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General Introduction

This PhD thesis deals with the development and the analysis of numerical methods for
first order time dependent Hamilton-Jacobi-Bellman (HJB) equations. We consider the

following form of the equation.

o+ H(z,Vv) =0, (t,x)€[0,T] x R? (1)

v(0,2) = vo(z), x€RY, (2)

where H : R% x R? — R is the Hamiltonian and vg is the initial condition. This kind
of equations, in general do not admit a classical solution even for regular initial data
vp. So the notion of viscosity solution (for precise definition, see Appendix B) has been
introduced in the early 1980s by Pierre-Louis Lions and Michael G. Crandall [35] as
a generalization of the classical concept of what is meant by a ‘solution’ to a partial
differential equation (PDE). It has been found that the viscosity solution is the natural
solution concept to use in many applications of PDE’s, including for example first order
equations arising in optimal control (the Bellman equation), differential games (the

Isaacs equation) or front evolution problems.

The lack of smoothness of viscosity solutions makes it difficult to develop efficient ap-
proximations. Starting from the 80s, monotone finite difference methods have been
proposed by Crandall and Lions [34] using the fact that in dimension one, viscosity
solution of HJB equation is the integral of the entropy solution of hyperbolic conserva-
tion laws . On this basis, monotone finite difference methods conceived for conservation
laws have been adapted to the approximation of the Hamilton-Jacobi (HJ) equation. In
this thesis we develop numerical schemes for regular and discontinuous initial data wy.
First we focus on the high-order schemes for HJB equations when solution is regular.
In this context there are some high-order schemes based on the relation between vis-
cosity solution and entropy solution in dimension one. Several schemes developed for
hyperbolic conservation law (see references [63], [64], [34], [59], [25]) and most of them
extended to HJB equations. High-order essentially non-oscillatory (ENO) scheme have
been introduced by A. Harten et al. in [65] for hyperbolic conservation laws, and then
extended to HJB equation by Osher and Shu [71]. ENO schemes are of high-order and
have been quite successful. However, till now and to the best of our knowledge, there is

xiii



General Introduction xiv

no convergence proof of ENO schemes. However, in the general case although there is
a numerical evidence that they converge to the viscosity solution of (1.6). Convergence
results may hold for related schemes, see for instance Lions and Souganidis [81]. In [49],
Fjordholm et. al. showed that ENO interpolation is stable but the stability result is not
sufficient to conclude total variation boundedness (TVB) of the ENO reconstruction pro-
cedure. In [48], a conjecture related to weak total variation property for ENO schemes
is given. Let us also mention, Semi-Lagrangian (SL), discontinuous Galerkin (DG) and
the semi-discrete central schemes [75]. SL method developed by Falcone, Ferretti and
Carlini [25, 41, 42]. In the SL setting the convergence proof for high-order scheme relies
also on the work of Ferretti [26, 47] where higher than first order schemes are proposed.
The finite difference schemes are used on structures grids where as SL schemes can be
also applied to unstructured grids. DG finite element methods were originally devised
for conservation laws later on extended to HJB equations. The DG spatial discretiza-
tion was later combined with Runge-Kutta (RK) temporal discretization, giving birth
to Runge-Kutta DG (RKDG) methods, introduced by Cockburn and Shu in [28] for
hyperbolic conservation laws and later on extended for HJB equation. DG methods are
flexible with complicated geometries, different boundary conditions, and various local
approximations, they use compact stencils to achieve high order accuracy, and therefore
are easy for parallel implementation but there is stability condition which is difficult to
prove. Also there are several variation of DG methods for HIJB equations [77, 79, 90].
In [26], where weighted essentially non-oscillatory (WENO) schemes have been applied
to HJB equations.

We should also mention the work of Abgrall [1] where he proposed two different high-
order schemes which are based on a particular decomposition of the initial data and
decomposition of Hamiltonian. In [2] he also proposed hybrid schemes to solve steady
HJ equation on conformal triangular type meshes and one can extend to solve time

dependent HJB equation but proposed scheme is difficult to implement.

In the first part of the thesis in chapter 1 our focus is to develop high-order scheme for
HJB equation when solution is regular. We introduce a new class of the “filtered scheme”
for some time dependent first order HJB equations. The main idea of the filtered scheme
comes from the recent work of Froese and Oberman [51, 86], that was presented for first
and stationary second order HJ equations and based on the use of a “filter” function.

Our focus on mainly evolutive HJB equations. In our setting we use the discontinuous
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filter function from [86] for which the filtered scheme is still an e-monotone scheme
(see Eq.(1.14)), but that improves the numerical results. Filtered scheme behaves as a
high order scheme when the solution is smooth and as a low order monotone scheme
otherwise. Presentation of filtered scheme is simple and easy to implement. Rigorous
error bounds hold, of the same order as the Crandall-Lions estimates in v/Az where
Az is the mesh size. In the case the solution is smooth a high-order consistency error
estimate also holds. Let us also mention the recent work [20] for steady equations where

some e-monotone semi-Lagrangian schemes are studied.

The theory of viscosity solutions has been tested on a variety of applications. One of the
typical applications of HJ equation is the study and approximation of front propagation
problems via the level set method. This technique has become very popular in the
90s due to its capability to follow front evolution after the onset of singularities and
topological changes. There exist a number of physical situations which lead to models
of these type, e.g., the description of industrial etching processes, bubbles moving in
a fluid, crystal growth and so forth. More recently, these techniques have also been
applied to image processing, which is one of the areas in which the introduction of
nonlinear partial differential equations has had a strongest impact in the last decades.
It is known since the work of Osher and Sethian [89] that front propagation problems
can be solved by using level sets and HJ equations. For full introduction we refer the
book [89, 100]. Several Numerical scheme has be developed for such a problems. For
instance semi-Lagrangian method for the minimum time problem has been proposed
by Bardi and Falcone in [7, 8], and its adaptation to the front propagation problem,
as well as some a priori estimates of the error on the front propagation can be found
in [40, 43]. We also mention a series of papers by Bokanowski et al. [17] where they used
RKDG method. These methods have the advantage to be easily adapted to arbitrary
unstructured meshes (see [14, 18]) but there is stability condition which is difficult to
prove. We develop a specific application of the scheme proposed and analyzed in [19] to
front propagation problems. The approach is based on the level-set method which leads
in the isotropic case to a classical evolutive first order HJ equation. We use the idea of
filtered scheme for the approximation of HJ equations in a general convergent setting.
We consider in particular a simple coupling between a monotone first order scheme and
a second order centered scheme, applied to front propagation problems. The effect of

the filtering is to stabilize an otherwise unstable scheme, and also to switch to the high
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order scheme whenever the solution is detected to be smooth.

Now we discuss numerical methods for HJB equation when solution is discontinuous.
Monotone (first-order) schemes have been shown to be stable and convergent under
mild regularity assumptions on the solution and to be first order accurate for the ap-
proximation of Lipschitz continuous solutions. However, in control and game problems,
the value function can be discontinuous so these schemes have to be adapted in order
to obtain accurate approximations which do not diffuse too much around the disconti-
nuities of Vv and/or don’t introduce oscillations on the discontinuities of v. Now we
give some details of some available work when vy is discontinues. We have also seen
for continuous viscosity solution, there are several contribution dealing with numerical
schemes. In [10] Barles and Souganidis give a general frame work for the convergence
of approximated solution towards the viscosity solution under generic monotonicity sta-
bility and consistency assumptions. But when we deal with discontinuous initial data
Vg, classical monotone schemes are no more adapted. In fact, if we attempt to use these
schemes, we observe an increasing numerical diffusion around the discontinuities. This
is happening due to the fact that monotone schemes used at some level finite difference
or interpolation techniques. So that available schemes are typically diffusive. For the

classical theory for discontinuous viscosity solution we refer the book by Barles [9].

Initially in 1985 Roe [96] developed scheme for conservation laws when the flow is dis-
continuous with the constant velocity. Later on the same scheme has been modified by
Despres and Lagoutiere in [38] for capturing contact discontinuities for linear advection
and compressible Euler system. In [38] it has been proved that the proposed scheme
by Roe (which is called as Ultrabee scheme) has a property of exact advection for a
large set of piecewise constant functions. Recently this scheme has been modified by
Bokanowski and Zidani [13] for HJ equations with the convergence result [16] and an [!
error estimate [15]. Whole Ultrabee scheme idea is present for dimension one only and by
splitting one can extend to the higher dimensions. Proposed HJB-UltraBee scheme [13]
is explicit and non-monotonous (neither e-monotone). We know that, there are few
non-monotone schemes that have been proved to converge for HJ equations (see [19]
and [81]). In [81], Lions and Souganidis show the convergence of some MUSCL types
non-monotone scheme which is TVD second order scheme, but implicit and difficult to

implement.



General Introduction xvii

We propose a new numerical approximation for linear advection and HJ equation which
is based on the coupling of two schemes with different properties. The approach is
general and can in principle be applied to couple many different schemes, for example
one can couple an accurate method for the regions where the solution is smooth with
another method which is more adapt to treat discontinuities and/or jumps in the gradi-
ents. Clearly one has to decide where to apply the first or the second method and this
is done by means of an indicator parameter which has to be computed in every cell at
every time step. Here we coupled an anti-dissipative scheme which has been proposed
in order to deal with discontinuous solutions and a SL scheme which is more adapt to
deal with Lipschitz continuous and can be more accurate for regular solutions provided
a high-order local interpolation operator is used for the space reconstruction. We in-
troduce the indicator parameter for this coupling, show how to couple the two schemes
which typically use two different grids reconstructions and prove some properties of the

resulting coupled scheme.

In the last part of the thesis we also deal another application: traffic models on networks.
Traffic flow can be described at different scales, depending on the level of details one
wants to observe. Typically, three scales of observation can be adopted: microscopic,
mesoscopic and macroscopic. Connections between microscopic follow-the-leader and
macroscopic fluid-dynamics traffic flow models are already well understood in the case
of vehicles moving on a single road. Analogous connections in the case of road networks
are instead lacking. This is probably due to the fact that macroscopic traffic models on
networks are in general ill-posed, since the conservation of the mass is not sufficient alone
to characterize a unique solution at junctions. This ambiguity makes more difficult to
find the right limit of the microscopic model, which, in turn, can be defined in different

ways near the junctions.

We propose a very natural extension of a first-orderfollow-the-leader on road networks
and then we prove that its solution tends to the solution of the LWR-based multi-
path model introduced in [22, 23] in the limit, i.e. as the number of vehicles tends
to infinity while their total mass is kept constant. The limit is proved extending to
networks the results already existing for a single road, and it is then confirmed by
numerical experiments. Note that the multi-path method is able to select automatically
an admissible solution at junction, thus resolving ill-posedness issues. However, the

solution selected by the method does not match the one obtained by maximizing the
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flux at junction. Therefore, the connection with the microscopic model promotes the
solution computed by the multi-path method as “more natural”, while the one based on
the maximization of the flux should be seen as the “most desirable”, to be achieved by

means of ad hoc traffic regulations.

The literature about microscopic and macroscopic traffic flow models is huge and a
detailed review is out of the scope of the chapter. For a quick introduction to the field
we suggest the book [62] and the surveys [11, 66]. Regarding first-order models on a
single unidirectional road, the micro-to-macro limit was already deeply investigated by
means of different techniques: the papers [30, 50, 97]. Finally, the paper [32] attacks the

problem exploiting the link between conservation laws and HJ equations.

Micro-to-macro limit for second-order models was instead investigated in [3, 60], where

the Aw-Rascle model is derived as the limit of a second-order follow-the-leader model.

Macroscopic-only traffic models on networks were deeply investigated starting from [70].
A complete introduction can be found in the book [54], which discusses several methods
to characterize a unique solution at junctions. Let us also mention the source-destination
model introduced in [53] (see also [68]) and the buffer models [52, 55, 69]. Recently, a
LWR-based multi-path model on networks was introduced in the paper [22], together
with a Godunov-based numerical scheme to solve the associated system of conservation

laws with discontinuous flux.
Outline of the thesis
The thesis is organized as follows.

In chapter 1 we give a very simple way to construct high-order schemes in a convergent
framework. In present a high-order filtered scheme for time dependent first order HJ
equations. In section 1.2 we present some basic properties and definitions and “filtered
scheme”. In Section 1.3, we present the schemes and give main convergence results.
Section 1.4 tests is devoted to the numerical tests on several academic examples to
illustrate our approach in one and two-dimensional cases. Also is included a test on
nonlinear steady equations, as well an evolutive ”obstacle” HJ equation in the form of
min (us + H(x,ug),u — g(z)) = 0 for a given function g. Last section of the chapter

contains concluding remarks.
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In chapter 2 we present an application of HJ equation. We solve front propagation prob-
lems by the filtered scheme introduced in chapter 1. In section 2.2 we recall front prop-
agation equation and introduce some notations and definitions for the model problem.
Section 2.3 is devoted to new numerical examples for the front propagation problems up

to three dimensions.

Chapter 3 deals with coupled numerical schemes for discontinuous initial data vy. In
section 3.2 we recall the basic facts about the semi-Lagrangian (SL) method [42] and
the anti-dissipative (AD) [13] scheme which we use in the coupling. In section 3.3 we
present the general form of the coupled scheme and we describe how it will be applied
to solve the linear advection equation and how it has been extented of Hamilton-Jacobi
equation. Section 3.4 we will prove some important properties of the coupled scheme.
Finally, Section 3.5 will be devoted to the numerical tests fro hyperbolic conservation

laws and HJ equations dimension one.

Chapter 4 is devoted to traffic problems. In the section 4.2 we give the details about
existing macroscopic models on a single road and then the on road networks with nu-
merical schemes. In section 4.3 we recall basic microscopic model on a single road and
then we introduce the basic follow-the-leader model and the LWR model on a single
road. Moreover, the existing results about the micro-to-macro limit on a single road are
recalled. In section 4.4 we extend the model to networks, and in section 4.5, which is
the core of the chapter, we show the relationship between the follow-the-leader model
on networks and the LWR-based multi-path model. Finally, in section 4.6 we present
fully discrete algorithms for the numerical solutions of the equations considered in the
chapter and in section 4.7 we confirm our findings by means of some numerical tests and
confirm our findings by means of some numerical tests.

Contribution: Let us briefly mention the original contributions which are behind this

thesis.

e Chapter 1 is based on the submitted paper [BFS15].

[BFS15] O. Bokanowski, F. Falcone, and S. Sahu. An efficient filtered scheme for
some first order Hamilton-Jacobi-Bellman equations. Submitted to STAM Journal

on Scientific Computing (SISC). 2014.

e Chapter 2 is based on the conference preceding submitted paper [S15].
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[S15] S. Sahu. High order filtered scheme for front propagation problems presented
at HYP2014- XV International Conference on Hyperbolic Problems. Submitted
to HYP2014 Bulletin of the Brazilian Mathematical Society.

e Chapter 3 is based on the submitted paper [FS15].

[FS15] M. Falcone and S. Sahu. Coupled scheme for linear and Hamilton-Jacobi-
Bellman equation. Submitted to Communications in Applied and Industrial Math-

ematics (CAIM), 2015.

e Chapter 4 is based on the submitted paper [CS15].

[CS15] E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traf-
fic flow models on networks, submitted to Networks and Heterogeneous Media

(NHM), 2015.



Chapter 1

High-order numerical schemes

1.1 Introduction

We introduce a new class of “Filtered” schemes for some first-order non-linear HJB
equations. The work follows recent ideas of Froese and Oberman [51] adn Oberman
and Salvador [86]. Here we mainly study the time-dependent setting. Furthermore,
specific corrections to the filtering idea are also needed in order to obtain high-order
efficiency. The proposed schemes are not monotone but still satisfy some e-monotone
property. A general convergence result together with a precise error estimate is given,
of the order of v/Az where Az is the mesh size. The framework allows to construct
finite difference discretizations that are easy to implement and high-order in the domain
where the solution is smooth. Numerical tests on several examples are given to validate
the approach, also showing how the filtered technique can be applied to stabilize an

otherwise unstable high-order scheme.

Our aim is to develop high-order and convergent schemes for first-order HJ equations of

the following form

o+ H(x,Vv) =0, (t,z)€[0,T] x R? (1.1)

v(0,z) = vo(z), = €R%L (1.2)

Basic assumptions on the Hamiltonian H and the initial data vy will be introduced in

the next section. For more details about the present high order schemes refer readers
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to the references already mentioned in the general introduction. In this chapter we give
a very simple way to construct high—order schemes in a convergent framework. It is
known (by Godunov’s theorem) that a monotone scheme can be at most first order.
Therefore it is necessary to look for non-monotone schemes. The difficulty is then to
combine non-monotonicity of the scheme and convergence towards the viscosity solution
of (3.1), and also to obtain error estimates. In our approach we will adapt a general idea
of Froese and Oberman [51], that was presented for stationary second order Hamilton-
Jacobi equations and based on the use of a “filter” function. The idea was also used to

treat some stationary first order HJ equations in Oberman and Salvator [86].

Here we focus mainly on the case of time-dependent first order Hamilton-Jacobi equation
(3.1). As suggested in [51] the scheme can be adapted to solve steady HJ equation by
using a fixed point approach. The schemes are written in explicit time marching form
which is well adapted to time-dependent equations, while the setting of [51] or [86] is
better adapted to solve stationary equations. Let us emphasize that it is our experience
that a direct application of the idea of [51] or [86], even if leading to convergent schemes,
does not lead to second order schemes in general (similar filtering idea were already
mentioned for instance in Osher and Shu [71, Remark 2.2], and see also Remark 1.3.1).
One aim of the here is to explain in more detail some adaptations that where needed in
order to achieve numerically the second order convergence, at least for main examples

tested.

We use the same discontinuous filter function as in [86] for which the filtered scheme
is still an “e-monotone” scheme (see Eq.1.14). In our case we justify the use of this
discontinuous filter to obtain a second order numerical behavior of the scheme in the
L norm. It is our experience that using instead the continuous filter initially introduced
in [51] leads to only first order behavior. (However in the case of steady equations - see

in section 1.4, it is our experience that both filters give very similar results).

Furthermore, when using a central finite difference scheme together with the filtering
idea, we introduce a limiting process that is needed in order to obtain high order effi-
ciency and that is made precise in the case of front-propagation models. This limiting
process was not needed in [51, 86] for the treatment of steady equations. Without the
limiting process the scheme may switch back to first order after a few time steps (see

for instance Example 2 in section 1.4).
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Moreover, the filtered scheme (1.8) needs the use of a filtering parameter (hereafter
denoted ”€”) that must be chosen in order to switch between the high-order scheme and
the monotone scheme in a convenient way. A natural upper bound for the parameter is
given in [51, 86], of order O(v/Az). We give here a similar upper bound that is justified
theoretically to ensure an error estimate of order O(v/Az). However in our case we give
furthermore a lower bound on this parameter and some precise indications as how to fix
the parameter depending of the data. In the end we advice using € = ¢y Ax where ¢ is
a constant depending of the data in order to obtain numerically a high order behavior,

and therefore our choice is slightly different from the one of [86].

The approach also allows us to obtain new error estimates for filtered scheme for general
time dependant HJ equations, of order O(v/Az) where Az is the spatial mesh size,
and under a standard CFL condition on the time step (this results is new compared to
the works [51, 86]). This is similar to the Crandall-Lions error estimate for monotone

schemes [34], because the scheme can be written as a perturbation of a monotone scheme.

1.2 Definitions and main results

1.2.1 Setting of the problem

Throughout the chapter | - | denotes the Euclidean norm on R? (d > 1). The following
classical assumptions will be considered:
(A1) vg is Lipschitz continuous function i.e. there exist Ly > 0 such that for every
T,y € R

[vo(2) = vo(y)| < Lolz —yl. (1.3)

(A2) H :R? x R? — R? satisfies, for some constant C' > 0, for all p,q,z,y € R%:

|H(y,p) — H(z,p)| < C(1 + |pl)|y — =, (1.4)

and

|H(x,q) — H(z,p)| < C(1+ |z|)|qg — pl. (1.5)
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Under assumptions (A1) and (A2) there exists a unique viscosity solution for (3.1) (see

Ishii [72]). Furthermore v is locally Lipschitz continuous on [0, 7] x R¢.
For clarity of presentation we focus on the one-dimensional case and consider the fol-

lowing simplified problem:

v+ H(z,v,) =0, (t,z)€[0,T] xR, (1.6)

v(0,z) =vo(x), zeR. (1.7)

1.2.2 Construction of the filtered scheme

Let At > 0 be a time step (in the form of At = % for some N > 1), and Az > 0 be
n

a space step. A uniform mesh is defined by t, := nAt, n € [0,...,N], and z; := jAz,

jez.

The construction of a filtered scheme needs three ingredients:

e a monotone scheme, denoted S™
e a high-order scheme, denoted S*
e a bounded “filter” function, F': R — R.
The high-order scheme need not be convergent nor stable; the letter A stands for “arbi-

trary order”, following [51]. For a start, S™ will be based on a finite difference scheme.

Later on we will also propose a definition of S™ based on a semi-Lagriangian scheme.

Then, the filtered scheme is defined by

. " . SA u” '—SM u™) s
uj+1 = SF ™) = SM(u )j+eAtF< ( )]eAt ( )J>, (1.8)

where € = eara, > 0 is a parameter that will satisfy

lim €= 0. (1.9)
(At,Az)—0

More precision on the choice of € will be given later on.
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The scheme is initialized as follows:

ug-) = vo(x;), VjELZL. (1.10)

Now we make precise some requirements on SM, S4 and F.

Definition of the monotone finite difference scheme S™: Following Crandall and Li-

ons [34], we consider a finite difference scheme written as u"*! = SM (u") with
SMu™) (x) == u™(z) — At WM (z, D~ u"™(z), DT u"(x)), (1.11)

with
u(z £ Azx) — u(x)

D¥u(z) ==+ AL )

where K™ corresponds to a monotone numerical Hamiltonian that will be made precise
below. We will denote also SM (u"); := SM(u™)(x;). Therefore the scheme also reads,

for all j € Z, Vn > O:

ul, =yt
Wit i= = AWM (ej, Dmap, DY), DR = £ (1.12)

(A3) - Assumptions on SM:

(i) hM is a Lipschitz continuous function.
(ii) (consistency) Vx, Yu, KM (z,p,p) = H(p).
(7i7) (monotonicity) for any functions u, v,

u<v= SMu) < SM(v).

In pratice condition (A3)-(4i7) is only required at mesh points and the condition reads
<w, uj < v]) = <Vj, SM(u); < SM(U)J) (1.13)

At this stage, we notice that under condition (A3) the filtered scheme is ”e-monotone”

in the sense that

uj <wvj, Vi, = SF(u); < SF(v)j +er |F||pee, V. (1.14)
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with € — 0 as (At,Az) — 0. This implies the convergence of the scheme by using

Barles-Souganidis convergence theorem (see [10] and [2]).

Remark 1.2.1. Under assumption (i), the consistency property (ii) is equivalent to say
that, for any v € C%([0,T] x R), there exists a constant Cy; > 0 independant of Az such
that

‘hM(z,D_v(:v),D+v(m)) — H(z,v3)| < CrrAz||0zz]| co- (1.15)

The same statement holds true if (1.15) is replaced by the following consistency error

estimate:

v(t + At,x) — SM(u(t,.))(x)
At

< Cy (At\@tthoo+Ax||8mv\|oo>. (1.16)

Eqm (v)(t, ) :=

— (’Ut(t, -’L‘) + H(J:a Ux(tv :‘C)))

Remark 1.2.2. Assuming (i), it is easily shown that the monotonicity property (iii) is

equivalent to say that K" = WM (x,p~, pT) satisfies, a.e. (z,p~,pt) € R3:

onM onM
— > — < 1.1
and the CFL condition
T (OnM n onM n
— = - - - <1. 1.18
A:r(&p— (,p™,p") apt (z,p",p )) < (1.18)

When using finite difference schemes, it is assumed that the CFL condition (1.18) is

satisfied, and that can be written equivalently in the form

At

Proposition 1.2.1. Let Hamiltonian H and initial data vy be Lipschitz continuous
(satisfies (A1)-(A2)) and U? = ug(x;). For fix At > 0 and Az > 0, let the monotone
finite difference scheme (1.11) (with numerical Hamiltonian satisfies (A3)) with standard
CFL (1.19). Then there is a constant C such that for any n < T/At, we have

[0 (27) — u"(x)| < CVAw. (1.20)
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for At — 0, At = cAx.

Proof. For proof we refer reader to to [34]. O
As a pure convergence result, Crandall- Lions theory is generalized by the BarlesSougani-
dis theorem, although in the latter result no convergence estimate is obtained.

Example 1.2.1. Let us consider the Laz-Friedrichs numerical Hamiltonian

_ p-+pt, ¢ _
WM ™ ") = H e, ) = 0 ) (121)

where ¢y > 0 is a constant. The scheme is consistant; it is furthermore monotone under

the conditions maxy p |0, H (x,p)| < co, and cox, < 1.

Definition of the high-order scheme S“: we consider an iterative scheme of ”high-order”

in the form u"*! = S4(u"), written as
SA(u")(x) = u™(z) — Th (z, D*~u"(z), ..., D" u"(x), D u"(x),..., D" Tu"(x)),

where h# corresponds to a ”high-order” numerical Hamiltonian, and

u(x £ LAx) — u(x)

DbFu(z) =+ AL

for £=1,...,k
. To simplify the notations we may write (1.22) in the more compact form
SA(u™)(z) = u™(x) — 7h? (z, DFu"(x)) (1.22)

even if there is a dependency in (De’iu"(a:))g_lvwk.

(A4) - Assumptions on S4:
(i) b4 is a Lipschitz continuous function.

(i) (high-order consistency) There exists k > 2, forall £ € [1,... k], for any function

v=u(t,z) of class C**1, there exists Cay > 0,

v(t + At,x) — SA(v(t,.))(x)
At

Ega(v)(t,z) = - (vt(t,x) + H(z,v,(t,x))) (1.23)

< Cay (Atfuaf“vuoo + Axﬁuaf,“vuoo). (1.24)
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Here v% denotes the ¢-th derivative of v w.r.t. .
Remark 1.2.3. The high-order consistency implies, for all £ € [1,... k], and for v €

C€+1 (R),

WA (x,...,D7v,DTv,...) — H(z,v,)| < Cal|05 0| oAzt

Remark 1.2.4. (Centered scheme) A typical example with k = 2 is obtained with the

centered approzimation in space and the TVD-RK2 scheme in time (or Heun scheme):

ny ._ ..n un-i-l B un—l
and
1
SA(u) = 3 (u+ So(So(w))) . (1.25b)

Of course there is no reason that the centered scheme be stable (as it will be shown in

the numerical section). Using a filter will help stabilize the scheme.

Remark 1.2.5. A similar example with k = 3 can be obtained with any third order

finite difference approzimation in space and the TVD-RKS scheme in time [59].

Definition of the filter function F'. We recall that Froese and Oberman’s filter function

used in [51] was:

)
x lz| < 1.

. . 0 |z| > 2.
F(x) = sign(z) max(1 — ||z| — 1|,0) =
—r+2 1< <2,

-z —2 —2<z<-—1.

In the present work use another filter function which is also used by Oberman and
Salvador in [86] simply as follows:

. z if [z <1,

0 otherwise.
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FIGURE 1.1: Froese and Oberman’s filter (left), Oberman and Salvador’s filter (right)

The idea of the present filter function is that it will keep the high-order scheme when

|4 — hM| < €, because then

54— 5]
Ate

SA—SM

<1 F—8M 4 AteF
<1land S S™ 4+ AteF( Ale

) =54,

and otherwise F' = 0 and S¥ = SM i.e., the scheme is simply given by the monotone
scheme itself. Clearly the main difference is the discontinuity at £ = —1,1. As men-
tionned in [86], use of a discontinuous filter may lead to difficulties when dealing with
implicit schemes in order to show the existence of the numerical solution. However, here,

we focus only on explicit schemes.

1.3 Convergence result

The following theorem gives several basic convergence results for the filtered scheme.
Note that the high-order assumption (A4) will not be necessary to get the error estimates
(7)-(4i). It will be only used to get a high-order consistency error estimate in the regular
case (part (ii)). Globally the scheme will have just an O(v/Az) rate of convergence
for Lipschitz continuous solutions because the jumps in the gradient prevent high-order

accuracy on the kinks.

Theorem 1.3.1. Assume (A1)-(A2), and vy bounded. We assume also that SM satisfies
(A3), and [F| < 1. Let u" denote the filtered scheme (1.8). Let v := v(tn,x;) where v

is the exact solution of (1.6). Assume

0<e<cVAz (1.27)
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for some constant co > 0. (i) The scheme u™ satisfies the Crandall-Lions estimate
|u" — 0" oo < CVAz, Vn=0,..,N. (1.28)

for some constant C independent of Ax.

(ii) (First-order convergence for classical solutions.) If furthermore the exact solution v

belongs to C2([0,T] x R), and € < coAx (instead of (1.27)). Then it holds
|[u" — "o < CAzZ, n=0,..,N, (1.29)

for some constant C independent of Ax.

(14i) (Local high-order consistency.) Let N be a neighborhood of a point (t,z) € (0,T) x
R. Assume that S? is a high-order scheme satisfying (A4) for some k > 2. Let1 < £ <k

and v be a C*1 function on N'. Assume that
(Ca1+Cu) (Hvttﬂoo At + ||vzz oo Aw) <e. (1.30)

Then, for sufficiently small t, —t, v; —x, At, Az, it holds

and, in particular, a local high-order consistency error for the filtered scheme ST ':
Egr(v™); = Ega(v™); = O(Az")
(the consistency error Ega is defined in (1.23)).

Proof of Theorem 1.3.1: (i) Let w?“ = SM(w"); be defined with the monotone scheme
only, with w? =vo(z;) = ug. By definitions,

pl gt = gM () — SM(w™); + eAtF ()

u] J

Hence, by using the monotonicity of SM,

max |u" 1 — w;-”l] < max |uf — wi| + eAt,
j j

J J
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and by recursion, for n < N,

max |u; —wy| < enAt <Te.
J

On the other hand, by Crandall and Lions [34], an error estimate holds for the monotone

scheme:

max [w} —vi| < CVA®,
J

for some C' > 0. By summing up the previous bounds, we deduce

max [uf —v}| < CVAz+Te,
J
and together with the assumption on e, it gives the desired result.

3 ot — SM (),
(ii) Let &' == . A7

derivatives, then the consistency error is bounded by

. If the solution is C? regular with bounded second order

|5J"| < Cup (At + Ax). (1.31)
Hence

wpt = =18 () - SM (")) + ALE] + AteF ()]

IN

|u" — 0" oo + At]|E" ||oo + Ate.
By recursion, for nAt < T,

n__,n < 0o_,0 k )
o =" < =+ T (4

Finally by using the assumption on ¢, the bound (1.31) and the fact that At = O(Ax)
(using CFL condition (1.19)), we get the desired result.

(#33) To prove that S (v"); = S4(v™);, one has to check that

\S%WM—SM@WH<1
eAt -
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as (At, Ax) — 0. By using the consistency error definitions,

Un+1 _ SA(’Un)‘

A(,mY. _ QM (,,n\ .
|57 (™) — 57 (W) J J + v (tn, xj) + H(xj, vz (tn, z5))

At At
it = SM);
_< +Ut(tna$j)+H($javx(tna$j))>
At
< [Ega (V)] + |Egm (V)]
< (Caq+ Cu)(At]|vt]| oo + Az||V22]|00)
Hence the desired result follows. O

Remark 1.3.1. (related approaches) It is already known from the original work of
Osher and Shu [71] that it is possible to modify and ENO scheme in order to obtain a
convergent scheme. For instance, if DivAu? denotes a high-order finite difference deriva-
tive estimate (of ENO type), a projection on the first-order finite difference derivative
Diu? can be used, up to a controlled error (see in particular Remark 2.2 of [71]):

instead of Di’Au?, use P[Diu;;’MAz] (Di’AU?)

where Py, ) (y) is the projection defined by:

Yy if a—b<y<a+b
Pon) =9 a—b if y<a-—>b
a+b if y>a+b

and M > 0 is some constant greater than the expected value §|uzq(tn, z;)|. However, we
emphasize that in our approach we do not consider a projection but a perturbation with
a filter, which is sligthly different. Indeed, by using a projection into an interval of the
form [a — M Az, a + MAx] where a = D¥u?

1, numerical tests show that we may choose
too often one of the extremal values a = M Ax which is then produces an overall too big

error (worse than using the first-order finite differences).

Following the present approach, we would rather advise to use,

instead of Di’Au?, the value p[Diu;;,MAx](Di’Au?)
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where ]3[&75,] (y) is defined by:

y if a—b<y<a+b

Py, =
[M(y) a if y¢la—>b,a+1]

Remark 1.3.2. Filtered semi-Lagrangian scheme. Let us consider the case of

H(x,p) = 21&1}131 max {—=f(z,a,b).p —l(x,a,b)}, (1.32)

where A C R™ and B C R"™ are non-empty compact sets (with m,n > 1), f : R? x
Ax B — R% gnd ¢ : R* x A x B — R are Lipschitz continuous w.r.t. xz: 3L > 0,
V(a,b) € A x B, Vx,y:

max(|f(x7a> b) - f(ya a, b)|7 |£($7aa b) - g(%avb)’) < L|.7} - y|' (1'33)

(We notice that (A2) is satisfied for hamiltonian functions such as (1.32).) Let [u]

denote the Pl-interpolation of u in dimension one on the mesh (z5), i.e.

Tjt1— T —xj
x € zjxj1] = [ul(z):= ﬁTxuj + ijujﬂ. (1.34)

Then a monotone SL scheme can be defined as follows:

SM(un); = 1;1612 max <[u"] (zj + Atf(z),a,b)) + Atl(z;, a, b)> (1.35)

A filtered scheme based on SL can then be defined by (1.8) and (1.35). Convergence
result as well as error estimates could also be obtained in this framework. (For error

estimates for the monotone SL scheme, we refer to [42, 102])

1.3.1 Adding a limiter

The basic filtered scheme (1.8) is designed to be of high-order where the solution is
regular and when there is no viscosity aspects. However, for instance in the case of front
propagation, it can be observed that the filter scheme may let small errors occur near

extrema, when two possible directions of propagation occur in the same cell.
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This is the case for instance near a minima for an eikonal equation. In order to improve
the scheme near extrema, we propose to introduce a limiter before doing the filtering
process. Limiting correction will be needed only when there is some viscosity aspect (it

is not needed for advection).

Let us consider the case of front propagation, i.e., equation of type (1.6), now with

H(z,v,) = max (f(z,a)vy) (1.36)

(i.e., no distributive cost in the Hamiltonian function).

In the one-dimensional case, a viscosity aspect may occur at a minima detected at mesh

point z; if
min, f(z;,a) <0 and max, f(zj,a) > 0. (1.37)

In that case, the solution should not go below the local minima around this point, i.e.,

we want

n+1

j

> Umin,j = min (U?ﬁl, U?, U?Jrl) ) (138)

and, in the same way, we want to impose that

n+1

j

< Umaz,j ‘= Max (U?—la u?a u?—l—l) . (139)

If we consider the high-order scheme to be of the form u?“ = uj — Ath4(u™), then the

limiting process amount to saying that

U — Umin.i
Ar,ony . max .__ _J min,j

and
Ar,ony . min . _J mazw,j

This amounts to define a limited h4 such that, if (1.37) holds at mesh point x;, then

B4 = min (a0, ), 7 )



Chapter 1. High-order numerical schemes 15

and, otherwise,

Then the filtering process is the same, using A instead of h* for the definition of the

high-order hamiltonian.

For two dimensional equations a similar limiter could be developped in order to make
the scheme more efficient at singular regions. However, for the numerical tests of the
next section (in two dimensions) we will simply limit the scheme by using an equivalent
of (1.38)-(1.39). Hence, instead of the scheme value u%ﬂ =54 (u™),; for the high-order
scheme, we will update the value by

u%“ = min (max (S’A(un)ij, uZ”") ,ufi®) (1.40)

mMin — ;3 no,n n mar no,n n
where ;" = min (uij,uii17j, uiJﬂ) and u;;*" = max (uij, uiﬂ,j,uiyjﬂ)

1.3.2 Choice of the parameter ¢ : a simplified approach.

The scheme should switch to high-order scheme when some regularity of the data is

detected, and in that case we should have

S4(v) — SM(v)
eAt

< 1
€

:‘hﬂc>—hMcw

In a region where a function v = v(x) is regular enough, by using Taylor expansions, zero
order terms in h4(z, D*v) and hM (z, D*v) vanish (they are both equal to H(z,v,(z)))
and it remains an estimate of order Axz. More precisely, by using the high-order property
(A4) we have

hA(xj, D¥v;) = H(xj,va(x)) + O(Az?).

On the other hand, by using Taylor expansions,
DuF = 0,()) % 202 (a2 + O(Aa?)
v; = v (@ 5 Vaw () A x),

Hence, denoting h™ = hM (x,u”,u"), it holds at points where hM is regular,

1 onM oM
My, .. — +\ . . . J J
h (xyva , Dvj ) = H(zj,ve(;)) + Uxx(%)(aqu " Bu-

5 > + O(Az?).
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Therefore,

8hM 8hM
8u+ 8u

WA (W) — M (v)| = Az + O(Az?).

Hence we will make the choice to take ¢ roughly such that

1 ahM 8h§”
ou~

Az <e (1.41)

(where hé-\/[ = hM(z,v,(2;),v:(z;))). Therefore, if at some point z; (1.41) holds, then
the scheme will switch to the high-order scheme. Otherwise, when the expectations from

hM and h? are different enough, the scheme will switch to the monotone scheme.

In conclusion we have upper and lower bound for the switching parameter e:

e Choose € < ¢gvVAx for some constant ¢y > 0 in order that the convergence and

error estimate result holds (see Theorem 1.3.1).

e Choose € > ¢iAx, where ¢; is sufficiently large. This constant should be choosen

roughly such that

onM onM

Su +( Uﬂhvw)_ u— Scl'

(., Vg, Ug)

00

where the range of values of v, and v, can be estimated, in general, from the values
of (v)z, (v0)ze and the Hamiltonian function H. Then the scheme is expected to

switch to the high-order scheme where the solution is regular.

1.4 Numerical Test

In this section we present several numerical tests in one and two dimensions.

Unless otherwise precised, the filtered scheme will refer to the scheme where the high-
order Hamiltonian is the centered scheme in space (see Remark 1.2.4), with Heun (RK2)
scheme discretisation in time (see in particular Eqgs. (1.25a)-(2.18b)). Hereafter this
scheme will be referred as the ”centered scheme”. The monotone finite difference scheme
and function h™ will be made precise for each example. For the filtered scheme, unless

otherwise precised, the switching coefficient e = 5Ax. will be used. In practice e = ¢c;Ax
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with ¢; sufficiently large does not much change the numerical results in the following
tests. All the tested filtered schemes (appart from the steady and obstacle equations)
enters in the convergence framework of the previous section, so in particular there is a

theoretical convergence of order v/ Az under the usual CFL condition.

In the tests, the filtered scheme will be in general compared to a second order ENO
scheme (for precise definition, see Appendix A), as well as the centered (a priori unstable)

scheme without filtering.

In several cases, local error in the L? norms are computed in some subdomain D, which,

at a given time t,,, corresponds to

1/2
eLl20c = <AIL’ Z |U(tn7xi) - u?|2>

iz, €D

Examples 1 and 2 deal with one-dimensional HJ equations, examples 3 and 4 with two-
dimensional HJ equations, and the last three examples will concern a one-dimensional

steady equation and two nonlinear one-dimensional obstacle problems.

1.5 One dimentional Tests

1.5.1 Advection equation

Example 1.5.1. (Advection equation). In this test we consider an sadvection equa-

tion in one dimension

vwtv, =0, t>0, z€(-2,2),
’U(O,l‘) = UO(:‘C)v T e (_272)

(1.42)

with periodic boundary condition on (—2,2), terminal time T = 0.3 and the following

mitial data:

vo(x) = — max (0,1 — |w\2)4. (1.43)
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This “smooth” initial data is chosen in order to have at least a 3rd order continuous
derivative at x = +1. The monotone upwind Hamiltonian is used (hM (x,v7,0") ==
v ).

Results are given in Table 1.1 for the errors in L? norms, where is compared the CFD
scheme (central finite difference scheme ), the ENO scheme (second order ENO scheme)
with RK2 in time, as described in Appendiz A), and the Filter scheme using € = 4Ax.
In this test the CFL number (: &) is 0.37. FErrors are numerically comparable in
that case, all schemes are second order, also CFD scheme is numerically stable without
filtering. More precisely we observe that CFD and Filter schemes give identical results,
which means that the filtering has no effect here. So the filtering at least does not
deteriorate the good behavior of the CFD scheme. (Results are similar for the L' and

L errors.)

A third order scheme. Then, we have also tested a third order filtered scheme. More
precisely, to settle the third order scheme, the derivative v, was estimated using a third

order backward difference:

nle) = 5, (ot = 30l + ot - olein)) = @

and the corresponding high order Hamiltonian, simply h?(v); := H((03);). The usual
TVD-RK3 method was used for time discretisation, and is recalled in Appendiz A (see

for instance [59] and refs. therein).

Results are given in Table 1.2, using CFL= 0.3. It is indeed also observed near to third
order convergence. This is only true for small enough CFL numbers though (CFL<

0.35), otherwise it was numerically observed a switch to second order convergence.

Filter e = 4Ax CFD ENO2
M N | L? error order | L? error order | L? error order
20 4 | 4.97E-02 - 4.97E-02 - 7.95E-02 -
40 8 1.26E-02 1.98 | 1.26E-02 1.98 | 2.29E-02 1.79

80 16 | 3.07E-03 2.03 | 3.07E-03 2.03 | 5.96E-03 1.95
160 32 | 7.66E-04 2.00 | 7.66E-04 2.00 | 1.51E-03 1.98
320 64 | 1.90E-04 2.01 | 1.90E-04 2.01 | 3.77E-04 2.00
640 128 | 4.76E-05 2.00 | 4.76E-05 2.00 | 9.41E-05 2.00

TABLE 1.1: (Example 2.3.1.) Global L? errors for Filter, Central Finite difference
scheme (CFD) and ENO (2nd order) scheme with RK2 in time.
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] M N | L' error order | L? error order | L™ error order
20 4 | 1.12E-01 - 7.74E-01 - 8.82E-02 -
40 8 1.67E-02 2.78 | 1.19E-02 2.71 | 1.41E-02 2.64
80 16 | 2.21E-03 2.92 | 1.60E-03 2.89 | 1.86E-03 2.93

160 32 | 2.77E-04 2.99 | 2.07E-04 2.95 | 2.87TE-04 2.69
320 64 | 3.43E-05 3.02 | 2.64E-05 297 | 4.78E-05 2.58
640 128 | 4.51E-06 2.93 | 3.43E-06 294 | 7.26E-06 2.72

TABLE 1.2: (Example 2.3.1.) Global Errors for the third order filter scheme (e = 4Ax).

1.5.2 Eikonal equation
Example 1.5.2. (Eikonal equation) We consider the case of

ve+ v =0, te(0,T), xe€(-2,2), (1.44)

v(0,2) = vo(z) := max(0,1 — 2%)*, =€ (-2,2). (1.45)

In Table 1.3, we compare the filtered scheme (with € = 5Ax) with the centered scheme
and the ENO second order scheme, with CFL = 0.37 and terminal time T = 0.3. For

the filtered scheme, the monotone hamiltonian used is K™ (z,v=,v") := maz (v, —v™).

As expected, we observe that the centered scheme alone is unstable. On the other hand,
the filtered and ENO schemes are numerically comparable in that case, and second order

convergent (the results are similar for the L' and the L™ errors).

Then, in Table 1.4, we consider the same PDE but with the following reversed initial
data:

to(z) := —max(0,1 — 23,z € (-2,2). (1.46)

In that case the centered scheme alone is unbounded. The filtered scheme (with ¢ = 5Ax)
is second order. However, here, the limiter correction as described in section (1.3.1) was
needed in order to get second order behavior. We also observe that the filtered scheme
gives better results than the ENO scheme. (We have also numerically tested the ENO
scheme with the same limiter correction but it does not improve the behavior of the ENO

scheme alone).
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In conclusion, this first example shows firstly, that the filtered scheme can stabilize an
otherwise unstable scheme, and secondly that it can give the desired second order behav-

107.

filtered (e = 5Ax) centered ENO2
M N | L? error  order L? error order | L? error order

40 9 | 7.51E-03 - 1.18E-01 - 1.64E-02 -

80 17 | 3.36E-03  1.16 1.14E-01  0.06 | 4.38E-03 1.91
160 33 | 8.02E-04 2.07 | 1.13E-01 0.00 | 1.19E-03 1.87
320 65 | 1.80E-04  2.16 1.13E-01  0.00 | 3.22E-04 1.89
640 130 | 4.53E-05  1.99 1.13E-01  0.00 | 8.22E-05 1.97

TABLE 1.3: (Example 2.3.2. with initial data (1.45)) L? errors for filtered scheme,
centered scheme, and ENO second order scheme

filtered (e = 5Ax) centered ENO2
M N error order error order error order
40 9 1.27E-02 - 2.03E-02 - 2.60E-02 -

80 17 | 3.17E-03  2.00 8.96E-03  1.18 | 8.00E-03 1.70
160 33 | 7.90E-04 2.01 1.06E-02 -0.24 | 2.50E-03 1.68
320 65 | 1.97TE-04  2.00 1.26E-01 -3.57 | 7.80E-04 1.68
640 130 | 4.92E-05  2.00 1.06E402 -9.71 | 2.44E-04 1.67

TABLE 1.4: (Example 2.3.2. with initial data (1.46).) L? errors for filtered scheme,
centered scheme, and ENO second order scheme.

FIGURE 1.2: (Example 2.3.2.) With initial data (1.45) (left), and plots at time T' = 0.3
with centered scheme - middle - and filtered scheme - right, using M = 160 mesh points.

1.5.3 Burger’s equation
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FIGURE 1.3: (Example 2.3.2. With initial data (1.46) (left), and plots at time 7" = 0.3
with centered scheme - middle - and filtered scheme - right, using M = 160 mesh points.

Example 1.5.3. (Burger’s equation)
In this example an HJ equivalent of the nonlinear Burger’s equation is considered:

1
v + 5‘@x|2 =0, t>0, z€(-2,2) (1.47a)

v(0,2) = vo(z) := max(0,1 — %), z € (-2,2) (1.47Db)

with Dirichlet boundary condition on (—2,2). Ezact solution is known.'. In order to
test high order convergence we have considered the smoother initial data which is the

one obtained from (1.47) at time to := 0.1, i.e. :

1
wy + §|wx|2 =0, t>0, z€(-2,2). (1.48a)
w(0,z) :=v(tg,x), x€(-2,2), (1.48Db)
with exact solution w(t,x) = v(t + to, x).

An dllustration is given in Fig. 1.4. For the filtered scheme, the monotone hamiltonian

used is WM (z,07,v%) = 2(v7)? 1,-50 + 5 (v1)? 14 .

Errors are given in Table (1.5), using CFL=0.37 and terminal time T = 0.3.

! Tt holds
(max(0,1 — |]))* (1—2t)%—|af?

vt x) = T, Loy + 757 lazeizi-2
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In conclusion we observe numerically that the filtered scheme keeps the good behavior of
the centered scheme (here stable and almost second order).

t=0 t=0.3

15 1.5
= Exact = Exact
=——— Scheme = Scheme
1 1
05F 05F
0 0
_05 i i i i i i i i _05
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -15 -1 -0.5 0 0.5 1 15 2

FIGURE 1.4: (Example 2.3.4) Plots at t = 0 and ¢ = 0.3 with the filtered scheme.

filtered (e = 5Ax) centered ENO2
M N error order error order error order

40 9 | 2.06E-02 - 2.07E-02 - 2.55E-02 -

80 17 | 6.24E-03 1.73 | 6.24E-03 1.73 | 8.24E-03 1.63
160 33 | 1.85E-03  1.76 1.85E-03 1.76 | 2.81E-03 1.55
320 65 | 5.51E-04 1.74 | 5.51E-04 1.74 | 1.03E-03 1.45
640 130 | 1.68E-04 1.71 1.68E-04 1.71 | 3.74E-04 1.47

TABLE 1.5: (Example 2.3.4) L? errors for filtered scheme, centered scheme, and ENO
second order scheme.

1.6 Two dimensional tests

Example 1.6.1. (2D rotation) We now apply filtered scheme to an advection equation

i dimension 2:

v —Yup +av, =0, (z,y) €, t>0, (1.49)

1—(z—1)2—y2\*
(0, 2,y) = vo(z,y) == 0.5 — 0.5 max (0, (xl )2 Y > (1.50)

where Q = (—A, A)? (with A = 2.5), 7o = 0.5 and with Dirichlet boundary condition
v(t,z) = 0.5, x € 00. This initial condition is reqular and such that the level set

vo(x,y) = 0 corresponds to a circle centered at (1,0) and of radius rg.
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In this example the monotone numerical Hamiltonian is defined by
M (u, u;",u;,u;‘) = max(0, f1(a, z,y))u, + min(0, fi(a,x,y))u; (1.51)

+ max(0, f2(a, z,y))u, +min(0, f2(a, =, y))uy

and the high order scheme is the centered finite difference scheme in both spacial vari-
ables, and RK2 in time. The filtered scheme is otherwise the same as (1.8). However it
is necessary to use a greater constant ¢y is the choice € = c;Ax in order to get (global)

second order errors. We have used here e = 20Ax.

On the other hand the CFL condition is

T T
= —+— ) <1 .
1 cO(Aa:+Ay>_1 (1.52)

where here co = 2.5 (an upper bound for the dynamics in the considered domain ). In

this test the CFL number is p := 0.37.

Results are shown in Table 1.6 for terminal time time T := 7 /2. Although the centered
scheme is a priori unstable, in this example it is numerically stable and of second order.
So we observe that the filtered scheme keep this good behavior and is also or second order

(ENO scheme gives comparable results here).

filtered centered ENO
Mz Ny | L? error order | L? error order | L? error order

20 20 | 5.05E-01 - 5.05E-01 - 6.99E-01 -

40 40 | 1.48E-01 1.77 | 1.48E-01 1.77 | 4.66E-01 0.58
80 80 | 3.77E-02 1.98 | 3.77E-02 198 | 2.04E-01 1.19
160 160 | 9.40E-03 2.00 | 9.40E-03 2.00 | 5.50E-02 1.89
320 320 | 2.34E-03 2.01 | 2.34E-03 2.01 | 1.29E-02 2.10

TABLE 1.6: (Example 2.3.5) Global L? errors for the filtered scheme, centered and
second order ENO schemes (with CFL 0.37).

Example 1.6.2. (Eikonal equation) In this example we consider the eikonal equation

v+ ||Vol| =0, (x,y)€Q, t>0 (1.53)
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t=0 t=1.57

FIGURE 1.5: (Example 2.3.5) Filtered scheme, plots at time ¢ = 0 (left) and ¢t = /2
(right) with M = 80 mesh points.

in the domain Q := (—3,3)2. The initial data is defined by

vo(z,y) = (1.54)

1—(z—1)2 — 2 1—(z+1) —y?
0.5 — 0.5 max | max(0, (@ )2 d )4, max(0, =+ )2 Y )t ).
1—rg 1—rg

The zero-level set of vy corresponds to two separates circles or radius ro and centered
in A= (1,0) and B = (—1,0) respectively. Dirchlet boundary conditions are used as the

previous example.

The monotone hamiltonian h™ used in the filtered scheme is in Lax-Friedriech form:

- ot o= ot
hM(x,uf,uf,ug,u;) = H<x,u1_gu1,u2;u2>
C _ C _
Gt ) - D ). s

where, here, Cy = Cy = 1. We used the CFL condition 1 = 0.37 as in (1.52). Also, the
simple limiter (1.40) was used for the filtered scheme as described in Section 1.8.1. It is
needed in order to get a good second order behavior at extrema of the numerical solution.

The filter coefficient is set to e = 20Ax as in the previous example.

Numerical results are given in Table 1.7, showing the global L? errors for the filtered
scheme, the centered scheme, and a second order ENO scheme, at time t = 0.6. We
observe that the centered scheme has some unstabilities for fine mesh, while the filtered

performs as expected.
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filtered (e = 20Ax) centered ENO2
Mz Ny | L? error order L? error order | L? error order
25 25 | 5.39E-01 - 6.00E-01 - 5.84E-01

50 50 | 1.82E-01 1.57 2.25E-01 1.41 | 2.11E-01 147
100 100 | 3.72E-02 2.29 8.46E-02 1.41 | 6.88E-02 1.62
200 200 | 9.36E-03 1.99 3.53E-02 1.26 | 2.02E-02 1.76
400 400 | 2.36E-03 1.99 1.36E-01 -1.95 | 5.98E-03 1.76

TABLE 1.7: (Example 2.3.3) Global L? errors for filtered scheme, centered and second
order ENO schemes.

t=0

t=0 mmmm N umerical front
] = exact front

t=0.6

t=0.6 = Numerical front
1 == exact front

FIGURE 1.6: (Example 2.3.3) Plots at times ¢t = 0 (top) and ¢t = 7/2 (bottom) for the
filtered scheme with M = 50 mesh points. The figures to the right represent the 0-level
sets.
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Example 1.6.3. In this ezample the considered HJ equation is
v — Yug + vy + ||Vl =0, (x,y) €Q, t >0, (1.56)

with Q = (=3,3)2, and with the following initial data:

v(0,z,y) = 0.5 — 0.5 max <max(0,

1— (2 —1)% —?

2

)*, max(0,

(together with Dirichlet boundary condition v(t,x,y) = 0.5 for (z,y) € ON).

1— 1)2 —y?

Again we compare the filtered scheme (with e = 5Ax ) with the centered (a priori unstable)

scheme and the second order ENO scheme.

Numerical results are shown in Table 1.8, for terminal time T = 0.75 and CFL 0.37.

Local errors has been computed in the region |v(t,z,y)| < 0.1 and also away from the

singular line x +vy = 0 (i.e., for points such that furthermore |%| > 0.1). In this

example, the naive centered scheme is unstable (as expected), while the filtered scheme

is stable and of second order.

filtered € = bAx centered ENO2
Mz Nz | L? error  order | L? error  order | L% error  order
25 25 | 1.02E-01 - 1.11E-01 - 1.14E-01 -
50 50 | 2.12E-02 2.45 | 1.99E-02 2.48 | 2.12E-02 2.43
100 100 | 9.02E-03 1.23 | 2.04E-02 -0.03 | 3.67E-03 2.53
200 200 | 1.90E-03 2.25 | 1.27E-02 0.69 | 8.61E-04 2.09
400 400 | 3.67E-04 2.38 | 1.13E-02 0.17 | 2.12E-04 2.02

TABLE 1.8: (Example 1.6.3) Local errors of filtered, centered and ENO scheme.

1.6.1 Steady equation

Example 1.6.4. (Steady eikonal equation) We consider a steady eikonal equation

with Dirichlet boundary condition, which is taken from Abgrall [2]:

ve| = fx) 2 €(0,1),

(1.58a)

(1.58D)
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t=0

t=0 mmmmm N umerical front
. = exact front

-3 -2 -1 0 1 2 3
X
1=0.6
3 T

‘— Numerical front
=== exact front

Ficure 1.7: (Example (1.6.3)) Plots at times ¢t = 0 (top) and t = 7/2 (bottom) for
the filtered scheme with M = 50 mesh points. The figures to the right represent the
0-level sets.

where f(x) = 32 + a, with a = ;;jﬁ and xg = %%2. Ezact solution is known:
3
z° + ax z € |0, 2o,
o(x) = 10, o (1.59)
l+a—ar—23 z€|x,1]

The steady solution for (1.58) can be considered as the limit ltlilrn v(t,x) where v is the
—00

solution of the time marching corresponding form:

v+ g = f(x) 2 €(0,1), t>0, (1.60a)

o(t,0) =v(t,1) =0, ¢>0. (1.60b)

In this example the upwind monotone scheme is used:

n+l _

U u” u —u” u —u
M g J J j—1 73 j+1
W ()= = = maX{ e Ax } — 7f(z;),
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the high order scheme will be the centered scheme, and the filtered scheme (1.8) will be
used with e = 5Ax. The iterations are stopped when the difference between too successive
time step is small enough or a fited number of iterations is passed, i.e., in this example,

[t = 4| oo = max [t — 'l <107 or m > Npgg := 5000. (1.61)

As analyzed in [20] for e-monotone schemes, for a given mesh step, even if the iterations
may not converge (because of the non monotony of the scheme), it can be shown to be

close to a fixed point after enough iterations.

filtered centered filtered + ENO
M error order | error order error order
50 | 2.16E-03 - NaN - 5.29E-03 -
100 | 7.14E-04 1.60 | NaN - 1.35E-03 1.97
200 | 2.17TE-04 1.72 | NaN - 3.42E-04 1.98
400 | 6.32E-05 1.78 | NaN - 8.61E-05 1.99
800 | 2.17E-05 1.54 | NaN - 2.16E-05 2.00

TABLE 1.9: (Example 2.3.8) Global errors for filtered scheme, compared with the
centered (unstable) scheme, and a filtered ENO scheme.

Exact(red), Scheme(blue)

L L L L L L L L L |
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

FIGURE 1.8: (Example 2.3.8) Filtered scheme for a steady equation, with M = 50
mesh points.

1.7 Obstacle problem
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Example 1.7.1. (advection 4 obstacle) Here we consider an obstacle problem, which

is taken from [17]:

min(vy + vy, v —g(x)) =0, >0,z € [-1,1], (1.62)

vo(x) = 0.5+ sin(mz) =€ [-1,1], (1.63)

together with periodic boundary condition. The obstacle function is g(x) := sin(mwz). In

this case exact solution is given by:

max(vo(z — at), g(z)) ift<g
v(t,z) = max(vo(z — at), g(x), —10,¢ 0.5.1)) iftet L41] (164)

11
3)3
max(vo(z — at), g(v), 1, [—1,t—§—%]u[0.5,1}) ift e [% + 3. 1],

Results are given in Table 2.8, for terminal time t = 0.5. FErrors are computed away
from singular points, i.e., in the region [—1,1]\ (Uj=13 [si — 6,s; + 8]) (where s1 =
—0.1349733,s9 = 0.5 and s3 = 2/3 are the three singular points. Filtered scheme is

numerically of second order (ENO gives comparable results here).

Errors filtered € = 5Azx centered ENO2
M N error order error order error order

40 20 | 7.93E-03 2.03 | 1.63E-02 1.54 | 2.14E-02 1.59
80 40 | 1.84E-03 2.10 | 2.98E-02 -0.87 | 7.75E-03 1.46
160 80 | 3.92E-04 224 | 1.46E-02 1.03 | 1.07TE-03 2.86
320 160 | 9.67E-05 2.02 | 8.02E-03 0.86 | 2.72E-04 1.97
640 320 | 2.40E-05 2.01 | 4.10E-03 0.97 | 6.92E-05 1.98

TABLE 1.10: (Example 1.7.1) L errors away from singular points, for filtered scheme,
centered scheme, and second order ENO scheme.

Example 1.7.2. (Eikonal + obstacle) We consider an FEikonal equation with an

obstacle term, also taken from [17]:

min(ve + |vz],v —g(z)) =0, t>0,z€[-1,1], (1.65)

vo(x) = 0.5+ sin(mx) =€ [-1,1], (1.66)
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FIGURE 1.9: (Example 1.7.1) Plots at T=0(initial data), T=0.3, T=0.5.

with periodic boundary condition on (—1,1) and g(x) = sin(wz). In this case the exact

solution is given by:
v(t,x) = max(v(t, z), g(x)). (1.67)

where U is the solution of the Eikonal equation vy + |vy| = 0. The formula v(t,z) =

ming e, ¢ 244 vo(y) holds, which simplifies to

vo(z + 1) ifr < —05—t
v(t,z):=¢ —0.5 if v € [-0.5 —t,—0.5 + ], (1.68)
min(vo(z —t),vo(x +t)) if x> —0.5+1,

Results are given in Table 1.11 for terminal time T = 0.2. Plots are also shown in

Fig. 1.10 for different times (for t > % solution remains unchanged).

Errors filtered ENO2
M error order error order
40 3.74E-03 6.85E-03

80 6.26E-04 2.58 | 2.12E-03 1.69
160 1.13E-04 247 | 6.80E-04 1.64
320 2.26E-05 2.32 | 2.18E-04 1.64
640 5.50E-06 2.04 | 6.96E-05 1.65

TABLE 1.11: (Example 1.7.2) Filtered scheme and ENO scheme at time t = 0.2
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FI1GURE 1.10: (Example 1.7.2) Plots at times ¢t = 0, ¢ = 0.2 and ¢t = 0.4. The dark
line is the numerical solution, similar to the exact solution, and the ligth line is the
obstacle function.



Chapter 2

High-order approximation

schemes for front propagation

2.1 Introduction

The main aim of this chapter is to solve front propagation problem by the high-order
filtered scheme presented in the chapter 1. The idea of level set formulation to propa-
gate curves and surfaces has been introduced by Osher and Sethian [89] for computing
and analyzing the motion of the interface in two and three dimensions. The advan-
tages of this approach are well known by now. It treats self-intersections, topological
changes, kinks and it is easily extended to capture hypersurfaces in higher dimensions.
Propagating interfaces occur in a wide variety of settings, including examples from fluid
mechanics, image processing, shape of soap bubbles, oil drop floating on water, com-
puter animations, manufacture of computer chips, airbag inflation (a comprehensive
presentation is contained in [88] and [100]). The techniques used to approximate these
problems are based mainly on finite difference schemes [100] and SL schemes [42]. It is
important to notice that monotone finite difference schemes (analyzed by Crandall and
Lions in [34]) converge to the solution which has to be understood in the viscosity sense
but are in general limited to at most first-order accuracy. Higher order finite difference
schemes such as ENO schemes [71] have also been developed but a general convergence
proof for them is still missing. For more details we refer readers to the references al-

ready mentioned in the general introduction. Here we use the recent class of filtered

32



Chapter 2. High-order approzimation schemes for front propagation 33

finite difference schemes studied in [19] in order to show that they are effective also for
singular problems like front propagation problems. It is important to note that filtered
schemes were introduced in the [51] for second order elliptic PDE’s and satisfy an e-
monotonicity property which is enough to obtain a convergence result and an a priori
estimate. Finally, let us also mention that e-monotone semi-Lagrangian schemes were
studied for steady equations in [20]). In this chapter we develop a specific application of
the scheme proposed and analyzed in [19] to front propagation problems. The approach
is based on the level-set method which leads in the isotropic case to a classical evolutive
first-order HJ equation. We will apply to this equation high-order “filtered schemes”,
for these which the strong monotonicity property will not be satisfied. However, a weak
e-monotonicity property applies and this is enough to obtain a convergence result and
a precise error estimate. In the last section we present several examples where we solve
front propagation problems by high filtered scheme in two and three dimensions showing
the accuracy of our method.

We first give some notations and definitions for the model problem and then we present

many numerical tests based on high-order filtered scheme.

2.2 Definitions and notations

Let ¢ : R — R denotes a real valued function implicitly or explicitly defined on R¢,
where d is typically equal to 2 or 3. A level set associated to ¢ is geometrically defined

as points (in R), a curve (in R?) or a surface (in R3) given by
I:={zeRY ¢(x)=c} (2.1)

for some constant ¢ i.e. ¢|r = ¢. The function ¢ is called level set function associated
to I'. A typical choice is ¢ = 0 and we refer to I" as an interface, described by the zero

level set. The following sets are associated to the interface I'g := {2z € RY| ¢(z) = 0}
Q" = {z cRY ¢(z) <0}, QF :={xecR? ¢(z) >0} (2.2)

are known as interior and exterior region respectively. Note that dim(I') = d — 1. This
gives a normal direction of evolution point outward with respect to 2 and the interior

region will grow in time. Reversing the sign of ¢ we obtain an inward evolution and the
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+

Q
>0
outside

Y

I
¢=x2+y2—1 =0
interface

FIGURE 2.1: Implicit representation of the curve z2 + 52 = 1.

curve (surface) will shrink. When the interface is represented by an explicit function ¢
then it is easy to parametrize I'y.

For example. ¢(Z) = |Z|> — 1 gives the circle of radius 1. in the Fig. 2.1, where the
interface defined by the ¢(Z) = 0. The interior region is the unit open disk Q= = {z €
R?| |7| < 1} and exterior region is QT = {# € R?| |z| > 1}. Explicit representation of
the surface is simply the unit circle defined by 9Q = {Z € R?| |z| = 1}. However, in
many physical applications, the interface can be defined only in implicit form. Implicitly
surfaces can undergo some dynamics, say, under the influence of an external velocity field

for e.g. soap bubble in a steady wind current.

2.2.1 Front Propagation Problem

The associated level set function ¢ is also time-dependent hence zero level set denotes

by
Ty = 0Q; = {z € RY ¢(t,z) = 0}. (2.3)

This gives a normal direction of evolution point outward with respect to €; and the

interior region grow in time. Reversing the sign of ¢ we will obtain an inward evolution
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and the curve (surface) will shrink. If we regard the moving curves as an interface sepa-
rating two regions, the front at time ¢ should consist of only the set of all points located
a distance t from the initial curve. This is known as Huygens principle construction
(see [99]). Let z(t) be the path of a point on the propagation front i.e. x is a point on
I'g at t = 0. The stipulation that the zero level set of the evolving function ¢ always

match the equation
dx

E = f(t7x)ﬁ’

where % is normal to the front x(¢) and f is scalar. The zero level set of the evolutive

function ¢ will coincide with the propagating hypersurface and this implies that

¢(z(t),t) =0

By chain rule we have

0 dr
3 + Vo(x(t),t) - i 0. (2.4)

Since f is a scalar speed in the outward normal direction, therefore

d
d—f'n:f, wheren:;g.
Hence the evolution equation for ¢ becomes
9¢
— Vo|=0 2.5
given ¢(0,z) = ¢g(x). (2.6)

For certain forms of the speed function f, this is our time dependent level set equation,
which is a standard time dependent HJ equation. This approach is simple and clever
way to describe an interface operating on two or more regions with different physical
phases. Depending upon the choice of normal (exterior/ interior), and the choice of f
we can describe the growth of a phase and its reduction. There are three major cases of

interest:

e f(t,z), isotropic velocity depending upon (¢, x)

e f(x,k(x)), velocity depending upon both x and the front curvature at x
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e f(x,7(x)), anisotropic velocity depending on both x and the normal at z

We focus on the isotropic case where I'y is the only available data and f = f(t,z) is
given. For this problem a typical choice for the initial profile is signed distance i.e.
_ d(xz,Ty) x € Q,
d(z,To) = (2.7)
—d(z,Ty) x € Q.
Let us note that problem (2.5) is simplifies if the evolution is monotone (either increasing
or decreasing). This happens when the velocity f has constant sign. Note that the signed
distance function has to be Lipschitz continuous. For monotone evolution the level set
formulation can converted from the time dependent PDE to a stationary problem. More
precisely f(z) > 0 for all z € R?, then (2.5) can be written as a stationary form by

introducing the function
o(t,x) =T(z) —t (2.8)
and then we can recover the interface by the knowledge of T at any time using
T, = {xeRd:T(:r):t}.
Formally substituting (2.8) in (2.5) we obtain
f(@)|VT| = 1. (2.9)

Note that Dirichlet boundry condition T'(z) = 0 on 0€) is quite natural to considering
that T'(z) represents the time needed by the interface to reach the point z and we can

reformulate the boundary value problem as

f@)|VT| =1, 2zeR/Qq
T(.Z‘) =0, x € 09,

(2.10)

where g is a subset of R% such that 0y = I'y. This stationary approach is linked
to minimum time problem. Here we briefly explain the minimum time problem (the

interested reader can find in the appendix of [6] and [40] more details on this link). Let
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us consider the following controlled dynamical system

y(1) = f(W)a(t) te (0,+00) (2.11)

where f : R? — R, f > 0 is Lipschitz continuous and taking the values in a compact
set A C R™ and with the measurable control « € A = {a € L®(R"; A)}. We denote
Yz (., (.)) the solution of (2.11) corresponding to the control o € A. Here we consider
B(0,1), whihch is a unit ball centered at origin. This choice means that the controller
can move the state of the system with speed f > 0 (which depends on the position of
the system itself) in every direction he wants. We can define for every z and « the

minimum time to hit the target 7 as
t(z,a) =inf {t e R* 1 y,(t,a) € T}
S
The problem is to determine the minimum time function

T(x) = Oi[relit(a:,oc) (2.12)

and its domain of the definition R, called reachable set,

R = {x eR?: T(z) < +oo} (2.13)

= {:1: €eR?: 3ac Aand i€ |0, +oc] such that y,(f,a) € T} . (2.14)

But in our case it can reach the target from every initial position z so that R = R
Note that T satisfies (2.10) (see [6]) since by the definition. Always assuming that the

solution trajectory y,(.,«) is unique (the Carathedory conditions are satisfied).

The connection between front propagation and minimum time problem can also be
exploited for numerical purposes, once characteristics of the front problem (also termed
as rays) are identified with optimal trajectories. Moreover, it is possible to treat the
propagation in presence of obstacles using a natural interpretation in terms of state

constraints. For solving such front propagation problems many schemes has been given
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we refer reader to [5, 6, 40, 42, 43]. In conclusion we have two kind of formulations.

Level set Formulation Stationary Formulation

99
ot

Front = I'(¢) = {(2,y)| ¢(z,y,¢) =0} Front =T'(t) = {(2,y)| T(2,y) =t}

applies for arbitrary f  requires f > 0 or f < 0.

+ fIVo[ =0, |[VT|f =1,

In the next section we present some numerical tests. for the model problem (2.5) The
main goal is to obtain high-order scheme when the solution is smooth. In chapter 1
we proposed a general way to mix a first-order scheme (monotone) with a high-order

(non-monotone) scheme for time dependent HJB equations with the convergence result.

2.3 Numerical test

We solve (2.5) by high-order filtered scheme (1.8). Let us consider the two dimensional

case, of the level set equation (2.5), which can be written as

¢t + H(¢ma ¢y) - 07 (215)

where H is the classical Hamiltonian and it is standard HJ equation. We keep the
notations from the chapter 1. Now we present filtered scheme in dimension two.

Let At > 0 be a constant time steps, and ¢, = nAt, n € [0...N], and Az > 0 be a step
size of a spatial grid. Let (z;,y;) = (iAxz,jAz) denote a uniform mesh with ¢,j € Z.

Hence the filtered scheme is :

A ny. . ny ..
ot =S (@) + eAtF (S @ )”6 AfM(¢ )”> ) (2.16)

where F' is the filter function (1.26), € is the switching parameter (section 1.3.2 from

chapter 2), SM is monotone scheme (1.11) where 2 is Lax-Friedrich monotone flux

(61 —¢1) — 5" (62 — ¢2),

(2.17)

o1 + ¢ ¢;+¢;> C

_ G Cy
R 2 2

W (oot 07.08) = 1
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Cr = AgﬁgB |Hg, (1,02)], Cy = Ag}bgéB |Hg, (01, 92)],

H;(¢1, ¢2) is the partial derivative of H with respect to i-th argument, or the Lipschitz
constant of H with respect to the i-th argument A = (¢7,6]) and B = (¢5,67)
with with the CFL condition (1.18). S4 is high-order scheme which is the same as in
previous chapter i.e. centered scheme in space (see Remark 1.2.4), with Heun (RK2)

scheme discretization in time (see in particular Eqgs. (1.25a)-(2.18b)).

Al iy o n Pli+1); — Pi-1)j PiGi+1) — PiGi-1)
SAL () = ¢l Ath( e , L > (2.18a)
and
1
54(0ig) 1= 5 (o5 + S (@) - (2.18h)

Hereafter in all the numerical test we use the “centered scheme” (2.18) as high-order
scheme and (1.12) scheme as monotone with the same filtered function (1.26). As we
have already discussed in the chapter 1 for the choice of switching parameter € we
have numerically observed that taking ¢ = c¢;Ax with ¢; sufficiently large does not
change much the numerical results in the following so we will precise the value of ¢;
in each example. In this case of front propagation, it can be observed that the filter
scheme may produce small errors occur the near extrema, when two possible directions
of propagation occur in the same cell. For improving the order in all numerical tests
before doing the filtering process. limiter correction will be needed. In limiter correction
(see section 1.3.1 in chapter 1). In general tables below in the numerical tests filtered
scheme will be compared to a second order ENO scheme (for precise ENO scheme, see
Appendix A), as well as the centered (a priori unstable) scheme without filtering. In
front merging case when front merg then regularity lost. In that case one can not have
high order everywhere so local error in the L? norms are computed in some subdomain

D, at a given time t,, corresponds to

1/2

= Az > |ultn,2:) —upf?

{i, z;€D}

€r2

loc

and similarly L' and L errors also comparable. We fixed CFL is p = ¢ (ﬁ + M) =

0.37.
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2.3.1 Evolution of regular front

Example 2.3.1. ( Evolution of regular front ) In this example the initial condition

is given by the distance function d (as in (2.7)) from the initial configuration of the front

1— 22— g2 4

Ty = {(x,y) € Q] 0.5—0.5 max (0, 1—7"8) = 0} , (2.19)
where Q = (—2,2)? and here f(x,y) = 1 in (2.5) and T = 0.6 with Drichlet boundary
condition. We are solving front propagation problem and we choose switching parameter
e = 10Ax. In this example the evolution in the outward direction and interior region will
grow in time and front expand. After evolution front will remains smooth. We compare
filtered scheme with central finite difference scheme and second order ENO scheme with
TVD RK2 in time. In the table 2.1 we are calculating global errors. Here viscous aspect
occurs so in order to have high-order behavior we need to use limiter correction (see

section 1.3.1 of chapter 1). In the Fig. 2.2 several level curves for ¢ are shown.

filtered (e = 10Ax) centered ENO2
M N | L? error order L? error order | L? error order

25 25 | 1.69E-01 - 2.15E-01 - 2.49E-01 -

50 50 | 5.03E-02 1.75 7.50E-02 1.52 | 8.49E-02 1.55
100 100 | 1.22E-02 2.04 2.55E-02 1.55 | 2.48E-02 1.78
200 200 | 3.03E-03 2.02 9.36E-03 145 | 7.24E-03 1.77
400 400 | 7.57E-04 2.00 2.58E-02 -1.46 | 2.13E-03 1.76

TABLE 2.1: Example 2.3.1, L? errors for filtered scheme, centered scheme, and ENO
second order scheme.

2.3.2 Merging of regular fronts

Example 2.3.2. Merging of two disconnected fronts Again the initial condition is

given by the distance function d (as in (2.7)) from the initial configuration of the front

Iy = {(x7y) €0 ‘ ¢0($,y) :O)},
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&> Numerical front &> Numerical front
=D exact front =D exact front

e Numerical front e Numerical front
=== exact front === exact front

FIGURE 2.2: Example 2.3.1, on the left we have initial configuration circle of radius
ro = 0.5 and on the right expanded front at time 7' = 0.6 and CFL is 0.37.

where ¢o(x,y) = min (¢1(x,y), p2(z,y))

1—(x—1)2—y2)4,

=g — 0
o1(x,y) =g romax(, 1—7‘8

1—(:U+1)2—y2>4

= 1o — 0
¢2(5E,y> To To max( ’ 1 —7”‘(2)

are two disconnected smooth fronts which are centered at (1,0) and (—1,0) with radius
ro = 0.5 respectively. Computations are done on the domain Q = (—3,3)? with Drichlet
boundary conditions. Here initial data corresponds to the mizing of two fronts. As front
evolve and merge. They lost their regularity. So this example is less reqular than the
previous one. CFL number and switching parameter € are the same as in Example 2.5.1.
In the table 2.2 local errors have been computed away from the singular strip |z| < €
and |y| < €1 where e; = 0.1. In this example, the naive centered scheme is unstable (as

expected), while the filtered scheme is stable and of second order. In Fig. 2.3 we can
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observe a very nice merging.

<=> Numerical front C=> Numerical front
=D exact front C=> exact front

e Numerical front mm— Numerical front
=== exact front === exact front

FicUure 2.3: Example 2.3.2, on the left we have initial configuration circle of radius
ro = 0.5 and on the right expanded front at time 7" = 0.6.

filtered (e = 10Ax) centered ENO2
M N | L? error order L? error order | L? error order

50 50 | 1.14E-02 1.80 1.95E-01 1.30 | 1.32E-02 0.98
100 100 | 2.76E-03 2.04 7.31E-02 142 | 4.47E-03 1.56
200 200 | 6.97E-04 1.99 2.96E-02 1.30 | 1.25E-03 1.84
400 400 | 1.67E-04 2.06 1.36E-01 -2.20 | 2.64E-04 2.24

TABLE 2.2: Example 2.3.2, local L? errors for filtered scheme, centered scheme, and
ENO second order scheme

Example 2.3.3. Merging of five regular fronts : The motivation of presenting this
example is that if we have more than two fronts expanding and merging even then filtered
scheme is locally high-order. The initial condition is given by the distance function d

(as in (2.7)) from the initial configuration of the front

Tko = {(x7y) € ‘ (ﬁ(.%',:g) - 0}7
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where
¢(z,y) = min{¢x(z,y) : k =1,...,5}

1—(z—ap)? — (y — yp)?
1—7“8

4
br(w,y) = ro — 10 MAX <0, ) , fork=1,...,5

where o = 0.25 and centers (zy,yr) are (1,0), (=1,0), (0,0), (0,—1), (0,1) for k =
1,...,5 respectively. We are solving front propagation problem for f(xz,y) = 1 and
we choose switching parameter ¢ = 10Az. Computations are done on the domain
Q) = (—4,4)%2. In the Fig. 2.7 good merging is observed. Errors calculated away from
singularities (we removed strips |x+y| < €1, |z —y| < €1 and €, = 0.2 from the domain,).

Filtered scheme gives the desired second order behavior.

filtered (e = 10Ax) centered ENO2
M N | L? error order L? error  order | L? error order

50 50 | 4.76E-02 1.56 1.02E-01 0.65 | 6.35E-02 1.53
100 100 | 1.06E-02 2.16 5.94E-02 0.78 | 2.10E-02 1.60
200 200 | 2.83E-03 1.91 2.10E-01 -1.82 | 6.41E-03 1.71
400 400 | 7.05E-04 2.01 7.28E-02 1.53 | 1.87E-03 1.77

TABLE 2.3: Example 2.3.3, local L? errors for filtered scheme, centered scheme, and
ENO second order scheme.

2.3.3 Evolution of non-smooth front

Example 2.3.4. Evolution of front with sharp corners : The initial condition is

given by the distance function d (as in (2.7)) from the initial configuration of the front

Iy = {(.T,y) € ‘ (b(ﬂ?,y) = 0}7

where ¢(x,y) = ||(x,y)|lcc — 70 is a square centered at origin with the sides ro = 1. Com-
putations are done on the domain Q = (—1.5,1.5)% with Dirichlet boundary condition
and f(z,y) = 1. In this example the evolution in the outward direction and interior
region will grow in time. Also front expand. Note that initially front has sharp corners
but after evolution it becomes smoother. In the table 2.4 we compare filtered scheme with
central finite difference scheme and second order ENO scheme with TVD RK2 in time
and switching parameter is € = 10Ax. As expected naive centered scheme alone is not

stable but when it is filtered with monotone scheme then the filtered scheme is stable and
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C=> Numerical I front
=

m— Numerical I front
=== exact front

exact front

m— Numerical front
=== oxact front

FIGURE 2.4: (Example 2.3.3) plots at time 7' = 0 (top) and T' = 0.6 (bottom) for the
filtered scheme with mesh point M = N = 100.

of high-order (without limiter scheme switches to first-order at extremes). In the Fig.
2.5 initially at T = 0 front has sharp corners and when front erxpands then corners of
the squares become smoother. We present the error tables for small time T = 0.25 (For
the longer time run front expands and becomes a circle). In this ezample we present the

full error tables (L', L? and L™) for filtered scheme.

Errors (L1-Error) Lo-Error) Loo-Error)
M N error order error order error order

100 100 | 6.89E-03 2.23 | 6.65E-03 2.12 | 9.36E-03  2.09
200 200 | 1.80E-03 1.93 | 1.84E-03 1.86 | 3.53E-03 1.41
400 400 | 3.02E-04 2.58 | 3.56E-04 2.37 | 1.10E-03 1.68
800 800 | 7.52E-05 2.01 | 8.72E-05 2.03 | 2.20E-04 2.32

TABLE 2.4: Example 2.3.4, local errors filtered scheme and RK2 in time where ¢ =
10Ax and with CFL=0.37.
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m— Numerical | front
== oxact front

=> Numerical front
| &= exactiront

FIGURE 2.5: (Example 2.3.3) plots at time 7' = 0 (top) and T = 0.6 (bottom) for the
filtered scheme with mesh point M = N = 100.

2.3.4 Merging of one smooth and one non-smooth front

Example 2.3.5. One smooth and one non smooth front mergeing : In this
ezample the initial condition is given by the distance function d (as in (2.7)) from the

initial configuration of the front.

Lo ={(z,y) €| do(z,y) =0},

where ¢0(x7y) = min(¢1(x,y),¢2(x,y)), ¢1($,y) = ||(‘T7y) - (O57O>||OO —ro and

x —0.5)2 —y2>4

1—
¢2($,y) = To — ro max <07 ( 5

where 1o = 0.25 and computations are done on the domain Q = (—2,2)% with Dirichlet
boundary condition and f(x,y) = 1. In this ezample we have one regular front and one

front with sharp corners. After evolution fronts merge. In the table 2.5 we compare
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filtered scheme with centered scheme and second order ENO scheme with TVD RKZ2 in
time. Switching parameter is € = 10Ax. In the Fig. 2.6 we have one smooth front
and one front with sharp corners and when front expands then corners of the square
become smoother and circle will also expand. When both the fronts merge, the regularity

is lost. Errors are calculated away from singularities ( we removed the strip |z| < e; and

€1 = 0.2 from the domain). Filtered scheme is locally high order.

FIGURE 2.6: Example 2.3.5, plots at time T'= 0 (top) and 7" = 0.6 (bottom) for the
filtered scheme with mesh point M = N = 100.

filtered (e = 10Ax) centered ENO2
M N | L? error order L? error  order | L? error order
50 50 | 8.25E-04 2.54 6.80E-02  1.24 | 1.44E-03 2.52
100 100 | 2.51E-04 1.72 7.01E-02 -0.04 | 3.48E-04 2.05
200 200 | 6.30E-05 2.00 2.30E-01 -1.71 | 8.27TE-05 2.07
400 400 | 1.57E-05 2.01 2.73E4+00 -3.57 | 2.03E-05 2.03

TABLE 2.5: Example 2.3.5, local L? errors for filtered scheme, centered scheme, and

ENO second order scheme and T = 0.6.
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Till now all above examples solved for the constant velocity f(z,y) = 1. Now we present

some examples with variable velocity.

Example 2.3.6. In the examples below, we are solving (2.5) with Dirichlet boundary
condition, and CFL number is 0.37 in the same domain considered in Ezample 2.3.1
with the initial profile as in (2.19). Moreover, we assume the velocity f(x,y) to be Lips-
chitz continuous. The numerical tests are performed for the following different variable

velocities.

(1) f(z,y) = |x| in the Fig. 2.7 solved by filtered scheme with ¢ = 20Ax. For this

example T=1.

(i) f(x,y) = |y| in the Fig. 2.8 solved by filtered scheme with ¢ = 20Ax. For this

example T=1.

(7i1) f(z,y) = |z|+ |y| in the Fig. 2.9 solved by filtered scheme with € = 20Ax. For this
example T=0.8.

(iv) f(x,y) = (f1, f2) = (cos(F),sin(g)) in the Fig. 2.10 solved by filtered scheme with
e = 20Ax and T' = 0.6.

(v) flx,y) = (f1, f2) = (|z|cos(F), lylsin(F)) in the Fig. 2.11 solved by filtered scheme
with € = 20Ax and T = 0.6.

(vi) f(z,y) = (f1, f2) = (|z|cos(F), |z|sin(F)) in the Fig. 2.12 solved by filtered scheme
with € = 20Az and T = 0.6.

3 3
= Numerical front
%
2 2
1 1 o o ST > \
Ve \
-0 - of | s
\ /
\ /
1 - N AN e
2 2
3, L 3

FIGURE 2.7: Example 2.3.6 (i) , f(z,y) = |z| and T=1 solved by filtered scheme.
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FIGURE 2.8: Example 2.3.6 (i1), f(x,y) = |y| and T=1 solved by filtered scheme.

FIGURE 2.9: Example 2.3.6 (iii), f(z,y) = |x| + |y| solved by filtered scheme and

-2

t=0.6 t=0.6
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FIGURE 2.10: Example 2.3.6 (iv), f(z,y) = (cos(%), sin(g)) solved by filtered scheme

and T=0.6.

The Fig. 2.7 and 2.8 show the direction of velocity of propagation f(z,y) in the direction

of x and y axis respectively which is not the case in the Fig. 2.9, 2.10, 2.11 and 2.12
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t=0.6
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FIGURE 2.11: Example 2.3.6 (v), f(x,y) = (|z|cos(F), |y|sin(F)) solved by filtered

scheme and T=0.6.
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FIGURE 2.12: Example 2.3.6 (vi), f(z,y) = (|z[cos(F), ly|sin(F)) solved by filtered
scheme and T=0.6.

and filtered scheme shows nice results.

Now we present some numerical examples in 3D. We extend filtered scheme (1.8) with
the limiter 1.3.1 to 3D same manner as in 2D with the same filter function 1.26. In the
examples below we observed that ENO scheme is slow compared to the filtered scheme

and switching parameter ¢ = 20Azx.

2.3.5 Evolution of fronts in 3D

Example 2.3.7. Regular Front in 3D : In this example the initial condition is given

by the distance function d (as in (2.7)) from the initial configuration of the front

Ty = {(:c,y,z) SRy’ ’ ¢(a:,y,z) :0}7
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where

4
1—(:E—0.5)2—y2+z2) (2.20)

¢(az,y,z) =19 — 1o max | 0, 5

where ro = 0.25. Computations are done on the domain Q = (—2,2)% with Dirichlet
boundary condition. We are solving front propagation problem where f(z,y) = 1 and
we choose switching parameter € = 20Ax. In the table 2.6 we can see centered finite
difference is not stable (as expected) and filtered scheme is stable and have second order
behavior. Filtered scheme is faster and somewhere better than ENO scheme. Here the

calculation of errors is global.

Errors filtered (e = 20Ax) centered ENO
M N P L? error order L? error  order | L? error order

50 50 50 | 5.61E-02 2.25 7.97E-002 1.70 | 1.08E-01 1.76
100 100 100 | 1.43E-02 1.97 4.08E-002 0.97 | 3.09E-02 1.81
200 200 200 | 3.64E-03 1.98 6.10E-001 -3.90 | 9.04E-03 1.77

TABLE 2.6: (Example 2.3.7) global errors for filtered scheme, centered scheme, and
ENO second order scheme.

FIGURE 2.13: Example 2.3.7, plots at time T = 0 (left) and 7" = 0.6 (right) for the
filtered scheme with mesh point M = N = P = 100.

2.3.6 Merging of regular fronts in 3D

Example 2.3.8. Merging of two regular fronts : In this example the initial

condition is given by the distance function d (as in (2.7)) from the initial configuration



Chapter 2. High-order approximation schemes for front propagation 51

of the front. We start with two smooth fronts (spheres) i.e.

Iy = {(m,y,z) € | ¢0(£B,y,2) = 0}7

ss where ¢0(.’L‘,y, Z) = min (gbl(xayv Z),¢2(.’L’,y, Z))

1—(x—1)2—y2—22>4

¢1(l‘7y7z) =710 — 7o max ( 0, P)

1—(:13—1—1)2—3/2—22)4

$2(x,y,2) = ro — 1o max | 0, 5

where rg = 0.25 and computations are done on the domain Q = (-2, 2)3 with Dirichlet
boundary condition. f(x,y) = 1 and we choose switching parameter ¢ = 20Ax. The
centered scheme is not stable (as expected) and filtered scheme is stable and have second
order behavior and faster and somewhere better than ENO scheme. In the table 2.8 error
calculations are local away from singularity (we eliminate the ball B(P,€e1) of radius

€1 = 0.2 and P is the point where two fronts touches).

t=0 t=0.4

FIGURE 2.14: Example 2.3.8, plots at time T" = 0 (left) and 7" = 0.6 (right) for the
filtered scheme with mesh point M = N = P = 100.

Example 2.3.9. The motivation of this example is that if we have more than two fronts

(even in three dimensional space) then filtered scheme is still of second order. In this
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Errors (filtered € = 20Ax) (centered) (ENO)
M N P L? error order L? error  order | L? error order
50 50 50 | 7.48E-02 2.07 1.31E-001 1.42 | 1.54E-01 1.68
100 100 100 | 2.15E-02 1.80 7.64E-002 0.78 | 4.60E-02 1.75
200 200 200 | 4.75E-03 2.18 2.50E+01 -3.03 | 1.24E-02 1.89

TABLE 2.7: (Example 2.3.8) local errors for filtered scheme, centered scheme, and ENO
second order scheme.

example we have five fronts

4
1—($—l‘k)2_(y_yk)2_(z_zk)2) k=1,.,5

d)k(xvyaz) =To — To mmax 07 2

where 1o = 0.25 and centers (x,yk, zx) are (1,0,0), (—1,0,0), (=1,0,0), (0,—1,0),
(0,1,0) for k = 1,...,5 respectively. Computations are done on the domain Q = (—2,2)3
with Dirichlet boundary condition. In the table 2.8 error calculations are local away
from singularities and schemes switch to first-order. We eliminate the ball B(Py,e€1) of
radius €1 = 0.2 and Py are the points where fronts touches for k = 1,...,5 respectively.
It is clear from the figure 2.15 that the singularities propagate, hence one cannot expect
to have high-order (thats why filtered scheme switches to first-order). However, filtered

scheme is better than ENO somewhere and we can see nice merging.

t=0 t=0.6

FIGURE 2.15: Example 2.3.8, plots at time 7" = 0 (left) and T = 0.6 (right) for the
filtered scheme with mesh point M = N = P = 100

Example 2.3.10. In this ezample we extend all 2D Example 2.3.6 with variable veloc-

ities in dimension three. We are solving (2.5) equation in 3D with Dirichlet boundary
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Errors (filtered € = 20Ax) (centered) (ENO)
M N P L? error order L? error  order | L? error order
25 25 25 | 1.43E-01 - 1.69E-01 - 1.30E-01 -

50 50 50 | 6.37TE-02 1.17 1.54E-01 0.14 | 4.18E-02 1.64
100 100 100 | 1.50E-02 2.09 1.46E-01  0.08 | 1.20E-02 1.79
200 200 200 | 3.95E-03 1.92 2.57TE4+01 -7.46 | 3.75E-03 1.68

TABLE 2.8: (Example 2.3.8), local errors for filtered scheme, centered scheme, and
ENO second order scheme.

condition, Time T= 0.5 and CFL number is 0.37 in the same domain as considered
in Example 2.3.1 with the initial profile is (2.20) as in Example (2.3.7). Moreover,
we assume the velocity f(x,y,z) to be Lipschitz continuous. The numerical tests are
performed for the following different variable velocities.

(1) f(z,y,2) = |x| in the Fig. 2.18 solved by filtered scheme with e = 20Ax.

(ii) f(x,y,z) =|y| in the Fig. 2.16 solved by filtered scheme with € = 20Az.

(7i1) f(z,y,2) = |z| + |y| in the Fig. 2.17 solved by filtered scheme with ¢ = 20Ax for

this example T=1.

(iv) f(z,y,2) = 2% +y in the Fig. 2.19 solved by filtered scheme with ¢ = 20Ax.

In all the figures below we plot solution with first order scheme and with filtered scheme.

We observe nice behavior of filtered scheme.

1=0.5 t=0.5

05

05

FIGURE 2.16: Example 2.3.10, f(z,y,2) = |z| in the bottom and T=0.5 solved by
filtered scheme.
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FIGURE 2.17: Example 2.3.10, f(x,y,z) = |y| solved by filtered scheme and T=0.5.
First picture with first-order numerical scheme and second one with filtered scheme
with € = 20Ax

FIGURE 2.18: Example 2.3.10, f(z,y,z) = |z| + |y| solved by filtered scheme and
T=0.8. First picture with first-order numerical scheme and second one with filtered
scheme with € = 20Az

FIGURE 2.19: Example 2.3.10, f(z,y, z) = 22 +y solved by filtered scheme and T=0.5
with first-order numerical scheme and second one with filtered scheme with € = 20Ax



Chapter 3

Coupled schemes for

Hamilton-Jacobi equations

3.1 Introduction

We propose a new numerical approximation for Hamilton-Jacobi-Bellman equations
which is based on the coupling of two schemes with different properties. The approach
is general and can in principle be applied to couple many different schemes, for example
one can couple an accurate method for the regions where the solution is smooth with
another method which is more adapt to treat discontinuities and/or jumps in the gradi-
ents. Clearly one has to decide where to apply the first or the second method and this is
done by means of an indicator parameter which has to be computed in every cell at every
time step. In this chapter we investigate in particular, the coupling between an anti-
dissipative scheme which has been proposed in order to deal with discontinuous solutions
and a semi-Lagrangian scheme which is more adapt to deal with Lipschitz continuous
and can be more accurate for regular solutions provided a high-order local interpolation
operator is used for the space reconstruction. We will introduce the indicator parameter
for this coupling, show how to couple the two schemes which typically use two different
grids reconstructions and prove some properties of the resulting coupled scheme. In the
last section we will show some 1-dimensional tests which illustrate the properties of the
coupled scheme. In this chapter our aim is to propose a new method to build schemes

for first order time dependent HJ equations coupling two schemes for viscosity solution

55
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which have different properties. We will consider the following model problem

B+ H(z, Vo) =0, (t,z)€[0,T] xR (3.1)

v(0,2) =vo(x), x€R. (3.2)

where the hamiltonian H is convex in the gradient. A typical example comes from opti-

mal control theory where H (z, Vv) = Iggj{{f(x, a)vg(t,x)} and a represents the control,
it is well known that in this framework the solution v of the equation (3.1) corresponds
to the value function of an optimization problem [6, 9]. Typically the solution is Lip-
schitz continuous if the data are Lipschitz continuous but also discontinuous solutions
can be considered and they actually appear in several applications to control problems
with state constraints, games and image processing. This is our main motivation to
deal here with discontinuous initial conditions and in general the coupled scheme will be
designed in order to be able to track discontinuous solutions. However, since the typical
situation is to have a piecewise regular solution which only has discontinuities or jumps
of the derivatives at isolated points it is natural to try to diversify the method in the
subdomains where the solution is regular and in the cells where the solution exhibits this
kind of singularities. To this end we will couple two schemes which have been already
proposed in the literature and for which we know a number of properties which will
turn to be useful for the construction of the coupled scheme. Let us also mention that
hybrid schemes for hyperbolic conservation laws have been proposed in the literature to
capture shocks for hyperbolic conservation laws and contact discontinuities for the com-
pressible Euler system (see chapter 22 in the book by Laney [76] for more informations
and references). The coupled scheme proposed here follows the same ideas although our

goal is to solve HJ equations and the schemes chosen for the coupling are different.

It is well known that, in the one dimensional case, there is a strong link between
Hamilton-Jacobi (HJ) equations and hyperbolic conservation laws. Namely, the vis-
cosity solution of the evolutive HJ equation is the primitive of the entropy solution of
the corresponding hyperbolic conservation law with the same Hamiltonian. There are
several schemes developed for hyperbolic conservation law (see references [34, 59, 63, 64].
Most of the numerical ideas to solve hyperbolic conservation law can be extended to HJ

equations. In the last decades many numerical schemes have been proposed for HJ
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equations using different techniques, for example, finite differences, markov chain, semi-
Lagrangian (SL) [2, 34, 42], these schemes have been shown to be stable and convergent
under mild regularity assumptions on the solution and to be first order accurate for
the approximation of Lipschitz continuous solutions. We also mention that more re-
cently [19] a new class of high-order filtered schemes has been proposed, this schemes
converge to the viscosity solution and a precise error estimate has been proved for regular
viscosity solution. However, as we said, it can be interesting to deal with discontinuous
viscosity solutions so these schemes have to be adapted in order to obtain reasonable
approximations which do not diffuse too much around the discontinuities of Dv and/or

v and do not oscillate.

For discontinuous solutions an anti-dissipative (AD) scheme has been proposed [13]
and a convergence result has been proved in one dimension [15, 16]. That scheme has
been initially proposed for hyperbolic conservation laws [38, 96] and then extended to
Hamilton-Jacobi equations in one dimension. Another class of schemes which have been
shown to be rather effective is that of SL scheme (see Falcone and Ferretti book [42] for
a comprehensive presentation of this approach). SL scheme gives good results and are
naturally multidimensional, they can be very accurate in the regions of regularity for
the solution provided a high-order local reconstruction in space is used. Despite these
interesting features SL schemes are not efficient for discontinuous initial data since they
use a local interpolation operator for the computation at the foot of the characteristic.
In this chapter we present a new scheme for (3.1) based on the coupling between the
Ultrabee scheme (an AD scheme) and a first order SL scheme. We intend to take the
advantage of the properties of the two methods introducing an indicator parameter o;
which will be computed in every cell C; in order to detect if there is a singularity there.
Then, according to the value of o, we will use the SL scheme if the solution is regular

enough switching to the AD scheme when a discontinuity is detected.

3.2 Background results for the uncoupled schemes.

In this section we recall SL scheme which studied by Ferretti and Falcone and works very
well when solution of HJ equation is smooth in [41]. Also we will recall Antidiffusive

(Ultrabee) scheme which Modified by Bokanowski and Zidani [13].
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3.2.1 Semi-Lagrangian (SL) Schemes [42]

A SL method, is based on two basic steps: the reconstruction of the solution on a fixed
grid and numerical integration along the lines of the same characteristics; remember that
the idea of using the aspect numerical method of characteristics was proposed for the first
time by Courant, Isaacson and Rees in the [33]. In 1 dimension the CIR scheme precisely
gives the first order upwind scheme when applied to the advection equation imposing the
CFL condition vy, At/Az < 1 where vyq, is the upper bound for the modulus of the
velocity. However, these methods are still stable for large time steps so they do not need
the typical CFL condition required by finite difference methods. This is particularly
important to run simulations which want to investigate the long time behavior of the
solution. In the framework of HJ, SL schemes have been developed initially for the
solution of Bellman equations associated with optimal control problems. This schemes
can be interpreted as a discretization of the dynamic programming principle.

The typical assumptions on H are:
1. H(-,-,-) is uniformly continuous in all the variables.

2. H(x,v,-) is convex and coercive.

3. H(x,-, Dv) is monotone.

Under these assumptions we have the representation Hopf-Lax formula for the solution

v(z,t+ At) = miﬁ}{u(m —alt,t)+ AtH" (a)}
ac

where

H*(a) =sup{a-p— H(p)}

is the Legendre transform of Hamiltonian H. Note that the formula is the extension of
the classical representation formula for the linear advection equation. Let I[u] denote
the Pj-interpolation of a function v in dimension one on the mesh G = {z;}, i.e.

Tj41 — X r—x

nu(w) = 2y T

juj+1 for x € [.TUj, l’j+1] (3.3)
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Hence the SL scheme for (3.1) is

u?“ = gél}l%{[[un] (xj — aAt)AtH*(a)} (3.4)

SL scheme is monotone stable and works for large Courant number. Converges and error

estimate has been proven (see [42] for precise results).

3.2.2 Ultra-Bee scheme for HJB equations [13]

In this section we recall the anti-dissipative scheme (AD) which is the “Ultrabee” scheme
of Roe [96]. For modified Ultrabee scheme we refer the work of [13]. The Ultrabee scheme
is non monotone but it has the interesting property to transport exactly a particular

space of step functions in the case of linear advection when the speed is constant.

Let At be a constant time step and t, = nAt for n > 0. Given two velocity functions
f9:R —= R, g =m, M, we set the following notation for the corresponding CFL numbers

at a node x;:
At

Az

At
vit= Efm(x]) and V]M =

fu(zy), jeZ (3.5)
Then we can define the vectors, v™ = {v",j € Z}, M = {l/]]-w,j € Z}. Let us define

the exact average values of the approximate solution at time ¢,:

1 j+1/2

= — u(ty,z)dr ,j € Z, n €N 3.6
: Ax/jm (b, ) (3.6)

S

Denoting by || f|lec the L norm of a bounded function defined on R we define the CFL

condition

A
max (1 fmllos | arlo) 5o < 1 (37)

Here we recall the steps of the algorithm for the

Algorithm for the Ultrabee Scheme (UB)
Initialization. Compute the initial averages {ﬂ?}jez as above
For n > 0,

Main cycle

Step 1. Compute u+! = {U?—H}jez by:
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Step 2. For every j € Z, we define the “fluxes” u7, /2(1/]-) for v; € {vj" I/JM } as follows:

if v; > 0, we set

min (max (ﬂ?_H, bj(yj)) ,B;T) if v; >0

ufyp(v) =4 aly, ifv;=0and @ #a), (3.8)
uy ifvj=0and u} =1,
where
b 0) = e (0,75 ) + (w5 = ma (1,714 ) 59
B )= min (155 ) 5 (75— win (71 ).

if v; <0, we set

min (max (U;-‘_l, b;(yj)> ,B-*) if v; <0

ui_y (V) =4 @ ifv;=0and @ #u?, (3.10)
a ifv; =0and wj =71},
where

— L _ 1 _
by (v) = max (@, @ ) + - (w0 — max (@77, ) )

(3.11)
BT (v) := min (uy,ﬁgﬂ) +1 (u;? — min (aﬂ;,ayﬂ)) :
Step 3. For v; € {V}”, VJM}, we define
W =) vy (W ()~ p(0)) (3.12)

Step 4. Finally, we set ﬂ?“ := min (H?Jrl(yjm),ﬂglﬂ(ujw)), jEeZL.

For simplicity and considering all the cases, we will use the following short notation for

the Ultrabee scheme

w = S ) = (min (w0 @) 00)) (3.13)

For the advection equation: in [38] it has been proved that under the CFL condition
0 <wv; <1, for all j, Ultrabee scheme is consistent, L> stable and TVD. Let us also

mention the form of flux which used in [38] i.e.

Ul g =T+ (W — ), (3.14)
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where ¢; is defined as

max(O,min(QTj 2 >>, if wl,,=u} and v;#1

;= vi 2 1= g+t (3.15)
0, otherwise,
where rj = %};u_]% and by replacing j = j — 1 we can compute uj_, ,.

3.3 Construction of the Coupled Scheme (CS)

As we said, AD schemes are based on previous results for conservation laws and they
typically require a projection onto a discontinuous reconstruction at every step. This
choice seems to be clever for the regions where the solution is non regular but rather
unfortunate where the solution is regular. Then a natural idea is to couple the features
of two schemes: a scheme (S7) well adapted for regular (at least Lipschitz continuous)
solutions with an AD scheme (S2) which allows for accurate result at the jumps. Thus
we expect to get advantages coupling the two schemes, to this end we should be able to

detect the regularity regions and the singular regions.

SL scheme uses a local interpolation operator to recover the value of the numerical solu-
tion at the foot of characteristics which are not grid points themselves. In their standard
version, SL schemes do not use cell averages. On the contrary AD schemes is based on
cell average values. For the coupling, we need values on two different grids G and

GAP with space step Az which are defined below:

G = {z; = jAz: j =17},

Az

GAD:{Tj:fj:l'j"i‘ 5

, J €L}

For simplicity we will often use the short cut for the nodes of the two grids which
are shifted by Az/2, calling e-nodes the nodes of G and x-nodes the nodes of GAP,
Where u} denotes an approximation of the u(x;,,), u} denotes an approximation of the
u(zj,ty), where t, = nAt, At > 0. In what follows we drop the time index n and denote
for simplicity u; = uy. At every step, we divide our domain into two regions, one where
our approximate solution is continuous and the other where we detect discontinuities.

To construct the CS scheme we need following definitions.
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Xo X, X X1 Xy % XapXy x X X Xy

Grid for semi-Lagrangian Scheme
Grid for Antidiffusive Scheme

Let us define the reqularity indicators, P; : Z — R

n an an
no_ Yi-1 7 Ui -5 Uj—1 ~ Y541
= —————and Pj .= ———— 3.16
J 2Az ane 20z (3.16)

By the above indicators we will detect the cells where the solution is regular in the two
schemes, for simplicity we will just give the definition for P;, the definitions for P; are

analogous.

Definition 1. A cell Cj = [z, 2;41) is said to be a regular cell if we have |Pj| < § or
DuDu?_, > 0 and Du?,, Du? > 0.

For example in the case of transport equation, we know the solution which is u(zx,t) =
uo(x—ct), so can set our threshold with the help of the initial condition 6 = HDu?] |0 —€,

e > 0.

4 we 48 G4 @2 0 9z 04 06 08 S W8 W6 04 A2 0 12 14 05 03 4 W5 0F 949 @0z 0 G0z 04 0F 0%

FI1GURE 3.1: A sketch of three possible situations around a jump in the derivative.

Definition 2. A cell C; is said to be a singular cell if it is not a reqular cell. We denote

the set of singular cells by Cs.

Definition 3. The singular region R is defined by the union of the following cells:

a) all the singular cells
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b) the neighbouring cells Cjy1, Cj—1 to Cj € Cs provided they are not in Csand their

neighbour on the left or on the right is in Cs, i.e. we look for Cji2 and Cj_o and
if Cj+2 €Cs = Cj+1 € Cs

similarly, if Cj_2 € Cs = Cj_1 € Cs

Definition 4. The set R, = [a,b] \ Rs is called the regular region.

Now we have a singular region R where we set 0; = 0 and in the regularity region R,
set 0; = 1. Since the schemes are working on different grids when the indicator says
that we have to switch from SL to AD (or viceversa) we need to define the values on

the other grid . To this end we define two local projection operators.

Definition 5 (Local Projection Operator for SL). We define the local projection operator

Plch : R2 = R by a map which defines the new value u; at x; starting from the values

(Wj—1/2,Uj11/2), B B
Uj—1/2 + Uji1/2

Bﬁf(ﬂj—l/z,ﬂjﬂ/z) = 5 = uj (3.17)

Definition 6 (Local Projection Operator for AD). We define the local projection oper-
PAD .

ator Py .

R? — R by a map which defines the new value uj at xjy1/9 starting from
the values (uj,w;t1),
_ Uit Uyt

PZ?CD(“janH) =y T Uji1/2- (3.18)

Note that the projection operators are based on the average and they must be used locally
whenever in a cell we switch from one scheme to the other. From the local definition we
can also define a global projection operator which applies the local definition to every
cell, i.e.

u" = PSL(@") will mean uy = ﬂ‘gf(ﬂ?_l/Q,ﬂ?H/Q),Vj (3.19)

and

w" = PAP (") will mean ), 5 = P2 (uf, ufy), V) (3.20)

We will describe the algorithm which couples the the two scheme and formally works on
the two grids, although in practice we do not need to have a global algorithm everywhere

and we just compute in every node according to the scheme which is selected by the
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indicator ¢ which is computed only at the e-nodes (remember that the x-nodes are

shifted by Axz/2 with respect to the e-nodes)

Algorithm for the Coupled Scheme SL+UB

0

Step 1.0n every xj, we compute the initial data w;

on every x; and ;.
Forn >0
Step 2. We compute Du?_y, Duf, Duj,, and Duj 5 and check V j € Z,

Duj_yDuj >0, DujDuj,y >0and [[Duj|[oec >3 .

Step 3. If Step 2 is true then go to Step 4

Step 4. For every node x;, we set

and compute

wit? = g2 S5 W] 4+ (1 - 0?)SAP[w"] = SFE [,

otherwise go to Step 5
Step 5. Check that DujDul y >0, Duj_;Duj 5 >0 and [|[Du}_;|[ec > 6 .

Step 6. If Step 5 is true then set

ol =0
and apply Pfgéj at the node 7,
n n
AD uj Ui
Ploc (Ugl?“?H) = % = u?
then we compute
+1/2 SL AD AD
w? /2 = o S7P[w"] 4+ (1 — 07) S5 [w"] = S [w"]. (3.21)
Step 7 If Step 5 is false then apply P[Zf at x;
T
SL(— — +1
]Dloc (ujvu?—f—l) =7 ’ = u;b

2
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Set

and compute

Step 8 (Filling the holes procedure)

For all the e-nodes where o7 = 0 we need to project by P[ch defined in (3.17) using the

. 1/2
values in w}” / ;

at the x-nodes not computed by the SL-scheme we need to project by Plch defined in
n+1/2

(3.18) using the values in w; . This will finally produce the new approximate solution
w™ L
Then we go back to Step 2. O

Note that for all the e-nodes where o7 = 1 we have the value computed by the SL-

scheme so we will need to give a value only to the e-nodes where o7 = 0, this is done

. . . SL
via the projection operator P}~ .

In a similar way, at the x-nodes belonging to a regular
cell we will not have a value computed by the AD-scheme so we have to assign a value
by the projection operator Pfch . The filling procedure is included in the scheme just to
simplify the presentation, in practice at every time step we will not need to project to
assign a value to the node if the scheme applied that node will not change with respect
to the scheme applied to compute the previous time step since in that case we already
have the necessary informations. Whenever there is a switch of o7 we need to project.
In section 3.5 we will see that the coupled scheme (CS) described above is working well

for the linear case and also for (3.1). In both cases we will be able to define a proper

regularity threshold 9.

3.4 Properties of the coupled SL4+UB scheme

In this section we focus our attention on the properties for coupled scheme defined at the
end of the previous section. We will prove these properties for the advection problem,

the extension to the non linear problem is still under study. At the end of the chapter
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we will show some tests for linear and Hamilton-Jacobi equations which shows that the
coupling procedure is also effective for nonlinear problems and deserves further analysis

in that direction.
Let us start introducing some definitions.

Definition 7. The Discrete Total Variation of an approximate solution u™ is
TV (") = Jufyy —uf|. (3.23)
JEZL

Definition 8. We say that the scheme is Total Variation Diminishing (TVD) if for all

n>0,

TV (u™™) < TV (u™). (3.24)

Now we also recall that a scheme written in Harten’s incremental form [63]

"t = — cj_%(u? —uj_q)+ Dj+%(“?+1 —uy), (3.25)

ijl , Dj 1€ R, is TVD if and only if the following conditions are satisfied for all j:
2 2

OSC];%, OSDj+% andC’J; +Dj+ <1.

N
N|=

Definition 9. The scheme (3.12) is L°°- stable if the following conditions hold

v; 20 = min(u},uj_) < u?“ < max(uj, uj_y), (3.26)
v; <0 = min(uj,uf;,) < u}‘“ < max(uj, ufy ). (3.27)

It is clear that above definition of L°°- stability implies the standard definition of L>°-

stability i.e.

[ e < flu"| 2o (3.28)
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Definition 10. We say that scheme (3.12) is consistent if all the fluzes u?fl and u;LJ’rRl
2 2
satisfy:
) . +1 n,L
v; >0 = min(uj,u;") < Uit < max(uj, uj_q), (3.29)
v; <0 = min(uj,u]") < Ui < max(uj, ujyq). (3.30)
Properties of the CS for the linear advection equation
Let us consider the following model problem
vet+cv,=0,t€[0,T], z€R ¢>0 and constant,
(3.31)
v(0,2) = vo(x)
We consider the coupled scheme:
+1/2 S A
wit? = g2 S + (1 - o) SAP [, (3.32)

with the projection (3.17) or (3.18) ( as explained in the coupled scheme algorithm

we use projection when it needed). When we are always in regular region then above
At

coupled scheme is coincide with the SL scheme. Let x; — cAt € (21, 2;] and v = c3;

then we have following SL scheme

U?Jrl — SfL(un) = Vu?_l + (1 _ I/)u? (333)

Note that, despite being obtained through a different procedure, the result precisely
coincides with the upwind discretization for v = 1. Although At can in general be
rather big ans SL schemes typically work for large Courant numbers here we will set
v = 1 because the coupling is made with the Ultrabee scheme which needs that condition

for stability.

For proving several properties of scheme we have to consider three cases.

Case 1 As we explained in the algorithm, when at time ¢,, we are in the regular region

and there is no switch at the node z;, we have o' = ot

J ;= 1 and we keep com-

puting by the SL scheme on that node. Thus the resulting scheme automatically

follows all the properties of SL schemes.
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Case 2 Similarly, when o7 = U;l_l = 0 we continue to apply the AD scheme. Thus the
resulting scheme is AD (here in particular Ultrabee) scheme and its satisfied all

the properties for AD scheme.

Case 3 The scheme switches from one scheme to the other, i.e. o7} #* O';-L_l. We need
to project the values from one grid to the other by the local projection operators

(3.17) or (3.18) and check the properties of the resulting coupled scheme.

Note that the following properties of the projection operators will play an important

role: As the definition of projection operator we have

: n o, mn —n AD(, n n u? +u1]1+1 n ,n
min(ug, ujy ) <uj = Ple (ujy g, uf) = 5 < max(uf, ujy) - (3.34)
n n
o B ST B Ui+ U o
min(wy, uj, ) <uj = P (ufy,, uf) = % < max(uj, ujy;) (3.35)

1. L*>-stability of the coupled SL+UB scheme. Let us consider the three cases.
Case 1: In this case, we are at the node x; the SL scheme which is known to be
L*°-stable (see [42]), so the property is true.

Case 2: Also in this case, the property follows from the fact that the Ultrabee
scheme is L>-stable (see [15]), this implies scheme L stability as in (3.26).
Case 3: If we switch from one scheme to another then we need to use local
projection operator (3.17) or (3.18). For instance, consider the situation when
there is a switch from SL to the Ultrabee scheme. More precisely, the point
(tn,xj—1) has been computed by SL scheme because a?:llzl) ie.

wh_y = w T = 585w = §5h [un (3.36)
Now we need to switch to the Ultrabee scheme, hence the local projection operator

PAD (see (3.18)) is needed. This gives

loc

w4+ ul
AD AD +1
PAP () = PAP (i ultyy) = L — (337)

and since (7;? = 0 and we have

w;zﬂ/z _ S]AD[wn] _ S]S—Ll "] (3.38)
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Then the L*> bound is satisfied by (3.34) and the stablity property of the Ultrabee
scheme. In the same way we can prove, that when the scheme switches from
Ultrabee to SL scheme, the L> stability is bound is satisfied by (3.35) and the SL

stability property.

2. The Coupled SL+UB scheme is TVD.
We prove the TVD property for the three cases.

Case 1: 07 = ¢" ! = 1. We need to prove that the semi-Lagrangian scheme

J j
based on Pj-interpolation (SL-P!) is TVD. We have then,

w;LH _ w;z+1/2 _ SJSL[wn] _ SfL[un] (3.39)
’LL;L—H =vuj_y + (1 —v)u} with v € (0,1] (3.40)
ufy —ug| = v+ (L= w)ulh) = (T + (= v)uy )|
i —uf] = (T =Ty + (1= )y —uf )

TV (u™) < |w|TV (W™ ) + |1 = )| TV (")
v € (0, 1] which implies
TV (") =TV (") < TV =TV (w" 1) (3.41)

Hence SL-P! scheme is TVD.

Case 2: We assume that v > 0, using the L*-stability property and we have

w;@+1/2 _ SjAD[wn] _ 553_1:1 [@"] (3.42)
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so we can also write

-—n+l _ —n —n —n
uit =y = Cjy o (U —uj )

with C;_1/5 € [0,1], and we can write (3.25) with Dj,/, = 0 Hence we have
the incremental form (3.25) with Cj /5 + Dji1/2 < 1 since one of the coefficient
Cjt1/2 or Djyq/9 always vanishes. Thus the scheme is TVD.

Case 3: The scheme switches from one scheme to the other, i.e. o} #* O';-L_l. For
instance, consider the situation (same as we did in the case 3 of L stability proof)
when there is a switch from SL to the Ultrabee scheme. More precisely, the point
(tn,xj—1) has been computed by SL scheme because O';L__11=1, ie.

n n—1/2 n— n—
wh g = wi T = 55w Y = S5h [un (3.43)

Now we need to switch to the Ultrabee scheme, hence the local projection operator

PAD (see (3.18)) is needed. This gives

AD/ n n AD/ n . n u? + U?Jrl —n
Ploe (wi_q,wi) = P’ (uf,ufy ) = s T U (3.44)
and since O'JT-L = 0 and we have
Wl = 54P ) = 94 [ (3.45)
J M — i1 :

Hence coupled scheme is TVD thanks to local projection operator. In the same

manner we can prove when we switch from Ultrabee to SL scheme.

3. The Coupled scheme SL+UB is consistent.
Case 1: 0; = 1 we already know that SL scheme is consistent . For more details
we refer reader to see [42]
Case 2: if 0; = 0 Ultrabee scheme is consistent. Thus implies scheme L stable
as in (3.29) (For more details we refer reader to see [15]).
Case 3 and 4 : When we switch from one scheme to the other, the scheme
resultant scheme is also consistent thanks to projection operator and the fact that

they work on different nodes. Thus the coupled scheme is consistent.
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3.5 Numerical tests

In this section we present several numerical tests in dimension one. In the following
examples we solve advection equation (with constant and variable velocities) and HJ
equation (3.1) by a coupled scheme based on the SL scheme (3.4) with P! local recon-
struction and the Ultrabee scheme (3.13) presented in the sections 4.3.1. In order to
show the differences between the original building methods and the couples scheme we
consider several initial conditions with various degree of regularity and we follow their
evolutions in time over an interval 2. We will compute the errors in L'(£2), L?() and,

in some cases, in L*°({¢g) to show also the behavior in the regularity region.

3.5.1 Advection equation
Example 3.5.1. We consider advection equation

v+ f(x)v, =0, (t,z) €Q, (3.46)

vo(z) = v(0, ), (3.47)

where f(x) is the velocity and vo(zx) is initial data with bounded support. We consider
three different vy with different reqularity. For all three initial data, domain Q = [0, 2] X
(=2,2). We fix CFL is 0.9 and f(x) = 1. In all the tables below error calculation is

global.

1 Initial data vy is smooth data i.e.

0(0.2) = vp(x) =4 17 =) lal <1 (3.48)

0 otherwise,

In this case it is clear that solution remains smooth hence SL-P' scheme have good behav-
ior unlike Ultrabee. So we expect coupled scheme to switch to SL-P' scheme everywhere.
In fact in the error calculation we get exactly the same table for SL-P' and coupled
scheme which is the expected result. In the Fig. 3.2 we have shown solution of (3.46) at
time t = 20At where time step At = 0.045 for the initial data (3.48). Fig. 3.3 shows the
plots of o for different time t = 10At, 20At, 30A where At = 0.045 (as we mentioned

solution is smooth so o = 1 for all the t). To sum-up for the advection with constant
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velocity if initial data is smooth then indicator function o is able to switch to the correct
scheme. Table 3.1 and 3.2 are the error tables of Ultrabee and coupled (here same as

SL-P') scheme respectively.

12 12

—— |nitial data = Exact

Scheme

0.8

0.6

p=20

0.4

0.2

o2l i i i i i i i i o2l i i i i
-2 -15 -1 -05 0 05 1 15 2 -2 -15 -1 -0.5 0 05 1 15 2
=0 t=0.60606
12 12
—— Exact —— Exact
Scheme Scheme
ir 3 1
08f 08
06 06
S |
B P
z S
04 04
02 02
of of
02 i i o2l i
-2 -15 -1 -05 0 05 1 15 2 -2 -15 -1 -0.5 ) 05 1 15 2
t=0.60606 t=0.60606

FIGURE 3.2: (Example 3.5.1), on the top left is the plot of initial data (3.48) and on
the top right SL-P! scheme. In the second row plot of Ultrabee and coupled scheme
respectively at ¢t = 20At where At = 0.045.

O _indicator function O _indicator function

N=30

25 -2 -15 -1 -05 0 05 1 15 2 25 25 -2 -15 -1

05 o 05 1 15 2 25 25 2 -15 -1
t=0.30308 1=0.60606

05 o0 05 1 15 2 25
t=0.90909

FIGURE 3.3: (Example 3.5.1), the plot of the indicator function o for (3.48) at different
time steps t = 10At, 20At, 30At where At = 0.045.

2 Initial data vy 1s Lipschitz continuous i.e.

1— |z if x| <1
v(0,z) = vo(x) = (3.49)
0 otherwise,
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At

Az

L! Error

L? Error

L Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

9.04E-002
4.32E-002
2.17E-002
1.27E-002
6.49E-003
3.34E-003

8.49E-002
4.27E-002
2.22E-002
1.27E-002
6.68E-003
3.50E-003

1.10E-001
7.68E-002
5.56E-002
3.59E-002
2.20E-002
1.09E-002

at time ¢t = 20A¢ where At = 0.045.

TABLE 3.1: (Example 3.5.1), errors for the Ultrabee scheme with initial condition (3.48)

At

Az

L! Error

L? Error

L Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

7.36E-002
3.49E-002
1.67E-002
8.87E-003
4.38E-003
2.14E-003

5.93E-002
2.84E-002
1.37E-002
7.28E-003
3.60E-003
1.76E-003

7.44E-002
3.64E-002
1.75E-002
9.31E-003
4.60E-003
2.25E-003

TABLE 3.2: (Example 3.5.1), errors for the coupled SL-P! + UB scheme with initial
condition (3.48) at time ¢t = 20A¢ where At = 0.045.

For this case we expect coupled scheme to detect the sharp point and switch to Ultrabee.
In the Fig. 3.4 we have shown solution of (3.46) at time t = 20At where time step
At = 0.045 for the initial data (3.49). Fig. 3.5 contain the plots of o for different time
t = 10At, 20At, 30A where At = 0.045 and it is clear that indicator function o detects
discontinuity. Table 3.3, 3.4 and 3.5 are the error tables of coupled SL-P', Ultrabee and

coupled scheme respectively.

At

Az

L! Error

L? Error

L Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

5.10E-002
1.91E-002
8.96E-003
4.74E-003
2.33E-003
1.13E-003

6.06E-002
2.35E-002
1.37E-002
8.68E-003
5.12E-003
2.97E-003

1.17E-001
4.60E-002
3.37E-002
3.18E-002
2.40E-002
1.26E-002

at t = 20At where At = 0.045.

3 Initial data vg is discontinuous function:

1

v(0,z) = vo(x) =

0

if x| <1

otherwise,

TABLE 3.3: (Example 3.5.1), errors for the SL-P' scheme with initial condition (3.49)

(3.50)



Chapter 3. Coupled schemes for Hamilton-Jacobi equations

12T

—— Initial Data

= Exact
Scheme

-0.2 -0.2
- - - — - 0.5 0 05
t=0.90909

12T

= Exact = Exact
Scheme Scheme

-0.2 -0.2
- - - -05 0 05 1 15 2 -2 -15 -1
t=0.90909

-05 05 1 15 2

0
t=0.90909

FIGURE 3.4: (Example 3.5.1), on the top left is the plot of initial data (3.49) and on
top right SL-P' scheme. In the second row plot of Ultrabee and coupled scheme at
t = 20At where At = 0.045.

o
25 -2 15 -1 _-05 0 05 1 15 2 25
O indicatorfuncion] = 045455

FIGURE 3.5: (Example 3.5.1), the plot of the indicator function o for (3.49) initial data
at t = 10At, 20At, 30At where At = 0.045.

At

Az

L' Error

L? Error

L Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

9.17E-002
4.07E-002
2.30E-002
1.29E-002
6.19E-003
2.88E-003

8.75E-002
4.85E-002
2.94E-002
1.67E-002
8.48E-003
4.48E-003

1.15E-001
1.05E-001
6.04E-002
3.86E-002
2.56E-002
2.20E-002

TABLE 3.4: (Example 3.5.1), errors for the Ultrabee scheme with initial condition (3.49)
at t = 20At where At = 0.045.

Here initial data is discontinuous we expect coupled scheme to switch to Ultrabee when

discontinuity detects. In the Fig. 3.6 we have shown solution of (3.46) at time t = 20At
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TABLE 3.5: (Example 3.5.1), errors for the coupled SL-P! + UB scheme with initial

At

Az

L! Error

L? Error

L Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

5.79E-002
1.91E-002
8.35E-003
4.19E-003
1.97E-003
9.34E-003

6.34E-002
2.36E-002
1.32E-002
7.89E-003
4.46E-003
2.48E-003

1.17E-001
4.15E-001
3.29E-002
2.73E-002
1.99E-002
1.34E-002

condition (3.49) at t = 20At where At = 0.045.

where time step At = 0.045 for the initial data (3.50). Fig. 3.7 shows the plots of o for
different time t = 10At, 20At, 30At = 0.45. It is clear in the Fig. 3.7 that indicator

function o detects discontinuity correctly. Tables 3.6, 3.7 and 3.8 are the error tables

of SL-P', Ultrabee and coupled scheme respectively.
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FIGURE 3.6: (Example 3.5.1), on the top left is the plot of initial data (3.49) and on
top right SL-P! scheme. In the second row plot of Ultrabee and coupled scheme at
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t = 20At where At = 0.045.

3.5.2 Advection equation with variable velocity

0 05 1
t=0.90909

15

2

Example 3.5.2. In this example we consider advection equation with variable velocity

f(x) = —(z — &), where & = 1.1. This example has been taken from the book of Falcone
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o
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= 045455
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at t = 10A¢, 20At, 30At where At = 0.045.

At

Az

L! Error

L? Error

L°° Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

2.53E-001
1.43E-001
1.03E-001
7.57E-002
5.37E-002
3.77E-002

3.32E-001
1.99E-001
1.72E-001
1.47E-001
1.25E-001
1.05E-001

5.56E-001
3.38E-001
4.07E-001
4.05E-001
4.38E-001
4.61E-001

at t = 20At where At = 0.045.

At

Az

L! Error

L? Error

L°° Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

7.02E-002
6.84E-002
3.38E-002
1.68E-002
8.36E-003
4.17E-003

1.12E-001
1.51E-001
1.08E-001
8.32E-002
6.24E-002
3.73E-002

2.12E-001
3.56E-001
3.90E-001
4.96E-001
5.44E-001
3.33E-001

at t = 20At where At = 0.045.

At

Az

L! Error

L? Error

L Error

0.181818
0.090909
0.045455
0.022472
0.011236
0.005634

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

1.08E-001
4.66E-003
5.75E-003
8.20E-003
9.28E-003
2.03E-017

1.04E-002
2.36E-002
1.32E-002
7.89E-003
4.46E-003
2.48E-016

1.37E-001
2.27E-002
9.68E-002
1.63E-001
2.11E-001
1.55E-015

condition (3.50) at ¢ = 20At where At = 0.045.

Y s

FIGURE 3.7: (Example 3.5.1), the plot of the indicator function o for (3.49) initial data

TABLE 3.6: (Example 3.5.1), errors for the SL-P* scheme with initial condition (3.50)

TABLE 3.7: (Example 3.5.1), errors for the Ultrabee scheme with initial condition (3.50)

TABLE 3.8: (Example 3.5.1), errors for the coupled SL-P! + UB scheme with initial

and Ferretti [42]. We consider smooth initial data which has bounded second derivative
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v(0,2) = vo(z) = max(0,1 — 16(z — 0.25)%)? (3.51)

Here we fix CFL 0.6 and computations are done on the domain Q = [0,1] x (0,1).
As solution is smooth so we expect to our coupled scheme to be SL-P' everywhere. In
the Fig. 3.8 we have shown solution of (3.51) at time t = 20At and where time step
At = 0.015385. Fig. 3.9 is the plot of o for different time t = 10At, 20At, 30At .

127

1.2

—— Exact
Scheme

= Initial Data

08

0.6

0.4

02

—02bs L L L L L —02lt L i i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
=0 t=0.15152

12 T T T T T 1.2 T
= Exact = Exact
Scheme Scheme

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1 ' 0.2 0.4 0.6 0.8 1
1=0.15152 1=0.15152

FIGURE 3.8: Example 3.5.2; on the top left is the plot of initial data (3.48) and on
top right SL-P! scheme. In the second row plot of Ultrabee and coupled scheme at
t = 20At where At = 0.015385.
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FIGURE 3.9: Example 3.5.2, the plot of the indicator function o for (3.51) initial data
for At = 0.015385 and t = 5At, 10At, 20At.
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At

Az

L! Error

L? Error

L Error

0.066667
0.031250
0.015385
0.007576
0.003774

0.111111
0.052632
0.025641
0.012658
0.006289

1.34E-001
1.35E-001
1.50E-001
1.64E-001
1.74E-001

2.62E-001
2.55E-001
2.87E-001
3.20E-001
3.44E-001

7.18E-001
6.79E-001
8.26E-001
9.10E-001
9.62E-001

where At = 0.015385.

At

Az

L! Error

L? Error

L®° Error

0.031250
0.015385
0.007576
0.003774
0.001880
0.000939

0.052632
0.025641
0.012658
0.006289
0.003135
0.001565

5.07E-002
5.98E-002
3.08E-002
1.95E-002
1.58E-002
1.54E-002

1.04E-001
1.15E-001
5.85E-002
3.72E-002
3.01E-002
2.74E-002

3.04E-001
3.44E-001
2.12E-001
1.33E-001
1.18E-001
9.67E-002

at t = 20At where At = 0.015385.

TABLE 3.9: (Example 3.5.2), errors for the Ultrabee scheme with initial condition (3.51)

At

Az

L! Error

L? Error

L®° Error

0.031250
0.015385
0.007576
0.003774
0.001880
0.000939

0.052632
0.025641
0.012658
0.006289
0.003135
0.001565

2.98E-002
1.95E-002
1.53E-002
1.52E-002
1.50E-002
1.51E-002

4.50E-002
3.09E-002
2.52E-002
2.56E-002
2.53E-002
2.57E-002

9.51E-002
6.63E-002
5.86E-002
6.16E-002
6.16E-002
6.29E-002

Example 3.5.2, errors for the SL-P! scheme with initial condition (3.51) at t = 20At¢

TABLE 3.10: (Example 3.5.2), errors for the coupled SL-P! + UB scheme with initial
condition (3.51) at t = 20At where At = 0.015385.

3.5.3 HJ equation

Example 3.5.3. In the example below we solve HJ equation

v+ | f(x)vg] =0 (¢, ) € Q. (3.52)

We solve above HJ equation for the initial data (3.48) and (3.50). We fix CFL = 0.6
and f(x) =1 and the domain Q = [-2,2] x [0,0.5]. All error calculations are global.

Firstly we consider smooth initial data (3.48) and in this case initialy solution is smooth

but later on regularity will be lost. So in the beginning we expect coupled scheme to be
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SL-P' scheme and when some non smoothness detect scheme must switch to Ultrabee
scheme. Fig. 3.13 shows the desired result i.e. till t = 10Ax solution is smooth (i.e.
o = 1) and after that regularity lost (o = 0 ). In Fig. 3.10, 3.11 and 3.12 are the
plots at different time steps for initial data (3.48). Table 3.11, 3.12 and 3.13 are the
error tables of SL-P', Ultrabee and coupled scheme respectively at time t = 20At and
At = 0.014706.

12

= Initial Data

1k
08F
0.6
0.4f

0.2F

0¢

—o.2ls
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t=0.14706
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—0.2l
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t=1.7647

FIGURE 3.10: Example 3.5.3, on the top left is the plot of initial data (3.48) and on
right SL-P! scheme at ¢t = 10A¢, 20At, 30At and At = 0.014706.

At

Az

L' Error

L? Error

L% Error

0.125000
0.055556
0.029412
0.014706
0.007463
0.003731

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

3.11E-002
2.27E-002
1.10E-002
5.96E-003
2.93E-003
1.47E-003

2.62E-002
2.08E-002
1.01E-002
5.75E-003
2.85E-003
1.44E-003

2.70E-002
2.52E-002
1.26E-002
7.45E-003
3.72E-003
1.89E-003

TABLE 3.11: (Example 3.5.3), errors for the SL-P! scheme with initial condition (3.48)
at time ¢t = 20At and At = 0.014706.

Fig. 3.17 shows that how indicator function works here. In Fig. 3.14, 3.15 and 3.16 are
the plots at different time steps for initial data (3.50). Table 3.14, 3.15 and 3.16 are the

error tables of SL-P', Ultrabee and coupled scheme respectively at time t = 20At and
At = 0.014706.
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FIGURE 3.11: Example 3.5.3, on the top left is the plot of initial data (3.48) and on
right Ultrabee scheme at t = 10At, 20At, 30At and At = 0.014706.
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FIGURE 3.12: Example 3.5.3, on the top left is the plot of initial data (3.48) and on
right coupled scheme at t = 10A¢, 20At, 30At and At = 0.014706.
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S0

FIGURE 3.13: Example 3.5.2, the plot of the indicator function o for (3.48) initial data
at different time steps t = 10A¢t, 20At, 30At and At = 0.014706

At Az L' Error | L2 Error | L™ Error
0.125000 | 0.210526 | 2.34E-001 | 2.42E-001 | 3.28E-001
0.055556 | 0.102564 | 8.26E-002 | 1.27E-001 | 2.69E-001
0.029412 | 0.050633 | 3.86E-002 | 5.20E-002 | 1.30E-001
0.014706 | 0.025157 | 1.76E-002 | 2.27E-002 | 6.69E-002
0.007463 | 0.012539 | 8.59E-003 | 1.04E-002 | 3.31E-002
0.003731 | 0.006260 | 6.80E-003 | 8.58E-003 | 2.41E-002

TABLE 3.12: (Example 3.5.3), errors for the Ultrabee scheme with initial condi-
tion (3.48) at time t = 20At and At = 0.014706.

At Ax L' Error | L? Error | L™ Error
0.125000 | 0.210526 | 5.01E-002 | 4.16E-002 | 4.27E-002
0.055556 | 0.102564 | 2.59E-002 | 2.35E-002 | 2.90E-002
0.029412 | 0.050633 | 1.16E-002 | 1.08E-002 | 1.36E-002
0.007463 | 0.012539 | 5.99E-003 | 5.71E-003 | 7.34E-003
0.014706 | 0.025157 | 2.98E-003 | 2.90E-003 | 3.79E-003
0.003731 | 0.006260 | 1.49E-003 | 1.46E-003 | 1.90E-003

TABLE 3.13: (Example 3.5.3), errors for the coupled SL-P! + UB scheme with initial
condition (3.48) at time ¢t = 20A¢ and At = 0.014706.
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FIGURE 3.14: (Example 3.5.3), on the top on the left is the plot of initial data (3.50)
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and on right SL-P! scheme at t = 10At, 20At, 30At and At = 0.014706.
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FIGURE 3.15: (Example 3.5.3), on the top on the left is the plot of initial data (3.50)
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and on right Ultrabee scheme at ¢t = 10A¢t, 20At, 30At and At = 0.014706.
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FIGURE 3.16: Example 3.5.3, on the top on the left is the plot of initial data (3.50)
and on right coupled scheme at ¢t = 10A¢, 20At, 30At and At = 0.014706.
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FIGURE 3.17: (Example 3.5.3), the plot of the indicator function o for (3.50) initial
data at different time steps ¢ = 10A¢, 20A¢, 30At and At = 0.014706
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At

Az

L! Error

L? Error

L Error

0.125000
0.055556
0.029412
0.014706
0.007463
0.003731

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

1.71E-001
1.56E-001
1.12E-001
8.47E-002
6.05E-002
4.29E-002

2.64E-001
2.10E-001
1.84E-001
1.60E-001
1.34E-001
1.12E-001

4.06E-001
3.77E-001
4.51E-001
4.90E-001
4.81E-001
4.60E-001

TABLE 3.14: (Example 3.5.3), errors for the SL-P! scheme with initial condition (3.50)
at time ¢ = 20A¢ and At = 0.014706.

At

Az

L' Error

L? Error

L°° Error

0.125000
0.055556
0.029412
0.014706
0.007463
0.003731

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

3.07E-002
1.03E-001
1.99E-003
7.28E-003
1.28E-003
9.62E-003

4.73E-002
2.26E-001
6.24E-003
3.24E-002
8.08E-003
8.60E-002

7.29E-002
5.00E-001
1.96E-002
1.45E-001
5.10E-002
7.68E-001

TABLE 3.15:

(Example 3.5.3), errors for the Ultrabee scheme with initial condi-

tion (3.50) at time t = 20At and At = 0.014706.

At

Az

L Error

L? Error

L% Error

0.125000
0.055556
0.029412
0.014706
0.007463
0.003731

0.210526
0.102564
0.050633
0.025157
0.012539
0.006260

7.24E-002
1.39E-001
2.31E-002
1.18E-002
6.14E-003
5.98E-003

1.02E-001
2.90E-001
8.87E-002
5.54E-002
4.95E-002
6.01E-002

1.98E-001
7.50E-001
3.93E-001
3.18E-001
4.39E-001
7.24E-001

TABLE 3.16: (Example 3.5.3), errors for the coupled SL-P! + UB scheme with initial

condition (3.50) at time ¢t = 20A¢ and At = 0.014706.



Chapter 4

Many-particle limit for traffic

flow models on networks

4.1 Introduction

Since many years, traffic problems draw particular attention of the public. Traffic flow
can be described at different scales, depending on the level of details one wants to observe.
Typically, three scales of observation can be adopted: microscopic (single vehicles are
tracked), mesoscopic (averaged quantities like density and mean velocity are tracked
but car-to-car interactions are not lost) and macroscopic (only averaged quantities are

tracked).

Limiting our attention to differential models, the most famous microscopic models are
those of follow-the-leader type, also known as car-following models. In such a models,
the dynamics of each vehicle depend on the preceding vehicles, so that, in the end,
the whole traffic flow is determined by the dynamics of the first vehicle (the leader)
in a cascade fashion. Drawbacks of microscopic model is that they require too many

parameters, and high CPU time is needed to run a simulation.

Generally speaking, microscopic models are considered more justifiable because the be-
havior of every single vehicle can be described with high precision and it is immediately
clear which kind of interactions are considered. On the contrary, macroscopic models are

based on assumptions which are hardly correct or at least verifiable. As a consequence, it

85
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is often desirable establishing a connection between microscopic and macroscopic models
so to justify and validate the latter on the basis of the verifiable modeling assumptions

of the former.

Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traf-
fic flow models are already well understood in the case of vehicles moving on a single
road. Analogous connections in the case of road networks are instead lacking. This is
probably due to the fact that macroscopic traffic models on networks are in general ill-
posed, since the conservation of the mass is not sufficient alone to characterize a unique
solution at junctions. This ambiguity makes more difficult to find the right limit of the

microscopic model, which, in turn, can be defined in different ways near the junctions.

As we also explained in the general introduction of the thesis that we aim to established
macroscopic and microscopic connection on the road networks. We propose a very
natural extension of a first-order follow-the-leader model on road networks and then we
prove that its solution tends in the limit to the solution of the LWR-based multi-path
model introduced in [22, 23], i.e. as the number of vehicles tends to infinity while their

total mass is constant (for more details we refer to see the general introduction).

We would like to point out that for the first-order models on a single unidirectional
road, the micro-to-macro limit was already deeply investigated by means of different
techniques: the papers [30, 97] use standard techniques coming from the theory of
conservation laws. This is the approach we follow in this chapter; the paper [50] instead
proves the limit relying on measure theory. The microscopic solution is interpreted as an
empirical measure which is proven to converge to the entropy solution of the macroscopic
model in the 1-Wesserstein topology. Unlike [30, 97], this approach allows to pass to the
limit without shrinking to 0 the mass of the vehicles and without letting the number of

vehicles tend to infinity (for more references see general introduction).

To our knowledge, there is no systematic theory about the extension of the follow-the-
leader models on networks. It is plain that at the microscopic level one can easily reach
a high level of detail, including junctions with spatial extension (non point), multi-
lane roads, multi-class vehicles, traffic lights and priorities. Several highly sophisticated
simulators are available since many years (free and commercial), see, e.g., [44, 101]

and references therein to have an idea of the models and methods commonly used.
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Nevertheless, it is unclear which average flux is actually observed at junction by the

many-particle limit of any car-following model.

Beside this, let us also mention that the relationship between microscopic and macro-
scopic models was exploited to create hybrid models, see, e.g., [83]. In such a models
the averaged quantities are observed where a detailed description is not needed (e.g.,
far from the junctions) while a detailed dynamics is considered elsewhere. However,
this approach gives no clue about the macroscopic behavior of the microscopic model at

junctions.

4.2 Macroscopic model

Macroscopic models are historically inspired from constitutive models for hydrodynamics
system, which have similar properties as traffic flow. Traffic flow modeling began in
the 1950’s with the papers by Lighthill and Whitham [80, 107]. These authors wrote
two important paper at that time on kinematics waves, the first on “flood movement
in long rivers” and the second on a theory of “traffic flow on long crowded road”,
drawing similarities between the two types of flow. A similar discussion on traffic flow
was published by Richards around the same time [95], independently of Lighthill and
Whitham [80, 95, 107]. The common mathematical model is referred to as the LWR
model. Its basic principle is the one-dimensional conservation equation.

LWR model relies on the knowledge of an empirically measured flux function, also called
the fundamental diagram (we will explain in next section) in transportation engineering,
for which measurements go back to 1935 with the pioneering work of Greenshields [61].
A number of other flux functions have been proposed in the hope of capturing effects
of congestion more accurately, in particular: Greenberg [58], Underwood [106], Newell-
Daganzo [37, 85]. The existence and uniqueness of an entropy solution to the Cauchy
problem [98] for the class of scalar conservation laws to which the LWR model belongs to
the work of Oleinik [87] and Kruzhkov [74] (see also the seminal article of Glimm [57]).
Godunov scheme [58, 78] has been developed to solve LWR macroscopic model, which

was shown to converge to the entropy solution of the first order hyperbolic PDE.
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4.2.1 LWR model on a single road

Let p = p(t, ) denote the density of vehicles at time ¢ in the point z € R and v = v(¢, z)
their (average) velocity. Given any interval [a,b] C R, the total amount of vehicles in it

at time ¢ is

/ab p(t,x)dx

and, since it is assumed that vehicles are neither produced nor destroyed in [a,b], the
principle of conservation of vehicles states that the time variation of the above quantity

is only due to the net flux of vehicles crossing the boundaries z = ¢ and = = b:

b
— [ pdx = [flux of vehicles entering at a] — [flux of vehicles exiting at 0]

dt |,
- f(taa)_f(t7b>

where f := pv is the traffic flux (i.e. the total number of vehicles crossing the point x

per unit time). Therefore

b
S ottydr = pltayelt, @) — plt,byo(t, b).
b
= /ax(pv)d:v, (4.1)

Since p is bounded and we assume p; exists, we get,
b b
/ Orpdx = —/ 0y (pv)dez, (4.2)
i.e.
b
/ (Orp + 0z (pv)) dz = 0.

Finally, due to the arbitrariness of the interval [a,b] and assuming formally that the

functions p and v are smooth, we conclude

Bp + 0 (pv) =0,
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which is a first order PDE expressing the conservation of the mass of vehicles. Notice
that this is a single equation for two unknowns, therefore it is not sufficient by itself to
uniquely determine the distribution of vehicles along the road. However, if an equation
of state v = v(p) is provided, yielding the velocity v as a known function of the density

p, then we get an equation for the variable p only of the form

Ap+0:(f(p)) =0, f(p) = pv(p). (4.3)

The problem is now in principle solvable for p. The mapping p — f(p) is frequently
called the “fundamental diagram”. Equation (4.3) having the form of a nonlinear hyper-
bolic conservation law, is referred to as the Lighthill- Whitham-Richards (LWR) model.

Various forms of the fundamental diagram are possible (see, e.g., Garavello and Pic-

v(e) f(p)

(o)

Prazx [ P

FIGURE 4.1: Speed and flux as a function of the density in the LWR model

coli [54, Chapt. 3]. For example we can consider as prototype the relation (see fig. 4.1,

left)

v(p) = Vmax (1 __f ) )
pmam

The macroscopic speed law p — v(p) is defined on [0, pmas] and with values in vyqq
being the maximum speed corresponding to a free highway. v is non-increasing function
and v(0) = Umaz, U (Pmaz) = 0. The choice Vimagr = pPmazr = 1 gives rise to (see fig. 4.1,

right) the traffic flux function

f(p) =p(1—p),

a parabolic flux with the following main features:
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(i) f is (strictly) concave for p € [0,1];
(ii) f is nonnegative for p € [0, 1];

(iii) f has precisely one maximum point at p = o € [0, 1], specifically o = %

In the sequel we will develop our theory having in mind this function f, however all we
will state holds more generally for any flux f complying with the assumptions (i), (ii),

(iii) above. In particular, we will be concerned with Cauchy problem

dhp+0:(f(p) =0, t>0, z€R
p(x,0) = po(xr) xz€R

(4.4)

for a prescribed initial datum 0 < pg(z) < 1 representing the initial distribution of

vehicles along the road.

4.2.2 LWR model on networks

Macroscopic modeling of the traffic flow on networks is a difficult problem. Many solu-
tions have been proposed in the past, based on heuristic approaches. Macroscopic traffic
models on networks were deeply investigated starting from [70]. A complete introduction
can be found in the book [54], which discusses several methods to characterize a unique
solution at junctions. Let us also mention the source-destination model introduced in
[53] (see also [68]) and the buffer models [52, 55, 69]. Recently, a LWR-based multi-path
model on networks was introduced in the paper [22], together with a Godunov-based
numerical scheme to solve the associated system of conservation laws with discontinuous
flux. The relationship between the multi-path model and more standard methods (like,
e.g., the one proposed in [29] based on the maximization of the flux at junction) was

investigated in [23]. In the following we discuss the approach adapted in [54].
Let I := [a,b] be a generic arc of the graph, i.e. a road. At any time ¢, the evolution of
the vehicle density on the network is computed by a two-step procedure:

e First, a classical conservation law is solved at any internal point of the arcs;

e Second, the densities at endpoints a,b which correspond to a junction are com-
puted. The latter step has not in general a unique admissible solution, so that

additional constraints must be added.
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Beside the conservation of vehicles at junctions, we assume here that drivers behave
in order to maximize the flux at junctions and that incoming roads are regulated by
priorities (right of way). The second step is performed by a linear programming method.
On each arc, the density p(z,t) of all vehicles (no distinction among vehicles is considered

here) is given by the entropic solution of

dp+0:(f(p) =0, t>0, z€ (ab) (4.5)
p(,0) = polx) @ € (a,b) (4.6)
We consider now a generic junction J, and we denote by {I; := [a;,b;]}, i = 1,...,n the
incoming roads and by I; := [a;, b;], j = n+1,...,n+m the outgoing roads. We assume

incoming roads

o+l outgoing roads

n+2

n n+m

FIGURE 4.2: a junction with n incoming edges 