

+ (1/4)d(1 − d)2 tanh[β(m1−m2)]− (1/4)d(1 − d)2 tanh[(−m1 +m2)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m2)]− (1/4)d(1 − d)2 tanh[β(−m1−m3)]+

− (1/4)d(1 − d)2 tanh[β(m1−m3)]− (1/8)(1 − d)3 tanh[β(−m1−m2−m3)]+

+ (1/8)(1 − d)3 tanh[β(m1−m2−m3)]− (1/8)(1 − d)3 tanh[β(−m1 +m2 −m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2−m3)]− (1/4)d(1 − d)2 tanh[β(−m1 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m3)]− (1/8)(1 − d)3 tanh[β(−m1−m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1−m2 +m3)]− (1/8)(1 − d)3 tanh[β(−m1 +m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2 +m3)]]

(2.50)

40



m2 = −(1/4)d(1 − d)2 tanh[β(−m1 −m2)] − (1/4)d(1 − d)2 tanh[β(m1 −m2)]+

+ d2(1 − d) tanh[βm2] + (1/4)d(1 − d)2 tanh[β(−m1 +m2)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m2)]− (1/4)d(1 − d)2 tanh[β(−m2−m3)]+

− (1/8)(1 − d)3 tanh[β(−m1−m2 −m3)] − (1/8)(1 − d)3 tanh[β(m1 −m2 −m3)]+

+ (1/4)d(1 − d)2 tanh[β(m2−m3)] + (1/8)(1 − d)3 tanh[β(−m1 +m2−m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2−m3)]− (1/4)d(1 − d)2 tanh[β(−m2 +m3)]+

− (1/8)(1 − d)3 tanh[β(−m1−m2 +m3)] − (1/8)(1 − d)3 tanh[β(m1 −m2 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m2 +m3)] + (1/8)(1 − d)3 tanh[β(−m1 +m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2 +m3)]]

(2.51)
m3 = −(1/4)d(1 − d)2 tanh[β(−m1 −m3)] − (1/4)d(1 − d)2 tanh[β(m1 −m3)]+

− (1/4)d(1 − d)2 tanh[β(−m2−m3)]− (1/8)(1 − d)3 tanh[β(−m1−m2−m3)]−
− (1/8)(1 − d)3 tanh[β(m1−m2−m3)]− (1/4)d(1 − d)2 tanh[β(m2−m3)]−
− (1/8)(1 − d)3 tanh[β(−m1 +m2 −m3)] − (1/8)(1 − d)3 tanh[β(m1 +m2 −m3)]+

+ d2(1 − d) tanh[βm3] + (1/4)d(1 − d)2 tanh[β(−m1 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m3)] + (1/4)d(1 − d)2 tanh[β(−m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(−m1−m2 +m3)] + (1/8)(1 − d)3 tanh[β(m1 −m2 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m2 +m3)] + (1/8)(1 − d)3 tanh[β(−m1 +m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2 +m3)]].

(2.52)
Re
alling the pi
ture explained in the previous subse
tion, the magnetiza-tions m1, m2 and m3 again grow together until all spins 
orresponding toequal non-null entries and to single non-null entries are aligned. Then spinswhi
h are aligned only with two patterns out of three start to feel the �eldand get aligned hen
e breaking the symmetry. At this point, say m1 and m2,still grow while m3 de
reases. The next symmetry-breaking o

urs when allspins 
orresponding to equal non-null entries ξ1 = ξ2 get aligned. From thispoint onward one magnetization prevails against the other. The same pro
essapplies, mutatis mutandis, for larger number of patterns (see Fig.2.4).The last subtlety to be investigated is given by the small dis
ontinuitiesin the behavior of the magnetizations (see for instan
e Fig.2.5). To explainthis feature, let us 
onsider the set of patterns ξ1, ξ2, ..., ξP and assume thezero fast noise limit (β → ∞) for the sake of simpli
ity, so that we 
an take
|mk| = (1−d)dk−1, for k = 1, ..., P as (absolute) Mattis magnetizations. The�eld insisting on the arbitrary spin σi 
an be written as

hi =
1

N

N∑

j 6=i

Jijσj =

P∑

µ=1

ξµi m
µ − 1

N

P∑

µ=1

ξµi ξ
µ
j σi ≈

P∑

µ=1

ξµi m
µ, (2.53)where in the last passage we dropped the se
ond sum as it is vanishing inthe thermodynami
 limit. Now, let us 
onsider the spin h1, whi
h, againwithout loss of generality 
an be thought of as aligned with the �rst patternand equal to +1. The �eld insisting on this lympho
yte is h1 = (1 − d)[1 +41



∑B
µ=2 ǫ(1, µ)d

µ−1], where ǫ(1, µ) = sign(ξµ1 , mµ). We noti
e that, in general,
h1 is not positive de�nite so that the o

urren
e of the 
ondition h1 < 0 wouldlead to the spin �ip h1 = 1 → h1 = −1 and, 
onsequently, tom1 < (1−d). Inorder to understand this e�e
t we fo
us on ǫ(1, µ). By assumption,m1 = (1−
d) and h1 = ξ11 , so that the �rst entry of pattern µ = 1 e�e
tively 
ontributesto the related magnetization m1. As for the following magnetizations mµ>2,e�e
tive 
ontributes 
an arise only from entries ξµ>2

j 
orresponding to nullentries in ξ1j . Otherwise stated, there is no 
orrelation between ξµ1 and mµfor µ > 1 (in fa
t, ǫ(1, µ) is zero on average), and one 
an 
ount the pattern
on�gurations leading to h1 < 0 applying 
ombinatori
s.Seeking for 
larity, we 
onsider the following expli
it 
ases:- The probability that the �rst entries of all patterns µ > 1 are misalignedwith respe
t to the related magnetizations is [(1 − d)/2]P−1, hen
e giving a�eld h1 = (1− d)[1−∑µ>2 d
µ−1] = 1− 2d+ dP+1. Su
h a �eld turns out tobe negative in the interval a1 < d < 1, where a1 → 1/2 for P → ∞.- The probability that the �rst entries of all patterns µ > 1 but one, say ξl,are misaligned and that ξl1 = 0 is d[(1 − d)/2]P−2, and this would lead to

h1(l) = (1 − d)− d(1 − dP ) + (1 − d)dl−1, whi
h is negative for a2 < d < 1,where a2 → 1/2 for P → ∞; of 
ourse h1(l) is growing with l.- The probability that the �rst entries of all patterns µ > 1 but one, say
ξl, are misaligned and that ξl1 = 1, is d[(1− d)/2]P−1 and this 
on�gurationyields h1(l) = (1−d)−d(1−dP )+2(1−d)dl−1. For instan
e, when l = 2 and
P ≫ 1, the �eld is negative for d > 1/

√
2; when l = 3 the �eld is negativefor d > a3, where a3 ≈ 0.648.Summarizing, in the zero noise limit β → ∞ for any given dilution d, theprobability that m1 < (1− d) 
an be written as a sum over pattern 
on�gu-rations leading to h1 < 0. For instan
e, for P = 3, only one out of the 3B−1possible 
on�gurations, i.e. sign(ξµ2 , mµ) = sgn(ξµ3 , mµ) = −1, 
an yield aspin-�ip: the 
orresponding �eld is h1 = (1−d)(1−d−d2), whi
h is negativefor d > (

√
5 − 1)/2 ≈ 0.62 (see Fig.(2.5)). Therefore, for that value of dilu-tion onwards, m1 is redu
ed with respe
t to the optimal value (1 − d). Theextent of the loss is a fra
tion 1/9 of the total, namely ≈ 0.34 (see Fig.(2.5)).Noti
e that while the 
hange redu
esm1, other magnetizations are favoredby the spin-�ip and undergo a proportional in
rement. Also, the o

urren
eof a magnetization redu
tion with respe
t to the optimal value is more likelyfor the highest magnetization m1, be
ause �elds insisting on spins 
ontribut-ing to m1 are the most 
omplex, being the sum of P − 1 terms. The samedis
ussion 
an be applied in turns tom2: now the number of terms whi
h sumup to give the �eld insisting on the (1−d)d spins whi
h 
ontribute e�e
tivelyto m2 is P − 2, so that there are far less 
on�gurations able to yield a nega-tive �eld. Consequently, a loss in m2 is less likely. Therefore, as long as the42



number of patterns allows readjustments in the value of magnetizations withrespe
t to those expe
ted, the arbitrary mk may display 
omplex 
orre
tions(possibly o

urring at slightly di�erent values of d) due to the 
ombination ofseveral simple 
orre
tions, ea
h 
orresponding to the readjustment a�e
tingthe previous magnetizations mµ<k (see Fig.(2.5)).2.2.3 Signal to noise ratioAs usually done in the neural network 
ontext [17℄, we 
ouple the statisti-
al me
hani
s inspe
tion to signal-to-noise analysis. Aim of this pro
edureis trying to 
on�rm the �parallel ansatz" we impli
itly made by studyingthe stability of the basins of attra
tions (whose �xed points are the learnedstrategies) 
reated in the hierar
hi
al fashion we pres
ribed. We re
all thatthe model we are investigating des
ribes a low storage of information in theasso
iative network so that no slow noise is indu
ed by the underlying spinglass, i.e. α = 0. Nonetheless, we study the signal to noise ratio in the zerofast noise limit (β → ∞) as a problem formulated in general terms of α, d;then, we take the limit α → 0 to get estimate about the stability of thebasins of attra
tions (where the presen
e of fast noise 
an possibly produ
e�u
tuations).Without loss of generality, we assume that the network is retrieving the�rst pattern. This means that spins are aligned with the non-null entries inthe �rst bit-string ξ1, while the remaining spins explore the other patterns.Thus, for the generi
 spin σi we 
an write
σi = ξ1i +

P∑

ν=2

ξνi

ν−1∏

µ=1

δ(ξµi ). (2.54)A

ordingly, the lo
al �eld a
ting on the ith lympho
yte 
an be written as
hi =

1

N

N∑

j 6=i

P∑

µ

ξµi ξ
µ
j

[
ξ1j +

P∑

ν=2

ξνj

ν−1∏

µ=1

δ(ξµj )

]
. (2.55)

• In the referen
e 
ase P = 1, like for the pure states of the Hop�eldnetwork, we set
σi = ξ1i + δ(ξ1i )ki, (2.56)where ki is a random variable uniformly distributed on the values ±1added to ensure that there are no nulls entries in the state of the net-work. Hen
e we �nd

〈hiσi〉ξ = 〈signal + noise〉ξ = 〈signal〉ξ (2.57)43



being 〈noises〉ξ = 0, and so for large N we have
〈signal〉ξ =

N − 1

N
(1− d) = (1− d), (2.58)while

〈(noises)2〉ξ =
P − 1

N
(1− d)2 = α(1− d)2. (2.59)

• In the test 
ase of two patterns retrieved, P = 2, we set:
σi = ξ1i + δ(ξ1i )[ξ

2
i + δ(ξ2i )ki]. (2.60)Now, we need to distinguish between the various possible 
on�gura-tions:� ∀i su
h that ξ1i 6= 0, ξ2i = 0 and so that σi = ξ1i 6= 0 for large valueof N

〈signal〉ξ = (1− d), 〈noises〉ξ = 0, (2.61)
〈(noises)2〉ξ =

(N − 1)(P − 2)

N2
(1− d)2 = α(1− d)2. (2.62)� ∀i su
h that ξ1i 6= 0, ξ2i 6= 0 and so that σi = ξ1i 6= 0if ξ1i = ξ2i

〈signal〉ξ = 2(1− d)− (1− d)2, 〈noises〉ξ = 0, (2.63)if ξ1i = −ξ2i
〈signal〉ξ = (1− d)2, 〈noises〉ξ = 0. (2.64)and in both 
ases

〈(noises)2〉ξ =
(N − 1)(P − 1)

N2
(1− d)3 +

(N − 1)(P − 2)

N2
d(1− d)2 = α(1− d)2.(2.65)� ∀i su
h that ξ1i = 0, ξ2i 6= 0 and so that σi = ξ2i 6= 0

〈signal〉ξ = d(d− 1), 〈noises〉ξ = 0, (2.66)
〈(noises)2〉ξ =
(N − 1)(P − 1)

N2
(1− d)3 +

(N − 1)(P − 2)

N2
(1− d)2d = α(1− d)2.(2.67)44



Therefore, in the regime of low storage of strategies we are exploring (α = 0),the retrieval is stable, states are well de�ned and the amplitude of the signalon the �rst 
hannel is order (1− d) while on the se
ond is of order d(1− d),in perfe
t agreement with both the statisti
al me
hani
s analysis and MonteCarlo simulations.On
e proved that these parallel states exist, it would be interesting tryingto understand deeper their stru
ture in the 
on�gurational spa
e. To thistask let us �x a pattern ξ1i , with i = 1, ..., N , and a dilution d, in su
h a waythat N d of ξ1 entries are expe
ted to be null and the remaining N(1 − d)are expe
ted to be half equal to +1 and half equal to −1. The numberof spins 
on�gurations displaying maximum overlap with ξ1 
orresponds tothe degenera
y indu
ed by null entries, namely 2Nd; all these 
on�gurationslay in an energy minimum be
ause their Mattis magnetization is maximum(a
tually the same holds for the symmetri
al 
on�gurations due to the gaugesymmetry of the model).Let us now generalize this dis
ussion by introdu
ing the number of 
on-�gurations n(m, d) whose overlap with the given pattern displays m mis-alignments in su
h a way that n(m, d) is given not only by the degenera
yindu
ed by null entries, but also by the degenera
y indu
ed by the 
hoi
e of
m entries out of N(1−d) whi
h have to be mismat
hed. It is easy to see that
n(m, d) = 2Nd

(
N(1−d)

m

). Interestingly, for su
h 
on�gurations the signal feltby a spin i 
an be written as hi = ξ1i [N((1 − d))− 2m] and the e�e
t of the
orre
tion due to the m misalignments might be vanishing in the presen
eof a su�
iently large level of noise, so that the system is not restri
ted tothe 2Nd 
on�gurations 
orresponding to the minimum energy, but it 
an alsoexplore all the 
on�gurations n(m, d).Therefore, we 
an 
ount the number of 
on�gurations ñ(x, d) exhibiting anumber of misalignments, with respe
t to ξ1, up to a given threshold x; in thepresen
e of noise su
h 
on�gurations are all a

essible, namely they all layin the same �deep� minimum. Indeed, we 
an write ñ(x, d) =∑x
m=0 n(m, d);of 
ourse, for x = N(1 − d) we re
over ñ(x, d) = 2N . Moreover, when

x = N(1 − d)/2, we 
an exploit the identity ∑i
k=0

(
2i
k

)
= 1/2[4i +

(
2i
i

)
], andassuming without loss of generality N(1 − d) to be even we get

ñ(N(1− d)/2, d) =

x∑

m=0

n(m, d) =
2Nd

2

[
2N(1−d) +

(
N(1− d)

N(1− d)/2

)]
≈

2N

2

[
1 +

√
2

πN(1− d)

]
, (2.68)where in the last passage we used the Stirling approximation given that45
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Figure 2.6: Normalized number of a

essible 
on�gurations ñ(x, d) as a fun
-tion of x and d for a system made up of N spins. The 
riti
al line xc = (1−d),
orresponds to the emergen
e of a giant 
omponent.
N((1− d)) ≫ 1. Then, we have ñ(N(1− d)/2, d) & 1/2, and similar 
al
ula-tions 
an be drawn for smaller thresholds, e.g., ñ(N(1− d)/2− 1, d) . 1/2.As shown in Fig.(2.6), on
e d is �xed, when x is small only a mi
ros
opi
fra
tion ñ(x, d)/2N of 
on�guration is a

essible (in the thermodynami
 limitthis fra
tion is vanishing), while by in
reasing the toleran
e x, more and more
on�guration get a

essible and 
orrespondently their fra
tion gets ma
ro-s
opi
. From a di�erent perspe
tive, ea
h 
on�guration 
an be looked at as anode of a graph and those a

essible are 
onne
ted together. The link prob-ability is then related to x and when x is large enough a �giant 
omponent�made up of all a

essible 
on�gurations emerges. This is a per
olation pro
essin the spa
e of 
on�gurations. Indeed, similarly to what happens in 
anoni
alper
olation pro
esses, the 
urves representing the giant 
omponent relevantto di�erent sizes N interse
t at around 1/2, whi
h distinguishes the per
ola-tion threshold xc. A

ording to Eq.(2.68) we 
an write xc ≈ N(1− d)/2.Interestingly, when a giant 
omponent emerges retrieval is no longermeaningful be
ause the system may retrieve essentially anything and this
orresponds to the 
riti
al line (in the d, β plane) where all the magnetiza-tions simultaneously disappear.
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2.3 The Emergen
e of Spurious StatesIn Se
. 2.2, we explained why we expe
t the parallel state (2.36) to o

ur,exploiting the fa
t that ea
h pattern tends to align as many spins among thosestill available. A
tually, this intuitive approa
h yields the 
orre
t pi
ture for
T = 0 (no fast noise) and not-too-large d, while when either T or the degreeof dilution are large enough, the system 
an relax to a state where only onepattern is retrieved or fall into a spurious state where several patterns arepartially retrieved, but none exa
tly. For instan
e, when patterns are sparse,none of them 
an generate an attra
tion basin strong enough to align allavailable spins, in su
h a way that stationary, mixture states 
an emerge.Let us start from the noiseless 
ase and 
onsider the state (2.36) 
orre-sponding to the parallel ansatz (2.2): we noti
e that, on average, there existsa fra
tion 2[(1− d)/2]P of spins σi 
orresponding to the entries ξ1i = 1, ξki =
−1, ∀k ∈ [1, P ] (and analogously for the �gauged� 
ase ξ1i = −1, ξki = +1) andexpe
ted to be aligned with the �rst entry ξ1i , in su
h a way that the overall�eld insisting on ea
h of them is hi = m1 −m2 −m3 − ....−mP . Of 
ourse,su
h spins are the most unstable, and, at zero noise level, they �ip whenever
hi happens to be negative, that is, when m1 <

∑P
k=2mk. Exploiting theansatz mk = dk−1(1− d), this 
an be written as

hi = (1− d)

[
1− d− dP

1− d

]
= 1− 2d+ dP , (2.69)whi
h be
omes negative for a value of dilution dc(P ), whi
h 
onverges ex-ponentially from above to 1/2 as P gets large. From this point onwards,the �rst pattern is no longer 
ompletely retrieved and the system fails toparallel retrieve (a

ording to the de�nition in Eq.(2.36)). Therefore, when

d ≥ dc(P ), genuine spurious states emerge and the system relaxes to stateswhi
h 
orrespond to mixture of p ≤ P patterns, but none of them is 
om-pletely retrieved (at least up to extreme values of dilution). As we will seein Se
. 2.4.4, the transition at dc(P ) is �rst order.Moreover, from Eq.(2.69) we �nd that the 
ase P = 2 has no solutionin the range d ∈ [0, 1], meaning that the parallel-retrieval state is alwaysa stable solution in the zero noise limit; on the other hand, dc(3) ≈ 0.62,
dc(4) ≈ 0.54 and so on.Su
h phenomenology 
on
erns relatively large degrees of dilution, yet,the presen
e of noise 
an also destabilize the true parallel-retrieval state(2.2) in the regime of small degrees of dilution. In fa
t, we expe
t that thespins aligned a

ording to the k-th pattern asso
iated to a magnetization
mk = dk−1(1 − d) will loose stability at noise levels T > dk−1(1 − d). Inparti
ular, at T > d(1 − d), only one pattern will be retrieved and the pure47



state is somehow re
overed. As we will see in Se
. 2.4.4, su
h estimates are
orre
t for small d.Typi
al spurious states emerging in standard asso
iative networks are theso-
alled symmetri
 mixtures of p ≤ P states, whi
h 
an be des
ribed as
σi = sign( p∑

µ=1

ξµi

)
, (2.70)and it will be referred to as σ(S). We anti
ipate that the symmetri
 mixtureturns out to emerge also in the diluted model under investigation.Now, in the standard Hop�eld model, odd mixtures of p patterns, are metastable,i.e. their energies are higher than those of the pure patterns, and, moreover,the smaller p and the more energeti
ally favorable the mixture. On the otherhand, even mixtures of p patterns are unstable (they are saddle-points of theenergy).More pre
isely, at the 
riti
al temperature of the standard Hop�eld model,namely at Tc = 1, all the symmetri
 spurious states be
ome extrema in thefree-energy lands
ape. They are either minima, maxima, or saddle-points. As

T < 0.461 spurious states be
ome su

essively stable. First, the symmetri
three mixtures be
ome stable and begin to attra
t. As the temperatureis lowered further, more and more of the symmetri
 odd mixtures be
omeattra
tors. Lower mixtures be
ome stable at higher temperature. The purepattern attra
tors remain the absolute minima in the lands
ape all the waydown to T = 0. They always have the largest basins of attra
tion.The instability of even mixtures is often asso
iated to the fa
t that, fora ma
ros
opi
 fra
tion of spins, σ(S) is not de�ned due to the ambiguity ofthe sign. For instan
e, when p = 2, ∑p
µ=1 ξ

µ
i o

urs to be null for half ofthe spins and the related values are de�ned sto
hasti
ally a

ording to thedistribution

P (σi) =
1

2
(δσi+1 + δσi+1). (2.71)However, as we will show in Se
. 2.4.3, this is not the 
ase for this dilutedmodel as it displays wide regions in the parameter spa
e (d, T ) where evenand/or odd symmetri
 mixtures are stable.As we will see in Se
. 2.4.3, the symmetri
 mixture σ(S) 
an be
omeunstable and relax to a di�erent spurious state whi
h is a �hybrid� statebetween the symmetri
 mixture σ(S) and the parallel state σ(P ).To begin and �x ideas, let us set P = 3 and start from the state σi =sign(ξ1i + ξ2i + ξ3i ). In the presen
e of dilution the argument ξ1i + ξ2i + ξ3i 
anbe zero and in that situation one 
an adopt the following hierar
hi
al rule:take σi = ξ1i provided that ξ1i 6= 0; otherwise, if ξ1i = 0, then take σi = ξ2i48



provided that ξ2i 6= 0; otherwise, if also ξ2i = 0, then take σi = ξ3i providedthat ξ3i 6= 0; otherwise, if also ξ3i 6= 0, then put σi = ±1 with probability
1/2. In this way we 
an built a state, generally de�ned for any P , and, being
Ξ =

∑
µ ξ

µ
i , it 
an written as

σi = (1− δΞ,0)sign(Ξ) + δΞ,0[ξ
1
i + δξ1

i
,0ξ

2
i + δξ1

i
,0δξ2

i
,0ξ

3
i + ...], (2.72)whi
h will be referred to as σ(H).The related average Mattis magnetizations 
an be 
al
ulated as the sum ofone 
ontributionm0 (the same for any µ) deriving from the spins 
orrespond-ing to non ambiguous sign fun
tion (i.e., Ξ 6= 0), and another 
ontributiona

ounting for hierar
hi
al 
orre
tions (i.e., Ξ = 0). Let us fo
us on the �rstterm:

m0 = 〈ξµsign(Ξ)〉ξ (2.73)
=

1− d

2

〈sign(1 + P∑

ν 6=µ

ξµ)− sign(−1 +
P∑

ν 6=µ

ξµ)

〉

ξ

(2.74)
= (1− d)

[
P(

P∑

ν 6=µ

ξν < 1)− P(

P∑

ν 6=µ

ξν > 1)

]
, (2.75)where, in the last step, we exploited the impli
it symmetry in pattern entriesand P(

∑P
ν 6=µ ξ

ν ≷ 1) represents the probability that the spe
i�ed inequalityis veri�ed over the distribution (2.1). The latter quantity 
an also be lookedat as the probability for a symmetri
 random walk with holding probability
d to be at distan
e ≷ 1 from its origin after a time span P − 1. Hen
e, weget

m0 = (1− d)[P(0 → 0, P − 1) + P(0 → 1, P − 1)], (2.76)where P(x0 → x, t) is the probability for a symmetri
 random walk withstopping probability d to move from site x0 to site x in t steps, namely
P(x0 → x, t) =

t−(x−x0)∑

s=0

t!

s!
(

t−s−(x−x0)
2

)
!
(

t−s+(x−x0)
2

)
!
ds
(
1− d

2

)t−s

. (2.77)The se
ond 
ontribution to the magnetization is (1 − d)
∑P−1

k=1 P(0 →
1, P − k)dk−1.Finally, by summing the two 
ontributions we �nd the following expres-
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sions for P = 3

m1 =
1

2
(1 + d− 3d2 + d3), (2.78)

m2 =
1

2
(1− d)(1 + d2), (2.79)

m3 =
1

2
(1− 3d+ 5d2 − 3d3), (2.80)and for P = 5

m1 =
1

8
(3 + 9d− 42d2 + 74d3 − 65d4 + 21d5), (2.81)

m2 =
1

8
(1− d)(3 + 6d2 − d4), (2.82)

m3 =
1

8
(1− d)(3− 4d+ 18d2 − 20d3 + 11d4), (2.83)

m4 =
1

8
(1− d)(3− 4d+ 18d2 − 28d3 + 19d4), (2.84)

m5 =
1

8
(1− d)(3− 4d+ 18d2 − 36d3 + 27d4). (2.85)The expressions for arbitrary P 
an be analogously 
al
ulated exa
tly andsome examples are shown in Fig.(2.7).

Figure 2.7: Mattis magnetizations m versus dilution d, a

ording to theanalyti
al expression derived in Se
. 2.3. Ea
h panel refers to a di�erentvalue of P , as spe
i�ed.We expe
t σH to be
ome globally stable in the region of very large dilu-tions (d > dH(P )); intuitively, dilution must be large enough to make mag-netizations rather 
lose to ea
h other in su
h a way that the least signalled50



spins 
orresponding to (−,−, ...,−,+,+, ...,+) (overall (P − 1)/2 negativeentries and (P + 1)/2 positive entries) are stable. This means ∑N
1=1(1 −

δΞ,0)sign(Ξ)ξµi /N >
∑(P−1)/2

k=1 hk(P + 1)/(P − k), where hk = 2
∑

l[(1 −
d)/2]2ldP−2l(P − k)!/[l!(l − 1)!(P − k − 2l + 1)!] and P is odd. This 
on-dition is ful�lled for values of dilution larger than dH(P ), whi
h 
onverges to
1 as P gets larger, hen
e, in order to ta
kle this limit, dilution must be
omea fun
tion of the system size d → d(N). In this 
ase the network itself be-
omes diluted as well and di�erent te
hniques are required; this will not bedis
ussed in this manus
ript.2.4 Stability AnalysisThe set of solutions for self-
onsistent equations (2.35) des
ribes states whosestability may vary strongly. In fa
t, provided the network has rea
hed them,in the noiseless limit (of whatever kind) it would persist in those states.However, the equations do not 
ontain any information about whether thesolutions will be stable against small perturbations, that is to say if thesystem will indeed really thermalize on these states or will fall apart more orless qui
kly. In order to evaluate their stability we need to 
he
k the se
ondderivative of the free-energy [17℄. More pre
isely, we further need to buildup the so 
alled �stability matrix� A with elements

Aµν =
∂2fβ(m)

∂mµ∂mν
. (2.86)Then, we evaluate and diagonalize A at a point m̃, representing a parti
-ular solution of the self-
onsisten
e equations (2.35), in order to determinewhether m̃ is stable or not. Being {Eµ}µ=1,...,P , the set of related eigenvalues,

m̃ is stable whenever all of them are positive.Now, from Eq.(2.34) and (2.86), remembering that α(β, d) = −βf(β, d),we �nd straightforwardly
Aµν = [1− β(1− d)]δµν + βQµν , (2.87)where
Qµν = 〈ξµξν tanh2(β

∑

µ

mµξµ)〉ξ. (2.88)Of 
ourse when d = 0 we re
over Aµν = (1−β)δµν+〈ξµξν tanh2(β
∑

µm
µξµ)〉ξ,namely the result known for the standard Hop�eld model.We now 
onsider several states, known to be solutions of self-
onsisten
eequations (2.35) and 
he
k their stability. In this way we will �nd 
onstraintsin the region (T, d) where those states are stable and then we will build upthe phase diagram. 51



2.4.1 Paramagneti
 StateLet us start with the paramagneti
 state, whi
h is des
ribed by
mµ = 0 ∀µ (2.89)this state trivially ful�lls Eq.(2.35).By repla
ing this expression in Eq.(2.87) and in Eq.(2.88) we �nd

Aµν = δµν [1− β(1− d)]. (2.90)Therefore, in this 
ase, A is diagonal and its eigenvalues are dire
tly Eµ =
Aµµ = 1 − β(1 − d), ∀ν ∈ [1, P ]. We 
an 
on
lude the paramagneti
 stateexists and is stable in the region 1−β(1− d) > 0, that is (remembering that
T = β−1) PM stability ⇒ T > 1− d. (2.91)This region is highlighted in Fig.(2.8).

Figure 2.8: (Color on line) In the parameter spa
e (T, d) we highlightedthe region where the paramagneti
 state exists and is stable. As proved inSe
. 2.4.1, this region in
ludes points ful�lling T < 1 − d; noti
e that thisresult is independent of P .
52



2.4.2 Pure StateLet us now 
onsider the pure state, that is any of the P 
on�gurations
mµ = δµν , (2.92)

m being the extent of the overlap, whi
h, in general, depends on d and on
T . The related self-
onsisten
e equations are

mµ = (1− d) tanh(βmµ), (2.93)
mν 6=µ = 0. (2.94)The �rst equation has solution in the whole half-plane T > 1 − d, and thisensures that, in the same region, the pure-state exists. In order to 
he
k itsstability, we 
al
ulate the stability matrix �nding

Aµν = 0 ∨ µ 6= ν (2.95)
Aµµ = 1− β(1− d)[1− tanh2(βmµ)] (2.96)
Aνν = 1− β(1− d)[1− (1− d) tanh2(βmµ)]. (2.97)Therefore A is diagonal and the eigenvalues are Eµ = Aµµ and Eν = Aνν .Noti
e that these eigenvalues do not depend on P and that Eµ ≥ Eν , so thatthe analysis 
an be restri
ted on Eν . Requiring the positivity for Eν , we getthe region in the plane (T, d), where the pure state is stable; su
h a region isshown in Fig.(2.9). We stress that this result is universal with respe
t to P(in the low-storage regime).
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Figure 2.9: In the parameter spa
e (T, d) we highlighted the region where thepure state exists and is stable. This result was found by numeri
ally solvingthe self-
onsisten
e equation Eq.(2.35) and the inequality Eν > 0, where Eνis the smallest eigenvalues of the stability matrix A (see Eq.(2.97)); noti
ethat this result is independent of P .2.4.3 Symmetri
 StateA symmetri
 mixture of states 
orresponds to 
on�gurations leading to
mµ = m(d, T ) ∀µ ∈ [1, p]mµ = 0 ∀µ ∈ [p+ 1, P ] (2.98)where p ≤ P order parameters are equivalent and non null, while the remain-ing P − p are vanishing.Let us start with the 
ase p = P = 3, yielding m = m(d, T )(1, 1, 1). Inthis spe
ial 
ase the three self-
onsisten
e equations 
ollapse on

m(d, T ) = 2

(
1− d

2

)3 [
tanh2(3βm) + tanh2(βm)

]
+

+ d

(
1− d

2

)2

tanh2(2βm) + 2

(
1− d

2

)
d2 tanh2(βm) (2.99)
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Figure 2.10: In the parameter spa
e (T, d) we highlighted the region wherethe symmetri
 state σ(S), for the spe
ial 
ase p = P = 3, exists and isstable. Noti
e that two dis
onne
ted regions emerge: the one 
orrespondingto lower values of dilution derives from the fa
t that p is odd, while the one
orresponding to larger values of dilution from the fa
t that p = P .and the matrix A reads as



a b b
b a b
b b a


 (2.100)

a and b being parameters related to m, d and β. More pre
isely, theeigenvalues of A are (a+ 2b, a− b, a− b), whi
h 
an be written as
a− b = 1− β(1− d)+2β

{
tanh2(2βm)d

(
1− d

2

)2

+

+ tanh2(βm)

[
d2(1− d)

2
+ (2.101)

+ 4

(
1− d

2

)3 ]}
, (2.102)55



a+ 2b = 1− β(1− d) + 2β

{
tanh2(3βm)3

(
1− d

2

)3

+

+ tanh2(βm)

[
d2(1− d)

2
+

(
1− d

2

)3 ]}
+ (2.103)

+8dβ tanh2(2βm)

(
1− d

2

)2

. (2.104)The 
onditions for the existen
e and the stability of the symmetri
, oddmixture with p = P = 3, yield a system of equations whi
h was solvednumeri
ally and the region were su
h 
onditions are all ful�lled is shown inFig.(2.4.3). Noti
e that the region is a
tually made up of two dis
onne
tedparts, ea
h displaying pe
uliar features, as explained later.This result is robust with respe
t to P , being P odd and p = P .

Figure 2.11: In this plot we fo
used on the region of the parameter spa
e
(T, d), where odd symmetri
 spurious state exist and are stable. In parti
ular,we 
hose P = 7 and we 
onsidered any possible odd mixture, i.e. p = 3, p = 5and p = 7; ea
h value of p is represented by a di�erent 
urve. Noti
e thatthe smaller p and the wider the region, analogously to the standard Hop�eldmodel.We 
an further generalize the analysis by 
onsidering P > p, still being56



p odd. In this 
ase we get the following stability matrix



a b b 0
b a b 0
b b a 0
0 0 0 c


 (2.105)with eigenvalues (a− b, a− b, a + 2b, c), where

c = 1− β(1− d)

×
{
1− 2

[(1− d

2

)3

[tanh2(3m) + 3 tanh2(m)] + d

(
1− d

2

)2

× 3 tanh2(2m) + 3
1− d

2
d2 tanh2(m)

]

×
[
1− 2

(
1− d

2

)3

[tanh2(3βm) + 3 tanh2(βm)]

+ 3d

(
1− d

2

)2

tanh2(2βm) + 3
1− d

2
d2 tanh2(βm)

]} (2.106)has degenera
y P − p.Su
h states (p < P , p odd) are stable only at small d. This is due to thefa
t that the eigenvalue c o

urs only when p < P and it reads as (µ > p):
Aµµ = [1− β(1− d)] + β〈(ξµ)2〉ξ〈tanh2[βm

p∑

ν

ξν]〉ξ

= [1− β(1− d)] + β(1− d)〈tanh2[βm

p∑

ν

ξν ]〉ξ. (2.107)Thus, one 
an see that the r.h.s term 
ontains fa
tors (1 − d) at least ofse
ond order in su
h a way that when d is 
lose to 1, i.e. for high dilution,and T < 1− d, su
h term be
omes negative. On the other hand, in the 
ase
µ ≤ p, we get

Aµµ = [1− β(1− d)] + β〈(ξµ)2 tanh2[βm

p∑

ν=1

ξν ]〉ξand therefore the r.h.s term 
ontains even �rst order term (1− d), whi
h are
omparable with β(1− d).Moreover, we �nd that the p-
omponent, odd symmetri
 state exists andis stable in a region of the spa
e (T, d), whi
h gets smaller and smaller as p57



Figure 2.12: In this plot we fo
used on the region of the parameter spa
e
(T, d), where symmetri
 spurious state with p = P exist and are stable. Inparti
ular, we 
hose P = 7 and we 
onsidered any possible mixture, i.e.
p = 3, p = 4, p = 5, p = 6 and p = 7; ea
h value of p is represented by adi�erent 
urve. Noti
e that the smaller p and the wider the region, yet theregion tends to an �asymptoti
 shape�.grows (see Fig.(2.11)). The emergen
e of su
h states 
an be seen as a featureof robustness of the standard Hop�eld model with respe
t to dilution.Finally, the 
ase P = p always admits a region of existen
e and stabilityin the regime of high dilution. The latter region is independent of the parityand depends slightly on P (see Fig.(2.12)). The emergen
e of su
h states isdue to the failure of hierar
hi
al retrieval, namely uniformity prevails.2.4.4 Parallel StateThe parallel-retrieval state 
an be looked at as the extension to arbitraryvalues of d of the pure state holding for the spe
ial 
ase d = 0. We re
allthat in the noiseless limit the parallel-retrieval state 
an be des
ribed as

mµ = (1− d)dµ−1. (2.108)58



In this 
ase the stability matrix is diagonal with terms:
Aµµ = 1−β(1−d)+β〈(ξµ)2 tanh2[β(1−d)(ξ1+ dξ2+ ...+ dP ξP )]〉, (2.109)and, 
onsistently, taking the limit β → ∞, we get the simpli�ed form
Aµµ = lim

β→∞
= 1−β(1−d)+β〈(ξµ)2(1− δ[(ξ1+ dξ2+ ...+ dP ξP )])〉. (2.110)Now, the third term in the r.h.s. is either β〈(ξµ)2〉 = β(1 − d) (when thepolynomial of order P is zero) or 0; the latter 
ase would trivially yield

Aµµ < 0. Therefore, in the limit β → ∞ the stability of the parallel-retrievalstate is 
onstrained by the smallest real root ∈ [0, 1] of the polynomial ξ1 +
dξ2 + ... + dP ξP with ξi = 1, 0,−1. This 
orresponds to ξ1 = 1 and ξi =
−1, ∀i > 1, under gauge symmetry and returns the same result found, from amore empiri
al point of view, in Se
. 2.3. More pre
isely, the 
riti
al dilution
onverges exponentially to 1/2 as P grows.In parti
ular, for P = 3 we �nd that the parallel-retrieval state exists andis stable in the interval d ∈ (0,

√
5−1
2

) ≃ (0, 0.618). The point dc(3) = √
5−1
2
orresponds to the unique real root in (0, 1).When noise is introdu
ed, the 
riti
al dilution dc, separating the parallel-retrieval state from spurious states, is shifted towards larger values, as sug-gested by Eq.(2.109). On the opposite side, namely in the regime of smalldilution, the parallel state is progressively depleted and, as the temperatureis in
reased, magnetizations vanish, starting from mP , and pro
eeding upto m2. One 
an distinguish a set of temperatures TP (d) < TP−1(d) < ... <

T2(d) < T1(d), su
h that when T > Tk(d), all magnetizations mi, ∀i ≤ k arenull on average. Hen
e, above T2(d) the pure state retrieval is re
overed,while above T1(d) = 1− d the paramagneti
 state emerges.In Fig.(2.13) we highlight the region of the parameter spa
e (T, d) wheresu
h parallel states exist and are stable. This was obtained numeri
ally forthe 
ase P = 5; for larger values of P the region is slightly restri
ted toa

ount for the shift in dc.2.5 Monte Carlo SimulationsIn this Se
tion we dis
uss details on Monte Carlo simulations.All the simulations were performed on a system Ubuntu Linux with Intel CoreI7, 3.2Ghz, 12 CPU, Nvidia-Fermi te
hnology, 12 Gb RAM and OpenMPlibraries. The simulations were 
arried out sequentially a

ording to thefollowing algorithm: 59



Figure 2.13: In this plot we fo
used on the region of the parameter spa
e
(T, d), where parallel retrieval states exist and are stable. In parti
ular, we
hose P = 5 and we 
onsidered any possible state with k = 2, k = 3, k = 4and k = 5 non-null magnetization.1. Building and storing of the 
oupling matrix.First, we generate P patterns a

ording to the distribution (d = 0):

P (ξµi ) =
1− d

2
δ(ξµ

i
−1) +

1− d

2
δ(ξµ

i
+1) + dδ(ξµ

i
), (2.111)then, we build a 
har-matrix Jij =

∑
µ ξ

µ
i ξ

µ
j with entries ranging ∈

[0, 2P +1] and a
ting as key pointing to another hash-matrix J̃ij wherethe N(N − 1)/2 real numbers a

ounting for the Hebb intera
tionsare stored. If the amount of patterns do not ex
eed P = 256, i.e.one byte, it is then possible to a

ount for 105 spins with no need ofswapping on hard disk (whi
h would sensibly a�e
t the performan
e ofthe simulation). This 
ondition is ful�lled for the low storage regimewe are interested in.2. Initialize the network status.We 
he
ked the two standard approa
hes: The �rst is to initialize the60



network in a (assumed) �xed point of the dynami
s, namely
σi = ξ1i ∀i ∈ [1, ..., N ], (2.112)and 
he
k its evolution: This gives information on the stru
ture of thebasins of attra
tion of the minima as we vary the dilution (see Point 5).The se
ond approa
h is to initialize the network randomly: We set

σi = 1 with probability 0.5 and σi = −1 otherwise. This is a stan-dard pro
edure to follow the relaxation to a �xed point with no initialassumption and gives information on the stru
ture of the basins ofattra
tion of the minima at �xed dilution.3. Evolution dynami
sThe spin status evolves a

ording to a standard (random and sequen-tial) Glauber dynami
s for Ising-like systems [17℄: At ea
h time inter-val, the spins state is updated a

ording to its input signals, where theprobability of the unit's a
tivity is equal to a re
ti�ed value of the input(logit transfer fun
tion), i.e.
Pr[σi(t) = ±1] =

1

1 + exp[∓2β
∑

j Jijσj ]
. (2.113)The �eld-updating pro
ess is managed by a linked list whose parsingis parallelized through OpenMP.4. Convergen
e of the simulation.Due to the pe
uliar stru
ture of the �elds indu
ed by pattern dilution,the �eld insisting on a given spin may be zero and the related spinwould �ip inde�nitely. To avoid this pathologi
al situation we skipthe updating of these �paramagneti
" spins and fo
us on the remainingones: In the zero noise limit 
onvergen
e is almost immediate, su
h thatwhen the whole ensemble of spins remains un
hanged for the whole N -length of the update 
y
le, dynami
s is stopped and the resulting Ppattern overlaps are printed on a �le.Relaxation at non-zero noise is 
he
ked through the linked list (seenext step): The pointer of ea
h spin that is aligned with its own �eld isstored, the ones of spins with no net �elds are removed from the linkedlist, while all the other spins, mismat
hed to their own �elds, are addedinto the linked list. 61



5. Making the P patterns sparser.There 
an be two deeply di�erent ways of in
reasing dilution. Theformer is a Bernoullian approa
h and essentially if one starts from a di-lution d = 0.45 toward a dilution d = 0.5 (just as a 
on
rete example)may forget the starting information and generate a random patternwith on average one half of zero entries; the latter is a Markovian di-lution by whi
h one needs to start from the previous 
oupling matrix(and patterns) diluted at d = 0.45 and in
reases dilution on that stru
-ture.Dilution is tuned at steps of 0.01, ranging from d = 0 to d = 1.We take as the state of the network the last equilibrium state, then goto point (3).

Figure 2.14: Data from Monte Carlo simulations (symbols) and analyti
alpredi
tions (solid lines) obtained for a system with P = 3 patterns and setat a temperature T = 0.06 are 
ompared. Simulations are performed on aset of 105 spins. The dashed line at d ≈ 0.06 marks the boundary of the purestate regime; the dotted line at d ≈ 0.78 marks the onset of the symmetri
phase; the semi-dashed line at d ≈ 0.94 marks the onset of the paramgneti
phase.Through Markovian dilution, we 
an follow the evolution of the pure Hop-�eld attra
tors while tuning d. In general, the results obtained via numeri
alsimulations are in perfe
t agreement with the theory: This point is not sur-prising, as, due to the load storage regime, limN→∞ P/N = 0, hen
e repli
asymmetry is never broken and our solution is the real solution of the model(no approximations have been made).62



Chapter 3Hierar
hi
al Stru
turesIn the last de
ade some steps forward towardmore realisti
 systems have beena
hieved merging statisti
al me
hani
s [42,59,65℄ and graph theory [17,19℄. Inparti
ular, mathemati
al methodologies were developed to deal with spin sys-tems embedded in random graphs, where the ideal, full homogeneity amongspins is lost [23, 24℄. Thus, networks of spins arranged a

ording to Erdös-Rényi [26℄, small-world [25℄, or s
ale-free [47℄ topologies were addressed, yet�nite-dimensional networks were still out of debate.Fo
using on neural networks, it should be noted that, beyond the di�
ultyof treating non-trivial topologies for spin ar
hite
tures, one has also to 
opewith the 
omplexity of their 
oupling pattern, meant to en
ode the Hebbianlearning rule. The emerging statisti
al me
hani
s is mu
h tri
kier than thatfor ferromagnets; indeed neural networks 
an behave either as ferromagnetsor as spin-glasses, a

ording to the parameter settings: their phase spa
e issplit into several dis
onne
ted pure states, ea
h 
oding for a parti
ular storedpattern, so to interpret the thermalization of the system within a parti
ularenergy valley as the spontaneous retrieval of the stored pattern asso
iated tothat valley. However in the high-storage limit, where the amount of patternss
ales linearly with the number of spins, neural networks approa
h pure spin-glasses (loosing retrieval 
apabilities at the bla
kout 
atastrophe [17℄) and,as a simple Central Limit argument shows [4℄, when the amount of patternsdiverge faster that the amount of spins they be
ome purely spin glasses. Forthe sake of exhaustiveness we also stress that, even in the retrieval region,neural networks are exa
tly linear 
ombinations of two-party spin glasses[2,3℄: due to the 
ombination of su
h di�
ulties, neural networks on a �nitedimensional topology have not been extensively investigated so far.However, very re
ently, a non-mean-�eld model, where a topologi
al dis-tan
e among spins 
an be de�ned and 
ouplings 
an be a

ordingly res
aled,turned out to be, to some extent, treatable also for 
omplex systems su
h63



Figure 3.1: S
hemati
 representation of the hierar
hi
al topology, that un-derlies the system under study: green spots represent nodes where spins live,while di�erent 
olors and thi
kness for the links mimi
 di�erent intensities intheir mutual intera
tions: the brighter and thinner the link, the smaller therelated 
oupling.as spin-glasses [15, 56℄. More pre
isely, spins are arranged a

ording to ahierar
hi
al ar
hite
ture as shown in Fig.(3.1): ea
h pair of nearest-neighborspins form a �dimer� 
onne
ted with the strongest 
oupling, then spins be-longing to nearest �dimers� intera
t ea
h other with a weaker 
oupling andso on re
ursively. In parti
ular, the Sherrington-Kirkpatri
k model for spin-glasses de�ned on the hierar
hi
al topology has been investigated in [55℄:despite a full analyti
 formulation of its solution still la
ks, renormalizationte
hniques, [14, 56℄, rigorous bounds on its free-energies [54℄ and extensivenumeri
s [38, 39℄ 
an be a
hieved nowadays and they give extremely sharpshints on the thermodynami
 behavior of systems de�ned on these pe
uliartopologies.Remarkably, as we are going to show, when implementing the Hebb pre-s
ription for learning on these hierar
hi
al networks, an impressive phasediagram, mu
h ri
her than the mean-�eld 
ounterpart, emerges. More pre-
isely, spins turn out to be able to or
hestrate both serial pro
essing (namelysharp and extensive retrieval of a pattern of information), as well as parallelpro
essing (namely retrieval of di�erent patterns simultaneously).The remaining of the 
hapter is stru
tured as follows: in the next subse
-tions we provide a streamlined des
ription of mean-�eld serial and parallelpro
essors, and we introdu
e the hierar
hi
al s
enario. Then, we split inthree se
tions our �ndings a

ording to the methods exploited for investiga-tion: statisti
al me
hani
s, signal-to-noise te
hnique and extensive numeri
alsimulations. All these approa
hes 
onsistently 
onverge to the s
enario out-lined above. Seeking for 
larity and 
ompleteness, ea
h te
hnique is �rstapplied to a ferromagneti
 hierar
hi
al mode (whi
h 
an be thought of as64



a trivial one-pattern neural network and a
ts as a test-
ase) and then for alow-storage hierar
hi
al Hop�eld model.3.1 The Network on a Hierar
hi
al Topology.We now start our investigation of a neural network embedded in the hier-ar
hi
al topology depi
ted in Fig.(3.1). As mentioned, two main di�
ultiesare interplaying: the 
omplexity of the emergent energy lands
ape (essen-tially due to frustration in the 
oupling pattern) and the non-mean-�eldnature of the model (essentially due to the inhomogeneity of the networkar
hite
ture). It is therefore safer to pro
eed by steps dis
ussing �rst thehierar
hi
al ferromagnet (hen
e retaining only the se
ond di�
ulty), knownas Dyson hierar
hi
al model (DHM). Then, via the Mattis gauge we rea
ha Mattis hierar
hi
al model (MHN) and �nally we extend to the Hop�eldhierar
hi
al model (HHM).The Dyson hierar
hi
al model [37℄ is a system made of N binary (Ising)spins Si = ±1, i = 1, ..., N in mutual intera
tion and built re
ursively in su
ha way that the system at the (k + 1)-th iteration 
ontains N = 2k+1 spinsand is obtained by taking two repli
as of the system at the k-th iteration(ea
h made of 2k spins) and 
onne
ting all possible 
ouples with overall (N
2

)
ouplings equal to −J/2σ(k+1), J and σ being real s
alars tuning the intera
-tion strength: the former a
ts uniformly over the network, the latter triggersthe de
ay with the �distan
e� among spins. The resulting Hamiltonian 
anbe written re
ursively as
HDyson

k+1 (S|J, σ) = HDyson
k (S1|J, σ)+HDyson

k (S2|J, σ)−
J

22σ(k+1)

2k+1∑

i<j

SiSj , (3.1)where S1 = {Si}2ki=1 and S2 = {Sj}2k+1

i=2k+1, while HDyson
0 ≡ 0.Before pro
eeding it is worth stressing that the parameters J and σ arebounded as J > 0 and σ ∈ (1

2
, 1): the former trivially arises from theferromagneti
 nature of the model whi
h makes neighboring spin to �imitate�ea
h other, while the latter 
an be understood by noti
ing that for σ > 1 theintera
tion energy goes to zero in the thermodynami
 limit1, while for σ < 1

2the intera
tion energy is no longer linearly-additive implying thermodynami
1The sum ∑2k+1

i<j brings a 
ontribution s
aling like 22(k+1) ∼ N2, while the pre-fa
tors
ales as 2−2σ(k+1) ∼ N−2σ, thus, when σ > 1 the internal energy (the thermodynami
alexpe
tation of the Hamiltonian normalized over the system size) is overall vanishing inthe thermodynami
 limit k → ∞. 65



instability2. Moreover, this model is intrinsi
ally non-mean-�eld be
ause anotion of metri
s, or distan
e, has been impli
itly introdu
ed: two nodes aresaid to be at distan
e d if they get �rst 
onne
ted at the d-th iteration. Ingeneral, 
alling dij the distan
e between the spins i, j, (thus dij = 1, ..., k+1),we 
an asso
iate to ea
h 
ouple a distant-dependent 
oupling Jij and rewriteEq.(3.1) in a more familiar form as
HDyson

k+1 (S|J, σ) = −
∑

i<j

JijSiSj, (3.2)where
Jij =

k+1∑

l=dij

J

22σl
= J

4σ−dijσ − 4−kσ−σ

4σ − 1
. (3.3)The next step is to gauge the spins à la Mattis, namely, on
e extra
tedquen
hed values for the pattern entries (ξµi )µ=1 from the distribution

P (ξµi ) =
1

2
δ(ξµi − 1) +

1

2
δ(ξµi + 1), (3.4)we repla
e Si with ξ1Si. This results in the following hierar
hi
al Mattismodel

HMattis
k+1 (S|J, σ) = −

∑

i<j

Jijξ
1
i ξ

1
jSiSj . (3.5)Finally, summing over p patterns, we obtain the Hop�eld hierar
hi
al model(HHM) that reads as (for J = 1)

HHop�eld
k+1 (S|ξ, σ) = HHop�eld

k (S1|ξ, σ) +HHop�eld
k (S2|ξ, σ)

− 1

2

1

22σ(k+1)

p∑

µ=1

2k+1∑

i,j=1

ξµi ξ
µ
j SiSj , (3.6)with HHop�eld

0 ≡ 0 and σ still within the previous bounds, i.e. σ ∈ (1
2
, 1). Asanti
ipated, here we restri
t the analysis to low storage limit only: re
alling

N = 2k+1, we 
an �x p �nite at �rst so to move straightforwardly from theDHM to the HHM (as the notion of distan
e is preserved) and, posing
Jij =

4σ−dijσ − 4−kσ−σ

4σ − 1

p∑

µ=1

ξµi ξ
µ
j , (3.7)2The sum ∑2k+1

i<j brings a 
ontribution s
aling like 22(k+1) ∼ N2, while the pre-fa
tors
ales as 2−2σ(k+1) ∼ N−2σ, thus, when σ < 1
2 the intensive energy is overall divergent inthe thermodynami
 limit k → ∞. 66



we 
an write equivalently the Hamiltonian 3.6 in the more 
ompa
t form
HHop�eld

k+1 (S|ξ, σ) = −
2k+1∑

i<j

JijSiSj . (3.8)Thus in the HHM the Hebbian pres
ription is 
oupled with a fun
tion of thespin's distan
e.3.2 Insights From Statisti
al Me
hani
sHere we summarize �ndings that 
an be a
hieved by suitably extending inter-polation te
hniques [35,36℄ beyond the mean-�eld paradigm: it is importantto stress on
e more that, as this strand gives only (not-mean-�eld) bounds onthe free energy (and not the full solution), the self-
onsisten
ies that resultare not the true self-
onsisten
ies of the model.3.2.1 Free Energies in the Dyson ModelAs the Hamiltonian Hk+1(S|J, σ) is given (see Eq.(3.1)) and the noise level
β−1 = T (where T stands for noise for histori
al reasons) introdu
ed, it ispossible to de�ne the partition fun
tion Zk+1(β, J, σ) at �nite volume k + 1as

Zk+1(β, J, σ) =
∑

{S}
exp [−βHk+1(S|J, σ)] , (3.9)and the related free energy αk+1(β, J, σ), namely the intensive logarithm ofthe partition fun
tion, as

αk+1(β, J, σ) =
1

2k+1
log
∑

{S}
exp



−βHk+1(~S) + h

2k+1∑

i=1

Si



 , (3.10)where the sum runs over all possible 22k+1 spin 
on�gurations. Note that theusual free energy f is related to α by f(β) = −βα(β), hen
e we will �ndthermodynami
 equilibria 
he
king the maxima of α(β) and not the minima.We are interested in an expli
it expression of the in�nite volume limit of theintensive free energy, de�ned as
α(β, J, σ) = lim

k→∞
αk+1(β, J, σ), (3.11)in terms of suitably introdu
ed magnetizations m, that a
t as order param-eters for the theory. In fa
t, as the free energy is just the di�eren
e between67



the internal energy E of the system (i.e. the mean-value of the Hamilto-nian) weighted by β, and the entropy S, namely α(β, J, σ) = −βE(β, J, σ)+
S(β, J, σ), extremization of the free-energy over the order parameters equalsto imposing thermodynami
 pres
riptions (i.e. minimum energy and maxi-mum entropy prin
iples) and therefore allows us to get a des
ription of thethermodynami
 equilibria of the system in terms of the self-
onsisten
ies forthese m's.To this task we introdu
e the global magnetization m, de�ned as the limit
m = limk→∞mk+1 where

mk+1 =
1

2k+1

2k+1∑

i=1

Si, (3.12)and, re
ursively and with a little abuse of notation, level by level (over klevels) the k magnetizations ~ma, ..., ~mk, as the same k → ∞ limit of thefollowing quantities (we write expli
itly only the two upper magnetizationsrelated to the two main 
lusters left and right -see Fig.(3.1):
m1

k =
1

2k

2k∑

i=1

Si, m2
k =

1

2k

2k+1∑

i=2k+1

Si, (3.13)and so on. The thermodynami
al averages are denoted by the bra
kets 〈·〉su
h that, e.g. for the observable mk+1(β, J, σ), we 
an write
〈mk+1(β, J, σ)〉 =

∑
{σ}mk+1e

−βHk+1(~S|J,σ)

Zk+1(β, J, σ)
, (3.14)and 
learly 〈m(β, J, σ)〉 = limk→∞〈mk+1(β, J, σ)〉.Starting with the pure ferromagneti
 
ase, whi
h mirrors here the serial re-trieval of a single pattern in the Hop�eld 
ounterpart, its free energy 
an bebounded as (see also [54℄)

α(h, β, J, σ) ≥ sup
m

{log 2 + log cosh
[
h+ βmJ(C2σ−1+ (3.15)

− C2σ)
]
− βJ

2
(C2σ−1 − C2σ)m

2}, (3.16)where
C2σ =

1

22σ − 1
, (3.17)

C2σ−1 =
1

22σ+1 − 1
. (3.18)68



Now let us suppose that, instead of a global ordering, the system 
an bee�e
tively split in two parts (the two largest 
ommunities 
alled left and rightin Fig.(3.1)), with two di�erent magnetizations mleft = m1 and mright =
m2; we also assume mleft = −mright. Through the interpolative route weapproa
h a bound for the free energy related to su
h a mixed state. Westress the fa
t that the upper link, 
onne
ting the two 
ommunities withopposite magnetization, remains and it gives a 
ontribute m in the systemas (see also [28℄)
αk+1 ≥
1

2
log cosh

{
h + βJ

[
m(2(k+1)(1−2σ)) +m1

(
k∑

l=1

2l(1−2σ) −
k+1∑

l=1

2−2lσ

)]}

+
1

2
log cosh

{
h + βJ

[
m(2(k+1)(1−2σ)) +m2

(
k∑

l=1

2l(1−2σ) −
k+1∑

l=1

2−2lσ

)]}

− βJ

2

[(
k∑

l=1

2l(1−2σ) −
k+1∑

l=1

2−2lσ

)(
m2

1 +m2
2

2

)
− 2(k+1)(1−2σ)m2

]

+ log 2. (3.19)Noti
e that, thanks to the gauge simmetry Si → −Si, the state 
onsideredmirrors the parallel retrieval of two patterns in the Hop�eld 
ounterpart.Identifying m1 = m2 = m we re
over the previous bound as expe
ted,and, quite remarkably, in the thermodynami
 limit the two free energiesassume the same values, thus serial and parallel retrieval are both equallya

omplished by the network. Imposing thermodynami
 stability we obtainthe following self-
onsisten
ies
m1,2 = tanh(h+ βJm1,2(C2σ−1 − C2σ)), (3.20)whose behavior is depi
ted in Fig.(3.2).3.2.2 Serial/Parallel Retrieval in Hop�eld Hierar
hi
alModelGuided by the ferromagneti
 model just des
ribed, we now turn to the hi-erar
hi
al Hop�eld model (HHM) and start its analysis from a statisti
alme
hani
al perspe
tive, namely we infer the thermodynami
 behavior of a
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system des
ribed by the following re
ursive Hamiltonian
HHopfield

k+1 (S|ξ, σ) = HHopfield
k (S1|ξ, σ) +HHopfield

k (S2|ξ, σ) (3.21)
− 1

2

1

22σ(k+1)

p∑

µ=1

2k+1∑

i,j=1

ξµi ξ
µ
j σiσj.To this task, we introdu
e suitably p Mattis magnetizations (or Mattis over-laps), over the whole system, as

mµ =
1

2k+1

2k+1∑

i=1

ξµi Si, µ ∈ [1, p]. (3.22)Even in this 
ontext, the de�nition above 
an a

ount for the state of inner
lusters by the sum over the (pertinent) spins. For instan
e, fo
using on thetwo larger 
ommunities we have the 2p Mattis magnetizations
mµ

left =
1

2k

2k∑

i=1

ξµi Si, mµ
right =

1

2k

2k+1∑

i=2k+1

ξµi Si, (3.23)with µ ∈ [1, p]. Again, we will not enter in the mathemati
al details 
on
ern-ing non-mean-�eld bounds for the model free energy (as they 
an be foundin [28℄), while we streamline dire
tly the physi
al results.Still mirroring the previous se
tion, we are interested in obtaining a boundlimiting the free energy of the HHM, the latter being de�ned as the k → ∞limit of αk+1, whose expression reads
αk+1(β, {hµ}, σ) =

1

2k+1
log
∑

{S}
exp


−βHk+1(~S) +

p∑

µ=1

hµ
2k+1∑

i=1

Si


 , (3.24)where we a

ounted also for p external stimuli hµ.The non-mean �eld bound for serial pro
essing free energy reads as

α(β, {hµ}, p) ≥ sup
m

[log 2 +
〈
log cosh

( p∑

µ=1

[
hµ + βmµ(C2σ−1 − C2σ)

]
ξµ
)〉

ξ

− β

2

p∑

µ=1

〈(mµ)2〉ξ(C2σ−1 − C2σ)], (3.25)with optimal order parameters ful�lling
〈mµ〉ξ = 〈ξµ tanh[β

p∑

ν=1

[hν + (C2σ−1 − C2σ)m
ν ] ξν]〉ξ,70



and whose 
riti
al noise is βNMF
c = C2σ−1 − C2σ, where the index NMFstresses that the estimate was obtained through a non mean �eld bound ofthe free energy.Of 
ourse we 
an assume again that the two di�erent families of Mattismagnetizations ({mµ

1,2}pµ=1) (those playing for the two inner blo
ks of spinsleft and right lying under the k + 1-th level) behave independently as thehigher links 
onne
ting them go to zero qui
kly for k → ∞ and we 
anstart the interpolative ma
hine: following this way we generalize the serialpro
essing analysis to a two-pattern parallel retrieval analysis, whi
h resultsin the following bound for the related free energy:
α(β, {hµ}, p) ≥ sup

{mµ
1,2}

[log 2 +
1

2

〈
log cosh

{ p∑

µ=1

[
hµ + βmµ

1

( k∑

l=1

2l(1−2σ)

−
k∑

l=1

2l(−2σ)
)
+ βmµ2(k+1)(1−2σ)

]
ξµ
}〉

ξ
+

1

2

〈
log cosh

{ p∑

µ=1

[
hµ + βmµ

2

×[
k∑

l=1

2l(1−2σ) −
k∑

l=1

2l(−2σ)] + βmµ2(k+1)(1−2σ)
]
ξµ
}〉

ξ
− β

2

[ k∑

l=1

2l(1−2σ)

−
k∑

l=1

2l(−2σ)
]
·

p∑

µ=1

〈(mµ
1 )

2〉ξ + 〈(mµ
2 )

2〉ξ2
2

− β

2
2(k+1)(1−2σ)

p∑

µ=1

〈(mµ)2〉ξ,Here we do not investigate further the parallel retrieval of larger ensemblesof patterns, as the way to pro
eed is identi
al to the outlined one, but wesimply noti
e that, if we want the system to handle M patterns, hen
e weassume it e�e
tively splits M times into sub-
lusters until the k + 1 −Mlevel, then the pro
edure keeps on working as long as
lim
k→∞

k+1∑

l=k+1−M

2l(1−2σ)

p∑

µ=1

mµ
l = 0. (3.26)Sin
e the magnetizations are bounded, in the worst 
ase we have

k+1∑

l=k+1−M

2l(1−2σ)

p∑

µ=1

mµ
l ≤ p

k+1∑

l=k+1−M

2l(1−2σ)

≤ p
∞∑

l=k+1−M

2l(1−2σ) ∝ 2(1−2σ)(k+1−M)p.(3.27)If we want the system to handle up to p patterns, we need p di�erent blo
ksof spins and then M = log(p). 71



Figure 3.2: Main plots: numeri
al solutions of the non-mean-�eld self-
onsistent equations for the parallel state (left panel) and for the pure state(right panel) of the Dyson model (see Eq.(3.20)) obtained for di�erent val-ues of σ (as explained by the legend) and plotted versus a res
aled noise.Note that by res
aling the noise the dependen
e on σ is lost and all 
urvesare 
ollapsed. Insets: 
omparison between the numeri
al solutions of thenon-mean-�eld self-
onsistent equations (dashed line) and of the mean-�eldself-
onsistent equations (solid line) as a fun
tion of the noise and for �xed
σ = 1 (see Eq.(3.20)). Noti
e that for the Hop�eld hierar
hi
al model, nu-meri
al solutions for the Mattis magnetizations pertaining to the pure andto the mixed states are the same.3.3 Insights From Signal-to-Noise Te
hniquesResults from statisti
al me
hani
s gave stringent hints on the network's be-havior, however they a
t as bounds only.This requires further inspe
tion via other te
hniques: the �rst route we ex-ploit is signal-to-noise. Through the latter, beyond generally 
on�rming thepredi
tions obtained via the �rst path, we obtain sharper statements regard-ing the evolution of the Mattis order parameters. These two approa
hesare 
omplementary: while statisti
al me
hani
s des
ribes the system with
N → ∞ and β < ∞, with the signal-to-noise te
hnique we inspe
t theregime N <∞ and β → ∞.3.3.1 A Glan
e at the Fields in the Dyson NetworkPlan of this Se
tion is to look at the dynami
ally stable 
on�gurations ofthe spins, that is to say, we investigate the 
on�gurations (global and lo-72




al minima) that imply ea
h spin Si to be aligned with its 
orresponding�eld hi(S), i.e. Si hi(S) > 0, ∀i. This approa
h basi
ally 
orresponds to anegligible-noise statisti
al me
hani
al analysis but it is mathemati
ally mu
hmore tra
table.We 
an rearrange the Dyson Hamiltonian in a useful form for su
h an inves-tigation as follows
HDyson

k+1 ({S1...S2k+1}) = −J
2

k+1∑

µ=1

2k+1∑

i=1

Si

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj, (3.28)thus, highlighting the �eld hi insisting on the spin Si we 
an write
HDyson

k+1 ({S1...S2k+1}) = −
2k+1∑

i=1

Sihi(S), (3.29)
hi(S) = J

k+1∑

µ=1

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj . (3.30)While Glauber dynami
s will be dis
ussed in Se
. 4 (dedi
ated to numer-i
s), we just noti
e here that the mi
ros
opi
 law governing the evolution ofthe system 
an be de�ned as a sto
hasti
 alignment to lo
al �eld hi(S).
Si(t+ δt) = sign {tanh [βhi (S (t))] + ηi(t)} ,where the sto
hasti
ity lies in the independent random numbers ηi(t), uni-formly distributed over the interval [−1, 1] and tuned by β. The latter 
on-tinues to rule the noise level even dynami
ally as it ampli�es, or suppresses,the smoothness of the hyperboli
 tangent; in parti
ular, in the noiseless limit

β → ∞ we get
Si(t+ δt) = sign [hi (S(t))] . (3.31)This is 
ru
ial for 
he
king the stability of a state as, if Sihi(S) > 0 ∀ i ∈

[1, N ], the 
on�guration {S} is dynami
ally stable (at least for β → ∞, as inthe presen
e of noise there is a β-dependent probability to �u
tuate away).We keep the previous ensemble of non-independent order parameters mn
ide�ned in detail as

mn
i (S) =

1

2n

2n×i∑

j=2n×i−(2n−1)

Sj with i = 1, 2, ..., 2k+1−n and n = 0, 1, 2, ...k+1,(3.32)73



namely




m0
i = Si with i = 1, 2, .., 2k+1,

m1
i =

1
2

∑2i
j=2i−1 Sj with i = 1, 2, .., 2k → m1

1 =
1
2

∑2
j=1 Sj,

m2
i =

1
22

∑22i
j=22i−(22−1) Sj with i = 1, 2, .., 2k−1 → m2

1 =
1
4

∑4
j=1 Sj,

.....

mk+1
1 = 1

2k+1

∑2k+1

j=1 Sj .From Eq.(3.29), we get the following fundamental expression for the �elds
hi(S) =



J
k+1∑

µ=1

(
k+1∑

l=µ

1

22σ

)l


 2µ−1mµ−1
f(µ,i), (3.33)where we used the relationmµ−1

f(µ,i) =
∑

{j}:dij=µ
Sj. Thus the order parameters

mµ−1
f(µ,i) represent the magnetizations assumed by spins that lie at distan
e µfrom Si. Note that the fun
tion f(µ, i) 
an be estimated through the �oorfun
tion ⌊·⌋ (e.g., ⌊3.14⌋ = 3) as

f(µ, i) =
⌊ i+ (2µ−1 − 1)

2µ−1

⌋
+ (−1)(⌊

i+(2µ−1
−1)

2µ−1 ⌋+1).Finally, we noti
e that the largest value allowed for a �eld -away from theboundary value σ = 1/2- for large k approa
hes a plateau (whose boundaries-in the (k, σ) plane- are important for �nite-size-s
aling during numeri
alanalysis), hen
e we 
an easily 
he
k the right �eld normalization
Q(σ, k + 1) =

k+1∑

µ=1

J(µ, k + 1, σ)2µ−1 =

= J
2−2(k+1)σ

(
22(k+2)σ − 2k+2σ+2 + 2k+2 + 4σ − 2

)

−3 × 4σ + 16σ + 2
, (3.34)as Q(σ, k) represents the largest value allowed by a �eld.Note that in the thermodynami
 limit

lim
k→∞

Q(σ, k) = Q(σ) = J
22σ

−3 × 4σ + 42σ + 2
, (3.35)that is Q is always bounded whenever σ > 1

2
.74



3.3.2 Metastabilities in the Dyson Network: NoiselessCase.We 
an now pro
eed to the stability analysis explaining in details a few test
ases that show how to pro
eed for any other 
ase of further interest:
[a] the global ferromagneti
 state, i.e. Si = +1, i ∈ (1, ..., 2k+1).
[b] the parallel/mixed state, i.e. the �rst half of spins up and the se
ond halfdown, thus Si = +1, i ∈ (1, ..., 2k) and Si = −1, i ∈ (2k + 1, ..., 2k+1).
[c] the dimer, i.e. S1 = S2 = +1 while Si = −1 for all i 6= (1, 2).
[d] the square, i.e. S1 = S2 = S3 = S4 = +1 while Si = −1 for all i > 4.Let us go through ea
h 
ase analysis separately:

• [a] The global ferromagneti
 state Si = +1 ∀i ∈ [1, 2k+1] ⇒ mn
i (S) =

1 ∀i, n has �elds
hi(S) = J

4−(k+1)σ
[
22(k+2)σ − 2k+2+2σ + 2k+2 + 4σ − 2

]

−3× 4σ + 16σ + 2
,(3.36)

hi(S) > 0 ∀k, σ ∈ (1/2, 1). (3.37)Thus, the 
on�guration Si = +1 ∀i ∈ [1, 2k+1] is stable in the noiselesslimit ∀σ ∈ [1
2
, 1]. In the thermodynami
 limit k → ∞ we have

hi(S) = J
4σ

−3 × 4σ + 16σ + 2
.To address network's behaviour in the presen
e of noise, �xing J = 1without loss of generality, we 
an look at the solution of the followingequation

tanh(βhi(S)) ≃ 1 ⇒ tanh

(
β

4σ

−3 × 4σ + 16σ + 2

)
≃ 1. (3.38)This allows to �nd the 
urve βno errors

c (σ) versus σ (shown in Fig.(3.3)).In fa
t, we know that, at the time t+δt, the system obeys the dynami
s
Si(t + δt) = sign(tanh(βhi(S)) + ηi),where ηi is a random variable, whose value is uniformly distributed in

[−1, 1]. Imposing tanh(βhi) ≃ 1 we ask that |hi| ≫ 1, so the sign ofthe right hand side member of the equation is positive, thus the signof Si at the time t+ δt is the same of the �eld hi at the time t. Then,�xed σ, for every β > βno errors
c (σ) the state Si = +1 ∀i ∈ [1, 2k+1] isstable without errors. 75



• [b] The parallel/mixed state Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈
[2k + 1, 2k+1] has �elds

⇒ hj(S) = J
4−(k+1)σ

(
22(k+2)σ + 2k+1+2σ − 2k+1+4σ + 4σ − 2

)

−3× 4σ + 16σ + 2
= −hi(S) > 0 ∀ k + 1 ≥ 2, (3.39)
⇒ lim

k→∞
hj(S) = J

1

21−2σ + 4σ − 3
, (3.40)thus the 
on�guration Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈ [2k+1, 2k+1]is stable in the noiseless limit ∀ k+1 > 2, σ ∈ (1/2, 1). Using the samearguments of the previous 
ase, �xing J = 1 without loss of generality,to infer network's behaviour in the presen
e of the noise we 
an lookat the solution of the following equation

tanh(βhi(S)) ≃ 1 ⇒ tanh

(
β

1

21−2σ + 4σ − 3

)
≃ 1. (3.41)This allows to �nd the 
urve βno-errors

c (σ) versus σ (see Fig.(3.3)). Then,�xed σ, for every β > βno-errors
c (σ) the state Sj = 1 Si = −1 ∀j ∈

[1, 2k] ∀i ∈ [1 + 2k, 2k+1] is stable without errors. So we 
an seehow, in the thermodynami
 limit, the state with all spins aligned Sj =
+1 ∀j ∈ [1, 2k+1] and the state with half spins pointing upwards andhalf pointing downwards Sj = +1 ∀j ∈ [1, 2k] Si = −1 ∀i ∈ [1 +
2k, 2k+1] are both robust. For an arbitrary �nite value of k it is possibleto solve numeri
ally Eq.(3.41) to get an estimate for βno-errors

c (σ) versus
σ: in Figure 3.3 βno-errors

c (σ) is plotted for the state Sj = +1 Si =
−1 ∀j ∈ [1, 2k] ∀i ∈ [1+2k, 2k+1] and the state Si = +1 ∀i ∈ [1, 2k+1].

• [c] The dimer Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈ [3, 2k+1] has �elds
h1(S) = h2(S) =

2−2σ(k+1)(22σ(k+2) + 2k+2+2σ − 41+(k+1)σ − 2k+2 − 3× 4σ + 6)

(−3 × 4σ + 16σ + 2)
,

lim
k→∞

h1(S) = lim
k→∞

h2(S) = 2 · 4σ − 4

−3× 4σ + 16σ + 2
< 0 ∀σ ∈ (1/2, 1).Therefore, the 
on�guration Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈

[3, 2k+1], in the thermodynami
 limit, is unstable ∀ σ ∈ (1/2, 1).76



• [d] The square Sj = 1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1] has �elds
hj(S, k) = −21−2(k+1)σ

(
−2k+1+2σ + 22kσ+1 + 2k+1 + 22σ+1 − 4

)

−3× 4σ + 16σ + 2

− −3 × 4−(k+1)σ + 21−2σ + 1

1− 4σ
, (3.42)

hj(S, k + 1) =

(
22(k+3)σ − 2k+2+2σ + 2k+2+4σ − 22(k+1)σ+3

)

(−3 × 4σ + 16σ + 2)/(2−2(k+2)σ)

+
(+7× 22σ+1 − 7× 16σ)

(−3× 4σ + 16σ + 2)/(2−2(k+2)σ)
(3.43)thus

lim
k→∞

hj(S) =
4−σ (16σ − 8)

−3 × 4σ + 16σ + 2
=

{
> 0, if σ > 3

4

< 0, if σ < 3
4

.Therefore, the 
on�guration Sj = +1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1]in the limit (k → ∞) for T = 0 is stable ∀ σ ∈ (3
4
, 1)It is worth noti
ing that beyond the extensive meta-stable states (e.g. theparallel/mixed one) already suggested by the statisti
al me
hani
al route,stability analysis predi
ts that tighley 
onne
ted modules (e.g. o
tangon,esade
agon, ...) with spins anti-aligned with respe
t to the bulk get dy-nami
ally stable in the thermodynami
 limit: these motifs in turn are ableto pro
ess small amount of information and an analysis of their 
apabilities
an be found in [23, 24℄, and their robusting is due to their intrinsi
 loopystru
ture.3.3.3 Signal Analysis for the Hop�eld Hierar
hi
al ModelLet us now 
onsider the Hop�eld hierar
hi
al model (see Eq.(3.21)). As weare interested in obtaining an expli
it pres
ription for the �elds experien
edby the spins, we 
an rewrite its Hamiltonian in terms of neural distan
e dijas

Hk+1(S|ξ, σ) =
∑

i<j

SiSj

[
k+1∑

l=dij

( −1

22σl

)] p∑

µ=1

ξµi ξ
µ
j (3.44)or inverting the order of the sums

Hk+1(S|ξ, σ) = −
p∑

µ=1

2k+1∑

i=1

Si

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj

p∑

ν=1

ξνi ξ
ν
j ,77



Figure 3.3: Phase diagram for the perfe
t retrieval a

omplished by a purestate (Si = +1 ∀i = 1, ..., 2k+1) and parallel state (Si = +1 ∀i = 1, ..., 2k and
Si = −1 ∀i = 2k + 1, ..., 2k+1). The line separating di�erent regions 
orre-sponds to numeri
al solution of βno errors

c [σ] versus σ, obtained from (3.38)and (3.41) for di�erent values of k (10, 15, 20, 100 respe
tively). In yellow,the area where both the pure and parallel states are perfe
tly retrieved, whilein blue the area where none of them is retrieved. The red line represents thearea where only the pure state is stable: this region vanishes as k gets larger(namely in the thermodynami
 limit), hen
e 
on�rming that the pure andthe mixed state are both global minima.su
h that, paying attention to the �elds we 
an write
Hk+1(S|ξ, σ) = −

2k+1∑

i=1

Sihi(S), (3.45)
hi(S) =

p∑

µ=1

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj

p∑

ν=1

ξνi ξ
ν
j . (3.46)Mirroring the analysis 
arried on for the Dyson model, we introdu
e an en-semble of non-independent Mattis-like order parameters as

mµ,n
i (S) =

1

2n

i×2n∑

j=i×2n−(2n−1)

Sjξ
µ
j with i = 1, 2, ..., 2k+1−n, n = 0, 1, 2, ..., k+1(3.47)78



Figure 3.4: Stability and instability zones for various 
on�gurations in theplane (σ,k) when β → 0, obtained by solving the inequality Sihi(σ, k, [S]) >
0. In parti
ular in the �gure, the square represents the 
on�guration Si = +1
∀i ∈ [1, 4] and Si = −1 ∀i ∈ [5, 2k+1], the o
tagon the 
on�guration Si = +1
∀i ∈ [1, 8] and Si = −1 ∀i ∈ [9, 2k+1], and the esade
agon the 
on�gurations
Si = +1 ∀i ∈ [1, 16] and Si = −1 ∀i ∈ [17, 2k+1]. In red we 
an see the regionwhere all of them are stable, in yellow the region where only the o
tagon andthe esade
agon are stable, in green the region where only the esade
agon isstable, while in blue none of these reti
ular animals is stable.so that





mµ,0
i = Siξ

µ
i with i = 1, 2, .., 2k+1

mµ,1
i = 1

2

∑2i
j=2i−1 Sjξ

µ
j with i = 1, 2, .., 2k → mµ,1

1 = 1
2

∑2
j=1 Sjξ

µ
j

mµ2n
i = 1

22

∑22i
j=22i−(22−1) Sjξ

µ
j with i = 1, 2, .., 2k−1 → mµ,2

1 = 1
4

∑4
j=1 Sjξ

µ
j

.....

mµ,k+1
1 = 1

2k+1

∑2k+1

j=1 Sjξ
µ
j .As we saw for the Dyson 
ase, this allows writing the �elds as

hi(S) =

p∑

ν=1

ξνi

k+1∑

d=1

[ k+1∑

l=d

(
1

22σ
)l
]
2d−1mν,d−1

f(d,i) =

p∑

ν=1

ξνi

k+1∑

d=1

J(d, k+1, σ)2d−1mν,d−1
f(d,i) ,where

J(d, k + 1, σ)2µ−1 =
4σ−dσ − 4−kσ−σ

4σ − 1
2d−1. (3.48)The mi
ros
opi
 evolution of the system is de�ned as a sto
hasti
 alignmentto lo
al �eld hi(S):

Si(t + δt) = sign{tanh[βhi(S(t))] + ηi(t)}, (3.49)79



where the sto
hasti
ity lies in the independent random numbers ηi(t) uni-formly drawn over the interval [−1, 1]. In the noiseless limit β → ∞ wehave
Si(t+ δt) = sign[hi(S(t))] (3.50)and so if Sihi(S) > 0 ∀ i ∈ [1, N ], the 
on�guration [S] is dynami
allystable (see Fig.(3.4)).3.3.4 Signal to Noise Analysis for Serial RetrievalUsing equations (3.45) and (3.47) and posing Si = ξµi in order to 
he
k therobustness of the serial pure-state retrieval (of the test pattern µ), we 
anwrite

ξµi hi(S) = ξµi

p∑

ν=1

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (3.51)

=

k+1∑

d=1

J(d, k + 1, σ)2d−1 + ξµi

p∑

ν 6=µ

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j .We 
an de
ompose the previous equation into two 
ontributions, a sto
hasti
noisy term R(ξ) and a deterministi
 signal I as

ξµi hi(S) = I +R(ξ) (3.52)The signal term I is positive be
ause
I =

k+1∑

d=1

J(d, k + 1, σ)2d−1 ≥ 0, (3.53)while the noise R(ξ) has null average (the latter being denoted by standardbra
kets), namely
R(ξ) = ξµi

p∑

ν 6=µ

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (3.54)

〈R(ξ)〉ξ = 0. (3.55)Thus, in order to see the regions of the tunable parameters σ, k+1 where thesignal prevails over the noise and the network a

omplishes retrieval, we needto 
al
ulate the se
ond moment of the noise over the distribution of quen
hedvariables ξ so to 
ompare the signal amplitudes of I and |
√

〈R2(ξ)〉ξ|:80



〈R2(ξ)〉ξ =
〈[ p∑

ν 6=µ

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

]
×

×
[ p∑

η 6=µ

ξηi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξηj ξ
µ
j

]〉

ξ
. (3.56)Negle
ting o�-diagonal terms (as they have null average), we get thefollowing expressions for 〈R2(ξ)〉ξ:

〈R2(ξ)〉ξ =
〈 p∑

ν 6=µ

(ξνi )
2

( k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

)2〉
ξ
= (3.57)

=

〈
p∑

ν 6=µ

( k+1∑

d=1

(
4σ−dσ − 4−(k+1)σ

4σ − 1
)
∑

j:dij=d

ξνj ξ
µ
j

)2
〉

ξ

,where we used (ξνi )
2 = 1 ∀i, ν. On
e again, as the ξ's are symmetri
allydistributed, only even order terms give 
ontributions, thus we 
an safelynegle
t o�-diagonal terms and write again

〈R2(ξ)〉ξ = (p− 1)
k+1∑

d=1

〈

(
4σ−dσ − 4−kσ−σ

4σ − 1

) ∑

j:dij=d

ξνj ξ
µ
j



2〉

ξ

, (3.58)
= (p− 1)

k+1∑

d=1

(
4σ−dσ − 4−kσ−σ

4σ − 1

)2

〈
∑

j:dij=d,

∑

k:dik=d

ξνj ξ
µ
j ξ

ν
kξ

µ
k 〉ξ.Therefore

〈R2(ξ)〉ξ = (p− 1)

k+1∑

d=1

J(d, σ, k + 1)22d−1. (3.59)Exploiting the approximation 〈|x|〉 ∼ |
√
〈x2〉|, we 
an simplify the previousexpression into

〈|R(ξ)|〉 ∼
√

〈R2(ξ)〉ξ =

√√√√(p− 1)
k+1∑

d=1

J(d, σ, k + 1)22d−1, (3.60)where we 
onsider the positive bran
h of the serial retrievl only. We are nowready to 
he
k the stability of the pure retrieval: as long as
I >

√
〈R2(ξ)〉ξ ⇒ ξµi hi(S) = I +R(ξ) > 0, (3.61)81



the pure state is stable. Hen
e we need to 
al
ulate expli
itly
√

〈R2(ξ)〉ξ =
√

(p− 1)16−kσ

(4σ − 2) (4σ − 1)2 (16σ − 2)
·
√

Ψ1 +Ψ2,where
Ψ1 = (4σ − 2)42(k+1)σ − 3× 2k+2σ+1,

Ψ2 = 2k+6σ+1 − (16σ − 2)22(k+1)σ+1 + 2k+2 − 64σ + 22σ+1 + 24σ+1 − 4.The expression for the signal is mu
h simpler, resulting in
I =

4−(k+1)σ
(
−2k+2σ+2 + 4(k+2)σ + 2k+2 + 4σ − 2

)

−3 × 4σ + 16σ + 2
. (3.62)Imposing I =

√
〈R2(ξ)〉ξ and solving for the variable p, we �nd the 
riti
alload allowed by the network, namely the fun
tion Pc(σ, k), whose behavioris shown in Fig.3.5:

I =
√
〈R2(ξ)〉ξ ⇒ Pc(σ, k). (3.63)Now, imposing the relation
Pc(σ, k) = kand solving numeri
ally with respe
t to σ, we 
an plot the maximum value

σmax(k) that the variable σ 
an rea
h su
h that the storage P = k produ
esretrievable patterns, as shown in Figure 3.5.In the thermodynami
 limit we get
I −

√
〈R2(ξ)〉 =

22σ

−3 × 4σ + 16σ + 2
−

√
(p− 1)22σ√

(4σ − 1) (16σ − 2)
, (3.64)

Pc(σ) =
(4σ − 1) (16σ − 2)

(−3 × 4σ + 16σ + 2)2
+ 1. (3.65)3.3.5 Signal to Noise Analysis for Parallel RetrievalFixing Si = ξµi ∀i ∈ [1, 2k] and Si = ξγi ∀i ∈ [1 + 2k, 2k+1] for µ 6= γ, namelysele
ting µ and γ as test patterns to retrieve, we set the system in 
onditionto handle 
ontemporarily two patterns, the former managed by the �rst halfof the spins, the latter by the se
ond half. The robustness of this state isaddressed hereafter following the same pres
ription outlined so far. Namely,being

Sihi(S) = Si

p∑

ν=1

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj Sj , (3.66)82



if i ∈ [1, 2k] we have
Sihi(S) = ξµi

p∑

ν=1

ξνi

( k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

+ J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j

)
, (3.67)while if i ∈ [2k + 1, 2k+1], the same equation still holds provided we repla
e

µ with γ and γ with µ, hen
e hereafter we shall 
onsider only one of the two
ases as they are symmetri
al.Again, we 
an de
ompose the above expression in the sum of a 
onstant,positive term -that plays as the signal- I > 0, and a sto
hasti
 term for thenoise R(ξ), namely we 
an write
Sihi(S) = I +R(ξ), (3.68)
I =

k∑

d=1

(
J(d, k + 1, σ)2d−1

)
,

R(ξ) = J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξµj ξ
γ
j

+ ξµi

p∑

ν 6=µ

ξνi
( k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j + J(k + 1, k + 1, σ)

∑

j:dij=k+1

ξνj ξ
γ
j

)
.In order to get a manageable expression for the noise, it is 
onvenient toreshu�e R(ξ) distinguishing four terms su
h that

R(ξ) = a+ b+ c+ d, (3.69)where
a = J(k + 1, k + 1, σ)

∑

j:dij=k+1

ξµj ξ
γ
j , (3.70)

b = ξµi

p∑

ν 6=µ

ξνi

k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (3.71)

c = ξµi

p∑

ν 6=µ
ν 6=γ

ξνi J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j , (3.72)

d = ξµi ξ
γ
i J(k + 1, k + 1, σ)2k. (3.73)83



As µ 6= γ, we have that 〈R(ξ)〉ξ = 0, while 〈R2(ξ)〉ξ turns out to be
〈R2(ξ)〉ξ = 〈a2 + b2 + c2 + d2 + 2(ab+ ac+ ad+ bc + bd+ cd)〉ξ. (3.74)Let us 
onsider these terms separately: skipping lenghty, yet straightforward
al
ulations, we obtain the following expressions

〈a2〉ξ =
〈
J2(k + 1, k + 1, σ)

∑

j:dij=k+1

∑

n:din=k+1

ξµj ξ
γ
j ξ

µ
nξ

γ
n

〉

ξ

= J2(k + 1, k + 1, σ)× 2k. (3.75)
〈b2〉ξ =

〈(
ξµi

p∑

ν 6=µ

ξνi

k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

)2
〉

ξ

= (p− 1)

k∑

d=1

J2(d, k + 1, σ)2d−1. (3.76)
〈c2〉ξ =

〈(
ξµi

p∑

ν 6=µ&ν 6=γ

ξνi J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j

)2
〉

ξ

= (p− 2)J2(k + 1, k + 1, σ)2k. (3.77)
〈d2〉ξ =

〈(
ξµi ξ

γ
i J(k + 1, k + 1, σ)2k

)2
〉

ξ

= J2(k + 1, k + 1, σ)22k, (3.78)and, sin
e a and b and, analogously, b and c, are de�ned over di�erentblo
ks of spins, 
learly
〈2ab〉ξ = 0, (3.79)
〈2bc〉ξ = 0, (3.80)
〈2bd〉ξ = 0. (3.81)As a result, rearranging terms opportunely we �nally obtain

〈R2(ξ)〉ξ = 4−2kσ
([4k (4σ − 1)2 + 2k (4σ − 1)2 + 2k(p− 2) (4σ − 1)2

]

(4σ − 1)2

+ (2((−3× 2k+2σ+1 + 2k+6σ+1 + 2k+2 + 22σ+1 + 24σ+1 −
+ (4σ − 2)42(k+1)σ − (16σ − 2)22(k+1)σ+1) +

− 64σ)(p− 1))((4σ − 2)(16σ − 2))−1
)
,84



while the signal term reads as
I =

2−2kσ−1
(
−2k+2σ − 2k+4σ + 22(k+1)σ+1 + 2k+1 + 22σ+1 − 4

)

−3× 4σ + 16σ + 2
. (3.82)Imposing I =

√
〈R2(ξ)〉ξ, and solving with respe
t to the variable p we 
anoutline the fun
tion Pc(σ, k+1) that returns the maximum allowed load thenetwork may a�ord a

omplishing parallel retrieval and whose behavior isshown in Fig.(3.5):

I =
√

〈R2(ξ)〉ξ ⇒ Pc(σ, k + 1). (3.83)

Figure 3.5: Upper panel (serial retrieval): On the left we show the maximumvalue of storable patterns Pc as a fun
tion of k and of σ (as results fromEq.(3.64)) for the pure state in order to have signal's amplitude greater thanthe noise (i.e. retrieval). Note the logarithmi
 s
ale for Pc highlighting itswide range of variability. On the right we show the maximum value of theneural intera
tion de
ay rate σ′(k) versus k allowed to the 
ouplings underthe storage 
onstraint k = p and the pure state perfe
t retrieval 
onstraint,in the β → ∞ limit.Lower panel (parallel retrieval): On the left there is the maximum value ofstorable patterns Pc as a fun
tion of k and of σ (as results from Eq.(3.85))for th parallel state in order to have signal's amplitude greater than thenoise (i.e. retrieval). Note the logarithmi
 s
ale for Pc highlighting its widerange of variability. On the right there is the maximum value of the neuralintera
tion de
ay rate σ′(k) versus k allowed to the 
ouplings under thestorage 
onstraint k = p and the parallel state perfe
t retrieval 
onstraint,in the β → ∞ limit. 85



Figure 3.6: Starting from the state Si = +1 ∀i ∈ [1, 2k+1] results of thesimulations for DHM for σ = 0.99 and N = 2k+1, k+1 = 8, 10, 12 are plotted.In the left panel, the res
aled magneti
 sus
eptibility 2k+1(〈m2〉 − 〈m〉2) isplotted vs β (one over the noise). In the right panel the magnetization
〈m〉 = 〈 1

N

∑N
i=1 Si〉 is plotted vs β (one over the noise).3.4 Insights from Numeri
al SimulationsUsing the same ma
hines des
ribed in the previous se
tion 2.5. Aim of thisSe
tion is to present results from extensive numeri
al simulations to 
he
k thestability of parallel pro
essing over the �nite-size e�e
ts that is not 
apturedby statisti
al me
hani
s or that 
an be hidden in the signal-to-noise analysis. Further this allows 
he
king that the asymptoti
 behavior (in the volume)of the network is in agreement with previous �ndings.All the simulations were 
arried out using the same ma
hines des
ribed inthe previous se
tion 2.5 and a

ording to the following algorithm.1. Building the matrix 
oupling, pattern storage.On
e extra
ted randomly from a uniform prior over ±1 p patterns oflength k+1, and de�ned the distan
e between two spins i and j as dijwe build the matrix J, for the HHM, as

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1

p∑

µ=1

ξµi ξ
µ
j , for i = 1, · · · 2k+1, j = 1, · · · , 2k+1,(3.84)86



Figure 3.7: Starting from the state Si = +1, Sj = −1 ∀i ∈ [1, 2k] and
∀j ∈ [2k + 1, 2k+1] results of the simulations for DHM for σ = 0.99 and
N = 2k+1 are plotted. In the left panel, the res
aled magneti
 sus
eptibility
2k+1[(〈m2

1〉−〈m1〉2)+(〈m2
1〉−〈m1〉2] is plotted vs β (i.e. one over the noise) for

k+1 = 8, 10, 12. In the right panel, the magnetizations 〈m1〉 = 〈 1
2k

∑2k

i=1 Si〉and 〈m2〉 = 〈 1
2k

∑2k+1

i=1+2k Si〉 are plotted vs β (i.e. one over the noise) for
k + 1 = 8, 10, 12.while for the DHM we use the form:

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1
, for i = 1, · · ·2k+1 and j = 1, · · · , 2k+1,(3.85)where k + 1 is the number of levels of the hierar
hi
al 
onstru
tion ofthe network, and σ ∈ (1

2
, 1].2. Initialize the network.We used di�erent initializations to test the stability of the resultingstationary 
on�guration:-Pure retrieval: We initialize the network in an assumed �xed point ofthe dynami
s, namely Si = ξµi with i = 1, ...2k+1 and µ = 1 for theHHM, while Si = +1 with i = 1, ...2k+1 in the DHM 
ase, and we 
he
kthe equilibrium as reported in Fig[ 3.6℄.-Parallel retrieval: Sin
e we study the multitasking features shown bythis hierar
hi
al network, we 
an also assign di�erent types of initial
onditions with respe
t to the pure state, e.g.87



i) For the DHM, starting from the lowest energy level ( after thestandard one Si = 1 ∀i) we 
hose Si = +1 for i = 1, ..., 2k and
Si = −1 for i = 2k + 1, ..., 2k+1 (vi
eversa is the same, and we
he
k the equilibrium as reported in Fig[ 3.7℄);ii) For the HHM, looking for multitasking features, we set in the
ase p = 2, we set Si = ξ1i for i = 1, ..., 2k and Si = ξ2i i =
2k + 1, ..., 2k+1(Fig[ 3.10℄); In the 
ase p = 4 we set Si = ξµi
∀i ∈

[
1 + (µ−1)N

4
, µN

4

] and µ ∈ [1, 4](Fig[ 3.9℄)In this way, we have two or four 
ommunities (sharing the same size)building the network with a di�erent order parameter.

Figure 3.8: Starting from the state Si = +1 ∀i ∈ [1, 2k+1] with σ = 0.99 forthe DHM and k+1 = 8, 10, 12. Binder 
umulant 1− 〈m4〉
3〈m2〉2 versus noise 1

β
for

k + 1 = 8, 10, 12. Plotting the binder 
umulant for di�erent values of k + 1permits to �nd the 
riti
al noise of this state.3. Evolution: Glauber dynami
s.The evolution of the spins follows a standard random asyn
hronousdynami
s [5℄ and the state of the network is updated a

ording to the�eld a
ting on the spins at every step of iteration, that is,
Si(t + 1) = sign{tanh[βhi(S(t)] + η(t)}, for β = T−1where η(t) is the noise introdu
ed as a random uniform 
ontributionover the real interval [−1, 1] in every step.For ea
h noise the stationary mean values of the order parameters88



have been measured mediating over O(103) di�erent realizations. Forthe HHM the average of the order parameters is performed over thequen
hed variables. For DHM, to better highlight the stability ofthe parallel 
on�guration, Si = +1 for i = 1, ..., 2k, Si = −1 for
i = 2k + 1, ..., 2k+1 and to break the Gauge invarian
e, during halfof the relaxation period to equilibrium a small positive �eld is appliedto the system.

Figure 3.9: . Starting from the state Si = ξ1i , Sj = ξ2j , Sn = ξ3n, Sl = ξ4l
∀i ∈ [1, 2k−1], ∀j ∈ [2k−1+1, 2k], ∀n ∈ [2k+1, 3

2
2k], ∀l ∈ [3

2
2k+1, 2k+1] resultsof the simulations for HHM for σ = 0.99 and N = 2k+1 are plotted. TheMattis order parameters 〈mµ

i 〉 = 〈 1
2k−2

∑i2k−2

j=1+(i−1)2k−2 Sjξ
µ
j 〉 for i, µ ∈ [1, 4] areplotted vs noise,from left we have k + 1 = 8, 10, 12. Same 
olors 
orrespondto the same pattern µ, while same symbols 
orrespond to the same index i.4. Results.It is worth noting that -at di�eren
e with paradigmati
 prototypesfor phase transitions (i.e. the 
elebrated Curie-Weiss model), as we
an see from �gures [ 3.6, 3.7, 3.8℄, in these models we studied herethe 
riti
al noise level approa
hes its asymptoti
 value (obtained byanalyti
al arguments in the thermodynami
 limit) from above (i.e. fromhigher values of βs). This happens be
ause the intensities of 
ouplingsare in
reasing fun
tions (
learly upper limited) of the size of the system.As 
an be inferred from �g[ 3.7℄ (where we present results regardingsimulations for the DHM at σ = 0.99, k + 1 = 8, 10, 12 [Si = +1, Sj =

−1 ∀i ∈ [1, 2k] and ∀j ∈ [2k + 1, 2k+1]℄), the stability of the parallel
on�guration (in the low noise region) is 
on�rmed and, as expe
ted89



from theoreti
al arguments, the noise region in whi
h this 
on�gurationis stable in
reases with the size of the system up to 
oin
ide with that ofthe pure state. Also in the HHM 
ase (�gures [ 3.9, 3.10℄) the stabilityof parallel 
on�gurations is veri�ed (in the low noise region) for system's
on�gurations shared by the two and four 
ommunities.

Figure 3.10: . Starting from the state Si = ξ1i , Sj = ξ2j ∀i ∈ [1, 2k], ∀j ∈
[2k + 1, 2k+1] results of the simulations for HHM for σ = 0.99 and N = 2k+1are plotted. The Mattis order parameters 〈mµ

i 〉 = 〈 1
2k−2

∑i2k−2

j=1+(i−1)2k−2 Sjξ
µ
j 〉for i, µ ∈ [1, 2] are plotted vs noise,from left we have k + 1 = 8, 10, 12.
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Chapter 4Dis
ussionThe 
omprehension of biologi
al 
omplexity is one of the main goals of this
entury resear
h: the route to pave is long and s
attered over 
ountlessbran
hes. Fo
using to neural networks, we noti
e that the deep di�
ul-ties in the statisti
al me
hani
s treatment prohibitive 
onstraints beyondthe mean �eld approximation (where ea
h notion of distan
e or metri
s for aspa
e where to embed spins is lost),implied that their theory has been largelydeveloped without investigating the 
ru
ial degree of freedom of neural dis-tan
e. However, resear
h is nowadays 
apable of investigations towards morerealisti
 and/or better performing models: indeed, while the mean-�eld s
e-nario, mainly represented by the Hop�eld network as for retrieval and bythe Boltzmann ma
hines as for learning, has been so far understood (not
ompletely at the rigorous level but at least largely), investigation of thenon-mean-�eld 
ounterpart is only at the beginning.In this thesis we explored the retrieval 
apabilities of the multitasking as-so
iative network introdu
ed the �rst time in [30℄ at the low storage level, andwe ta
kled the problem of studying information pro
essing (retrieval only) onhierar
hi
al topologies introdu
ed in [29℄, where spins intera
t with an Heb-bian strength (or simply ferromagneti
ally in their simplest implementation,namely the Dyson model) that de
ays with their re
ipro
al distan
e.In Chapter 2, we introdu
ed a system 
hara
terized by (quen
hed) pat-terns whi
h display a fra
tion d of null entries: interestingly, by paying thepri
e of redu
ing the amount of information stored within ea
h pattern (bya fra
tion d), we get a system able to retrieve several patterns at the sametime. At zero noise level (T = 0), and for a relatively low degrees of dilu-tion, the system 
onverges to an equilibrium state 
hara
terized by overlap
m = ((1− d), (1− d)d, ..., (1− d)dk, (1− d)dP−1), where P is the number ofstored patterns. Although this state displays non-null overlap with severalpatterns, it does not represent a spurious state, as 
an be seen by noti
ing, for91



instan
e, that this state allows the 
omplete retrieval of at least one pattern.However, through a 
areful inspe
tion, we proved that there are regions inthe (T, d) plane where genuine spurious states o

ur, hen
e the 
lear pi
tureof the phase diagram that we o�ered be
omes a fundamental issue in orderto make the model ready for pra
ti
al implementations.A remarkable di�eren
e with respe
t to standard (serial pro
essing) neuralnetworks lies in the stability of mixture states: both even and odd mix-tures are stable, whi
h -within the world of spurious states - was a somewhatdesired, and expe
ted, result as there is neither a biologi
al reason, nor a pre-s
ription from roboti
s, to weight di�erently odd and even mixtures (whosedi�eren
e in terms of physi
al symmetries translates in the gauge invarian
eof the standard Hop�eld model, that is expli
itly broken within our frame-work due to the partial blankness of the pattern entries). Another expe
tedfeature, whi
h we 
on�rmed, is the emergen
e of parallel spurious states be-yond standard ones. From 
lassi
al neural network theory this is the naturalgeneralization when moving from serial to parallel pro
essing.Beyond these somehow attended results, the phase diagram of the modelis still very ri
h and 
omposed by several not-overlapping regions where theretrieval states are deeply di�erently stru
tured: beyond the paramagneti
state and the pure state, the system is able to a
hieve both a hierar
hi
alorganization of pattern retrievals (for intermediate values of dilution) anda 
ompletely symmetri
 parallel state (for high values of dilution), whi
ha
t as the basis for the outlined mixtures when raising the noise level abovethresholds whose value depends on the load P of the network.These �ndings have been obtained developing a new strategy for 
omputingthe free energy of the model from whi
h, imposing thermodynami
 prin
i-ples (i.e. extremizing the latter over the order parameters of the model),self-
onsisten
y has been obtained: the whole pro
edure has been based onte
hniques stemmed from partial di�erential equation theory. In parti
ular,the key idea is showing that the noise-derivatives of the statisti
al pressureobey Burgers' equations, whi
h 
an be solved through the Cole-Hopf trans-formation. The latter maps the evolution of the free energy over the noiseinto a di�usion problem whi
h 
an be addressed through standard Greenintegration in momenta spa
e and then mapped ba
k in the original frame-work.In 
hapter 3, we studied a Hebbian neural network, where spins are ar-ranged a

ording to a hierar
hi
al ar
hite
ture su
h that their 
ouplings s
alewith their re
ipro
al distan
e. While a full statisti
al me
hani
al treatmentis not yet a
hievable, stringent bounds for its free energy -intrinsi
ally ofnon-mean-�eld nature- are still available and allows getting a pi
ture of thenetwork 
apabilities by far ri
her than the 
orresponding mean-�eld 
oun-92



terpart (the Hop�eld model within the low storage regime). Indeed, thesenetworks are able to retrieve one pattern at a time a

omplishing an exten-sive reorganization of the whole network state -mirroring serial pro
essingas in standard Hop�eld networks- but they are also able to swit
h to mul-titasking behavior handling multiple patterns at on
e -without falling intospurious states-, hen
e performing as parallel pro
essors.Remarkably, as far as the low storage regime is 
on
erned, the underlying(weighted) topology -
ru
ial for parallel pro
essing- returns a phase spa
ethat shares similarities with the multitasking asso
iative networks [30℄.However, as theorems that de�nitively 
on�rm this s
enario are not fullyavailable yet, to give robustness to the statisti
al me
hani
s predi
tions, weperformed a signal-to-noise analysis 
he
king whether those states -
andidateby the �rst approa
h to mimi
 parallel retrieval- are indeed stable beyondthe pure state related to serial pro
essing and, remarkably, we found wideregions of the tunable parameters (strength of the intera
tion de
ay σ andnoise level β) where indeed those states are extremely robust.Clearly, as standard in thermodynami
s, nothing is for free and even for thisri
hness of behaviors there is a pri
e to pay: as anti
ipated in the Summaryof this thesis, emergent multitasking features in not-mean-�eld models re-quire a substantial drop in network's 
apa
ity thus implying a new balan
erequired by asso
iative networks beyond the mean-�eld s
enario.While a satisfa
tory pi
ture beyond su
h a mean-�eld paradigm is still far,we do hope that this work may a
t as one of the �rst steps in this dire
tion.
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