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Introduction

The subject of this thesis is part of a research project dealing with the description of discrete,
non-linear and non-convex variational problems defined on lattices in which the mesh size tends
to zero. This family of problems has strong connections with statistical thermodynamics, con-
tinuum mechanics and numerical calculus. Technically, the analysis is performed by computing
suitable I'-limits in the continuum which approximate the discrete problems. In particular, this
thesis deals with the asymptotic analysis of atomistic systems in which the limit configurations
involve complex surface energies, possibly in conjunction with volume energies.

The first chapter deals with the description of the overall effect of pinning conditions in
discrete systems, highlighting the analogies and differences with the corresponding continuous
case. In variational problems on the continuum, pinning sites are usually modeled as small zones
(or perforations) where concentrated forces or Dirichlet conditions are imposed. Their effect can
be described by exhibiting suitable effective problems involving an additional “strange term”
of lower-order. Despite being a volume integral, this term is indeed due to the homogenization
of forces which tend to concentrate close to the perforations and can be described through
capacitary formulas which account for the effect of each perforation independently. In the
simplest (but already presenting most of the general features) case of periodically-perforated
domains, one imposes homogeneous Dirichlet conditions on a periodic array Us g of small balls
of radius R and centers on a J-periodic lattice, and considers, e.g., minimum problems of the
form

min{/ (|DulP = fu) dz : uw=0 on U(;_,R}. (0.0.1)
Q

As 6, R — 0 these problems can be approximated by

min{/Q(|Du\p + Cluf’ — fu) dac}, (0.0.2)

where the middle term replaces the constraint; the constant C' depends on the mutual asymp-
totic behavior of the two parameters. It is suggestive to think of u as a temperature field of a
mixture of water and ice, with Us r representing the ice distribution, and the second problem
as an effective approximation when the ice particles are small. Note that there is a critical ratio
between R and ¢ below which the constant C' is 0 (if the percentage of “ice” is too small then
it does not influence the limit) and above which C is 400 (i.e., the percentage of ice is so high
that in the limit it forces u = 0).

The study of problems of the form above dates back to an early work by Marchenko and
Khrushlov [52]. It has been subsequently popularized by a well-known paper of Cioranescu and
Murat [37] and comprises a number of generalizations which cover also non-periodic geometries
and give rise to the so-called Relazed Dirichlet Problems (see e.g [41, 42, 43, 45, 46, 60] and [40]
for an overview on the subject). In the framework of I'-convergence recent papers by Ansini
and Braides [11] and Sigalotti [57] deal with general vector energies. At the critical scale the
basis of the asymptotic description of problems (0.0.1) is a separation-of-scales argument: the
contribution of the energy that “concentrates” near each of the small balls can be decoupled
from the others and from the energy that is “diffused” elsewhere (this is formalized in the
procedure highlighted in [11]), and can be then computed by means of suitable “capacitary



formulas” that give C'. It must be noted that in the subcritical case p < n the contribution of
each ball is of the form
CR" P|ulP, (0.0.3)

which gives the scaling R ~ 6"/"P while in the critical scale p = n that contribution is
C|log R|" u|", (0.0.4)

which gives the scaling |log R| ~ 6™/ 1.
In the simplest discrete case, the integrals fQ |Du|? are replaced by finite-difference energies
on a cubic lattice eZ™ of the form

M p’ (0.0.5)

g

D e

n.n.

where the sum ranges over all nearest-neighbors in €Z™ N 2. The continuous approximation of

(0.0.5) is indeed
/ (| Dul|? dz, (0.0.6)
Q

where
p

" du
|Dul = Z(% (0.0.7)
j=1 """

The pinning condition which replicates the perforated domain constraint is then expressed as
u=0 on d0Z", (0.0.8)

where of course in addition one requires /e € N. In a discrete setting the corresponding
minimum problem can be thought as giving equilibrium configurations for an atomistic model,
e.g., with hardening conditions due to the presence of transverse dislocations as in the paper
by Garroni and Miiller [48].

We can observe right away that the small parameter € plays at the same time the role of
both the discrete lattice scale and of the perforation size R, thus giving the critical scalings

e~ &"P  and  |loge| ~ 6™/ 7L (0.0.9)

If suitable discretizations of a forcing term are added, the choice of the critical scaling leads to
limit problems of the form

min{/Q(HDqu +Cluf? — fu) de}, (0.0.10)

analogous to the ones we get in the continuous setting. The computation of the constant
C presents some differences from the computation in the continuous case, even though a
separation-of-scales procedure can be followed by proving a decoupling lemma (Lemma 1.6.1),
which allows to analyze the single effect of each pinning site. In the critical case p = n the en-
ergy “concentrating close to the pinning sites” indeed concentrates at a scale much larger than
€. In this way the capacitary computation reduces to the continuous one with a perforation of
size R = ¢ and with the anisotropic energy (0.0.6). In dimension n = 2 the constant is exactly
the “classical” one since ||Du|2 equals the euclidean gradient norm |Du|. In the subcritical
case p < n, instead, the energy concentrates at scale ¢, so that the constant C' is expressed by
the “discrete p-capacity” of a point in the lattice Z™.

In the first chapter we prove the convergence result outlined above in a general setting where
u can be vector-valued and the discrete energies take the form

Eo(u) = Yo en f0-0)e (M)



where the interactions range over all pairs in 2 NeZ™, and are governed by general pair poten-
tials depending also on the mutual distance of ¢ and j in the reference lattice eZ™. The energy
densities f¢(z), with & € Z", satisfy polynomial growth conditions in z of order p, and decay
conditions in & that allow to restrict to (long-range but) finite-range interactions in QNeZ"™ (fol-
lowing the general convergence result for unconstrained functionals by Alicandro and Cicalese
[3]). The main result of the chapter is Theorem 1.3.1, where we show that the limit energies
take the form

Fu) = [ (fo(Dw) +9(w)) .

where fj is given by the unconstrained homogenization formula proved in [3], and ® is described
by suitable asymptotic formulas that generalize the capacitary argument outlined above. Again,
the form of ® differs if p = n or p < n. It must be observed that the limit in such formulas
exists up to subsequences, as a consequence of the possible lack of homogeneity of degree p
of the energy densities f&. This non-uniqueness of the limit for the non-homogeneous case
has already been observed for the continuous case (see e.g. [11]). The main technical point is
the adaptation of the separation-of-scales arguments to the general long-range case. While for
nearest neighbors the approach of Ansini and Braides can be easily repeated, upon adapting it
to the geometry of the lattice (e.g., considering squares in the place of balls, etc.), for long-range
interactions the discrete functionals are non-local and some extra care must be taken to make
the procedure work.

The second chapter of this thesis deals with the description of a “defected” atomistic sys-
tem: we consider a discrete system in which the interaction between the particles is given by
quadratic potentials and we modify it by introducing some defects, modeled as simple nonlinear
perturbations. According to the Weak-Membrane Model by Blake and Zisserman [14], a simple
way to model free-discontinuity energies in a finite-difference scheme is by considering truncated
quadratic energy densities (Fig. 1). The energy of such a (n-dimensional) scheme can then be

A

\A

Figure 1: A truncated quadratic potential

written as
B(u) = (u; —u;)* A1,
%
where u; is a real parameter (the vertical displacement of the ‘discrete membrane’), and the
sum is performed over nearest neighbors in a cubic grid parameterized by Z".
Thanks to a scaling argument due to Chambolle [34], which leads to the energies

E.(u) :Z&_n((ui;ug‘y/\é)’

%

this discrete model can be approximated by a continuous energy defined on special functions
with bounded variation. In fact, if we limit the interactions in the sum to the nearest neigh-
bors in the portion of eZ™ contained in some fixed €2, and we interpret the values u; as the
discretization of a function defined in €2, then these energies can be studied using the methods



of I'-convergence, and their limit is then given by a fracture energy

F(u) :/ \Vu|2dx+/ vl dH™ !
Q QNS (u)

(see [34, 35, 24]), where S(u) is the fracture site, v is its normal and wu is the macroscopic
displacement outside the fracture site. The correct functional setting for these kinds of energies
is the space GSBV (Q) of (generalized) special functions of bounded variation in Q introduced
by Ambrosio and De Giorgi (see [18, 9]). From an atomistic standpoint, the energy (u; —u;)?A1
can be interpreted as that of a ‘defected’ quadratic spring, which breaks after reaching a critical
elongation; the collective behavior of such a system gives rise to the possibility of fracture. The
critical scaling in E. is precisely the one that allows this behavior but forbids the accumulation
of ‘broken springs’ on sets of dimension larger than n — 1 while keeping the energy bounded.
Note that the truncated quadratic potentials are a prototypical example to which the study
of more general convex-concave atomistic potentials can be often reduced such as for Lennard
Jones ones (see [26, 28])

If not all springs are ‘defected’, but a portion of them are simple quadratic linear springs,
with corresponding energy (u; — u;)? (for which the I'-limit is simply the Dirichlet integral
and no discontinuity is allowed for the limit u), then the problem is more complex, and a
continuous description must take into account the location and ‘micro-geometry’ of the two
types of springs. In a probabilistic setting, the location of the defected springs can be modeled
in terms of realizations of i.i.d. random variables. In dimension two an analysis by Braides
and Piatnitski [27] shows that the I'-limit is deterministic and depends almost surely on the
probability p of the weak springs. Its form is of ‘fracture type’ if p is above the percolation
threshold, while it coincides with the Dirichlet integral for all values of p below that threshold.

A deterministic study leads necessarily to a more complex statement. In this case we look
at possible I'-limits of energies of the form

Be(u) =" f5 (M),
i

where, for each €, ff;(2) may be chosen arbitrarily to be either z* or 2% A (1/e).

It must be noted beforehand that, whatever the limit percentage of weak interaction is, we
can obtain in the limit both the Dirichlet integral, and the Weak-Membrane Energy above; i.e.,
that even if we prescribe that for every subdomain A C €2 we have

#{(i,j) € ANeZ™: f5(2) = 22 A (1/e)}

. 1,
lim J =

50 #{(i,j) € AneZr}

for any 6 € [0, 1], we may obtain both such energies as T'-limits for suitable choices of 5 (see

[27] and Section 2.3.6 below). This is in contrast with formally similar problems where damaged
springs are modeled as still quadratic with an energy density az? with a constant o < 1 (for this
‘discrete G-closure’ problem see Braides and Francfort [23], and Braides and Gloria [25]). This
observation leads to conjecturing that indeed the possible limit energies F' are (independent of
the limit density and) characterized by the two inequalities deriving from the comparison with
the extreme cases; i.e.,

F(u)§/|Vu|2dx if u e HY(Q),
Q

F(u)Z/ |Vu|2das+/ |v|lidH™ 1 if u € GSBV(Q).
Q S(u)

The two inequalities imply that indeed F(u) = [, |[Vul*dz if u € H'(Q), and suggest the
conjecture that we may obtain as limits all lower-semicontinuous energies of the form

F(u) = / |Vu|? dx —|—/ o(r,ut —u,v)dH" ! if u € GSBV(Q),
Q S(u)



(u* denote the traces of u on both sides of S(u)), where
o v — ¢(x,z,v) is even and ¢(z,z,v) > ||v|1
e z — ¢(x,z,v) is even, and is increasing for positive z.

A complete proof of such a conjecture is not within the possibilities of the present knowledge
of free-discontinuity functionals, even in the homogeneous case, i.e., with p(z,z,v) = p(z,v).
Indeed, for such energy densities the condition for lower semicontinuity is BV -ellipticity (see
Ambrosio and Braides [8]), which is the analogue for interfacial energies of the condition of
quasiconvezity for integral functionals (see Morrey [53]), and turns out to be necessary and
sufficient if ¢ satisfies an inequality from above ¢(z,v) < C|z|. This last growth condition
is not in general satisfied by our energies, and without this assumption neither we can apply
known representation results (as those by Braides and Chiado Piat [21] or Bouchitté et al. [16]),
nor we can characterize the energy density (indeed, the problem of removing growth conditions
is one of the main issues also in the theory of vector energies; see Ball and Murat [13]). But
even when growth assumptions from above are satisfied and the function ¢ is BV-elliptic this
information is of little help since explicit constructions of BV-elliptic energy densities (e.g., in
the spirit of the construction of quasiconvex functions by relaxation as that by Sverdk [61])
or their variational approximation by simpler energies (e.g., in the spirit of appoximation of
quasiconvex energies by homogenization of polyconvex functionals as by Braides [17]) are not
available in general, as are not available for arbitrary quasiconvex functions.

We will then restrict our analysis to classes of simpler energy densities, proving a number
of results, each of its particular interest (summarized in Theorem 2.2.2):

1) ¢ = p(v) even. In this case the condition of BV-ellipticity is equivalent to the convexity
of (the one-homogeneous extension of) ¢. We will prove that all such energy densities can be
obtained in the limit;

2) ¢ = ¢(z). The form of the energies F. implies that ¢ is even and z — ¢(z) is increasing
on (0,+00). Moreover the growth condition gives ¢(z) > sup, ||v|l1 = v/n. In this case the
condition of BV -ellipticity is equivalent to the subadditivity of ; i.e. that p(z+2z") < p(z)+p(2)
for all z, 2’. This condition is rather complex, and is implied by the concavity of ¢ on (0, +00).
We will prove the approximation result for this restricted but important class of energy densities;

3) ¢ = p(z) lower semicontinuous. In this case the only condition for approximation is
o(z) > v/,

Moreover we can obtain ¢(z,z,v) = ©1(V)p2(z)ps(x) by combining the approximation
constructions above.

We note that other types of energies can be obtained as I'-limits; for example, those of the
form

F(u) = / [Vul? dx +/ oz, ut —u")dH" ! if u € SBV(Q),
Q S(u)

with the constraint that S(u) C K where K is a fixed n — 1-dimensional surface. Indeed, such
types of energies will be the building blocks of our approximation strategy. In fact, for case (1)
above we will first use this construction with K a network of planar surfaces and ¢ suitable
constants on each surface of the network, and then use an approximation procedure similar to
the one by Ansini and Iosifescu [12] to obtain an arbitrary convex ¢. Note that in particular we
may obtain as ¢ any constant not larger than /n, so that case (3) can be derived by localizing
such a construction. To obtain case (2), we first treat the case of K a single hyperplane and
¢(z,2) = c1 + c22%. This can be obtained following arguments similar to those by Ansini [10]
to approximate the energy density c(u™ —u~)? on a surface (Neumann sieve) coupled with the
description of the effect of pinning sites at the critical scaling developed by Sigalotti in [57, 59].
Note that the computation of the interfacial energy gives the same constant as in the continuous
case for n = 2, while it highlights a more complex behavior for n > 3, where a fraction of the
total contribution is actually given by the strong springs at the interface, which sums up to the
contribution distributed away from the interface and summarized in a capacitary formula. By
repeating this argument on more parallel surfaces concentrating to the same hyperplane we can
recover an arbitrary concave function by approximation with subadditive envelopes of families



of functions as above (this is the only argument where concavity is used). Finally the use of a
network of hyperplanes as above allows for a radially symmetric target ¢.

In the third chapter we deal with the analysis of “ternary” energies; i.e., energies depending
on functions taking three values only (for simplicity, 1, 0 and —1). In our setting, it is not
possible to reduce the problem to the case of binary systems (or ‘spin’), due to the assumptions
we make on the energies. Indeed, the phases +1 tend to be separated by an interface, on which
the phase 0 tends to concentrate. This description corresponds to models which have been
studied from the point of view of physics: it has been shown that the free energy of a system
where two or more phases coexist can be altered by the presence of low concentrations of a
surfactant. In other words, a surfactant (a contraction for surface-active-agent) is a substance
which may significantly reduce the surface tension of a system by being adsorbed onto the
interfaces.

In order to give a variational description of the effects caused by the presence of surfac-
tants in phase-separation phenomena, several attempts have been made to model the physical
system both as a continuum and as a discrete. Among the continuum theories, the first descrip-
tion of phase transitions in presence of surfactants has been developed by Laradji-Guo-Grant-
Zuckermann (see [50, 51]), who suggested a variational model involving a two order parameters
Ginzburg-Landau functional. Several generalizations have been later considered by Gompper
and Schick in [49]. In [50] and [51] one of the two order parameters represents the local differ-
ence of density of the two phases (as in the standard Cahn-Hillard model in the gradient theory
of phase transitions), while the other one represents the local surfactant density. The two order
parameters are energetically coupled to favor the segregation of the surfactant at the phase in-
terface. The coarse-graining analysis of this model has been performed through I'-convergence
methods by Fonseca, Morini and Slastikov in [47], while the mathematical analysis of more
general continuum models is the subject of [1].

Many of the discrete models are variants of the one which was originally introduced by
Blume, Emery and Griffiths (BEG) in [15] (see also [49] and the references therein); the third
chapter of this thesis deals with its variational analysis in the framework of I'-convergence.
In their seminal paper, Blume, Emery and Griffiths introduced a simple nearest-neighbors
spin-1 model as a variant of a classical Ising type spin-1/2 model, with the aim of describing a
different kind of phenomena, namely He3-He* A-transitions. In the setting of phase transitions in
presence of surfactants, BEG model can be briefly described as follows. On the two dimensional
square lattice Z2, we consider a ternary system driven by an energy which is defined on functions
parameterized on the points of the lattice and taking only three possible values (which we may
suppose to be —1,0,1). We can identify the values of u with three different phases (in particular,
the value 0 is associated with the surfactant). Omitting the chemical potentials, for a given
configuration of particles, the free energy E of this system is given by

BE(u) == u(a)u(d) + > _ k(u(a)u(b))?, (0.0.11)

n.n.

where n.n. means that the summations are taken over all nearest neighboring sites; i.e., the
elements a, b of the lattice such that |a —b| equals the lattice spacing. The constant k > 0 is the
quotient between the so-called bi-quadratic and the quadratic exchange interaction strengths;
its range will be specified later on, such as the scaling factor for the energy.

In Chapter 3 we will perform a I'-limit analysis of these functional. As a result, we will be
able to describe the behavior of the ground states of the BEG system as ¢ tends to 0. More
precisely, let Q C R? be a bounded open set and let us consider the scaled energies

E (u) = Z e2(—u(a)u(b) + k(u(a)u(b))?). (0.0.12)

n.n.

Here the array {u(a)} can be seen as a function defined on €Z? N Q. Upon identifying such
functions with their piecewise-constant interpolations, the energies F. can be interpreted as
defined on (a subset of) L!(£2); we can then perform a I'-convergence analysis in the framework



of L(Q). As ¢ tends to 0, the I'-limit E of E. is particularly simple: under the trivial constraint
|u| < 1, it is constantly equal to the minimum value 2|Q|(—1 + k) A 0, corresponding to the
uniform states. By choosing k£ < 1 we set the uniform states u = £1 to be the ground states.
Having fixed k < 1, the asymptotic behavior of E. implies that a sequence (u. ). can arbitrarily
mix the uniform phases —1 and 1 at a mesoscopic scale, though keeping its energy equal to the
energy of the uniform states plus an infinitesimal function, as ¢ — 0 (the asymptotic analysis
of the bulk scaling of more general spin-type models has been performed in [5]). Thus, in order
to get a better description of the ground states, in the spirit of development by I'-convergence
(see [21, 28, 4] and [2]), we select sequences which attain the minimum value with a sharper
precision, meaning that

E.(u:) = c. + O(e),

where c. is the absolute minimum of E.; i.e., c. =Y., €*(k —1). For such configurations the
limit states u will take the values +1 only. The limit energy will be an interfacial-type energy:
it can be interpreted as the surface tension of the system which undergoes a phase separation
phenomenon between the phases {u = —1} and {u = +1}. At this scaling, it is necessary to
further specify the values of the parameter k, so that the phase 0 can be actually considered
a surfactant phase (meaning that it contributes to lower the surface tension). In particular it
can be easily shown (see Section 3.3) that, for % < k < 1, the energy for a transition from
phase —1 phase to phase +1 is lowered when the surfactant is at the interface. Moreover, the
measure of the phase 0 vanishes as we pass to the limit. This scaling is usually referred to as

low surfactant concentration regime. Thus, we study the rescaled functionals

EO@w) = P S w(au(e) - O - (@),
c a,becZ?nNQ
la—bl=¢
Note that the interaction between two particles of the same type —1 or +1 has zero energy,
while the interaction of a surfactant particle 0 with any other particle is repulsive and ‘costs’
the positive value 1 — k. For this reason, the BEG functional is also said to describe a repulsive
surfactant model. Tn Theorem 3.3.2 we show that EL") T-converges (in the L'(Q)-topology) to
the interfacial-type energy functional

EDw) = [ v,
S(u)
where u € BV (2;{£1}), S(u) is the (essential) interface between the sets {u = 1} and {u =
—1}, vy, is the inner normal to S(u) and ¥(v) = (1 — k)(3|v1| V |va| + 1] A |v2|) denotes the
anisotropic surface tension of the model.

Note that in this topology the limit order parameter u does not carry any information
about the surfactant phase. Actually, the role of the surfactant becomes clear when looking
at the minimizing microstructure leading to the computation of the surface density . In this
direction, a natural further step in the analysis of the BEG model is the study of the dependence
of the surface tension on the concentration of the surfactant. The literature on this subject is
wide, both from the physical and the chemical point of view (see for example [49] and [54]).
However, no rigorous description of the microscopic geometry of the surfactant at the interface
has been developed; all the previous documented attempts to study this problem are based on
numerical computations or on heuristic arguments. In order to rigorously address this problem,
we need to go beyond the standard formulation of the BEG model. In particular, the functional
which describes the energy of the system has to depend explicitly on the distribution of the
surfactant particles. To this end, we set

In(u) = {a € Q. : u(a) =0}

and we introduce the surfactant measure

wulu) = Z €dg.

a€lp(u)
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Figure 2: The local microstructure of a ground state of the BEG model at a fixed straight
interface (the dashed line normal to v) for three different values of the density of surfactants at
the interface. Black, white and grey dots stand for the 0, +1 and —1 values of the spin field w,
respectively.

Then, with a slight abuse of notation, we can extend E" to LY(Q) x M4 (Q) — [0, +00] as

EM (u, p) = {Egl)(U) i 4s = lu)

400 otherwise.
In order to track the energy of the surfactants, we extend the functionals by decoupling the
order parameter of the model. In the continuum setting, instead, the functionals were extended
by introducing an additional variable (see [47] and [1]). The space L!(Q) x M, () is endowed
with the topology 71 X 72, where 71 denotes the strong topology in L'(2) and 7, refers to the
weak *-topology in the space of non-negative bounded Radon measures M (€2). In Theorem
3.3.3 we prove that Eél) I-converges (with respect to 71 X To-topology) to the functional EM .
LY(Q) x MT(Q) — [0, +00] defined as

dp

EM (u, p) = /S(u) SD(d/'"llLS(u)
400 otherwise,

,l/u>d7-[1 2k —2)p0(Q)  ifue BV(Q;{£1})

where ¢ : R x S1 — [0,+00) is computed explicitly. Looking at the graph of ¢ (Figure
2), we can notice that an anisotropic threshold phenomenon occurs at the phase interface.
Indeed, for a fixed v € S, the surface tension ¢(z,v) decreases up to a certain value of the
density z of the surfactant, namely z = |v1] V |v2|. As the density of the surfactant increases
further, two events can occur: if the surfactants are not absorbed onto the interface, the surface
tension remains constant and the singular part of the surfactant measure increases; otherwise,
the surface tension increases. As an application of Theorem 3.3.3, at the end of Section 3.3
we study an optimization problem in which the volume fractions of the different phases are
prescribed.

The variety of models of phase transitions in presence of surfactants studied in the physical
and chemical literature suggested that we should widen our analysis. In Section 3.4, we consider
the case of a n-dimensional discrete system, driven by an energy accounting for quite general
finite-range pairwise interactions, in the presence of different species of repulsive surfactant
particles. For such a general system, we obtain an integral representation result for the I'-limit,
in the spirit of homogenization theory, and we study some properties of its limit densities.
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Namely, given 2 C R™ and u : eZ™ N Q2 — K we define the functional F; as

F= Y &l (b_a,u(a),u(b)).

€
a,b€eZ’°nNQ
la — b < Re
where R > 0 is an interaction threshold and K = {my, ma, s1,82,...,sm} C R describes the

finite number of phases in the system. Moreover, f : Z" x K2 — [0, +00) satisfies a ‘discrete
isotropy condition’ (see Remark 3.4.1 and 3.4.5) and is such that {(mi,mq), (ma, ma)} are
absolute minima of f(z,-,-). In order to study the discrete-to-continuum limit of this system,
we introduce a notation which describes the subsets of (). corresponding to the different types
of surfactant. For [ € {1,2,..., M} we set

M
L(u)={a€Q:ula)=s}, I(u):=]nLu)

and we define

)= > " o, plw) = {m(w), pa(u), .., par(w)}-

a€l;(u)

We then extend F. to L'(Q) x (M, (2))M — [0, +o0] as

Fe(u) if p= p(u)

. (0.0.13)
+00 otherwise.

F.(u,p) := {

The space L'(Q) x (M (Q))™ is endowed with the topology 71 x 72, where 71 denotes the
strong topology in L!(Q2) and 7, stands for the weak*-topology in (M, (€2))*. In Theorem
3.4.4 we prove that F. I'-converges to the functional

E[) fhom (W%"Ls(u),u(u)) d?—[n—l + fQ ghom(,U/S)
S(u

F(u,p) = for u € BV(; {my,ma}), p = W"LS(M'H”% |S(u) + p® (0.0.14)

400 otherwise.

The limit densities from and gpom are given by two asymptotic homogenization formulas
((3.4.21) and (3.4.22) respectively). Whereas the formula for fr., can be derived through
a standard argument in homogenization theory, this is not true for gpom. We will need to
combine some abstract arguments of measure theory with a reflection construction, which uses
the discrete isotropy assumption on the interaction densities, in order to prove that gpom is well
defined (see Remark 3.4.5).

It should be noted that in our models the surfactants are represented as point-like parti-
cles, with no internal structure. More general models have been developed: they describe the
surfactants as polar molecules with heads and tails interacting differently with the same phase
(see [36, 56, 49]). In that setting, it is known that the presence of surfactants in a mixture may
lead to self-assembling and that a number of different microstructures may appear, even with
non-trivial topologies. Hopefully, the analysis performed in Chapter 3 may provide the basis
to address the discrete-to-continuum limit for those systems.
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Chapter 1

Homogenization of pinning
conditions on networks

1.1 Introduction

This chapter deals with the description of the overall effect of pinning conditions in discrete
systems, highlighting the analogies and differences with the corresponding continuous case.
In variational problems on the continuum, pinning sites are usually modeled as small zones
where concentrated forces or Dirichlet conditions are imposed. Their effect can be described
by exhibiting suitable effective problems. In the simplest (but already presenting most of the
general features) case of periodically-perforated domains one imposes homogeneous Dirichlet
conditions on a periodic array Us g of small balls of radius R and centers on a d-periodic
lattice, and considers, e.g., minimum problems of the form

min{/ (|DulP = fu) dz : w=0 on Ung}. (1.1.1)
Q

As 4, R — 0 these problems can be approximated by

min{/ﬂ(|Du\p + ClulP — fu) dx}, (1.1.2)

where the middle term replaces the constraint; the constant C' depends on the mutual asymp-
totic behavior of the two parameters. It is suggestive to think of u as a temperature field of a
mixture of water and ice, with Us r representing the ice distribution, and the second problem
as an effective approximation when the ice particles are small. Note that there is a critical ratio
between R and ¢ below which the constant C' is 0 (if the percentage of “ice” is too small then
it does not influence the limit) and above which C is 400 (i.e., the percentage of ice is so high
that in the limit it forces u = 0).

The study of problems of the form above dates back to an early work by Marchenko and
Khrushlov [52]. It has been subsequently popularized by a well-known paper of Cioranescu and
Murat [37] and comprises a number of generalizations which cover also non-periodic geometries
and give rise to the so-called Relazed Dirichlet Problems (see e.g [41],[42],[43],[45],[46],[60] and
[40] for an overview on the subject). In the framework of I'-convergence recent papers as
[11] and [57] deal with general vector energies. At the critical scale the basis of the asymptotic
description of problems (1.1.1) is a separation-of-scales argument: the contribution of the energy
that “concentrates” near each of the small balls can be decoupled from the others and from
the energy that is “diffused” elsewhere (this is formalized in the procedure highlighted in the
paper by Ansini and Braides [11]), and can be then computed by means of suitable “capacitary
formulas” that give C'. It must be noted that in the subcritical case p < n the contribution of

each ball is of the form
CR" Plul?, (1.1.3)



which gives the scaling R ~ 6"/ P while in the critical scale p = n that contribution is
C|log R|™ ul™, (1.1.4)

which gives the scaling |log R| ~ §"/"~1
In the simplest discrete case, the integrals fQ |DulP are replaced by finite-difference energies
on a cubic lattice eZ™ of the form

, (1.1.5)
NN

where the sum ranges over all nearest-neighbors in €eZ™ N §2. The continuous approximation of

(1.1.5) is indeed
/ (| Du||? dx, (1.1.6)
Q

where
p

(1.1.7)

" ou
Du|lP = ‘—
IDulf = 3|5
Jj=1
The pinning condition which replicates the perforated domain constraint is then expressed as
u=0 ondZ", (1.1.8)

where of course in addition one requires /¢ € N. In a discrete setting the corresponding
minimum problem can be thought as giving equilibrium configurations for an atomistic model,
e.g., with hardening conditions due to the presence of transverse dislocations as in the paper
by Garroni and Miiller [48].

We can observe right away that the small parameter € plays at the same time the role of
both the discrete lattice scale and of the perforation size R, thus giving the critical scalings

e~ """ P  and  |loge| ~ 6M/mL (1.1.9)

If suitable discretizations of a forcing term are added, the choice of the critical scaling leads to
limit problems of the form

min{/Q(HDqu + Cluf? — fu) da}, (1.1.10)

analogous to the ones we get in the continuous setting. The computation of the constant
C presents some differences from the computation in the continuous case, even though a
separation-of-scales procedure can be followed by proving a decoupling lemma (Lemma 1.6.1),
which allows to analyze the single effect of each pinning site. In the critical case p = n the en-
ergy “concentrating close to the pinning sites” indeed concentrates at a scale much larger than
€. In this way the capacitary computation reduces to the continuous one with a perforation of
size R = ¢ and with the anisotropic energy (1.1.6). In dimension n = 2 the constant is exactly
the “classical” one since ||Du|2 equals the euclidean gradient norm |Du|. In the subcritical
case p < n, instead, the energy concentrates at scale ¢, so that the constant C' is expressed by
the “discrete p-capacity” of a point in the lattice Z".

In this chapter we prove the convergence result outlined above in a general setting where u
can be vector-valued and the discrete energies take the form

E.(u) = Zgn fpli=i)/e (M )

€
where the interactions range over all pairs in 2 NeZ", and are governed by general pair poten-

tials depending also on the mutual distance of ¢ and j in the reference lattice eZ™. The energy
densities f¢(z), with £ € Z", satisfy polynomial growth conditions in z of order p, and decay
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conditions in & that allow to restrict to (long-range but) finite-range interactions in QNeZ"™ (fol-
lowing the general convergence result for unconstrained functionals by Alicandro and Cicalese
[3]). The main result of the chapter is Theorem 1.3.1, where we show that the limit energies
take the form

Flu) = [ (#u(Dw +0(w)) .

where fj is given by the unconstrained homogenization formula proved in [3], and @ is described
by suitable asymptotic formulas that generalize the capacitary argument outlined above. Again,
the form of ® differs if p = n or p < n. It must be observed that the limit in such formulas
exists up to subsequences, as a consequence of the possible lack of homogeneity of degree p
of the energy densities f&. This non-uniqueness of the limit for the non-homogeneous case
has already been observed for the continuous case (see e.g. [11]). The main technical point is
the adaptation of the separation-of-scales arguments to the general long-range case. While for
nearest neighbors the approach of Ansini and Braides can be easily repeated, upon adapting it
to the geometry of the lattice (e.g., considering squares in the place of balls, etc.), for long-range
interactions the discrete functionals are non-local and some extra care must be taken to make
that procedure work.

This chapter is organized as follows. In Section 1.2 we introduce the necessary notation to
state the main result, Theorem 1.3.1. In Section 1.4 we point out some analogies and differences
between the problem we are dealing with and the corresponding continuous case, by looking at
the asymptotic behavior of a family of meaningful minimum problems. In Section 1.5 we study
two families of auxiliary functions; by determining their properties we highlight some of the
differences between the critical case (p = n) and the non-critical one (p < n). In Section 1.6 we
prove two technical lemmas. In Sections 1.7 and 1.8 we finally prove the I'-Liminf inequality
and the I'-Limsup inequality. Section 1.9 is devoted to the description of two special cases,
which show some interesting features despite having restrictive assumptions. Finally, Section
1.10 is an appendix devoted to a short proof of a discrete Poincaré inequality in our simplified
context.

1.2 Notation

Let m,n € N with n > 2 and m > 1. For any measurable A C R™ we denote by |A| the
n-dimensional Lebesgue measure of A. Let {e1,...,e,} be the set of unit vectors along the
coordinate directions. Let 2 be a bounded open subset of R™ with |0Q2] = 0. For fixed £ > 0
we consider the lattice eZ" N Q =: Q¢; we will often write {2; in place of {).,. We denote by
A (Q) the set of functions

A (Q) ={u: Q. - R}.

A function u € A.(f2) is identified with the piecewise-constant measurable function given
by u(z) = u(zS), where z& is the closest point to x in eZ™ (which is uniquely defined up to a
set of zero measure). In this definition, we set u(z) = 0if z € eZ™ \ Q. A, (Q) is then regarded
as a subset of L1(Q).
Having fixed a constant M > 0, we introduce the set

Iy ={6cZ":|¢§|<Mand —¢ <€}

In the definition above <! denotes the lexicographical order: given two vectors £ = (&1,...,&,)
and ¢ = (C1,...,(n), we say that ¢ <! ¢ if and only if there exists m € {1,...,n} such that
& = ¢ for all i < m and &, < (- We introduce this notion since we decided not to count the
interactions twice. Equivalently, we could have chosen to pick both £ and —¢ and add some
symmetry requirement on the interaction densities. For each vector £ € I, we define

R ={acQ.: atetcQ}
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Given a function v € A.(Q), we indicate by Dv the difference quotient along &; i.e.,

v(a) —v(a+ef)
el¢]

Sometimes it will be convenient to use a specific notation for the set of all nearest neighbors,
defined as

for a € RE(Q).

M:(Q) = {{a,b} : a,b€ Q. and |a —b| = €}. (1.2.11)

Since nearest neighbors are defined as sets containing two points, and not as pairs in . x €.,
we will count each interaction along the coordinate directions only once.

Given | > 0, we denote by [I] its integer part. For all [ > 0 and € R™ we denote by Q(I, x)
the closed rectangle x +[—1,1]". In particular Q.(I,z) = eZ" N (x+ [—1,1]™). Moreover, for fixed
n>1>0and x € R", we define S.(I,n;z) = Q. N (x + ([—n,n]™ \ (=1,1)")). If | = n, then we
write Se(Lz) = Sc(l,n;z) = Q. NIz + [—1,1]"). If x = 0 we will write Q:(1), S:(I,n), Sc(I)
instead of Q.(1,0), Sc(I,n;0), Sc(I;0) respectively.

Given a set of points A C ()., we denote by A the union of all the e-cells centered in elements
of A:

A =UycaC(a), where C(a) =a+[—€/2,e/2]".

1.3 Main result

In this section we state the main result of the chapter.

Theorem 1.3.1 Let Q) be a bounded open subset of R", n > 2. Let m € N, m > 1 and
1 <p<n. LetI be the set of vectors [ = {¢€ € Z" : —¢ <! &}, For all € € I, we consider a
function f&:R™ — [0,4+00) such that f5(0) = 0. We assume that the functions f* satisfy the
following conditions:

1. there exists a constant ¢1 > 0 such that for alli € {1,...,n}

fei(z) = ci|z|™ for all z € R™ ifp=n (1.3.12)
fei(z) > ce(|z]P = 1) forallze R™  ifp<n -
2. there exists a sequence of constants cg > 0 such that for all € € T
Fé(2) < Szl for all z € R™ ifp=n (1.3.13)
F(2) < &(|2P +1) forall z € R™  if p <, o
and
ch < +00
el
3. there exists a constant c3 > 0 such that for all € € I
I£6(2) — f8(w)| < ezlz —w|(]2]*7L + |w|?7Y) for all z,w € R™ ifp=n
I£6(2) — fo(w)| < ezlz —w|(1+ |2]P~ + |w]P~Y) for all z,w € R™  if p < n.
(1.3.14)

Let (¢;) be a sequence of positive numbers converging to zero. Let (§;) be a positive infinitesimal
sequence such that 6;/e; € N and lim; 6;/e; = +00. We assume that (¢;) and (6;) satisfy

- { 67T(1+o(1))5;b/(17") CLSj — 400 pr =n (1315)

r(l—n)/(n—p>5;l/<”*1’>(1 +o(1)) asj— 400 ifp<n

where T is a positive constant.
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e In the case p=mn, for all j € N and a > 0 we define the function g5 : R™ — [0,400) as

a . -1 n v(0) =0
95 (2) = inf { Z Z f¢ (8j DgU(A))Ej : v(:)z on S ([aS; — M], [aS;]) }’
£l AcRS(Q(as;))
(1.3.16)
where S; = 8;1| log €j|(1’")/”, Then, upon possibly passing to subsequences, there exists
a function ¢ : R™ — [0,4+00) such that

¢(z) = lim_ lim |loge;|" 'g§(z) for all z € R™. (1.3.17)

a—0t j—4o0

e In the case p < n, for all j € N and N > 0 we define the function gbév :R™ — [0, +00) as

6N (2) :inf{z S e DSo(A)E : v(0) =0, v =z on 81([N—M],[N]}.

S€l A€RT(Q(N)

(1.3.18)

Then, upon possibly passing to subsequences, there exists a function ¢ : R™ — [0,400)
such that

$(z) = lim lim gij(z) for all z € R™. (1.3.19)

N—+00 j—+00
e Moreover, for all j € N we consider the functional F., : A.;(2) — [0, +o00] defined by
Z Z fg(ngu(a))&:? if u=0 on Qs,

F. (u) = ¢er a€RE, () (1.3.20)
+o00 otherwise.

Upon extracting a subsequence such that the function

R R B P

is well defined, the family (F,) T-converges in the L'(€;R™)-topology to the functional
F: LY(Q;R™) — [0, 4+00) given by

fo(Du) da:—l—rl_”/ O(u)dr if ue WHP(Q;R™)
Q Q

400 otherwise,

Flu) = (1.3.21)

where

fo(A) = lim L min { Z Z f(Dfu(a)), u= Az on Sl(h)}

h—+oco h™
¢l ae R} (Q(R)

for all A e M™*™,

1.3.1 More notation and preliminaries

It will be convenient to introduce some additional notation. Assume that all the conditions of
Theorem 1.3.1 are satisfied. For all j € N we set

Fow)=>" 3" f4DE ula))e]. (1.3.22)

gel aEjo (22)
Note that F., differs from F, since in the latter we add the constraint u = 0 on {25,. Namely,
_J F(w) ifu=0on Qs
Fe,(u) = { +00 otherwise.
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For all D C Q we denote by F., (u; D) and F¢,(u; D) the localized functionals

.st (u; D) = Z Z fg(ngu(a))E;

€€l aeRs (D)

and ( ) if 0
) Fe,(wy D) ifu=0o0nQs ND
Fe;(u; D) = { too otherwise.

Throughout the chapter we will use a homogenization result proved by Alicandro and Ci-
calese in [3, Theorem 4.1]. We recall it in the form we need for our purposes.

Proposition 1.3.2 Let f¢, € € I, satisfy the assumptions of Theorem 1.3.1. For all € > 0 we
define F. : A (Q) — [0, +00) as

Few)=>_ > f4(Dtu(a))e". (1.3.23)

€€l 4eRE(Q)

Then, (Fe) I'-converges with respect to the LP(Q2; R™)-topology to the functional Fo : LP(2; R™) —
[0, 4+00] defined as

Folu) = /Qfo(Du)dx if u € WHP(Q; R™) (1.3.24)

400 otherwise,

where fo: M™*™ — [0, +00) is given by the homogenization formula

fo(A) = lim L min { Z Z f(DSu(a)), u= Az on Sl(h)}. (1.3.25)

h—+oo hn
€€l aeRS(Q(h))

Remark 1.3.3 (Finite range interactions) In order not to overburden the notation, in what
follows we will focus on long but finite-range interactions: we will limit out attention to a set
of functions f¢ with € € Iy = {¢€ € Z" and — ¢ <! ¢}. This is not restrictive thanks to the
general convergence result for unconstrained functionals by Alicandro and Cicalese, recalled in
Proposition 1.3.2. When no confusion can arise, we will simply write I instead of I;. Note
that, under this simplifying assumption, condition (1.3.13) can be rewritten as follows: there
exists a constant co > 0 such that for all £ € T

f8(2) < calz|™ for all z € R™ ifp=n

F(2) < co(zP + 1) for all z € R™  if p < . (1.3.26)

Remark 1.3.4 We write down a simple inequality which will be useful in what follows. Let
the assumptions of Theorem 1.3.1 be satisfied. Let D C . By the growth conditions on f¢ we
deduce that there exists a constant ¢ > 0 (independent of &, j and D) such that

FewD)<e Y & Plula) — u(b) (1.3.27)
{a,b}eM.(D)

for all u € A.(D).

Remark 1.3.5 In some of the proofs it will be convenient to identify each function u € A, ()
with a piecewise affine interpolation, rather than with a piecewise constant function as explained
in Section 1.2. Using the construction developed by Alicandro and Cicalese in [4, Section 4.1],
we can build an interpolating function % which is piecewise affine on a triangulation of the
lattice and satisfies the following property:

Z |u(a) —u(b)|Pe" P = / |D@||? dz + o(1) as € — 0. (1.3.28)
{a,b}eM.(2) ¢
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1.4 Comparison with the continuous case

In this paragraph we point out the basic difference between the critical case and the noncritical
one by analyzing the asymptotic behavior of the relevant family of minimum problems {m% :
T € N}, defined as

md. = inf{ S Jula) - u®)P #(0) :““Oe “31:(621(2)3 @ } (1.4.29)
{a.b} ML (Q(T)) ’ !

Note that de is the simplest version of the minimum problems which appear in (1.3.16) and
(1.3.18): we consider only nearest neighbors interactions, the test functions are scalar (m = 1)
and f¢(z) = |z|P for all £ In the proof of Theorem 1.3.1 we will use a separation-of-scales
procedure: a decoupling lemma (Lemma 1.6.1) will allow to analyze the single effect of each
pinning sites independently. In the simplest case, the energy “concentrating close to the pinning
sites” is exactly the one we minimize in (1.4.29).

In what follows, we will determine the asymptotic behavior of mi} in the critical case and
the noncritical one (step 1 and 2 respectively).

1. Critical case p = n. In the case of the critical exponent, the sequence m% has the same
asymptotic behavior as its continuous analogue. In the continuous setting, we consider the
minimum mij

m{ = min { /Q(T) |Dullg: u—1€WiP(@Qr), u=00nQ()}, (1.4.30)

where ||Dull, = (31, |0u/0x;|P)}/P. This case has been studied in the framework of I'-
convergence in [57]. In particular, we know that the sequence (mg 1) has a logarithmic behavior
as T goes to +o00: there exists a positive constant l,, (independent of ¢) such that

. n—1, c _
TETm(log )" "mip = ln. (1.4.31)

We recall that this convergence can be proved by an argument based on a telescopic construction,
as in [57], Section 5. If in particular p = n = 2, then the ||Du|l2 norm is the same as the
Euclidean norm |Du| and the constant I equals w,_1. We notice that the minimum in (1.4.30)
is scale-invariant: if we rescale our sets by a constant a > 0, we get mg, ,» = m{p. The aim

of this paragraph is to show that the discrete infima m¢ satisfy

Tl_ig_loo(log T)" i = Tl_i}rfoo(log T)"_lmiT =lp. (1.4.32)

For notational simplicity it is convenient to introduce the discrete infima

mi = inf{ 3 u(A) —u(B)F: anéf(;‘)‘,l (f(zTi)gn Su(T) } (1.4.33)
{A,BYEM,(Q(T))

By a two-step argument we will prove that

Tl—ig-loo(bg T)n_lmilvT = Tl—i>r£oo(10g T)n_lmiT =ln

and then we will show that m‘iT =mé + o(1) as T — +o0, which implies (1.4.32).

1.1 First of all, we can identify each test function u € A;(Q(T)) in the definition of m‘iT
with its piecewise affine interpolation on the lattice Q1(7), denoted by i, as in Remark 1.3.5.
Since u = 0 on @1(1) and u = 1 on &1(7T), the interpolated function @ vanishes on the cube
Q(1) and is in the space 14+ W, " (Q(T)). Then @ is a test function for m{ p. There follows
that

mi,T < mir

20



1.2 In this step we want to show that the converse inequality holds, up to an infinites-
imal error. Let 7" € N. Due to scale-invariance, we have m{r_; = mgop 5. Let v €

argmin{mg ,p_,}; i.e., v € 1+ Wy ™(Q(2T —2)), v =0 on Q(2) and

B@) = [ Dullide = m
Q(2T-2)

By (1.4.31) we deduce that m$§ o5 5 = m§ yp+o((log T)' ") as T — 400, hence E(v) = m$ 5+
o((log T)t~™). For all fixed x € [0,1)"™ we denote by L® the lattice L* = (z+2Z")NQ(2T+2) and
by v® the discretization of v over L*. By construction we have v* = 0 on Q1(1;x) and v* =1
on &1 (2T; ). Moreover, we indicate by E”(v) the integral of v over the family of hyperplanes
parallel to the coordinate hyperplanes and passing through the points of the lattice L”:

izz/ s

i=1 j=—2T I

n

where P;; = je; + {y : y - ¢, = 0}. Now, we notice that by the definition of v* we have

n 2T
E“D,_§32XLU%ﬂ > Y atn) - o)l
i=1 j=—2T I#i i {a,byeM, (Q(2T))
By Fubini’s Theorem we have E(v f[o 1y . Then, there exists T € [0, 1)™ such that
E(v) > E™(v) > > 07 (a+7) = o7 (b+T)" > mf 5.

{a,b}eM1(Q(2T))

To sum up, we got
M5 oo = M3 o7 + 0(log T)' ") = mi r + o((log ') > m(li,QT +o((logT)' ™). (1.4.34)

Since the limit in (1.4.31) is independent of ¢, we have m§ o = m§ 1+ o((log T)'~"). Plugging
this equation into (1.4.34), we conclude that

mil,zT < mS op +o((log T)' ™).
Taking step 1.1 into consideration, we finally obtain

lim (logT)* 'm?.. = lim (logT)" 'm¢ . =1,
pim (logT)""mir = lim (logT)"""mir =i,

as desired.

2. Noncritical case p < n. In the subcritical case, p < n, we do not have the same
correspondence with the continuous setting. In this scenario, the infima m& converge to a
positive constant C}, which can be interpreted as the discrete p-capacity of a point in Z™: with

an abuse of notation we write

. . u € Ai(Z"),
Cp = inf {{ b}; o [u@) =ul®)" 40y = 0, w =1 on &1 (+o) )

(1.4.35)

In fact, by definition m% is a decreasing sequence of positive numbers, hence it admits a limit

Cp > 0. For N € N sufficiently large, we consider a function u € A;(Q(N)) such that «(0) = 0,
u=1on & (N) and

S ) - u®)P < Gyt

{a,b}eM1(Q(N))
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Now, two events can occur: either u # 0 in at least one point of 1(1), or v = 0 on all the points
of Q1(1). In the first case, the energy of u over Q1 (N) must be greater than a positive constant
«, given by the non-zero interaction we certainly have in Q(1), and then C, +1/N > a. By
letting N — 400 we get C,, > « > 0. In the second case, since u = 0 on @1(1), by Remark
1.3.5 we can identify it with a piecewise affine function @ such that @ = 0 on Q(1), @ = 1 on

0Q(N) and

palr= S Ju(a) — u®)P < Cp+

Q(N) {a,b}e M1 (Q(N)) N

Now,
/ | Dy > cinf { / [DufPda s v =00nQ(1)} > c Cap,(Q(1);R"),
Q(N) Q(N)

where Cap,,(Q(1);R™) > 0 is the p-capacity of the cube Q(1) in R™. By letting N — 400, we
conclude that C), is strictly positive.

1.5 Building blocks of the I'-limit

In this section we study the auxiliary functions ($) and (qbﬁv ) we introduced in the statement
of Theorem 1.3.1. We show that these families converge to some functions ¢ and ¢ respectively,
upon possibly passing to subsequences. The limit densities ¢ and ¢ will reflect the contribution
of the pinning sites in the I'-limit.

1.5.1 Critical case

In this paragraph we study some properties of the auxiliary functions g we introduced in
(1.3.16) for the critical case. Let all the assumptions of Theorem 1.3.1 be satisfied. It is
convenient to set T; = sj_l and S; = T;j(log T;)'=™/™; by construction T}, S; tend to +oo as
Jj — +oo. For fixed a > 0, j € N we defined g5 : R™ — [0, +-00) as

%(z) =in ~" (T Diw . v0)=0
%) f{fze;AeRs(zQ:(as,))T] PPy on Si([aS; — M], [aS;]) }

Now, ¢f : R™ — [0,4+00) is obtained multiplying g by a scaling factor:

97 (2) = (log Tj)" g (2). (1.5.36)
We will apply Ascoli-Arzela’s Theorem to the family () in order to prove the following result:

Proposition 1.5.1 For all o > 0 there ezists a function ¢ : R™ — [0,+00) such that ¢f
tends to % as j — 400 upon passing to subsequences, uniformly on the compact sets of R™.

Proof. Firstly, we will show that the functions ¢f satisfy an equi-boundedness condition and
then that they are locally equi-Lipschitz continuous (steps 1 and 2 respectively).

1 In this paragraph we will show that there exist two constants C7,Cy > 0 such that for all
J € Nand a > 0 the functions ¢} verify a growth condition of the form

Cilz|" < 9§ (2) < Cofz|"  for all z € R™. (1.5.37)

By (1.3.26) we have
¢} (TyDjv(A)) < 2T |Dju(A)|"
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for all test functions v in the infimum g (z); i.e., v(0) = 0 and v = 2z on Si([aS; — M], [aS}]).
There follows that

o . —-n 3 ngm . U(O) =0
g5 (2) < inf { fze;AERg(Q( Sv))C2Tj |Div(A) [T} v =2z on S ([aS; — M], [aS;]) }

By arguing as in Remark 1.3.4 we deduce that

g <emt{ Y p@-vmr 070 e
{A,BYEM, (Q(0S;— M) R

< cf#|"inf { 3 0(A) — o(B)[" : z@; 0 S1((05; — M) 3
{A,B}Ye M, (Q(aS;—M)) /
If we multiply both sides by (log T})"~! we get
5 (2) < clz]"(log Tj)" ™"
xinf { 3 0(A) — o(B)[" : z(i); 0 5 (S, - M) 3

{A,B}e M1 (Q(aS; —M))
Taking into account the results of Section 1.4 we deduce that
<p§‘(z) < |z|"(l, + o(1)) as j — +o0.
Hence there exists a positive constant Cy such that
05 (2) < Caof2|"

for all z € R™, o > 0 and j € N large enough, which proves one of the inequalities in 1.5.37.
Moreover, we can show that the functions ¢f satisfy a growth condition of order n from
below. By assumption (1.3.12) we get

o) s S —n pes (T e 0)=0
9j (2) > mf{z Z T} [T Dy o(A)) : Z(:)Z on Sy ([aS; — M, [aS;]) }
=1 AeR{"(Q(aS;))

> crinf { 3 w(A) — o) : U0 =0 3

v =z on Si([aS; — M])
{A,BYeM1(Q(aS;—M))
Arguing as for the upper bound, we conclude that there exists a positive constant C; such that
¢ (z) = Chlz["

for all z € R™, a > 0 and j € N large enough, as desired.

2 In this paragraph we will prove that for fixed o > 0 the family (¢f) is equi-Lipschitz
continuous on the compact subsets of R™. We first fix a compact set K C R™ \ {0} and we
denote by L a positive constant such that K C B(L), where B(L) is the m-dimensional ball of
center 0 and radius L.

2.1 Let 2,2’ € K be such that 2’ = kz for some k # 0. Having fixed n > 0, we consider a
function v € A; (Q(aS;); R™) such that v(0) =0, v = z on S;([aS; — M|, [aS;]) and

(logTy)" ' > Y Ty fT;Div(A)) < @5 (2) +nle]" (1.5.38)
€€l AeR{(Q(as)))
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We define w € A;(Q(aS;); R™) as w = kv. By construction w is a test function for the infimum
in g¢(2). For fixed A € R$(Q(aS;)), assumption (1.3.14) implies that

[Ty Dfo(A)) — f4(T;Diw(A))| = |f4(T; Div(A)) - fE(kT;Div(A))]
< 3| TyDjv(A) = KT; Dio(A)|(IT; Dio(A)|" " + [KT; Dio(A)|" )
< el = k|(1+ [k )| Ty Dio(A)[™

If we multiply both sides by (log Tj)"’lTj_" and sum up over £ € I and A € Rﬁ(Q(aSj)), we
get

logT)™ 'Y Y T f4(T;Diw(A))
L€l AeR(Q(as)))

<(ogT)" 'Y Y T AT DIv(A))

€€l AcRS(Q(asS;)))

telk =@+ k"D log T Y Y IDfe(A)"

€l AR} (Q(as)))
< @i (2) +nlz]" + ek = 1(1 + |k|"_1)(logTj)”—1Z Z | DS ()",
=1 AeR* (Q(aS;))
By (1.3.12) we have
(logT)"™'> >  T7"f4(T3Djw(4))

t€l AeR}(Q(aS;))
<)+ nlel" +elk = 1@+ B Qg TS ST T (T D u(A))
i=1 AcRT"(Q(aS;))

< 95 (2) +nlz]" +clk = 1|(1 + \k|”’1)(logTj)”’1Z Z Tf”fg(TjD%(A))
tel AeR§ (Q(as))

< @ (2) +nlal" + clk = 11+ [B[" ) (5 (2) + nl2]").
Since w is a test function for the infimum ¢$'(2") we deduce that
05 (2) < @5 (2) +mlel™ + clk = (1" + 1) (2) + nlz[").
Now, by the growth condition (1.5.37) we get
Pi () < @f@) Hnlal" + clk = KT+ 1)(Cale]™ +nl2]")
05 (2) + clbz — z|(|k2|"" + [2]"7Y) + nlz]™ +nlkz — 2[(J2]" 7 + [k2"7)
97 (2) + el = 2|(|Z1" 7+ 2" +mlal™ + 0|+ D+ 1.

[VARVAN

Since z, 2’ € K we have |z| < L and |2’| < L. There follows that
P () < @5 (2) + el = 2|27 + |2]"71) + enL™.
By the arbitrariness of 7 we get
P (2') < 5 (2) + e’ = 2|(] "7+ 2" 7h).
By symmetry reasons we can conclude that
05 (2") = 95 (2)] < elz = 2'[(12]" 71 + [T, (1.5.39)

Note that the constant ¢ above is independent of both j and «.
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2.2 Let 2,2/ € K be such that 2/ = Rz for some R € SO(m). Arguing similarly to
paragraph 2.1, we get

P (') < @5 (2) + 2" —2|(|Z "7+ |2 7h).
By a symmetric argument, we conclude that
|05 (2) = 5 ()] < clz = 2'[(|=[" 7 + 1" 7Y, (1.5.40)
for some positive constant ¢ independent of j and «.
2.3 We fix 2,2’ € K and notice that we can go from z to 2z’ through the composition of

a homothety and a rotation. By combining (1.5.39) and (1.5.40) we deduce that there exists a
constant ¢, independent of j and «, such that

|05 (') — @5 (2)] < clz = 2|(Je[" 7 + ") (1.5.41)

for all 2,2 € K.
By (1.5.41) we can infere that the sequence (¢f') satisfies an equi-Lipschitz condition on all
compact subsets of R™.

In conclusion, we can apply Ascoli-Arzeld’s Theorem: for all & > 0 there exist a subsequence
¢5,. and a function ¢ : R™ — [0, +00) such that

©*(z) = lim ¢f (2), (1.5.42)

k—+oc0

uniformly on the compact subsets of R™. ]

Remark 1.5.2 By construction ¢*(0) = ¢$(0) = 0 for all o, j. Furthermore, by passing to
the limit as j — 400 in (1.5.41) we deduce that ¢ satisfies

| (2) — *(2)] < ez — 2| (J2|"7 +|2/|" 1) for all 2,2’ € R™, (1.5.43)

for some constant ¢ > 0.

1.5.2 Noncritical case

In this paragraph we analyze some properties of the functions d)év we introduced in Theorem
1.3.1 for the noncritical case. For all N >0, j € N and & € T we define h§ :R™ — [0,4+00) as

hﬁ(z) = Tj_pff(sz), for all z € R™.

By assumptions (1.3.12)-(1.3.14) we deduce that h? is locally Lipschitz-continuous and satisfies
the following condition:

h5(2) — hS(w)| < (T, P + 2P+ [w]P~ )|z —w|  for all z,w € R™, (1.5.44)

where the positive constant c¢ is independent of j. Therefore, for all £ € I there exists a
function h¢ : R™ — [0, +00) such that h§ converges pointwise to k¢, upon possibly passing to
subsequences. We recall that for N, j € N the function ¢§V :R™ — [0, 400) is defined as

. ~v(0)=0
oY@ =mwt {3 3 Wi DT v )

£€T AeRS(Q(IV))

Moreover, for all N € N we can define ¢ : R™ — [0, +00) as

. ~v(0)=0
¢V (2) = inf { Z Z hE(DSw(A)) - v =2z on S ([N — M],[N]) } (1.5.45)

L€l AR (Q(IV))
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Finally, we set

L - v(0)=0
() = NETmlnf{Z Z hg(va(A)) " v=2zon S ([N - M]I[N]) }

£l AeRS(Q(N))

Note that the limit over N in the definition of ¢ coincides with the infimum over N € N. Let
us deduce some convergence properties of the functions above.

1 By the pointwise convergence of h§ to h& as j — 400, we deduce that, for fixed N € N, (b;y
converges pointwise to QSN up to subsequences.

2 For all N € N and 1 > 0 there exists a positive constant ¢y, = ¢(N)n? such that
(=) = o @) < ewady "Vl — wl(1 4 P (2P
+clz — w|(Jw|P~t 4 |2P71) (1.5.46)

for |z|, |w| > 7, for all j € N. Taking into account (1.5.44) and the growth conditions (1.3.12)-
(1.3.26), we can prove this inequality by slightly modifying the argument we followed in the
critical case. For fixed N, (1.5.46) corresponds to a Lipschitz condition on the compact subsets
of R™ \ {0}, uniformly on the index j.

3 For all N € N there exists a positive constant cy such that
PN (2) < enT; P + 2 (1.5.47)

for all z € R™, j € N. This property follows from the growth condition (1.3.26) and a compari-
son with the case f¢(z) = |z|P. Note that for fixed N (1.5.47) is an equi-boundedness condition

on ((Z);v)]

4 By (1.5.46) and (1.5.47) we can apply Ascoli-Arzela’s Theorem to the family of functions
(¢§V ), where N is fixed. We deduce that the convergence of ¢§V to ¢V is uniform on the compact
subsets of R™ \ {0}, upon possibly passing to subsequences.

5 Letting j — 400 in (1.5.47) we obtain ¢V (2) < ¢|z|P. By the growth condition from below
(1.3.12), we deduce that ¢V satisfies the following inequality:

ciclz|P < oM (2) < caclz[P for all z € R™. (1.5.48)

6 Arguing as in 1, for fixed 7 > 0 we get a Lipschitz condition for ¢V in the form

o™ (2) — &N (w)| < e( + |z — w|(Jw|P~* + |2P71)) for all z,w € R™. (1.5.49)

7 By applying Ascoli-Arzeld’s Theorem to (¢”), we deduce that the convergence of ¢V to
¢ is not only pointwise but also uniform on the compact subsets of R™, upon passing to
subsequences.

1.6 Two technical lemmas

In this section we will prove two technical lemmas which will be used in the proof of Theorem
1.3.1. The first one is a “decoupling lemma”, in the spirit of [11, Lemma 3.1]. Unlike the case of
periodically perforated domains, we are dealing with non-local functionals, due to presence of
long-range interactions. As a consequence, the “separation of scales” procedure requires some
extra care. The second lemma describes how to recombine the decoupled energies to obtain the
extra term of the I'-limit. We will prove it in a general form, which comprises both the critical
and the noncritical case.
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Lemma 1.6.1 Let (u;) be a sequence such that uj € Ac, (;R™) and uj — u in L*(Q;R™) for
some u € WHP(Q; R™). We assume that

Supz Z "f5 uj(a)) < 4o0. (1.6.50)

7 €€l qerE (@

Let (p;) be a sequence of the form p; = Bd;, with B < 1/2. We denote by Z; the set of indices
={i € Z" : dist(i0;,0Q) > 0;}. Let k € N be fized. Then for all i € Z; there exists
k; € {0,...,k — 1} such that, having set

- Q. ([@2”“}5;1'53') \ Q. ([%2*’“*1}5;1'5]-), (1.6.51)
pi = [ing ki }sj, (1.6.52)
u; = ﬂé]z ag;i uj(a)7 (1.6.53)

there exists a sequence w; € A, (€ R™) such that w; — u in L*(;R™) and

wj(a) = u; foralla € S, (pj—;iéj)7 (1.6.54)

wj(a) =uj(a) for all a € Q; \ U C;, (1.6.55)
i€z,

’Z S e (fE(DE us(a) — fE(ngwj(a)))’ < % (1.6.56)

£€l aeRE (Q)
Proof. Wefixie Z; and h € {0,...,k —1}. We set:
Cr' = Q. ([&Q_h} €53 i5j) \ Qe ([gfﬁ_l}gﬁ@)a

; 3
h, Pj
ij2[4 j2 }J’

o Z

Cj
We denote by C’ "y the following subset of C’
hi _ Piog—nl. _ Pjo—n-1]_
Cim = Qe ([€j2 ]5J MEJ’7’5J) \ Qe ([an ]sj —|—M5j,z5]>.
hyi oo (i . hyi _ : hyi hyi hyiy—1
Let ¢;* € C§°(Cjy) be such that ¢;* =1 on 9(id; + [—p; ,pj 1) and ‘V(;ﬁj | <clp;)
For all a € C’;” we set
W (a) = ¢ (a)ul’ + (1 — 61 (a))u;(a). (1.6.57)
Note that for all a € C’h "\ C’ "y We have wh (a) = uj(a). Now,

Fe (w077 = Y Y DL )

€€l aert (O

< ey Y (D wi (@) +1)
€€l aert (C])
h,i h,i
Lwi(a) —wi (b)) p B
< Y ej‘ ] = J +eCl (16.58)

{a,byeM.; (C}"")
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Note that the last estimate above follows from Remark 1.3.4. Let {a,b} € M., (CJ}”) Then by
construction

us(@) = u;(b)
€5

hiq) — o™i (b )
B@=HO i)

h,i _ i_z,z ‘ h’i _ }-m
] (a)a‘ v, ) ‘p < clul’ —u (b)) M}p
J J
+c|1 — ¢§hi(a)|p M b
€5
hig \ _ ghii N
< cult - uj‘(b)|p‘¢j (a)s_ %) )p +c u’(a)s_ u (b))
j j

We want to estimate the term ‘q&?’i(a) - ¢h’i(b)’p57p. Since a,b are nearest neighbors, then

a=b+c¢cje forsomel e {1,...,n}. We ha\ie !
R (O N L R g
‘T‘ = ‘/0 a—xl(@- (a—i—(l—s)sjel)) ds‘
1
0/ hi p
< /0 ‘87:&(% (a+(1- s)sjel))‘ ds
< Vgt <o)

Summing up over {a, b} € M, (CJ}”), we get

@) = w) )
Z ‘ Ej

{a,byeM., (C}")

97" (a) — 47" (0) ’

= 3 ’Uj(a) —ui(b)|P_,

L
€ +c¢

<ec Y " —uy (b) P

{ap}er., (C))

{ab}eM., (C))

¢ n uj(a) —u;(b) P,
< X M ewrgre Y |EEEE[

.
i i J
{abyeM., (C}?) {a,byeM., (CI)

By Lemma 1.10.2 (a discrete version of Poincaré’s inequality), we have

i n i uj(a) —u;(b) P
S Wwergecely Y [MO-wOr,
{a,byeM,; i {ab}eM., () J
hence
wh7i(a) - wh7i(b) P uj(a) — u;j(b) P
> J - J eh<ec > J — 22 1en. (1.6.59)
J J

{a,b}eM.; e {a,p}eM., e

By (1.6.58) we get

Yo > GfADEuNe) e Y \M(”sgﬂmgﬂ. (1.6.60)

¢el aeRE (1Y) {a,byeM.; (C}")
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Now, by (1.6.60) and Remark 1.3.4 we get
X X SUDL @) ~ DS u)

£€laert (C])

<> > GIADLw @)Y Y e (D uy(a)
€l aers; (€] €€l aeRrs (1Y)
<c ¥ M‘

P .
el +clCh.
B Ej J
{abreM,, (o)

Summing up over h € {0,1,...,k — 1} we obtain

k—1
YIS X e @) - 0 )|

h=0 &€l aEjo (C;"i)

k-1 w;(a) — u;(b) [P k-1

@) —w )P, hii

<edl ) ’ 5 \%HZM |
h=0

h=0{ap}eM.;(C]")

<o Y [ uO Q)

) €j
{a7b}€M5j (Q(p;;id;))

Therefore there exists k; € {0,1,...,k — 1} such that

S Y D) — DS ug(a))|

t€laert (i)
C

L
S gj_|_k

3 ‘M’ Q(ps5i6,)l.  (1.6.61)

€j

ol e

{a,b}eMc,; (Q(p;3i85))

With this choice of k; for all ¢ € Z;, conditions (1.6.54)-(1.6.56) are satisfied by picking h = k;
in the definitions above; i.e.,

i _ ki i, ki i ki
Cj*Cj ’ Uy =U; pj*pj ’

3= Y
and w;(a) = { u;gb;k (a)+ (1-— Plr (a))uj(a) foraeCl, ic Z

J

1.6.62
u;(a) otherwise. ( )

In fact by (1.6.61), (1.6.62) and the fact that u; = w; on Q; \ |J

> S D wsa) - FEDS us(a)|

€€l aeRt, (Q)

<SS X DS i) - DS us(a)|

i€Z; &€l aejo (C;)

c uj(a) = u;(O) 7, -
ey (Y [0 e )
i€Z;  {ab}eMe,; (Q(p;:id;)) ’
c u;(a) — u;(b) ‘p n ¢
c A AR < -
(2 s e <
{a,p}eM., ()

ki,i .
iez, Cjn we get:

IN

where the latter inequality follows from (1.6.50). Finally, we prove that w; — w in L'(Q;R™).
By construction

/IWJ—UIdfc:/ |uj — ul da + Z/ w; — ul da. (1.6.63)
9 N\U,c, Ci

i€Z; C; i€Z;
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Now, the first term in (1.6.63) is infinitesimal:

/ |uj—u|dx§/|uj—u\dx—>0 as j — 4o0.
NUiez, G @

By (1.6.62) the second term in (1.6.63) can be estimated as follows:

Z/ |lw; —uldz < CZ (/ |u§—uj|dx+/_ |uj—u|d:1:)
icz; 7 Cj icz; 7C; C;
< ey > |uj(a)—u§|6?+/ luj — u| dz
i€Z; aEC} @

Now, by discrete Holder’s inequality, Lemma 1.10.2 and the concavity of y — y%, we get

» b
Y @ -l < > (X lula) i) (105)
i€Z; aeC}. 1€Z; aEC;
/ . L 5” 1_l
< cefe; p( Z \uj(a)—u;-\p&:?) (6—]”)
a€C; J
_n . _ b P %
< 05;”” p((g;? Z ‘uj(a) 'UJ( )‘ 8;;)
{a.b}eML, (CY) €i
n-3 -1 uj(a) —u;(0) P _,\ ¥
< oy ez (Y. Y ‘%’ )
i€Z; {a,b}eM,; (C) J
§ C(Sj.

In conclusion,
Z/'|wj—u|da:§c6j+/|u—uj|dx—>0 as j — +oo.
i€Z; 3 a

Lemma 1.6.2 Let 1 < p <n. Let (g;) and (6;) be as in (1.8.15). Let (u;) be a sequence such
that u; € Ac, (S R™). Assume that uj — u in L' (Q;R™) for some u € WHP(Q;R™) and that
(uj) is bounded in L (Q;R™). Let k € N be fized. Let (p;) be a sequence of the form p; = pd;,
with f < 1/2. For all i € Z; we define the set

0= Q. ([Z2+]eiay) V@ (227t

where k; is arbitrarily chosen in {0,1,...,k — 1}. Let

) 1 i .
U= £C Yo uila) and Q= Qc,(0;i5)).
J aGC}

For all N,j € N we consider two families of functions vy j,mn : M™*™ — [0,4+00) such that
the following assumptions hold:

1. rn; = TN as j — 400, uniformly on the compact sets of R™ \ {0}, for all N € N;

2. there exist a positive infinitesimal sequence v; and a constant ¢ > 0 such that

rn;(z) <vj+clzlP forall z € R™; (1.6.64)
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3. for fized n > 0 there exists a constant ¢ > 0 such that for all w,z € R™ we have

[ (2) = v (w)] < e(” + [z = wl(jw]P " + [2P71));

4. for z =0 we have
TN(O) = TN’j(O) = 0.

We define Y € A, (5 R™) as

ZTNJ XQZ a), ac€y,

i€Z;

where x indicates the characteristic function. Then,

. N _ . i _
lim Z Y;' (a)e] = jEToo GXZ: TN (uj)d) = /QTN(U) dx.

j——+00
/ a€Q;

(1.6.65)

(1.6.66)

(1.6.67)

Proof. Let n > 0 be fixed. For n < |2| < sup; [|u;]| we have [rx j(2) —7n(2)] = 0as j — +oo

by assumption 1. For all |z| < n conditions (1.6.64)-(1.6.66) imply that
Irn,j(2) = v (2)] S v+ e

Since uj; — u in L'(§;R™), we get

limsup‘ Z r,;(u )6 - / rn(u dx’ < hmsup‘ Z rN(ué-)é? - / ry(u) d:v‘ + en?
Q ; Q

Jj—+oo = Jj—+oo
< lim sup Z / | (uf) — ri(w)| dz + en?
j—+oo i€Z; Q;
= lim sup Z Z ’rN —ry uj(a))|€;-‘ + enP.
Jmtoo USM ll":_Ql

By (1.6.65) and the boundedness of (u;), we obtain

v (ug) = rov (g ()] < e(uj —u; (@) | ([ [P1 + Jug (@)~ +07) < e(uj — uj(a)| +07),

where the constant c is independent of j. There follows that

J—+oo j——+oo 1€Z_7 aEQl

By the discrete version of Holder’s inequality we get

SN w0 (D - wa)P) (@)
i€Zj a€Q! i€Z;  aeQ}
1
< Y (X P
IEZ aEQ1

By Lemma 1.10.2, we deduce that

Z |u — uy(a)l? <C(5P Z ‘M’IJE?.

) €j
a€Q} {ab}eM. Q)
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limsup‘ Z TN,j(u;»)(S;»L - / ry(u) dm‘ < clim sup Z Z |u —uj(a)le] +en?.
i€Z; Q

(1.6.68)



Note that in the inequality above the constant ¢ can be chosen to be independent of 4, since for
fixed j the family {C},7 € Z;} is s finite collection of homothetic sets. Therefore,

S - w@l <ens S 6( Y ]“j(“);“j(b) "n)

i€Z; aeqQ; i€Z;  {ab}eM.;(Q)

=

Taking into account the concavity of the real function z x%, we get

Z Z |u; —uj(a)le} < 7o, n/pé j:IZZ ( Z Z ‘7%(@) —u;(b) ‘pey)%
i€7; acqQ) €2, {ab}eM. (@) K
_ uj(a) —u;(0)|P_,\» _
< e Y sj) < cd;. (1.6.69)

{a.b}EM. () K

By (1.6.68), (1.6.69) and the arbitrariness of n we conclude that

limsup‘ Z 7"1\f1j(u§-)5;1 - / rn(u) dz| < limsupcd; = 0.
i€z, @

j—4o0 Jj—+oo
|

Remark 1.6.3 In the noncritical case p < n, we will apply Lemma 1.6.2 with ry ; = ¢§V and
ry = ¢~. Then
= > ¢V (u] PDxqila), a€qy. (1.6.70)

i€Z;

Remark 1.6.4 In the critical case n = p, we will apply Lemma 1.6.2 with ry ; = Lp]l/N and

ry = ¢'/N. Setting @ = N~ and writing ¥ in place of 1/15*717 we will have

Z @5 (u XQI a), ac€Q,. (1.6.71)
1€Z;

1.7 TI-liminf inequality

Proposition 1.7.1 (I-liminf inequality) Letu € WHP(Q;R™) and u; € A, (Q;R™) be such
that wj — u in L'(Q;R™). Then

lim inf F; (u;) > F(u). (1.7.72)

Jj—+o0

In the proof we will use the following truncation Lemma, which is a discrete version of [22],
Lemma 3.5, and can be proved by adjusting to the discrete setting the arguments used in [22].

Lemma 1.7.2 Let (u;) be a sequence such that u; € Ac,(Q;R™), (u;) is bounded in L' (Q;R™)
and sup; Fe,(u;) < +o0o. Then, for all L € N and n > 0 there exist a subsequence €; (not
relabeled), a constant Ry, > L and a Lipschitz function tr, : R™ — R™ of Lipschitz constant 1
such that
tr(z) =z if |z| < RL
tn(2) =0if |z| > 2RL
and limj .7:5j (’U,j) > lim infj .ng (tL(Uj)) —1.

Proof of Proposition 1.7.1.  With no loss of generality we assume that liminf; I (u;) < +o0.
We will first derive the liminf inequality under a boundedness assumption, and then we will
deal with the general case (step A and B respectively).
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A We assume that (u;) is bounded in L>°(£2; R™) (we will remove this assumption through a
truncation argument). We fix k& € N and we consider a sequence (p;) of the form p; = 84, with
B < 1/2. We apply Lemma 1.6.1 to (u;) in order to get a new sequence w; — u in L'(Q;R™)
satisfying (1.6.54)-(1.6.56). We denote by E; the discrete set

E; = U Q. (ph:id;).

i€Z;
By construction

liminf F,, (u;) > liminf F_ (uj; Ej) + liminf FL (u;;Q; \ Ej).
J J J
First of all, we want to find a lower bound for the contribution of (u;) on ©; \ E; and then we
will estimate the energy on E; (steps A.1 and A.2 respectively).

A.1 In this step we will find a lower bound for the contribution of the energy far from the
pinning sites; i.e., the term liminf; Fi (u;;$2; \ Ej). The proof of this estimate is formally the
same for the critical case p = n and the non-critical one, p < n; note that the formula defining
the bulk term of the I'-limit has the same structure for any order of growth. However, the
critical scaling for ¢; (and hence p;) as a function of €; is obviously different, so the set E; has
a different “size” in the two cases.
We define a new sequence v; € Ac;(Q2; R™) by modifying w; as follows:
v;(a) = { uj for a e Q) = Qe (p;-;iéj), 1€ Z; (1.7.73)
wj(a)  otherwise.

Note that v;(a) = u;(a) for all @ € Q; \ U,cz, Q([27%ip;/e;]e;;10;), since w; is such that
uj =w; on 25\ U,ez, C?. Note moreover that v; — u in L'(Q;R™). In fact

lim/|vj—u|dx < lim/|uj—vj|dx+lim/|uj—u|dac
J 9] J Q J 0

= lim > luj(a) = vj(a)le}

aGQj
< dim YD fugle) - (@l +lim Y fugla) - vy(@)e
/ a€Q;\E; ! ackE;
< dim YD fugle) — wi(a)le] +lim Y fus(a) - v(a)le]
/ acQ;\E; ! acE;
<

lim (/ |u; — u|dz +/ |wj — ul dm) + lim Z Z |u§ —uj(a)le}
! @ @ ez, i€Q]

= lim Z Z |u; —uj(a)le].

ez, i€Qj

Arguing as in Lemma 1.6.1 we get

. 1 n . n— l/p .
h§n Z Z lui —uj(a)le] < h]mcéj( Z e} Pluj(a) — uj(b)\p) < hjm cd; = 0.

i€7; ieq {abyeM., (@)
Now, Lemma 1.6.1 implies that
liminf £, (uy Q5 \ By) + 7 = liminf . (w9, \ B)).
J ’ J ’

We can write
ng (U}j; Qj \E]) = ]:sj (’Uj) - Rj (1774)
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where

Ri=) > Y efi(Diua)

€25 L€l aet (pi;idy)

and ygj(l; c)={acQ,: acQ.(lic), a+e;&ecQ\Q(l;c)} accounts for the interactions
across d(c + [—1,1]") for all c € R™ and I > 0.

We want to show that R; is negligible. Note that for each a € ygj (p;10;) we have a, a+e;€ €
C1, since dist(a; Sz, (p';i6;)) < Mej < ([27%p;/ejle; — 275 pj/ejle;)/2 (and the same holds
for a + ¢;£). Hence

B < 3.0 2. (DL u)
i€Z; E€T G.GREJ. (Cjz)
v;(a) —v;(b)|P

< M1 | )
D D e

1€Z; {a,b}EMEj ()
<Y Y geey Y gjuldenlp
< i j -

i€Z; {a,b}e M., (CI) i€2; {a,bre M. (CI\Q(pid;)) !

\ i L [w(a) = wy(b) 7
< efWZHEC) +ed Y e

i€Z; {a,b}eM.,(C}) J
< fte Z F, (wj;C;).
i€
By Lemma 1.6.1 we deduce that
R; <c¢f"+ % for j large enough. (1.7.75)

By (1.7.74) and (1.7.75) we get

liminf F, (w;;Q; \ E;) > liminf 7, (v;) — 6" —
J J

o

Since v; — u in L'(€;R™), by Proposition 1.3.2 we have

(1.7.76)

liminf F, (w;; Q5 \ E;) > liminf . (v;) — c¢f™ — % > / fo(Du) dx — eB™ — %,
J ’ J Q

where fo : M™*™ — [0, +00) is given by the homogenization formula in (1.3.25).

A.2 In this paragraph we focus our attention on the contribution of u; on Ej; i.e., close to
the pinning sites. By Lemma 1.6.1 we have
c

liminf F, (u;; E;) +
j J k.

> liminf F, (w;; E;) > lim inf E F, (wy; Q(p;-; i6;)).
J J
i€,

For fixed j € N and i € Z; we define the function w; ; € A, (R";R™) as

wiga) = { ) e
uj if a € g;Z" \ Qc,; (p)-
We will deal separately with the case p = n and the case p < n (steps 2.1 and 2.2 respec-

tively), since the asymptotic behavior of the energies close to the pinning sites is determined
by the growth exponent p.
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A.2.1 Critical exponent p =n. Let j € Nandi € Z; be fixed. By a rescaling argument
on the space variable we define ¢} € A;(Z";R™) as (}(A) = w; j(Ag;). By construction

C;(O) = 0 and C} = u; on Z™\ Ql(péTj — 1). In particular, we notice that (Jz:
S1([B0,;T; — M), [86;T;]) (provided that j is large enough). Now,
Fey(w Q(py,i65)) = Fy(wigs Q)
Yoo > TDIGAT)
£€T AR} (@1 (P} T)))

> > T fE(DICHA)Ty) — R,

€€l AeRS(Q1(B9,Ty))

where , .
Ri=>" N erfi(1yDici(A).

S€l Ayt (piTy)

Summing up over i € Z; we have

SR (wiQeiog) = D0 D" > A DIGAT) - > R

1€Z; i€z el AERf(QMBtSjTj)) i€Z;

—
—Uj on

Taking into account Lemma 1.6.1 we can show that ), z R; is negligible. In fact by a change

of variables we get:

DR, < Y > D (DL wijla—idy)

i€Z; 1€Z; L€l aeRE (CY)

< CZ Z |wi j(a —id;) — w; ;(b—1id;)["
i€Z; {a,b}eM,,(C)
< ey 2 [;(a) = w; (B)|"
i€Z;j {a,bye M., (CiNQ(p},i8;))
. C
< ey Y w@-wmB e} Fyw;C) < 4

i€Zj {a,b}e M., (C}) i€Z;
There follows that

limjinf Z F., (wy; Q(pz-, 6;))

€2

> limjinf Z Z Z E?fg(TjD§C;(A)) - %

1€7Z; €I AcRS(Q1(B6,Ty))

> liminf 3 inf { 3 3 en FE(TyDEC(A)) = ¢(0) =0,
Tiez, §€T A€ RY(Q1(B8;Ty))
C

¢ = on Su((80;T; — M), [88,T3)) | ~ .

Recalling that we set S; = Tj(logTj)(l’”)/", we can write 80;1; = 67"("’1)/"53-.

a = Br(»=1/" we can re-write the inequality above as follows:

. 1 )t c
i1€Z; J

v

1imjinf Z Fe, (wy; Q(Pj‘a id;))

1€Z; J

1—n 95043 n o, c
T 1mj1n . E )i QOJ (Uj) 2
i€Z;
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By Lemma 1.6.2 and Remark 1.6.3 we know that there exists the limit

hmZé” X */gpa(u) dz,
Q

1€Z;

provided that we extract a suitable subsequence (not relabeled). Hence

lim inf F; | (uy; E;) > liminf F, (wy; Bj) — — > 7‘1_”/ ¥ (u) dx — %, (1.7.77)
J j Q

e

with o = gr(»=1/" By (1.7.76) and (1.7.77) we can conclude that in the case n = p

lim inf F, (u;) > / fo(Du) dx + 1"17"/ % (u)dx — - cB™.
i Q Q k

By letting first 5 — 0% and then k& — +oco we finally obtain the desired inequality:

liminf ., (u;) > [ fo(Du)dx +7'"" / p(u)dx = F(u).
j ' Q Q

A.2.2 Noncritical exponent p < n. Let j € Nand ¢ € Z; be fixed. By rescaling w;_;
we define the function ¢} € A;(Z",R™) as

Ci(A) = { wi j(e;A)  for A€ Qi(piT))
J

uf for AeZ™\ Ql(péTj).

Note that ¢}(0) = 0 and ¢} = u} on Si([0;T; — M], [6;T}]). By a change of variables we have

Fe,(wy; Q(ph,i6))) = Fey (wij, Qo) =7 P> > hS(DCI(A) — Ry, (1.7.78)

$€l ACRE(Q(,T)))
where h§ (z) = T; " f*(Tjz) and the term R}, corresponds to the interactions across d([—[p}T;], [p§T;]]™):
Ry=ei "> > M(DIGA).
Sl aeyi([piTi))
By construction the function C; satisfies

YooY KDIGA)

S€l A€R}(Q(5;Ty))

. v(0) =0
>t {> > D) uj on 8 (10;T; — MJ, [0;T3]) }

£l AeRS(Q(5;Ty))

v(0) =0
> 1nf1nf{z Z hg(D%U(A)) : U(Z)Ué on Sl([N_M]’[ND }

el AeRT(Q(N)
= inf 67" (uj). (1.7.79)

Summing up over the pinning sites ¢ € Z; and taking into account (1.7.78) and (1.7.79), we get

SJ(wis B ZF (wj; Q pJ; i0;)) >1nf5” ngbN ZRZ

i€Z; i€Z; i€Z;
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The term Y R; is negligible; in fact

i€Z;
Z R;- = g 7 Z Z Z hﬁ(ng(A))
i€Z; i€Z; €1 aeyf([P;Tj])
R T e KD
i€Z; {a,b}e M, (C}) !
< ey > £} wy(@) = w; ()7 + B

i€Z; {ab}eM., (C '%mcxp;,w-))

< CZF w;; C +cﬁ< +cﬁ
1€Z;

Moreover, by Lemma 1.6.2 and Remark 1.6.4 we get that for fixed IV there exists the limit
hm Z e p(b = 11nr17“1 " Z (5" u’) rl_"/ o
i€Z; i€Z; Q

upon extracting a suitable subsequence. There follows that

o

lim inf F_, (u;; E;) > liminf F; (w;; E;) — z
J j

> plon igf/g(ﬁN(u) dx — % —cf=r" /Q (u) doe — % —cp. (1.7.80)

By (1.7.76) and (1.7.80) we have
lim.ianaj (u]) > / fo(D’U,) dz + rlfn/ ¢(u) dr — % —cB.
J Q Q
By letting 8 — 0T and k — 400 we conclude that

liminf F., (u;) > [ fo(Du)dz+r""" [ ¢(u)dz. (1.7.81)
J Q Q

B It remains to show that the [-liminf inequality holds even if we remove the boundedness
assumption on the sequence (u;). For all L € N and 1 > 0 we apply the previous arguments to
the truncated sequence tr(u;), where t7, is as in the statement of Lemma 1.7.2; i.e.,

tr(u;) =z if lu;| < R,
ti(u;) =0 1if |uj| > 2Ry (1.7.82)
and liminf; F, (u;) > liminf; F, (tz(u;)) — 7.

By step A we get

tiinf 7, (¢ (u;)) /fo Dty (u)) dz + r' ”/ng(tL(u))dx

if n = p, and
liminf F., (tr(u;)) / fo(Dtr(u))de +rt" / o(tr(u
J

if n > p. Note that t;(u) — v as L — 400, with respect to the weak convergence of
WLP(Q;R™). By (1.7.82) and the arbitrariness of 7, we can pass to the limit as L — +oo
and finally deduce that

lim inf F; (u;) > Fo(u).
J
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1.8 TI'-limsup inequality

Proposition 1.8.1 (Limsup inequality) For all u € WYP(Q;R™) there exists a sequence
(vj) such that v; € A, (QR™), v; — uw in L'(Q;R™) and

limsup I, (v;) < F(u).
J
Proof. First of all we will prove that the I'-limsup inequality holds for all piecewise affine
functions and then we will obtain the general case through a density argument (step A and B
respectively).

A Let u € WHP(Q;R™) be a piecewise affine function. Let n > 0 be fixed. By carefully
applying the construction of Proposition 1.3.2 to the function u, we can prove that there exists
a sequence u; € A, (;R™) such that u; — u in L'(Q;R™),

limsup 7 (u;) = hmsupz Z 5;-Lf§(D§juj(a)) < / fo(Du)dx +n (1.8.83)
J 7 €€laert, (9 @
and )
M < C for some C' > 0, for all {a,b} € M., (Q). (1.8.84)
J

Moreover, the sequence (u;) can be chosen to be bounded in L>(£2;R™). Note that the two
boundedness requirements (on the sequence (u;) and on the difference quotients along the
coordinate directions) can be fulfilled by applying a smoothing procedure on the sequence built
in the proof of Proposition 1.3.2.

In order to construct an approximate recovery sequence for u (for any value of the parameter
7n), we will deal separately with the case p = n and the case p < n (steps A.1 and A.2
respectively).

A.1 Critical exponent p = n. We want to modify (u;) in order to get an approximate
recovery sequence for u. We fix k € N and 8 > 0 such that 2*7138 < 1/2. Let p; = 28134,.
Given this choice of p;, we apply Lemma 1.6.1 to (u;) and we get a sequence w; — u in
L'(Q;R™) satisfying (1.6.54)-(1.6.56). We denote by Z the set of indices Z; = {i € Z"\ Z; :
id; € Q}, corresponding to the pinning sites close to the boundary of 2. We define the sets

Ei=J Q,(0isi0), B =] Q,(pjii0;) N
z’er ’L‘GZ;

By suitably modifying w; on E; U E; we will get an approximate recovery sequence for u.

A.1.1 Firstly we deal with E;. By construction we have pé > po; for all i € Z;. We
set T; = sj_l and S; = Tj(log T;)'~™)/". For fixed j € N and i € Z; we consider a function
(e A (Q(r=1/738,): R™) such that

GO)=0, ¢ =ujonSi([r"VBS; — M, [r"TD/"BS))

J

and

n— i —n ,r,(nfl)/n i
(log Ty)" ' > FUTDIGANT ™ < ¢ Wi+ (1.8.85)
§€ A€ R} (Q(Brn=1/n5;))

We define v; : E; — R™ as follows:

A . .
G(*=) itaeQ., (8510, i€Z

J

vjla) =9 7 . o o
ul if a € Q, (pisi0,) \ Q- (865:165), i € Z,
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A.1.2 Now we focus our attention on the set E}. Let v; € A1(Q(p;/€;); R) be a function
such that v;(0) = 0, v; = 1 on Si([p;/¢;]) and

> 175 (A) — v (B)["

{A,B}YeM1(Q(pj/c5))

i n v Al(Q(p/&‘))
< inf [o(A) —o(B)|" U S N )
{{A,B}e%mpj/sj)) v(0) =0, v="1o0n S([p;/e]) }

By the computations of Section 1.4 we know that the infimum above satisfies

‘log (%) ‘"_1 " { {A,B}EMlZ(Q(Pj/Ej)) ) B Z(g)é(o?(f]ff)gn Si([pj/e5)) } -l

We define v; : £ — R™ as

Y ,
a—1 g)uj(a) for a € Q. (%;i@) nQ, icz.
j

vj(a) = 'Yj(

€j

A.1.3 Finally, we define v;(a) = w;(a) for all @ € Q; \ (E; U E}). To sum up, we set

Cra—ibs
(=) it a € Q. (80;:i0;), i € Z;
. J ,
R a — i9; . R
%’( - )uj(a) for a € Qc,(pj/ej;i6;) NQ, i € Z]
J
w;(a) if a € Q;\ (E; UE)).

Now we can prove that (v;) is an approximate recovery sequence for u. By construction we
have

hmsupF (v;) < limsup Z F., (v; Q(Bd;,105)) (1.8.86)
J €L
+limsup > Fe (v5; Qc, (05,165) \ Qc, (855, 16;)) (1.8.87)
J 1€Z;
+limsupFE (v;;9Q5\ (E; U EY)) (1.8.88)
+lim sup Z Z Z ff(ng vj(a))ey (1.8.89)
€25 L€l ae Yt (B5;316;)
+lim sup Z Z Z fg(ngvj(a))ey (1.8.90)
i€z el aeya (p )
+limsup > | Fe, (v Qe, (p,6;) N Q) (1.8.91)
I ez
+ lim sup Z Z Z fg(ngUj(a))E?. (1.8.92)

1EZ’ el aeya (pj3i6;)
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The terms above can be estimated separately. First of all we focus our attention on (1.8.86)
and we notice that by a change of variables

lim sup Z Fe,(vj; Q(Bd;,i65)) = lim sup Z Z Z 7-’fg(ng vj(a))

I ez, 1€7; E€l aeRE (Q(BS;,i55))

=timsup 3 3 3 ;" (T3 D¢ (4))

i€Zj E€l AGRg(Q(BT(” D/n8;))
(n=1/n, .
< limsup Z riorer (go?r (uf) + 77)

7 ez
) _ (n=1)/n .
< lim sup Z rt "(5}1@? (uf) + cn.
J i€ Z;

Taking into account Lemma 1.6.2 and Remark 1.6.4 we get

limsup Y F., (v;; Q(85;,i6;)) < r1*”/ P (W) da + en. (1.8.93)
j Q

7 dez;

As far as (1.8.87) is concerned, by construction for all i € Z; we have v; = v} on Q. (p§~; 165) \
Q<,(Bd;;1d;). Since f6(0) =0 for all € € I, we get

limsup Y F. (v;; Q(p};i0;) \ Q(B6;3i65)) = (1.8.94)
J i€Z;
Now we focus our attention on (1.8.88); i.e.,

limsup F;, (v;; Q5 \ (E UE’)):Hmsungj(wj;Qj\(EjUE;-)).
J J

By Lemma 1.6.1 and (1.8.83) we get

limsup F;, (w;; Q5 \ (E; U EY)) < limsup F;, (u;; Q5 \ (B U E})) + %
J J

glimsup}}j(uj)—&—gg/fO(Du)dﬂc—FE.

Now we consider (1.8.89). By construction ¢! = u} on & ([r*~V/"8S; — M], [r("=D/"BS;]),

hence v; = uf on Q. (89;,i6;) \ Qc,(86; — Me; — &;,id;). There follows that

lim sup SN Y (DL i) =0. (1.8.95)

1€Z; L€l aeyt (B3;,i0;)

Moreover, we show that (1.8.90) is negligible. We have:

lim sup Z Z Z 7-Lfé(ngvj(a))

IGZ gel aeys (p],’b(s )

< chmsup Z Z [vj(a) —v;(b)]"

i€Z; {a,b}ye M. ; (Qpi+e; M,id;)\Q(pi—e; M,id;))
< climsup Z Z lw;(a) —w;(b)|™
T i€Z; {a,be M., (Q(pi+e; M,id;)\Q(pE1i65))

< climsup Z F., (wy; ).
I ez,
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We recall that the computations in the proof of Lemma 1.6.1 imply that

lim sup Z F, (w;; C7) <
J i€

9

>l o

hence

msup >3 Y el f4DE vj(a) < % (1.8.96)

1€Z; E€l et (pi,id;)
Finally, we deal with (1.8.91). By construction
lim sup Z Fe (053 Qc, (pj,i65) N Q) < climsup Z Z lvj(a) — v, (b)|"
T iez T i€z {abye M. (Q(ps,id;)NN)

< clim_sup Z Z (Juj(a) — u;(b)|"|v;(a —id;)["

T ezl {ab}eM.  (Q(p;,id;)NN)
Flus (0)" (@ = d5) = ;(b = i0;)]")-
Since (u;) is bounded in L*°(Q; R™) and (1.8.84) holds, we get
lim sup Z Fe;(vj;Q(pj,i05) N Q)
I ez
J

< climsup ) > (57 1vi(a = id)[" + |vj(a — i) — (b —1i65)]").
7 iez) {abye M., (Q(p;.i6;)NQ)

By construction (v,) is bounded in L>(Q) and satisfies

(log(p;T3))" > [vj(a —id;) —v;(b = id;)[" < e+ nlog(p;T;))" ™"
{ab}eM., (@p;.i5,)N9)

Since (log(p;T;))" " /(log(T;))" "' — 1 as j — +oc and (log Tj)" " = """ + o(1), we get
lim sup Z F.;(vj;Q(ps,id;) NKY) < limsupec Z 07 +n
I iez J i€z}

lim sup |Q}] + 7| = /9],
J

IN

where Q) = Uiez: Q., (pj;165) N Q.
To sum up the estimates we got so far, we have

limsup F, (v;) < / fo(Du) dz + rl—n/ (pﬂr(n—l)/n (u) d + % +en (1.8.97)
J Q Q

It remains to show that v; — w in L'(2). By construction |{u; # v;}| — 0 and u; — u in
LY(Q). Since (Du;) and (Dv;) are bounded in L'(£2), by a compactness argument we deduce
that u; —v; — 0 in L'(2) and then v; — u in L'(£2).

Finally, we let 8 — 07 and k& — 400 in (1.8.97) and we obtain

limsup F;, (v;) < / fo(Du) dx + 7“17"/ o(u) dx,
J ' Q Q

as desired.
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A.2 Noncritical exponent p < n. We want to modify (u;) in order to get an approximate
recovery sequence for u. Let k € N be equal to [1/7]. Let p; = 8d;, with 3 < 1/2. By applying
Lemma 1.6.1 to the sequence (u;), we get a modified sequence w; — w in L' (£2;R™) such that
conditions (1.6.54)-(1.6.56) are satisfied. We build an approximate recovery sequence v; by
carefully modifying w; close to the pinning sites. To this purpose we define the sets

= |J @, (0} i5;)  and Ej = | Qc,(p;,i6;) N Q2

1€Z; iEZ]'-

where Z; = {i € Z" \ Z; : id; € Q} indexes the pinning sites which are close to the boundary
of 2. We will deal separately with £j;, £’ and Q; \ (E; U E}) (steps A.2.1, A.2.2 and A.2.3
respectively). Let N > 0 be fixed.

A.2.1 Firstly, we deal with E;. For all i € Z; we consider a function ufvj € A1 (Q(N);R™)
such that ;(0) = 0, pY; = u on Sy([N — M],[N]) and

SN TP DiN(A) < o (ul) +

€€l AeRS(Q(N))

We define v; : B; — R™ as

Y
/v‘ﬁ\fj(a EZ ]) for a € ng(NEj,i(Sj), ier
J

uj for a € Qc,(p},i6;) \ Qc,(Ne;,id;), i € Z;.

vi(a) = (1.8.98)

A.2.2 In this step we focus on E; and the pinning sites which are close to the boundary
of Q. For N as in the previous step, we consider a scalar function ¥ € A;(Q(N)) such that

pN(0) =0, pN =1 on S ([N — M],[N]) and 0 < p < 1. We define v; : Ej = R™ as
v;(a) = uj(a)u (a), for a € E. (1.8.99)

A.2.3 Finally we set vj(a) = w;(a) for all a € Q; \ (E; U EY).
We then have:

limsup F, (v;) < limsup Z F.,(vj; Q(Nej,id;)) (1.8.100)
J i i€ Z;
Flimsup 3 L (1:Qs, (0 i8)\ Qu, (N i8)) (1.8.101)
7 iez;
+limsupF (vj; %5\ (Ej U EY)) (1.8.102)

+11msup Z Z Z ff(ngvj(a))E}z (1.8.103)

i€Z; gel aeyg (Nej;id;)

+ lim sup Z Z Z f (ngvj(a))E? (1.8.104)

€25 €1 ae)1§ (pt;i85)

+lim sup Z Fe, (vj; Qe (py,165) N Q) (1.8.105)
T ez

+11msup Z Z Z fg(ngvj(a))E?. (1.8.106)

’LEZ gel aeys (pj3i05)N
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Arguing similarly to paragraph A.1l, we deduce that (1.8.101), (1.8.103) and (1.8.104) are
infinitesimal. As far as (1.8.100) is concerned, by construction we have

lim sup Z F.,(vj; Q(Nej,id;)) = lim bup Z Z Z fg(ngvj(a))sy

I ez, i€Z; €€ ac RS (Q(Ne, i5;))

= lim sup Z Z Z (T, DSy J(A))T_

i€Z; E€1 AcRS(Q(N))

< limsup Z rl_"é;l(qu (uf) +n) < lim sup Z rl_”é;lqbév(u;) + cn|QY.

7 iez; T ez,
By Lemma 1.6.2 and Remark 1.6.3 we get
lim sup Z F.,(vj;Q(Nej,id;)) < '™ | oM (u)dx + con. (1.8.107)
I ez, @
In order to estimate (1.8.102) we note that Lemma 1.6.1 implies

limsup F;, (v;; Q5 \ (E; U E})) = limsup Fy, (w;; Q5 \ (E; U EY))
J J

< limsup Fy, (u;; 95 \ (E; U Ej})) + g
J

< limsup F, (u;) + % < / fo(Du) dz + % (1.8.108)
J Q

It remains to show that (1.8.105) and (1.8.106) are negligible. By the definition of v; on £
and the equiboundedness of (u;) we get

lim sup Z Fe (v;Qc; (pj,165) N Q)
J i€z
< c¢lim sup Z Z 5?719(‘%'(@)#]\[(‘1) - “j(b)ﬂN(b”p + 52;)
I iez; {a,bye M, (Q(p;,i6;)NK)

<cl1msupz > e P (luj(a) —u; (O + [ (a) — p¥ O +€F).

i€Z} {a,b} M. ;5 (Q(p;,id; )NQ)
y (1.8.84) we deduce that

lim sup Z Fe;(vj;Qc, (pj,165) N ) < climsup Z 67 = chmsup [E| = [09Q] = 0.
J ’LGZ’ J ZGZ’

Finally, we can prove that (1.8.106) is infinitesimal in a similar way, using the equiboundedness
of (u;) and the fact that |E}| tends to zero.
To sum up, we proved that

A + cn.

lim sup Fj(v;) < / fo(Du) dx + 7“1_"/ N (u) dx + €
J Q Q
Note that the sequence v; we built converges to u strongly in L'(Q;R™). This follows from
[{u; # vj}| = 0 and a compactness argument. Passing to the limit as N — 400 we have

fimsup F5(0;) < [ fo(Duw)de+ 1 [ oo+ £+
J Q Q

k

which proves the existence of an approximate recovery sequence for u for each value of the
parameter 7. Hence, for all piecewise affine functions in WP (Q;R™) there exists a recovery
sequence.
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B We can finally prove the I'-limsup inequality by using a density argument. For any u €
WLP(£; R™) there exists a sequence (uy,) of piecewise affine functions such that us, — u strongly
in W1P(Q;R™). In step A we proved that for all & € N the T-limsup F”'(uy) satisfies

F”(uk) S F(U,k)

By the semicontinuity of F” with respect to the strong convergence in LP(2;R™) and the
continuity of F' with respect to WP (£2; R™)-convergence, we get

F'(u) < limkinf F"(uy) < limkian(uk) = F(u),

as desired. [ ]

1.9 Special cases

In this section we highlight two particular cases. Despite requiring restrictive assumptions, they
provide explicit formulas for the densities of the I'-limit.

1.9.1 Convex energy densities

If for all £ € I, f&:R™ — [0,+00) is a convex function, then the density function in the bulk
term of the I'-limit can be expressed through an explicit formula:

folA) =3 f¢ (A- é) for all A € M™*™, (1.9.109)
cel

In fact, under the convexity condition we can use [3, Remark 5.3], which states that in this case
Proposition 1.3.2 holds with fp as in (1.9.109). Then the I'-limit is

F(u) = Z/fo (Du~ %) dm+r1_”/Q<I>(u) dx.

el

1.9.2 Nearest neighbors interactions and homogeneous density func-
tions in the critical case

In this paragraph we consider a special case which is of some interest on its own, despite being
very specific. We are in the critical case p = n and we consider nearest neighbors interactions
only. Moreover, we assume that the functions f&, € € I = {ey,...,e,}, are all equal to the
same function f, which is positively homogeneous of degree n and convex. In particular, these
assumptions encompass the case f(z) = ||z]|?, which has been analyzed in Section 1.4.

In this case the I'-convergence result holds for the whole sequence F;; and the limit functional

F' is given by
= ou
F(u) = / der/du dx,
(w) ;Qf(axi) | d(w)

where d : R™ — [0, +00) equals

dz) = Jim (ogT)" it { S fu(A) ~u(B)): Z(g)f%?fiﬂjzzl sl &

T—4oc0
{A,B}eM1(Q(T))

Let us prove that the function d is well defined.

Lemma 1.9.1 Let f: R™ — [0,400) be a convex function which is positively homogeneous of
degree n and such that f(0) = 0. We assume that there exist two constants c1,ca > 0 such that
c1)z|™ < f(z) < co|z|™ for all z € R™. Then for all z € R™ there exists the limit

v e A (Q(T);R™) }

d(z) = lim (logT)”’linf{ S fw(A) —u(B)): o0 =0 0 2 2 on ST
o {ABYEML(Q(T)) ’ '
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Proof. By the homogeneity of f, it suffices to prove the existence of d(v), with v € R™ and
|v| = 1. We denote by pr the infimum which appears in the definition of d(v):

. v e Ay T);R™
U = mf{ Z f(w(4) —v(B)) : v(g) :(0?(’0 ): v 011 Si([T7) }

{A,BYeM:1(Q(T))
It is convenient to introduce a new family of infima fi, defined as

N o(A) —u(B)) ;¥ EAQUTRE™)
o {{A,B}E%(Q(T)) fletd) =B v=0o0nQ:(1), v=ron&([T]) }

The test functions for fir vanish on the whole set @Q1(1) (not only on 0 as for pur). The proof
is made of two steps: firstly we show that there exists the limit

: n—1~ .
pim (logT)"™"jir € [0, +00);

and then we prove that the limit above equals

3 n—1 _
i (log 7)™ = d(w).

1. Let S>> T. Let ur € A1 (Q(T);R™) be such that ur = 0 on Q1(1), ur(A) = v for all
A € &1 ([T)) and

. 1
Z f(ur(A) —ur(B)) < fr + T (1.9.110)
{A,B}eM1(Q(T))

We will define a convenient test function for mg by suitably modifying ur and we will deduce
an inequality of the form

(log S)" tiis < (logT)" ‘fir +r(S,T)  with liminflimsupr(S,T) = 0. (1.9.111)

T—+00 § 5400

Let k € N be such that [T]* < [S] < [T]F*?; i.e., k = [log([S])/log([T])]. We consider the set
Q1(S) and we denote by C, its subsets

Ch=Q ([T \ Q1" =1)  h=0,....k—1.

In each O}, we consider an additional meso-lattice C}, N [T)"Z™ and we use it to define a
convenient test function ug for jig. For all A € C), N [T"Z"™ we set

i~ o ) )

We denote by g j, an interpolating function for ug ; which is piecewise affine on a triangulation
defined by the lattice Cj, N [T]"Z™ and satisfies

{A,B}YeM 1n (Ch)

The existence of @g ;, follows from Remark 1.3.5; in particular, we can choose our triangulations
of Cy, N[T"Z™ to be homothetic to each other (since the sets are obtained by rescaling). The
test function ug € A3 (Q(S); R™) is defined as follows:

ﬁs’h(A) for Aec Cy, h=0,....k—1

=0 log([T]F + )
VW for Ae Si([T]"+q), ¢=1,...,[S] - [T]F.
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Then ug is an admissible test function for fig; in fact ug = 0 on Q1(1) and us = v on S1([5]).
Now we want to estimate the energy of ug on Q(S):

k—1
> flus(4) —us(B)) < > > flus(A) —us(B))

{A,B}eM1(Q(S)) h=0{A,B}eM1(Ch)

+ > fus(A) —us(B))

{A,B}Ye M1 (Q(SH\Q([T]®))

[ (52 w)ds

0
+ > fus(A) —us(B)).

{A,B}Ye M1 (Q(SH\Q(IT]®))

NE

If we set y = [T]~"2 and we denote by @y the piecewise affine interpolation of ur on the lattice
Q1(T) (built on a triangulation that is homothetic to the one on which we constructed ag), we

obtain
oGt = ()" [ (G ) mmay

(5]
WDV S flur(A+e) — ur(4)

A€RH(Q(T))

for all I € {1,...,n}. There follows that

k—1
S Y fus()—us(B)
h=0{A,B}eM;(Ch)

k—1 n

log([T])\"
- (log([S])) ZZ Z flur(A+e) —ur(4))

h=01=1 AeR @Q(T))

log([T]) \"
. Flup(A) — up(B))
<10g([SD) {A,B}E%(Q(T)) ' )

GG o)

Finally we consider the contribution of ug on the set Q(S) \ Q1([T]*). By construction

> fus(A) — us(B))
{A,B}e M1 (Q(S)\Q([T]*))

. [S]_g_lf(ulog(mk +q+1) —log([T]* + q))

2 los([5])

oaitarye (151~ 1191z (14 )
1

(1.9.114)
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By combining (1.9.113) and (1.9.114) we get

(logS)" 'hs < (logS)"* > flus(A) —ug(B))
{A.BYeM1(Q(S))

log([S]) 7 log([T7) L (eg(T))t

< o) foa(isp (Ves(TD" i + =557—)
C B & 1
Flogsp 1 T e

Passing to the limsup as S — +0o we obtain

1 T n—1
i sup(log §)" s < (log((T)" i + CEE
S—+o0 T
since k = [log([S])/log([T])]. Finally, we take the liminf as T'— 400 and we get
, 1 o 1- . (log({T])"
. n—1 < n—1 (
lgilig(log S)" ks < liminf(og([T))" Az + lim T

_ . . n—1~
= Jiminf (log([T))"fir.

Hence, there exists the limit

Tl_i)rfoo(log([TD)”*lﬂr (1.9.115)

Note that for all v € R™, |v| = 1, the limit above is in (0,+00). In fact, by the growth
conditions on f there exist two constants ¢; and ¢o such that

ams{ ¢ < fir < &mf 1,
where m{ ;. is as in (1.4.33). In Section 1.4 we proved that

lim (logT)" 'm{ 7 =1, € (0,+00).
T—+o0 ’

By comparison, limz(log T)"~tjir € (0, +00).

2. It remains to show that the limit in (1.9.115) equals d(v). First of all, we note that ur < fir
by construction. Let vy € A1 (Q(T);R™) be such that vr(0) =0, vy = v on S1([T]) and

1
> () - vr(B) <+
{A,Bre M1 (Q(T)

Let > 0 be a fixed constant. Then, for all T large enough we have |or| <7 on Q1(1). In fact:
if |vp(a)| > n for some a € Q1(1) \ {0}, then we have

o1 1 .
prem etz S fer(4)—er(B) > e
{A,B}Ye M (Q(T))

By (1.9.115) we know that

1
i - L
im pgr+==0,

47



which leads to a contradiction. Therefore we have

1
prtpz > fer(4) - vr(B)
{A,B}YeM:1(Q(T))

. DA o(B) . v EAQT)
= f{{A,B}e%:l(Q(T))f( A =vB) =y < on Qu(1), v=10n Si((T]) }

_ v e A(Q(T))
:mf{ Z f(v(A)—’U(B)) : U:nlon Ql(l), v=1on Sl([T]) }

{A,ByeMy(Q(T))

I we @)
=[-nrwt{ Y fw) —w®B): S Q1(1), w=1on 8 (7)) }

{A,B}eM1(Q(T))
= |1 —n|"fir.

To sum up, we got

TR Ly
ur T_MT T = n ur-

If we multiply by (logT)"~!, pass to the limit as T — +oo and take into consideration the

arbitrariness of 7, we deduce that the limit in (1.9.115) equals d(v).
Finally, we notice that d can by extended to any vector in R™ by n-homogeneity:

0 ifz=0
d(z) = |z|”d<|§|) otherwise.

In conclusion, we can state and prove the I'-convergence result in this particular case.

Proposition 1.9.2 Let m,n € N with m > 1 and n > 2. Let Q) be a bounded open subset of
R™ with |09 = 0. Let f: R™ — [0,400) be a convex function which is positively homogeneous
of degree n and such that f(0) = 0. We assume that there exist two constants c1,ca > 0 such
that c1|z|™ < f(2) < co|z|™ for all z € R™. Let (¢;) be a positive infinitesimal sequence. We
consider an additional sequence (§;) such that §;/e; €N, 6; > ¢;, 6; = 0 and

—r(14o(1))87/ 7™
)

gj=¢e for some constant r > 0.

For all j € N we define the functional F;, : Ac,(€2) — [0, +o0] as

Z f(u(a) —u(b)) if u=0 on Qs
Fe (u) = q {abreM. (@) (1.9.116)
+00 otherwise.

Then F., T'-converges, with respect to LY(Q; R™)-convergence, to the limit functional F :
W (Q; R™) — [0, +00) given by

F(u):i[)f(gsl)dx—l-/ﬂd(u)dx,
i=1 '

where d : R™ — [0, +00) is obtained as

d(z) = lim (logT)”’linf{ Yoo ) —uB): Z(E)f(o?(ﬁ]fw;)n Si([T7) }

T—+o0
{A,B}eM1(Q(T))
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Proof. The proof follows immediately from Theorem 1.3.1, Lemma 1.9.1 and (1.9.109). By
Theorem 1.3.1 and (1.9.109) we deduce that there exists a subsequence (g, ) such that Fe,

I"-converges to
n 6u
F(u) = / d:c—|—/ u) dx,
=3 )1 (55) =+ |, o)

where

T . o m—1: . . U(O) =0
olz) = ali%ﬂ kglfoo [og 25| mf{ Z F(A)—v(B)): v=zon S ([aS;,]) }
{AvB}eMl(Q(aSjk))

and S, = &‘;kl| logej,|1=™/". Note that |loge;, |/ log(cS;,) — 1 for any value of a > 0. Then
_1; _|n—1: _ . U(O):O
w(z) = 11%1 |log S, | mf{ Z f(w(4) —v(B)) : v =z on S ([aS;,]) }
{A,BYEM:(Q(aS;,))

By Lemma 1.9.2 we can deduce that ¢(z) = d(z) for all z € R™, and d is independent of the
subsequence €, , as desired. [ |

1.10 Appendix: discrete Poincare’s inequalities

We give a simple proof of the discrete version of Poincare’s inequality in the simplified situations
of the chapter.

Lemma 1.10.1 (A discrete version of Poincare-Wirtinger’s Lemma) Let Q C R™ be a
finite union of rectangles, and p > 1. There exists g and a constant C = C(p, Q) such that for
all e < ep and u : Q. — R™, having set

we have
S fu(a)—aper<c Y ’M‘psn. (1.10.117)

€
acQ. {a,b}eM,
Proof. By construction we have

S fula) —are" = 3 Jula) - ﬁflla 3 u(b)‘pen

a€fd. a€fl. beQ.

- ‘ﬁflz > @) —u®)| < Y0 2 3 fulo) - i),

beQ, acQ. " beq.

We want to estimate the term

1
o X lu@) - u)p
€ a,be.
by comparing it with the sum of all nearest neighbors interactions.
Consider the case when € is a single rectangle of side-lengths Lq,...,L,. Then we may
consider a path connecting a and b composed of n segments in the directions ey, ..., e, in that

order, and the points a; on that path, so that (by Jensen’s inequality) for € small

ep

max{Li,...,L, P!
ula) ) < P B S ) — (i)
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Since each pair of nearest neighbors belongs at most to max{L, ..., L,}/e such paths and Q.
is approximately Ly - -- L, /e™, we obtain

1 Z |u(a) . u(b)|p < C(max{Ll, . .,Ln})P Z ‘M’I)gn

0. .
a,beQ. {a,b}eM,

If © is a union of N rectangles of side-lenghts L{, ..., LJ then we obtain the thesis with a
constant ) )
(5, max{L?,..., Li})?
Y, L{ L

by following the same reasoning, but joining points a, b in €2 by a path through possibly all the
rectangles. [

C=c

(1.10.118)

Lemma 1.10.2 (Rescaled version of Lemma 1.10.1) Let Q,¢,p be as in Lemma 1.10.1
and let C be the constant in (1.10.117). We fizx § > 0. We denote by Q° the rescaled set
Q0 ={r e R":2/5 € Q} and by Q2 the lattice Q° = Q2 NeZ™ (and accordingly, the set of
nearest neighbors M?). Then, for e < g9 and for all u : Q2 — R™ we have:

> Jula) —alem < Co” N ‘M‘pg", (1.10.119)

aeQ? {a,byeM? <
where U = (§Q2)~1 Zaeﬂg’ u(a).

Proof. By applying Lemma 1.10.1 to the function v : .5 — R™ defined as v(A) = u(dA) for
A€, /5, we get:

1 n A) —v(B n

3 ‘U(A)_i 3 W(B) S < © 3 ‘Mpi.

A5 1(Qe/5) p&5 n _ /6 5n

</s </s {A,B}eM, s
Scaling back the space variable we obtain
1 u(a) — u(b)p
u(a) — —= " < Co? ‘7 e",
ag‘s ’ ( ) ﬁ(Qg) b;l:‘s {a §M5 €

with C' as in (1.10.118) as desired. ]
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Chapter 2

Models of defects in atomistic
systems

2.1 Introduction

According to the Weak-Membrane Model by Blake and Zisserman [14], a simple way to model
free-discontinuity energies in a finite-difference scheme is by considering truncated quadratic
energy densities (Fig. 2.1). The energy of such a (n-dimensional) scheme can then be written

A

\A

Figure 2.1: A truncated quadratic potential

as
E(u) = Z(ul —u;)? AL,
.3
where u; is a real parameter (the vertical displacement of the ‘discrete membrane’), and the
sum is performed over nearest neighbors in a cubic grid parameterized by Z".
Thanks to a scaling argument due to Chambolle [34], which leads to the energies

n U; — Uj 2 1
B =Y e (M) A2),
iJ
this discrete model can be approximated by a continuous energy defined on special functions
with bounded variation. In fact, if we limit the interactions in the sum to the nearest neigh-
bors in the portion of €Z™ contained in some fixed €2, and we interpret the values u; as the
discretization of a function defined in €2, then these energies can be studied using the methods
of I'-convergence, and their limit is then given by a fracture energy

F(u) :/ \Vu|2dx+/ v |l dH™
Q QNS (u)

(see [34, 35, 24]), where S(u) is the fracture site, v is its normal and wu is the macroscopic
displacement outside the fracture site. The correct functional setting for these kinds of energies



is the space GSBV () of (generalized) special functions of bounded variation in Q introduced
by Ambrosio and De Giorgi (see [18, 9]). From an atomistic standpoint, the energy (u; —u;)?A1
can be interpreted as that of a ‘defected’ quadratic spring, which breaks after reaching a critical
elongation; the collective behavior of such a system gives rise to the possibility of fracture. The
critical scaling in F. is precisely the one that allows this behavior but forbids the accumulation
of ‘broken springs’ on sets of dimension larger than n — 1 while keeping the energy bounded.
Note that the truncated quadratic potentials are a prototypical example to which the study
of more general convex-concave atomistic potentials can be often reduced such as for Lennard
Jones ones (see [26, 28])

If not all springs are ‘defected’, but a portion of them are simple quadratic linear springs,
with corresponding energy (u; — u;)? (for which the T-limit is simply the Dirichlet integral
and no discontinuity is allowed for the limit ), then the problem is more complex, and a
continuous description must take into account the location and ‘micro-geometry’ of the two
types of springs. In a probabilistic setting the location of the defected springs can be modeled
in terms of realizations of i.i.d. random variables. In dimension two an analysis by Braides
and Piatnitski [27] shows that the I'-limit is deterministic and depends almost surely on the
probability p of the weak springs. Its form is of ‘fracture type’ if p is above the percolation
threshold, while it coincides with the Dirichlet integral for all values of p below that threshold.

A deterministic study leads necessarily to a more complex statement. In this case we look
at possible I'-limits of energies of the form

N Wi — U
EE(U):Z&‘ f]( ZE j)a
i.J

where, for each ¢, ff;(2) may be chosen arbitrarily to be either 2 or 2% A (1/e).

It must be noted beforehand that, whatever the limit percentage of weak interaction is, we
can obtain in the limit both the Dirichlet integral, and the Weak-Membrane Energy above; i.e.,
that even if we prescribe that for every subdomain A C Q we have

#{(i,j) € ANeZ™: f5(2) = 22 A (1/e)}

. 1,
lim J =

530 #{(i,j) € Anezr}

for any 6 € [0, 1], we may obtain both such energies as I'-limits for suitable choices of f5; (see
[27] and Section 2.3.6 below). This is in contrast with formally similar problems where damaged
springs are modeled as still quadratic with an energy density az? with a constant o < 1 (for this
‘discrete G-closure’ problem see Braides and Francfort [23], and Braides and Gloria [25]). This
observation leads to conjecturing that indeed the possible limit energies F' are (independent of
the limit density and) characterized by the two inequalities deriving from the comparison with
the extreme cases; i.e.,

F(u)§/|Vu|2dx if ue H'(Q),
Q

F(u)Z/ IVu|2dx+/ |v][1dH™ Y if u € GSBV().
Q S(u)

The two inequalities imply that indeed F(u) = [, |Vul*dz if u € H'(Q2), and suggest the
conjecture that we may obtain as limits all lower-semicontinuous energies of the form

F(u) = / Vul? dz +/ o(z,ut —u,v)dH" " if u € GSBV(Q),
Q S(u)

(u* denote the traces of u on both sides of S(u)), where

o v — ¢(z,2,v) is even and ¢(z,z,v) > ||v|1

e 2+ ¢(x, z,v) is even, and is increasing for positive z.

A complete proof of such a conjecture is not within the possibilities of the present knowledge
of free-discontinuity functionals, even in the homogeneous case, i.e., with o(z, z,v) = ¢(z,v).
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Indeed, for such energy densities the condition for lower semicontinuity is BV -ellipticity (see
Ambrosio and Braides [8]), which is the analog for interfacial energies of the condition of
quasiconvezity for integral functionals (see Morrey [53]), and turns out to be necessary and
sufficient if ¢ satisfies an inequality from above ¢(z,v) < C|z|. This last growth condition
is not in general satisfied by our energies, and without this assumption neither we can apply
known representation results (as those by Braides and Chiado Piat [21] or Bouchitté et al. [16]),
nor we can characterize the energy density (indeed, the problem of removing growth conditions
is one of the main issues also in the theory of vector energies; see Ball and Murat [13]). But
even when growth assumptions from above are satisfied and the function ¢ is BV-elliptic this
information is of little help since explicit constructions of BV-elliptic energy densities (e.g., in
the spirit of the construction of quasiconvex functions by relaxation as that by Sverdk [61])
or their variational approximation by simpler energies (e.g., in the spirit of appoximation of
quasiconvex energies by homogenization of polyconvex functionals as by Braides [17]) are not
available in general, as are not available for arbitrary quasiconvex functions.

We will then restrict our analysis to classes of simpler energy densities, proving a number
of results, each of its particular interest (summarized in Theorem 2.2.2)

1) ¢ = p(v) even. In this case the condition of BV -ellipticity is equivalent to the convexity
of (the one-homogneous extension of) ¢. We will prove that all such energy densities can be
obtained in the limit;

2) ¢ = ¢(z). The form of the energies F. implies that ¢ is even and z — ¢(z) is increasing
on (0,400). Moreover the growth condition gives p(z) > sup, |[v|l1 = v/n. In this case the
condition of BV -ellipticity is equivalent to the subadditivity of p; i.e. that p(z+2") < o(2)+¢(2)
for all z, z’. This condition is rather complex, and is implied by the concavity of ¢ on (0, +00).
We will prove the approximation result for this restricted but important class of energy densities;

3) ¢ = () lower semicontinuous. In this case the only condition for approximation is
p(r) > /n.

Moreover we can obtain ¢(z,z,v) = ¢1(¥)p2(z)ps(z) by combining the approximation
constructions above.

We note that other types of energies can be obtained as I'-limits; for example, those of the
form

F(u)z/ |Vu|2dx+/ p(z,ut —u")dH ! if u € SBV(Q),
Q S(u)

with the constraint that S(u) C K where K is a fixed n — 1-dimensional surface. Indeed, such
types of energies will be the building blocks of our approximation strategy. In fact, for case (1)
above we will first use this construction with K a network of planar surfaces and ¢ suitable
constants on each surface of the network, and then use an approximation procedure similar to
the one by Ansini and Iosifescu [12] to obtain an arbitrary convex ¢. Note that in particular we
may obtain as ¢ any constant not larger than /n, so that case (3) can be derived by localizing
such a construction. To obtain case (2), we first treat the case of K a single hyperplane and
¢(x,2) = ¢1 + ca2?. This can be obtained following arguments similar to those by Ansini [10]
to approximate the energy density c(u™ — u~)? on a surface (Neumann sieve) coupled with
the description of the effect of pinning sites at the critical scaling developed in [57, 59]. Note
that the computation of the interfacial energy gives the same constant as in the continuous
case for n = 2, while it highlights a more complex behavior for n > 3, where a fraction of the
total contribution is actually given by the strong springs at the interface, which sums up to the
contribution distributed away from the interface and summarized in a capacitary formula. By
repeating this argument on more parallel surfaces concentrating to the same hyperplane we can
recover an arbitrary concave function by approximation with subadditive envelopes of families
of functions as above (this is the only argument where concavity is used). Finally the use of a
network of hyperplanes as above allows for a radially symmetric target ¢.

This chapter is organized as follows. In Section 2.2 we introduce the necessary notation to
state the main result (Theorem 2.2.2). In Section 2.3 we treat discrete energies with defects
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on coordinate hyperplanes. Its main result is Theorem 2.3.1, where we describe the effect of
a (small) percentage of strong springs distributed on a planar interface, and which exhibits an
interesting separation of scales effect. Another result of independent interest is Theorem 2.3.11,
which treats the case when weak springs in that interface are substituted by voids (in other
words, we consider two quadratic discrete media weakly connected through a hypersurface).
In Section 2.4 we prove a number of I'-convergence results for functionals defined on GSBV
starting from the energies obtained in Theorem 2.3.1, eventually proving Theorem 2.2.2 by
successive constructions.

2.2 Setting of the problem. Preliminaries

Let © be a bounded open subset of R™ with |0Q] = 0. For fixed € > 0 we consider the lattice
eZ™ N Q) =: Q. and we denote by A.(€2) the set of functions

A (Q) ={u:eZ"NQ — R}

We define the set of all nearest neighbors (using a terminology borrowed from Mechanics we
will also call such sets the springs in Q).

M.(2) = {{a,b} :a,b€eZ"NQ and |a — b| = €}. (2.2.1)

We will simply write M, if Q is fixed and no confusion is possible. In order not to count the
interactions twice, nearest neighbors are defined as sets containing two points, and not as pairs
in (eZ"NQ) x (eZ" N Q). We can equivalently state our results in the latter notation, in which
case we must take care in considering symmetric subsets of (¢Z™ N Q) x (¢Z™ N 2) only.

With fixed a subset W. C M., we define the functional FW= : A.(Q) — [0, +00) as

P -3 (D) s () )

{a,b}eMAN\W, {a,b}eW.
= > & fiy(u(a) —u(d), (2.2.2)
{a,b}eM,
where
(2)2 if {a,b} € M. \ W.

gb(z) =

z\2 1
2V AZ if{ab} e W..
(3) Ac ifabyem
Remark 2.2.1 A function u € A.(Q) will be identified with the piecewise-constant measurable
function given by u(x) = u(z%), where z¢ is the closest point to x in €Z™ (which is uniquely
defined up to a set of zero measure). In this definition, we set u(z) = 0 if z € €Z™ \ Q. In this
way A.(Q) will be regarded as a subset of L(Q).

With the identification above, and a slight abuse of notation, we can extend F"¢ to a
functional FW= : L1(Q) — [0, +o0] as

Z e" fap(ula) —u(d)), ifue A(Q),
FYe(u) = ¢ {obie (2.2.3)
400 otherwise.
The notation of (2.2.3) will be “localized” to subsets A of Q by setting
S fiula) —u®), ifue A(Q),
FWe(u; A) = { (@) €ML(4) (2.2.4)

400 otherwise
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(and accordingly for other functionals).
We will study the I'-convergence of families of such functionals with varying W, with respect
to the L'-convergence.

Given an arbitrary distribution of weak springs W; = W, we may define the limit density
in Q of the weak springs W;. This can be done after identifying each weak spring with a scaled
Dirac delta; i.e., when Wj is identified with the measure

/\WJ = Z 5(a+b)/2'
{a,b}eW;

-3

3|

Upon passing to a subsequence, AW has a weak* limit A in the sense of measures. Furthermore,
since this limit is simply the Lebesgue measure if W; = M. (R"), then A is absolutely continuous
with respect to L™, so that we can write A = 0 L™, with 0 < 8 < 1. We will then simply write

W; 6. (2.2.5)

We will show that all results that we obtain can also be obtained by prescribing 6

As an important preliminary step in Section 2.3 we will consider the case of W, concentrating
on coordinate hyperplanes, and in Section 2.4 we will use that result to obtain a wide class of
limit energies. Before stating the main result of that section we introduce the necessary function
setting.

2.2.1 Special functions of bounded variations

Our limit energies will be defined on the Ambrosio-De Giorgi space of generalized special func-
tions with bounded variation GSBV () (for all the definitions in this section see e.g. [9, 18]).

We recall that the space SBV(Q) is defined as the set of functions w in BV () such that
their measure distributional derivative Du admits the representation

Du=VuLl™+ (ut —u )v(uw)H" L S(u),

where

o Vu is the approximate differential of u

e S(u) is the set of essential discontinuity points or jump set of u

e v(u) is the measure theoretical normal to S(u), which is defined H"~* on S(u)

e u* are the traces of u on both sides of S(u).

L™ and H" ! denote the Lebesgue measure in R™ and the n — 1-dimensional Hausdorff
measure, respectively. AL B denotes the restriction of the measure A to B; i.e., (A\L_B)(A) =
A(ANB).

A function u belongs to GSBV(Q) if for all T > 0 its truncations uy := (u AT) V (=T
belong to SBV ().

2.2.2 Statement of the main result

The results of the final section are (partly) summarized in the following theorem, which is the
main result in the chapter.

Theorem 2.2.2 Let ¢ : R™ — [0, +00) be any convez, even and positively homogeneous func-

tion of degree one with
n

p(w) = [lwlly =Y [wyl,

j=1
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¥ : (0,400) = [1,400) be any concave function, a :  — [1,4+00) be any lower semicontinuous
function, and let F : L'(Q) — [0, +00] be given by

[vuldes [ ooyt -l e
Q QNS (u)
F(u) = if u € GSBV(Q) and H" 1(S(u) N ) < +o0 (2.2.6)

+00 otherwise.

Then there exists a family W, such that functionals FV= given by (2.2.2) T-converge to F above
in the L'-topology. Furthermore, for any 6 € L>(Q) with 0 < 6 < 1 we can additionally choose
We with W, — 0 in the sense of (2.2.5)

2.2.3 Preliminary results

The case when W, = M, in (2.2.2) is described by the following result by Chambolle [35] (see
also Braides and Gelli [24])

Theorem 2.2.3 (Blake-Zisserman weak membrane) The functionals defined by
_ n((uwla) —u()y? 1
F.(u) = Z € (( . ) A 5) (2.2.7)
{a,b}eM.(Q)

on A.(Q) and extended to L' () by +oo as in (2.2.3) T'-converge with respect to the L'(Q)-
convergence to the functional

[ vl [ pulane
Q QNS (u)
Fu) = if u € GSBV(Q) and H"~1(S(u) N Q) < 400

400 otherwise.

Furthermore, if (ue) is a bounded sequence in L*°(Q) such that sup.q F-(u:) < +oo then, up
to extraction of a subsequence, it converges to a function in SBV ().

Note that F' is an anisotropic version of the Mumford-Shah functional, and enjoys all the
coerciveness and lower-semicontinuity properties of that functional (see [18]).

Remark 2.2.4 (1) Since for general W, we have
F. < F%

(F. as in (2.2.7)), the previous result provides a lower bound for all our I-limits, and in partic-
ular it implies that their domain will always be contained in

{u e GSBV(Q) : H" *(S(u) N Q) < +00}.

(2) Since all energies are decreasing by truncation (i.e., FWe(ur) < FWe(u)), it will suffice
to characterize I'-limits on

{ue SBV(Q)NL®(Q) : H" 1 (S(u) N Q) < +o0}.

In fact, on one hand, given a sequence u. converging to u, once a I-limit F' is characterized on
bounded functions, we have a lower bound

F(ur) < liminf FY=((u.)r) < liminf FW=(u,),

e—0 e—=0
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from which the liminf inequality

F(u) < liminf FV= (u,)

e—=0

will follow by Beppo-Levi’s Theorem. On the other hand, since the I'-limsup
F'(u) = T-limsup FVe (u)

e—0
defines a lower-semicontinuous functional, from the equality F” = F for bounded functions,
and the convergence F(ur) — F(u), we have
F(u)= lim F = liminf F” > F”
(u) = lim F(ur) =liminf F"(ur) 2 F"(u)
for a general u, which is the limsup inequality in the definition of I'-limit.

(3) If W. = 0 (all springs are strong), then if sup; F™=i (uj) < +o00, then, upon extraction
of subsequences and addition of constants, u; converge to some u € H 1(Q). As a consequence,
the I'-limit is simply the Dirichlet integral.

(4) For general W,, by comparison with the cases above, the I'-limit always exists and is
equal to the Dirichlet integral on functions u € H(Q).

We will use well-known results on GSBV-functions, referring to the monographs [9, 18]
above mentioned when needed. We only recall the following approximation result, since it will
be crucial to understand our strategy. To that end we introduce the following set of “piecewise-
Lipschitz functions”.

Definition 2.2.5 We denote by PC(QQ) the set of all functions u € SBV () such that S(u

18
a finite union of (n — 1)-dimensional simplices with disjoint closures, and u € W1 (Q\ S(u)).

The set PC(Q2) is “strongly dense” in SBV(Q) as implied by the following theorem.

Theorem 2.2.6 (Cortesani-Toader [38]) For all u € SBV(Q2) N L*>(Q) there exists a se-
quence (u;) in PC(Q) such that

/ |Vul? dx—i—/ fv(u),u™ —u™)dH !
Q QNS(u)

:lir_n(/ |Vuj|2dx+/ f(z/(uj)7uj+ —u;)d?—[nﬂ)
i Na QNS (uy)

for all continuous f. Moreover we can take u; € C°°(Q\ S(u;)) N Wk (Q\ S(u;)) for all k.

Remark 2.2.7 For functions v € PC(Q) it is easily seen that the I'-limit in Theorem 2.2.3 is
actually a pointwise limit (see [35, 24]).

The approximation result above will guarantee that it is sufficient to prove the I'-limsup
inequality for functions in SBV (Q)NL> (), whose jump set is a finite union of n—1-dimensional
simplices and are smooth outside that jump set. In particular, for those functions the jump
set is contained in a finite union of hyperplanes. It will be crucial then first to construct
limit energies whose domain implies the constraint that the jump set be (a union of simplices)
contained in a given finite union of hyperplanes, and then remove that constraint through a
homogenization procedure by considering an “invading” family of hyperplanes.

2.3 Discrete energies with defects on coordinate hyper-
planes

This section will be the cornerstone of our approximation procedure. We will analyze the case
when the ‘defected springs’ W, are located across a coordinate hyperplane, that we can assume

being x,, = 0. More precisely, pairs in W, have their middle point on the set Z"~! x /2,
contained in the hyperplane {z, = ¢/2} (essentially, the hyperplane {x,, = 0}).
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2.3.1 Notation

In this section we will use a notation suitable to the discrete setting. The subscript ¢ will
indicate the intersection with €Z™, so that in particular

Q. =QnNez™.
The closed cube centered in  and with side length 2L will be denoted by
Q(L;x) =z +[-L,L]".
If =0 then Qp = Q(L,0). Accordingly, we will write
Qe(Liz) = QN (z + [-L, L]”)
Intersections of boundary of cubes with €Z" will be denoted by
L(Lyx) =Q.NI(x+ [—L, L"),

and we write £(L) = £(L,0) when z = 0.
A subset A of €Z™ is identified with the measurable set in R™ obtained as the union of the
e-cubes centered in A. We will highlight this identification with boldface cases:

A=),
acA

where

e egqn
C(a) = Co(a) = Q(e/2a) =a+ [ - 5. 5]
Finally, [t] stands for the integer part of t.

2.3.2 Statement of the result

The following theorem describes the situation when all springs (parameterized by ¢; Z"~1) across
the coordinate hyperplane are defected except those on a lattice 5jZ"_1 with §; >> €.

We denote by K the set K = QN {z € R": x, = 0}. If necessary, a vector a € R™ will be
written as a = (d¢/,ay,), with @’ = (a1,...,an—1).

Theorem 2.3.1 Let (g;) be a positive sequence such that e; — 0 as j — +oo. Let (0;) be
positive infinitesimal sequence such that §;/e; € N and lim; §;/e; = +00. We assume that (&)
and (8;) are such that

e~ PU+eM)/95 g5 j — 400 ifn=2
. = (2.3.8)
—ns(n—1)/(n—-2) . :
32 (55. (140(1)) asj— 400 ifn>2

where B is a positive constant. For all j € N we set

W., ={{a,b} € M;: a' =V a,=0,b, =¢j,d € ;2" "\ §;Z"'}. (2.3.9)
Let C,, be defined as follows:
ifn=2

C, = (2.3.10)
ifn > 2,
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where

s . _ 2., _ _ —
by =, lim _min S (@) —v(d)?: v=10ndQr, v(0)=1v(e,) = o}
{a,b}eM1(QrT)

(recall that M () denotes the set of nearest neighbors of Z" inside ) is a positive constant
for alln > 2.
Let F : LY(Q) — [0, +00] be given by

C
vu2dx+/ 14+ 2ut —u 2)dH™ ' ifue SBV(Q), S(u) C K
py= | Lvere [ (1 Gt ) (@, S()
+00 otherwise.

Then we have

(i) (coerciveness) for any sequence (uj;); bounded in L*(2) such that sup, F™ei (u) < +o0
there exist a subsequence (uj, )n and a function u € SBV(Q) with S(u) C K such that uj, — u
as h — +oo in LY(Q);

(ii) (lower bound) for all uw € L'(2) and u; — u in L'(Q) we have

F(u) < liminf ™% (u;); (2.3.11)
J

(iii) (upper bound) for all u € PC(Q) there exists u; — u in L'(Q) such that

F(u) = lim F" (u;). (2.3.12)
J
Note that the coerciveness is an immediate consequence of Remark 2.2.4 (1) and (3) (the
latter applied on all open sets not intersecting K). The rest of the theorem will be proven
throughout this section, separately proving the upper and lower bounds.

Remark 2.3.2 1) Note that, since we have the constraint S(u) C K for the jump set, the
domain of F is actually contained in H*(Q\ K);

2) Tt is worth noting the two different definitions of the constant C,, in the cases n = 2,
which are connected to capacitary issues due to the presence of a portion of strong springs on
the interface. In particular,

e in the case n = 2 the constant is the same as the one for the Neumann sieve for continuous
problems. This highlights that capacitary potentials in dimension 2 are logarithmic, and their
contribution is at a scale much larger than the lattice;

e in the case n > 3 a scaling argument leads to a discrete capacitary problem involving the
capacity [, of a discrete dipole in Z™;

3) Hypothesis (2.3.8) can be restated in terms of the percentage p; = (g;/6;)" ! of strong
springs at the interface, which now reads

w(leo(l)) if n=2
b %(1—1—0(1)) if > 2.

Remark 2.3.3 The constraint in the theorem can be generalized to S(u) C K up to sets
of H" '-measure zero, where K is the closure of a relatively open subset A of a coordinate
hyperplane with H"~}(K) = H" 1(A), or more in general S(u) C K up to sets of H" 1-
measure zero, where K is the closure of a relatively open subset A of a union of coordinate
hyperplanes. with H"~}(K) = H""1(A). The proof is exactly the same, upon noticing that
the constraint S(u) C K up to sets of H" l-measure zero is closed, thus compatible with the
lower bound, and that the proof of the upper bound only involves a local argument.

For notational simplicity we will often write £} in place of FWei
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2.3.3 Two technical lemmas

In this section we state and prove the discrete analogs of the key propositions that allow the
treatment of perforated domains as envisaged by Ansini and Braides [11] and restated for
transmission problems across an interface by Ansini [10]. These results will be used to reduce
to the case when the competing functions are constant on the upper and lower parts of the
boundary of suitable squares centered in the strong springs of the interface. This reduction will
then allow to estimate the contribution close to the strong springs at the interface with suitable
discrete capacitary problems.
The set Z; will be defined as

Z; ={(¢,0): 2 € ;72" : Q(6;/2; (#,0)) C Q}. (2.3.13)
Recall that §;/e; € N, so that §;Z" 1 C g;Z"~1.
Lemma 2.3.4 Let u; € A. () and u € SBV(Q) with S(u) C K. We assume that uj; — u in

LY(Q) and sup; Fj(u;) < +o0o. With fired o < 1/2, let pj = ad;. Let k € N be fized. Then, for
alll € Z; there exists k; € {0,1,...,k — 1} such that, having set

=0 ([ka pj} D\, ([le pj}spl) (2.3.14)

Gy = Cl N {E(zn —e5/2) 2 0} (2.3.15)

J o Z uj(a (2.3.16)
i acCit

= [2222}% (2.3.17)

there exists a sequence w; € Ae,(Q) such that w; — u in L'(Q) satisfying the following condi-
tions:

w; =uj on €\ U Cé (2.3.18)
leZ;
wj = uf on L (1, ph) N {£(xn —€;/2) > 0} (2.3.19)
_ _ c
‘ Z ( uj7Cl +Fj(uj;CJl- )—(Fj(wj;CJl-+)+Fj(wj;CJl- )))‘ SE (2320)
lez;

Proof. For all h € {0,1,...,k — 1} we define

%Gl”hﬁ\%(biﬁhﬂ

cﬁ = €Ly N {2, — £/2) > 0)
J: lj li Z
Jh aECli;
J.h
31 pj
i [4 2 ¢ }5
For fixed h € {0,1,...,k — 1} we consider a function ¢ = gzbl n €C(C;, h) such that ¢ =1 on

9Q(ph ;1) and |[Vo|le < ¢/d;. We define a sequence wl’h € A.,;(Q) as follows:
} Slayuly, + (1 —d(a))uj(a) ifa, > ¢
wi ,(a) = l (2.3.21)
P(a)u;y, + (1= d(a))uj(a) if ap, <0.
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We focus our attention on lej; and notice that for all {a,b} € M, (C]Hh) we have:

w] (@) = wi, (0) = (1= 6(0)(uj(a) = u; (b)) + ((a) — d(B))(ujh, —u;(a)).
Moreover, by Jensen’s inequality and the assumptions on ¢ we get that
[6(a) = o(b)* < FIVOIZ < ecis;?  for all {a,b} € M., (C}})
There follows that

S wl(a) = wl, b))

{abyeM., (CIH)

<e Y (11— 0(0)Pluz (@) — u;(B)[* + [é(a) — G (b)*[uff, = (a)|*)e

{abyeM. (CF)
e c
<c > luj(a) — uy (b)| %72 + 5257 > ulh, — uj(a) .
{a,byeM., (CIH) 7 {abreM. (ClY)
By Lemma 1.10.2 we deduce that the last term above can be estimated as follows:
c ., _
52¢i Yk —u@)f <e > luj(a) —u;(b)[*e} 2,
7 aecly {a,b}eM., (C1H)
hence
> wi (@) —w] ()2 <e Y luj(a) —u; (0) %} 7.
{abyeM. (CIH) {ab}eM., (CH)

Note that the constant ¢ in the right-hand side can be chosen such that it is independent of
h € {0,...,k — 1}, thanks to the fact that the sets C'Jl'; are obtained from homothetic sets.

Arguing similarly on Cﬁ we deduce that
> w] (@) —wi , (b))%} > < ¢ > luj(a) — uj (b)) 2.
{a,breM.(C}7) {a,byeM.,; (C}7)
Therefore there exists ¢ > 0 (independent of h) such that
il 1 !
Fj(w],,; C7) + Fj(ug; CF) < e Fy(uy; O3

and
Fy(w] ,: Ci) + Fy(ug; C4) < e Fy(ug; ).
Summing up over h € {0,1,...,k — 1} we get

g

—1
(Fj(w] ;O + Fi(ug; CF3) + Fy(w] ; CF) + Fi(ugs CF)) < eFj(ug; Qe (pj,1)-
0

Hence there exists k; € {0,1,...,k — 1} such that

>
Il

, __— .
Fyi(w] ; C53) + Fylug; Ck ) + Fy(w],; Co ) + Fy(uy; O ) < 7 Fi (53 Qe (05, 1))

Now, we set
il I+ _ ~l+ += _ I+ 1
C5 = Cin 5 = Chxp» Ui = Ujky Pj = Pjk

and we define w; : Q; — R as follows:

. wlj’kl(a) ifaeCJl-, leZ; ( |
wila) = 2.3.22
’ - if a0, ct

uj(a) ifac€ J\Uler -
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The sequence (wJ) defined in (2.3.22) satisfies all the required conditions. In fact, w; = u; on
Q \UZGZ]' » Wy _uli on 8Q(p_77 )ﬂ{i(l’n—Ej/Q) >0} and

‘Z( (uy; CFF) + Fj(uy;Cf) — (Fj(wj;0§+)+Fj(wj;0§_)))‘

lez;

IN

(Fj(us; CF) + Fj(uy; C37) + Fy(wy; CF) 4 Fj (w3 CF7))
Z;

Z (13 Qe (055 ))s% 3 (uy) <

€Z;

FF

IN
??‘\Q

>0

Moreover, we show that w; — u in L*(Q):

/ lw; —uldr < / — u|dz + Z / — uldz
Q NUiez; 3 lez;
< / -—u|dx—|—2/ uﬂdx—i—Z/ uj — uldx
NUiez; G lez; lez;
< / lu; —uldz + Z ( Z luj(a) — ul7+|{—:? + Z luj(a) — ué_|€?)
I€Z; qect acCl”

By Hoélder’s inequality and Lemma 1.10.2 we have

Yo lwla) —uFley = Y0 Y lujla) —upley

lez; aGC;i lez; aGC;i
1/2
< YR Il ) e
lez; acCt®
n/2 2 2_n—2 1/2
< @B (e Y lula) - u0)Pe )
leZ; {a,byeM, , (CF)
n 1/2
< c5j/25j(ﬁzj)1/2(Fj(uj))/ < 53/2

In conclusion
limsup/ |w; — u|dz < limsup (/ |u; — u|dx + c63/2) =0
J Q J
as desired. -

Proposition 2.3.5 Let (u;) be a sequence such that u; € A.,(Q) and uj — u in L*(Q) for
some u € SBV () with S(u) C K. Assume that (u;) is bounded in L>(Q). We fix k € N and
consider a positive infinitesimal sequence p; = ad;, with o < 1/2. Followmg the notation of
Lemma 2.3.4, we fiz: (arbitrarily) k; € {0,1...,k—1} and we denote by u £ the discrete average

of u; on C’jl.il. Then we have

lim > Jult —ulm et = / lut — u PdH" (2.3.23)
QNS (u)

lez;

Proof. For all | € Z; we define I} =1+ [—0;/2,6;/2)""' C K. Let ¢; : QN K — [0,400) be
given by

|u§+ - ué-*\Q for 2’ € Il, 1€ Zj,

_ -2 n_
= 3 bt — P ()

lez; 0 otherwise.
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We have to prove that
lim Yi(a’,0)dr’ = / lut —u~[PdH™ L. (2.3.24)
7 Jonk QNS (u)
Since (u;) is bounded in L*°(£2), the following inequalities hold:

’/QHK Z |ul+ 7ul | XIL( )* |u+(gc/7(]) 7U7(zl,0)|2)dx/

lez;

<Z/ [ul — ul= |2 — |u* (2, 0) — u™ (&, 0) | da’

lez;

<cZ/l ult —ut (@, 0)] + [ul” —u (2, 0)])da’

lez;

We want to prove that
lim sup Z / |uli —u®(2,0)|dz’ = 0. (2.3.25)

J lez;

‘We notice that

Z/ |ulJr (2',0)|dz" < Z/ |ul+—uj(:1c g;)|da’ —|—/ lut(2',0) — u;(2', g;)|da’

lez; lez;
and
Z / lul™ — ™ (2/,0)|dz’ < Z / uf™ — w2, 0)|da’ + |u_(x’70) —uj(2,0)|dz’.
lez; leZz;
We focus our attention on Q* = QN {x, > 0} and we prove that
lim sup Z/ \uH' —u;(2,e;)|dz" = 0. (2.3.26)
I ez,

By Holder’s and Jensen’s inequalities we get

1/2
Z/ |ul+—u] (2',ej)|da’ < Zé(n 1)/2 / |ul+—uj(x €J)|2dx)

lez; leZ;
1/2 1)/2
< eftz) a0 Z/ (ol ey Pae’)
ez,
< ¢ Z/ |ul+—u]m ;)] dac)
ez,
By construction
1 ! -
|Uj+*uj($/>5j)‘2dz/: Z |u]+—uj(a 53)‘25? L

(a’,e;)€Q;: a’GIjl.

We claim that the following inequality holds:

> ult —uy(d,g5)e)

(a’,e;)€Q;: a’EIL

( Yot — @+ S Juyla) - uj(b)|25;%*2) (2.3.27)

a€RLT {ab}eM., (RIT)
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where RlJr QN {Il x [ej,0;/2]} and the constant ¢ is independent of j and I. By applying
Lemma 1.10.2 to the first term in (2.3.27) we deduce that

Z ‘u§+ B uj(a/’ 5j)|25?_1 < 65j Z \uj(a) _ Uj(b)‘QE?_2_

(a’,e;)€Qy: a’€l} {abyeM., (R}T)

By summing over | € Z; we get

IN

/ bt — (ol e)Pda’ < e Y Y fus(a) —u(b) e

1eZ; 1€2; {a,byeM. ; (R}")
< cdjsup Fj(u;) < b
J

and this implies that (2.3.26) holds. Moreover, by the definition of the trace of a function in
SBV () (actually in HY(Q\ K)), we deduce that

hmsupz (2',0) — uj(a’,e;)|dx’ = 0. (2.3.28)
ez,

By (2.3.26) and (2.3.28) we deduce that

hmsupZ/ \u” (2',0)]dz" = 0,

I ez,

as desired. By arguing similarly on 97, we can conclude that (2.3.25) holds. It remains to
show that inequality (2.3.27) holds. We have:

> ult —u;(d,e5)Pe)
(a’,e;)€Q;: a’EI;

£y ! 1
2 —
<eL Y > Wbt —uj(d ;) Pl

beRLT (a’,e;)€Q;: a/ €T}

[

n

& n—
<esh Y (W - w P y®) - e

7 beRL (a’,e;)€Qy: a’Ell

<c 54 D it —uo)Peyt + Z > [uj (b) = uj(a, 7)<~

J bGRl+ j bGI‘—n’lJr (a’,e;)€Q;: a Ell
I+ )|2en 2 nH 2_n—1
<5 X W owOPg ety X ) - woPs
7 beRLt K {abreM.  (R}Y)
= O O P e Y fule) ()P
beRl+ {abyeM.  (RIY)
as desired. -

2.3.4 Lower bound

In this section we prove the lower bound for the sequence F}; by combining a scale-separation
and a capacitary argument. The energy of a sequence F}(u;), with u; — u, can be decomposed
in

e a bulk energy away from the interface;
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e an interfacial term due to the presence of the weak springs at the interface. This term
corresponds to the surface term of the Blake-Zisserman weak membrane;

e an additional interfacial term decoupled from the previous one due to the presence of a
(small) percentage of strong springs at the interface. This is a quadratic term on the interface
depending on the discontinuity [ut — u~|?.

The key argument is the separation of scales at the interface. By using Lemma 2.3.4 we can
separately examine the energy contributions on cubes of side length «d; (with a small) and
centered on the strong springs, and the energy elsewhere. Outside those cubes a lower bound
is given by the Blake-Zisserman weak membrane (with an error vanishing with «). Again by
Lemma 2.3.4 it is not restrictive to suppose that on the (upper/lower) boundary of the cubes the
value of the functions u; is exactly u*, and a capacitary argument then allows to compare the
contribution on each cube by a term cS;?_lcn|uJr —u~ |2, which gives a Riemann sum converging
to the correct interfacial energy (the precise statement uses Proposition 2.3.5).

, interfacial strong springs

concentrated
1 B8 O A }---t--1/| " capacitary contribution
' ' .

: g ; ; e
] / . . .
B ,1,,,,],,, P O S e X o e 2 ,:,],,4, <« |imit interface K
I / T

I~ defects

™ diffuse surface energy
due to defects

Figure 2.2: Scale and concentration effects on the interface

Proposition 2.3.6 (lower bound) Letu; — u in L*(Q), withu; € A.,(Q) andu € SBV (Q)N
HY(Q\ K). Then
liminf F(u;) > F(u).
J

Remark 2.3.7 In our computation of the lower bound, we have found it convenient to deal
with the contribution due to the quadratic strong springs (both on the interface and elsewhere)
separately from that of the weak springs. To that end we introduce the energies (in “localized
form” on subsets A of Q)

G A) =FiA) - Y () - v(d,;)* Aey) (2.3.29)

J
a€Q;NK, a¢Z;

for any v € Ac;(A), and G;(v) = G;(v,). The I'-limit of G} is of interest in itself (see Section
2.3.7).

Proof. Let k € N and let o < 1/2. By applying Lemma 2.3.4 to (u;) we build a sequence
w; — v in L' () satisfying conditions (2.3.18)-(2.3.20). We define the set E; C ; as

B = | Q- (os0).

l€Z;
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Since
liminf F(u;) > liminf F} (u;; E;) + lim inf Fj(u;; Q; \ E;)
J J J

we will estimate the contributions of u; on E; and Q;\ E; separately (step A and B respectively).

A. We want to prove that
C

lim inf Fj(uj; ;) > —~ 't — | 2dH - L (2.3.30)
J B Jsw k
Lemma 2.3.4 implies that
liminf Fj(u;; E;) > liminf Z (Fj(uj; Qe (pé—,l) N{z, >¢;})
’ =
+Fj(uj; Qc, (05, 1) N {xn < 0})
us(leg) =y (1,0))%)72) -
> limjinf Z (Fj(wj; Q- (pé—,l) N{z, >¢;})
lEZj
+F; (wﬁ QE]‘ (p§'7 I)N{z, <0})
sl eg) =i (1,0))%)72) =
. . &
= liminf D Gj(wi; Qc, (ph,1)) — o (2.3.31)

1€2;

where G, in defined in (2.3.29).
Having fixed [ € Z;, we look for an estimate from below for G;(w;; Q. (pé»,l)). Let w; €
Ac;(Qc, (pj,1)) be defined as

ult o ifa € (Qe(ps, 1) \ Qe (05, 1) N {zn > 5}
wj(a) = 4 wj(a) if a € Qc,(p},1)
um o ifa € (Qx,(py, D)\ Qe (0, 1) N {ay < 0}
By construction
Gj(ws; Qe, (p5,1)) = G(wj; Qc, (pj, 1))

and, minimizing over all v subject to the boundary conditions satisfied by w;,

G;(w5;Qz, (pj, 1)) > inf {G(v, Qc, (pj, 1)) : v =ul" on LZ (p;, 1)}

After writing
l - 1 -
(u" +uy7) n (u;" — uj )U_
2 2 7

by a translation and a scaling argument we get

U}j:

(ulT —ul7)?
Cy(:Qe, (0 10) 2 b (60,0, () 0= £l on ()} (23.32)

We denote by m; the rescaled infimum
mj = 5?_" inf {G;(v; Qc, (p;)) : v ==%1 on ﬁsij (pj)}-

We want to study the asymptotic behavior of m; by comparing it with the infimum

Wi = inf{ Z (v(a) —v(b))*: v=1o0n L, (pj), v(0) =v(ejen) = 0}.
{ab}eM, (Q(p)))
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The limit behavior of z; has been studied in details in [59]; to our purposes we recall that

forn >3 dim p; =1, € (0,+00)
J—+oo

forn=2  lim 8L =1, € (0,+00), (2.3.33)
Jj—+oo 5j

where

I, = Tl_i)r_r:Oo min{ Z (v(a) —v(b))?: v=10ndQr, v(0) =v(e,) = 0} >0 (2.3.34)
{a,b}eM:1(Qr)

for n > 3, and

Iy = TEIEOO logT min{ Z (v(a) —v(b))?*: v=10n0Qr, v(0) =v(e,) = } =27
{a,b}eM:1(Qr)
(2.3.35)
(T is understood to be integer).

We now focus our attention on m;. It is not restrictive to substitute the cube Q. (p;) with
a cube with center in (0',¢/2) (for which we use the same symbol, with abuse of notation), so
that we may use a symmetry argument. First, we note that if z; € A.,(Qc,(p;)) is a minimizer
for m;, then it satisfies the following condition:

zj(2',2n) = —2; (@, —2p + €5). (2.3.36)

In fact, let Z; be the function z; (2, z,,) := —z;(21,..., —x, + €;). Then Z; is a minimizer for
m; by construction. The function (z; +Z;)/2 is a test function for m;; by the strict convexity
of G; we get that if z; # Z; then

s 1 1
Gj<Z] ;Zj;Qsj (Pj)) < 5Gi(25 Qe (0)) + 5G5(Z55 Qs () = my.

There follows that z; = Z;; i.e., condition (2.3.36) holds.
Now, let
v=2;(0,...,0,¢;) (2.3.37)

denote the ‘half-elongation of the strong spring at the interface’ (hence, z;(0) = —v). We note
that

Gj(25; Qe (pj) N {zn = €5})
=min {G;(v; Q:, (p;) N{zn >€;}): v=1on Ejj(pj),v(O,...,O,gj) =~}

=(1- 7)2 min{Gj(v;QEj (pj) N {zn >€;}): v=1on E;‘j (pj),v(0,...,0,¢5) = 0}
1

= 5#3‘(1 7).

By (2.3.36) we deduce that

1
Gj(zj;Qsj (,0])) =2x i'uj(l — 7)2 + 472.

The quantity above attains its minimum for v = 1, /(p; + 4), hence

Ay
m; = ——. 2.3.38
The asymptotic behavior of m; can be specified as follows:
for n >3 lim m; = il =:C (2.3.39)
- jotoo 0 D44 " e
forn=2  lim fd =l =C,. (2.3.40)
Jj—+oo 5j
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By (2.3.31) and (2.3.32) we get

l -
(uj+ — Uy )2

lim inf F(u;: By) > lminf Y~ —eim, g
lEZj
Note that by (2.3.39), (2.3.40) if n > 3 we have
n—2 1 n—1 1 n—1
€57 my = Béj m;(l+o(1)) = Béj Cn(1+0(1)), (2.3.41)
while if n = 2 we have 5
" 2my = 8; - L = 2.Ch(1 4 o(1)). (2.3.42)
0 15}
In both cases, taking into account Proposition 2.3.5, we then deduce that
lim inf F;(u;; E;) > Cn lut — T PdH T - ¢
j B Js) k
B. We want to prove that
liminf F(uj; Q; \ Ej;) > / |Vul?de + (1 — a)H" (S (u)). (2.3.43)
J Q

Having fixed a parameter s > 0, we consider the “s-neighborhood of K” defined by
P ={a€Q\Ej: la,| < s}
and its complement R? = (; \ E;) \ P} = {a € Q; \ E; : [a,| > s}. Since

lim inf Fj(uz; Q5 \ Ej) > liminf Fj(ug; R}) + lim inf Fj (u;; PF),
J j J

we can estimate the contribution of u; separately near the (hyperplane containing the) jump
set and far from it (steps B.1 and B.2 below, respectively). By letting s — 0%, we will finally
get the desired inequality (2.3.43).

B.1 First, we focus our attention on P; and we prove that
lim inf Fj (uj; Py) > (1 — a)H" " (S(u)). (2.3.44)
J

The proof of (2.3.44) will be performed through the blow-up technique. For all A € B(Q2), we
set
Aj(A) = Fj(uy; P} N A),

which defines a family of measures. The family ();) is equi-bounded; i.e., sup; [A;[(Q2) <
sup; Fj(uj) < +oo. Hence, there exists u € M™(Q) such that A; converges weakly* to A
up to subsequences. We consider the Radon-Nykodim decomposition of A with respect to
H"~ 11 S(u): there exists a non-negative function g € L(€2) such that

A=gH" 1 L S(u) + A%,
where A\* € M*(Q) is such that A\* L (H""11_S(u)). We want to prove that
g(wo) > (1 —a) for H" t-ae. zo € S(u). (2.3.45)
To this end we follow an argument by contradiction: we assume that

g(wo) < (1 —a) for H" t-ae. zo € S(u).
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Let zo € S(u). We denote by @ the open cube @ = (—1/2,1/2)". We can assume that

A(zo + pQ)

= I 2.3.46

9(w0) = I, 318wy 1 (w0 + Q) (2:3.46)
n—1

lim 2 (5() mgxo Q) _y (2.3.47)
p—0t P

1

and lim —/ lu(z) — uF (2z0)|dz = 0 (2.3.48)

p=0E O™ JotpQ*

since these properties are satisfied up to a set of zero-H"~! measure. Moreover, up to a
countable set of values of p, we can assume that

A(O(zo + pQ)) = 0. (2.3.49)

By (2.3.46), (2.3.47) and (2.3.49) we get

L Aj(zo + pQ)
= 1 1 J
9(xo) P30t o0 HP=1(S(w) N (20 + pQ))
B pl—l)I(I)lJr pn—1 ]EI-P Ai@o +pQ)
N pl—i>r(1)1+ o1 ]ETOO Fj(ug; P} 0 (20 + pQ))-

By a diagonal argument we can find a sequence p; — 0 such that

N .
g(wo) = jglfoo P Fy(uj; P70 (2o + piQ))-

We now rescale the space variable by defining

A= S[eo

}, for all a € (zo + p;Q) N P,
Pit Ej

and we set
v;(A) = u;j(p; A+ x0) = uj(a), forallae€ (vo+p;Q)N P;.

Up to a further diagonalization we can find a subsequence v; (not relabelled) such that

n—1

vj = Up in LI(Q) and g(zp) = lim LG’j(vj; Q),
i P

where
ut(zg) foraz >0

uo(®) = { u (xg) foraz <0
and
Gj(vj;Q) = Fj(uy; P} N (w0 + p;Q))-

By the modification of De Giorgi’s method for matching boundary conditions adapted to the
discrete setting (see e.g. [3]), we can build a sequence v; € A, /, (Q) such that v; — g in

LY(Q),

1 ~ 1
76 (05:Q) < ——=G;(v;; Q) +o(1)
Pj Pj
and -
v;(a) = u®(xg) for a € p—]Z” NQ: ay, € £[1 —¢;/p;,1]. (2.3.50)
j

69



Let I; be the set
ZE():| €j

{AEQQ{L

€j

AL =0, (5(4) (4 e /0) < )

Pj
of springs (both weak and strong) where the elongation is below the ‘fracture threshold’. We
claim that the cardinality of I; satisfies the following condition:

#1;

Pl (1 — a1

>B  forj> o, (2.3.51)

for some constant 8 € (0,1] and jo € N. This can be proved through an argument by contra-
diction: we assume that for all 8 > 0 there exists jo € N such that

i1; < Bpi~ 15} "(1—a™ 1t for j > jo.

Having set

M}i A =0, (§;(A) — T (Ae/p;))? > Ej}7

Pj

i={acqn]|

€j
there follows that

815 > (1= B)py~te; (1 —a™h) for j > jo.
Hence for all j > jo we have

1 1 n—
——G;(0;Q) > —— el >

(1 _5)[);1 161 n(l _ an—l)E;_Lfl.
Pj Pj Pj

J

Since pjl-_"Gj (0;Q) <1 — a by assumption (for j large enough), we get
1-B)1—-a"H<1l-a.

By letting 8 — 07 we get 1 —a"~! < 1 — q, which is in contrast with the assumption o < 1/2.
Let A € I;. Note that by Holder’s inequality

() —uw @) < (Y @B 5B Batei/p)

BeQ: B'=A’
< H{BeQ: B=A} > (@(B)-5(B,Bu+5/p;))’
BeQ: B'=A’
< BN @(B) - (B, B +e5/p5))

c.
J BeQ: B'=A’

By summing up over A € I; we get

3 (ut (@) —u(20))® < ”JZ > (@(B) = (B Bu+ej/p)?

A€l € A€l BEQ: B'=A’
J

S ” Z Z (5J(B) - gj(B/7B7L +5j/,0j))2€;~l_2
€i Al Beq: Br=A/
hence (for j > jo)
1
(" (z0) —u™(20))* < T Pl_G(;:Q)
1 pj
n1_1n 25 G (055 Q) < cp;.

1
Bpy ey M1 —ant) el
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By letting j — 400, we get ut(z9) = u™(xg), which is in contradiction with the assumption
xo € S(u). In conclusion, our arguments imply that

g(xo) > (1 —a) for H" '-ae. zg € S(u).
Finally, by (2.3.45) we deduce that
N@) = [ gd( L S() > (1= )R (S (),
which implies the desired inequality (2.3.44):

lim inf Fj(uj; Py) = liminf A;(Q) > (1 — a)H" ' (S(u)).
J J

B.2 To estimate the contribution of u; on R$ = (Q\ E;) N{z € R" : |z,| > s} is suffices
to recall that the weak-membrane functional is always a lower bound, from which we obtain

lim inf Fj(u;; R}) > / |Vu|?de +H" " (S(u)N{z € Q: |z,| > s})
J QN{|zy,|>s}
/ |Vu|*dx (2.3.52)
QN{|zn|>s}

since H" 1(S(u)N{z € Q: |z,| > s}) =0.

Taking into account (2.3.44) and (2.3.52) and letting s — 0T, we deduce that the contribu-
tion of u; outside E; can be estimated as follows:

lim inf F(u;; Q; \ Ej) > (1 — a)H" *(S(w)) +/ |Vul|*dz,
J Q

as desired. [ ]

Remark 2.3.8 From the characterization of m; in (2.3.38), and the limit behavior of y; (de-
scribed in (2.3.33) we deduce that the ‘elongation of the strong springs’ (scaled by ¢;) at the
interface 27, (defined in (2.3.37)) asymptotically vanishes in the case n = 2, while it is finite
and given by (2.3.39) if n > 3.

2.3.5 Upper bound

We now prove the upper bound for our energies.

Proposition 2.3.9 (upper bound) For all u € PC(Q) such that S(u) C K, there ezists a
sequence (vj) such that v; € A.,(Q), v; — u in L'(Q) and

limsup Fj(v;) < F(u). (2.3.53)
J

Proof. For all j € N we denote by u; the function u; € A., () defined as the discretization of
u on the lattice Q; = ¢;Z" N Q:

uj(a) = u(a) for a € Q;.

(If a € Q; N S(u) we set u;j(a) =u(xg)). Let k € N and o > 0 be such that 28T1a < 1/2. Let
(pj) be a positive infinitesimal sequence of the form p; = 2**1ad;. By applying Lemma 2.3.4
to the sequence u; — u, we get a new sequence w; — u satisfying conditions (2.3.18)—(2.3.20).
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We want to modify the functions w; on the cubes Q, (pé», 1), l € Z;, in order to get a recovery
sequence for u. Following the notation of the lemma, we note that

L> [O‘—‘Sj]sj for all | € Z;.
€5

] =

For fixed | € Z;, we denote by zé € Ac;(R™) the minimizer of the following minimum problem:

min {Gj(vg Qc,(ady)) : v = ué-i on ﬁfj ({Cz(j]} aj) }, (2.3.54)

where G is defined by (2.3.29). We define the sequence v; € A.,(£2) as follows:

Zh(a—1) ifaEQEj([O;—(S.j}Ej,l), leZ
J
vila)=q o ifaecQ*n (Qsj(pg.,z)\Qsj([‘f}sj),z), ez,

w;(a) if ;1\ Uler Qe (Pé‘a 0).

We want to prove that (v;) is a recovery sequence for u. By construction

Fi(v;) < > Fj(vj;Qa,-(p}l))+Fj<vj;9y'\ U er(péwl))

l€Z; leZ;
Having fixed I € Z;, we focus our attention on Fj(v;; Q. (pé-, 1)). By construction:

Fj (Uﬁ QEJ- (pé" l)) < Gj(zj; Qsj (a(sj)) + 5?71ﬁ(K N Qsj (pé" l))

< GJ(ZJ;QEJ(@J‘))JFE?1(2“1@)”_1;_;
J
By summing over | € Z; we get
ST 5 Qe () £ 3 Gyl Qe ady) + (25 a) !
lez; lez;
= Z min{Gj(v;Qsj (b)) : v= ué-i on ﬁg‘zj ({Osj}aj)}

1€z,
+c(2FHa)nt
min {Gj(v; Qc,(ad;)) : v=+1on Eeij ([O;—(Sj}z?])} X
Gt — a2

x Y e @,

ez,
Having defined the scaled minimum problems
m; = &2 " min{ G (v: S)) : v = icﬁj.
j=¢; "min{G;(v; Qe (ad;)) : v==%1on L — %)
J

their asymptotic behavior is given by (2.3.41) and (2.3.42). By Proposition 2.3.5 we then get

Cr
lim sup E Fj(vj; Qe (pé,l)) < —/ lut — u”|2dH" T (28T a) L (2.3.55)
.j ler /6 S(u)
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Finally, we estimate the contribution of v; on Q; \ Ulezj Qe (pé»7 l). By Lemma 2.3.4 we have

Fj(vj; 95\ Uiez,Qz, (05.1)) = Fj(wa‘;(Qj\ U Qsj(PéJ))ﬂW)
ez,

—|—Fj (’LUj; (Q] \ U QE]’ (pé‘a l)) n Qi)
lez;
+ > ej*(wj(a) —wi(a’,e;)* Aey ™!
GEKQ(QJ\Uzezj Qaj (P_ljrl))

< Fy(u@\ U Qs 0nat)
ez,
+F} (uj; @\ U @, ()N Q*)
ler
+ > 7% (uj(a) — uj(a’,e5))? Ae}™
aEKﬂ(Qj\Ulezj ng (a2k+15j,l))

+c(a2k+1)n—1 _’_%

< FV(uy) + e(a2b )t 4 2

k

where V; := {{a,b} € M; : a € KNQ;, b =a+c¢cje,} C M,;. Taking Remark 2.2.7 into
accountwe get

limsupFVj(uj)S/ Vulde + H" 1 (S(u)).
j Q

J
There follows that

lim sup F (vj;Qj\ U @, (p}l)) < %+/ \Vul?dz + H" (S (u)). (2.3.56)
J 1€z, Q
By (2.3.55) and (2.3.56) we deduce that
Cn
B Jsw)

—i—/ |Vaul?dz +H"H(Q) + % + c(2FHa)n L
Q

liminf Fj(v;) < lut — ™ [PdH" !
J

By letting first « — 07 and then k — 400, we get (2.3.53). [

2.3.6 Limits with prescribed density of weak springs

We will show that all the constructions throughout the chapter can be repeated also with any
prescribed limit density 8 € L>°(Q; [0, 1]).

Note that in the construction considered in this section, the weak springs are until now
concentrated on a (n — 1)-dimensional hyperplane, so that 6 is identically 0 a.e. We now show
that for all given 6 our construction can be repeated with a different choice of W; such that
(2.2.5) holds.

Proposition 2.3.10 (Prescribed density of weak springs) Let F : SBV(Q) — [0, +o0]
be the functional

c
Vqux—i—/ 2t —uT P4+ 1)dH " if S(u) C K
. /Q| ras [ (G ?41) ()

+00 otherwise.

(2.3.57)

For all 8 € L>(9Q;]0,1]) there ezists a sequence of arrangements (W;) such that W; — 6,
F <T-liminf; F;, and I'-lim; F; = F on PC(Q)
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Proof. It is sufficient to prove the thesis with a choice of W} with limit density 1. The result will
then follow by comparison by taking W] C W;, W containing the weak springs in Theorem
2.3.1 and W] — 6. Note that, by the compactness of I'-convergence ([19]), we can always
suppose that I-limits exist when needed (even though we characterize them only on PC(f2)).

We fix n > 0 and N € N, and define W; = ng’N = le u sz as follows:
o W} defined as the set W, in (2.3.9) (weak springs at the interface)

e W? defined by (here we use the notation @; = (a1,...,a;-1,a41,...,0n))
W? = {{a,b} € M; : |a,| > and |by| > 1} \ {{a, b} : G :3]» € eNZ" '} (2.3.58)

is the set of all springs outside the n-tubular neighborhood of the interface and not lying between
any two neighboring points of the lattice e NZ™. In other words, the strong springs outside the
n-tubular neighborhood of the interface are exactly those on straight segments nearest neighbors
of the lattice e NZ".

Note that for this choice of W; the limit density of weak springs is 8, x given by

0 if |zn| <

We will denote by F ;“N the functional with W} as set of weak springs, and we will use the
usual notation for its localized version. To prove that the I'-limit is given by F' it suffices to
show the lower bound, since the upper bound follows by Theorem 2.3.1 by comparison since
the set W; contains the one in that theorem.

We consider now a sequence u; — u such that liminf; F’ ;“N(uj) < +00. It is not restrictive
to suppose that indeed sup; F;”N(uj) < 4o00. Note that we can apply Theorem 2.3.1 to
FJV’N(@ ), where Q, = QN {|z,| < n}, since F]”’N coincides with the energy therein on €.
In particular we deduce that the I-limit is finite only on functions u € H' (2, \ K)NSBV(£,),
and we have

(%W —u P+ 1)d”H”‘1 (2.3.60)

We now focus our attention on QN {x, > n/2} and we define the sequence v; : (2 N {z,, >
n/2})Ne; NZ™ — R as

lim‘ian;”N(uj;Qn) 2/ |Vul? dm—l—/
J

Q, S(u)

vj(a) = u;(a) for a € (AN {z, >n})Ne;NZ".
By construction (v;) satisfies

S (MU0 v g vy,
la—b|=Ne; !

By Remark 2.2.4(3) (applied to eNZ" in place of €Z™) up to subsequences, v; — v € H*(Q N
{z,, > n/2}). We now denote by x; the characteristic function of the set

U &+ (=¢/2.6/2)M),

kee; NZ™

which converge weakly* in L>°({2) to the constant N~". This implies that u;x; — N "u in
LY (Qn{z, > n/2}) and v;x; = N "0 in L} (QN{x, > n/2}). After noticing that y,u; = x;v;,
we conclude that u coincides on Q N {x,, > n} with a function v € H*(Q N {z,, > n/2}). By a
similar argument on QN {z,, < —n/2} we conclude that v € H*(Q N {|z,| > n/2}).

As a result, we have u € H'(Q\ K). By Remark 2.2.4(4), applied to QN {|z,| > n} we have

liminf F (u;; 20 {jaa] > 1)) > / Vul? da. (2.3.61)
J Qn{|zn|>n}
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Taking into account (2.3.60) and (2.3.61) we conclude that
e o, N 2 Coi v 2 n—1
liminf F"% (uy) > [ |Vu|"dz + <—|u —u "+ 1>d'H
j Q Sy~ B
as desired.

Since 0, 5 to 1 as 7 —+ 0 and N — 400, we can choose n; — 0 and N; — +oo such
that, having redefined W; = W;;j N3 the corresponding I'-limit still satisfied the thesis, thus
obtaining the desired result. Note that this last argument uses a diagonalization procedure,
which is possible by the metrizability properties of I'-convergence (see [39] Theorem 10.22,
which requires a common lower bound for all functionals with a coercive energy. In our case
that energy is the Mumford-Shah functional, after identification of the functions in A(2) with
suitable functions in SBV () — see e.g. [35]). |

2.3.7 The discrete Neumann sieve problem

We consider the energies

G =Fw— Y (o) — uld'5)? Ae) (2.3.6)
a€Q;NK, a¢Z;

for any v € A.;(A), introduced (in a local form) in (2.3.29) and used in the proof of Theorem
2.3.1

The energies G; do not take the weak springs into account, which are replaced by ‘voids’,
and are the discrete analog of the energy of a “Neumann sieve” [10], where the interface is
now free (i.e., we have Neumann boundary conditions at the interface) except for the strong
springs (see Fig. 2.3). The I'-limit of G; consists of the quadratic part of the limit of F; and is

interfacial strong springs

(ooooeee- R e <«—— limit interface K

voids

Figure 2.3: The discrete Neumann sieve

described as follows.

Theorem 2.3.11 The functionals G; defined by (2.3.62) I'-converge, with respect to the strong
convergence in L*(Q), to the functional G : L*(2) — [0, 4+00] given by

/ |Vul*dz + &/ lut —u PdH™'  ifue SBV(Q), S(u) C K
G(u) = Q B Js
+00

otherwise.
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Proof. The proof of this theorem is contained in that of Theorem 2.3.1, whose separation of scale
argument is precisely to consider quadratic and non-quadratic interactions separately. Note that
in this case we can prove the I-limsup inequality for all functions in H'(Q \ K) N SBV (),
since a mollification argument easily shows the density in energy of the set PC(Q). ]

2.4 Closure results for a class of free-discontinuity frac-
ture energies

In the previous section we have obtained as limits of discrete energies (in the sense of Theorem
2.3.1) functionals of the form

Fre(u, Q) :/ \vu|2dx+/ (14 blu* — u[2) dH"L, (2.4.63)
Q S(u)nQ

with the constraint that S(u) C K up to H" !-negligible sets, where K is the closure of an
open set A of the union of coordinate hyperplanes with H"~!(K) = H"~(A), and b > 0 is any
positive constant (by the arbitrariness of 8 in Theorem 2.3.1).

Scope of this section is to describe a wide class of GSBYV energies obtained as I'-limits of
energies of the form (2.4.63) with varying K and b. In order not to overburden the notation, in
the definition of the energies u is understood to be in GSBV (), and the energies are extended
to +oo where not explicitly defined.

Even though applying some new arguments, in this section we will use well-known techniques
in Geometric Measure Theory, so we will feel free to drop some details in order to lighten the
presentation.

Notation. We now deal with energies on the continuum, for which we find it convenient to
change the notation used in a discrete setting. In particular note that, with a slight abuse of
notation, in this section cubes will be open and not closed.

2.4.1 Energies with the constraint S(u) C K

In this section we consider varying K still converging to some K, and examine the class of
energy densities that can be obtained in this way.

1. Limit energies of the type
Fr.ap(u, Q) = / |Vul? dx + / (a+blu™ —u™[2)dH" !, (2.4.64)
Q S(u)nQ

with the constraint that S(u) C K up to H" ‘-negligible sets, where K is the closure of an
open set A of a union of coordinate hyperplanes with H"~}(K) = H""1(A),a > 1 and b > 0

We define the approximating energies as
Fj(u) = Fi; p/alu, ), (2.4.65)

where K; are oscillating fracture sites defined as follows. For the sake of simplicity it is not
restrictive to suppose that

K c {z, =0}.
For all i € Z"~! we consider the coordinate open cube 71’/? (i) of centre i and side length 1/2
in R ! and correspondingly the coordinate parallelepiped

R = Q"1 (i) x |0,

C= QL a—1 }

(n—1)v2

76



in R™. We then set

K, - U{(KU%@R?) \ (KO%@R?) % Va0 € K )
U U{aRg : % nl N C K #0, % ) ¢ K} (2.4.66)

(see Fig. 2.4).

1/j

Figure 2.4: Construction of oscillating fracture sites (two-dimensional picture)

Note in particular that we have
H LK) =" aH" LK.

Theorem 2.4.1 Let F; be the functionals in (2.4.65) and Fi o that in (2.4.64). Then
(1) for all w € SBV(Q) and u; — u we have

liminf Fj(u;) > Fk q,5(w);
j

(i) for all uw € PC(Q) there exist u; € PC(Q) with u; — u and

limsup Fj(u;) < F o).
J

PROOF. Let u; — u in L'(Q2) with sup, Fj(u;) < 400. Then we have u; — u in SBV(£2) and
u; — u in HL (Q\ K). Hence, u € SBV(Q) N HY{(Q\ K); ie., S(u) C K H" lae., and u
belongs to the domain of K.

For H" l-a.e. xg € S(u), by a blow up argument around xy we can find (up to a relabeling
of the indices j and possible extraction of subsequences) a sequence v; converging in L'(Q1(0))
(we use the notation Q1(0) = Q7(0)) to the function

u™(x) =

{u+(xo) if 2, >0 (2.4.67)

u” (zg) ifz, <O,

and sup; Fi, a/6(v;, @1(0)) < +00. Note that we then have v; — u™ in H .(Q1(0) \ K), and
that v; — u™ — 0 in L*(Q1(0) N {z, = t}) for a.a. —1/2 < ¢ < 1/2. Note that by the blow up
argument around o we can suppose that Q7 *(0) C K.
We first prove that liminf; #" 1 (S(v;)NQ1(0)) > a. Suppose otherwise that H™ (S (v;)N
Q1(0)) < a; i.e., that
H K\ S(v) >e>0 (2.4.68)

for j sufficiently large. We can find disjoint smooth one-dimensional paths ’yi in Q1(0) indexed
by y € @1(0) N K; with the two endpoints in Q1(0) N {z,, = £1/2}, respectively, such that

Q1(0) = U{’yg/ Ty € Kj}
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and H'(v]) = 14 o(1) as j — 4o0. For H" '-a.a. y € K; \ S(v;) the functions v; belong to
H'(~]). For fixed § > 0 such that

v; —u™ — 0 in L*(Q1(0) N {z, = £4}) (2.4.69)

we set

d,+ j
x5 =y N {xn =6}

and estimate

=
—~
8
Ny
+
~
I
_\)@
—
8
Mg
+
=
IN

/A |VUj|dHn_1
vy {—d<zn<d}

cﬁ(/j |ij|2d7-["_1>1/2.
Yy

IN

Integrating this inequality for y € K; \ S(v;) by (2.4.68), (2.4.69) and (2.4.67) we then obtain
lut(20) — u™ (z0)|* < climinf d |Vv;|? dz < cd,
J Q1(0)

contradicting that xg € S(u) by the arbitrariness of 4.
The same type of argument, used by comparing v; on {z,, = £} and on K; shows that

lim_inf/ |v]jE —uF (20)|PdH" ! < b

J :
J

so that indeed

lim/ |’Uj+ - vj_|2 dH™' = lim |uT(z0) — u™ (x) |2 dH" !
7 J5(0)nQ1(0) 7 JK;0Qu0)

= aluT(zo) —u (20)|*
The blow-up method of Fonseca and Miiller allows then to conclude that
lim inf F}; (u) > / |Vul? dx—i—/ (a+blut —u™[?)dH"
J Q S(u)NQ

since the inequality of the bulk part follows trivially from the lower semicontinuity of the
Dirichlet integral.

Let u € PC(Q) with Fk q5(u) < +00. To check the limsup inequality we simply extend
the restriction of u to {z, < 0} by reflexion to a neighborhood of K and denote it by @. The
sequence u; is simply given by

uj(x){ﬂ(x) if o € U{LRY < 2Q7,! () N K # 0}

. (2.4.70)
u(x) otherwise,

which satisfies the constraint S(u;) C K;, and for which the desidered inequality immediately
follows. Note that u € PC(Q). ]

2. Limit energies of the type
Fre.ap(1, Q) = / Vul? dz + / (a -+ blut — u=[2)|p(u)| dH 1, (2.4.71)
Q S(u)NQ

with the constraint that S(u) C K up to H" !-negligible sets, where K is the closure of a
relatively open set A of a union of (not necessarily coordinate) hyperplanes

I, = {{x — Ty, Vm) = 0}, me M,
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with H" 1K) = H" " 1(A), a > 1 and b > 0.
The approximating functionals will be of the same form
Fi =Fk;ap (2.4.72)

with K; subsets of coordinate hyperplanes. It is sufficient to consider the case of a single
hyperplane
K clly= {<.T —1‘0,V0> = 0}

We then consider the sets of indices

§ o= fiez %Ql(z’) NK £0, %Ql(i) A (11 \ K) = 0} (2.4.73)

g o= {icz: %czl(z') NK #0, %Qm A (1o \ K) # 0}, (2.4.74)
and define 1 )

K; = (g ;8@1(1‘)) U 8({x Lz — 20,10) > 0} N g EQl(i)) (2.4.75)

(see Fig. 2.5).

Figure 2.5: Construction of oscillating fracture sites for non-coordinate planes
Theorem 2.4.2 Let F; be the functionals in (2.4.72) and Fi o that in (2.4.71). Then
(i) for alluw € SBV(Q) and u; — u we have

lim inf Fj(u;) > Fi 0 p(u);
J

(i) for all w € PC(Y) there exist u; € PC(Q) with u; — v and

lim sup Fj(u;) < Fg q,6(u).
J

PROOF. After noting that
Hrt LK]‘ ¥ ||V0H1’Hn71 LK

the proof of the liminf inequality follows word for word that of Theorem 2.4.1, with the hyper-
plane {z, = 0} substituted by IIj.
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As for the limsup inequality, the sequence u; is simply given by

u if x € 1 ) ;L )N K
uy(a) = @) o e UG@D 5N K0 (2.4.76)
u(z) otherwise,
where @ is an extension by symmetry of the restriction of u to Q N {z : x — zg,p) < 0}. This
sequence belongs to PC((2), satisfies the constraint S(u;) C K, and the desidered inequality
immediately follows. Again, the general case is obtained by the usual localization arguments.
]

Remark 2.4.3 (generalizations) (i) The construction works exactly in the same way when
K is a subset of a smooth hypersurface, in which case v stands for the normal to that surface;

(ii) Since the construction is independent on each II,, we can choose b and a depending on
the particular index m, so that we also obtain energies of the form

Fie.ap(,2) :/ |Vu|2dx+2/ (amm + bt — u= D)o dHP— (2.4.77)
Q m ¢S ()N, N

(v the normal to I1,,), always with the constraint S(u) C K;

(iii) By localizing the construction we also may choose lower-semicontinuous piecewise con-
stant a and b, and then by approximation all lower semicontinuous coefficients a and b, with
a > 1 and b > 0, thus approximating

FK,{am},{bm}(u,Q):/ Vulzdm/() (a(x) + b(@)|ut — u PP)||v(w)|y dH ", (2.4.78)
Q S(u)NQ

always with the constraint S(u) C K.

3. Limit energies of the type
Fr p(u,Q) = / |Vu|? do —|—/ P(|ut —u)||v(w)| dH (2.4.79)
Q S(u)NQ

with the constraint that S(u) C Kup to H" !-negligible sets, where K is the closure of a
relatively open set A of a locally finite union of hyperplanes as above with H"~1(K) = H"~1(A),
and 9 : (0,+00) — R is of the form

b(z) = min{ S (@ + b)) T C {0, MY, T£0, S 2 = z} (2.4.80)
meJ meJ
where M € N is fixed, and ag,...,ap and bg,...,by are given numbers with a,, > 1 and

bm > 0.

By reasoning locally, it is not restrictive to suppose that K is a subset of a single hyperplane
{{x — x9,v0) = 0}. The approximating energies will be obtained by piling up M + 1 copies of
K, on which energies of the form (2.4.77) are considered. More precisely, we define

1/ M/j

Figure 2.6: ‘Micro-cracks’ piling up to a ‘macro-crack’
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/ |Vul? do + Z / am + bl — P |[U |1 dH™ T, (2.4.81)
S(u

+ ’VTL
with the constraint that S(u) C |, (K + %Vo). For the sake of simplicity we may suppose that
K c {z, = 0}.

Theorem 2.4.4 Let F; be the functionals in (2.4.81) and Fi 4 that in (2.4.79). Then
(1) for all w € SBV(Q) and u; — u we have

lim inf Fj(u;) > Fi 0 p(u);
J

(i) for all w € PC(Q) there exist u; € PC(Q) with u; — u and

lim sup Fj(u;) < Fg q,(u).
J

PrOOF. Let u; — w in L'(2) and in SBV with equibounded energy. It suffices to check
the liminf inequality on the interfacial part. Note that

M _ _
af (5 7) 2wt w0, w00 5w (,0)

and that by Poincaré’s inequality and the equi-boundedness of the L? norms of Vu;, for a.a.
y € K we have, upon extraction of subsequences,

m—1 _ m
() i ()
J J

forallm=1,..., M.
For all y € K we set

Jj(y):{mG{O,...,M}:u*(y,%) #u*(y,%)}

We then have, by Fatou’s Lemma,

11m inf / (G + b |u™ — ™ [2) dH™ !
7;) S(u) ﬁ(K+7en
2
— lim_inf/ (am + bm)uJ“(y, T) —u (y, @)‘ ) dH" 1
J J J
>

/ lim inf Z (am"‘bm) ?)—u_(y,%)r) dyr!

J
meJ;(

/¢|u —u”|)dH" !

Y(jut —u"])dH T,
S(u)

Y

Y%

as desired.

As for the limsup inequality, we can perform the proof in the case M = 1, the general case
following by induction. By the Lipschitz continuity of u outside S(u) and the continuity of the
functions z +— a,, + by 22, for fixed 7 > 0 we can find a function v, : S(u) — R such that v is
constant on each cube nQ} (i) N S(u) for all i € Z"~', and for almost all y € S(u)

X{vztu—} (W) (a0 + bolv(y) — u™ (W) *) + Xqorur) W) (a1 + brlo(y) —u" (y)]?)
< Yl (y) —u(W)]) + 7y,
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with 7, = 0 as n = 0. We then fix §; with

1
1>>5J2->>f
J

and define functions v} € WH*({z, = 0}) as functions with minimal Lipschitz constant
satisfying
1) = va(u) iy € 1Q; (7)1 S(w) and dist (v, (f = 01\ S(u) U @3~ (3) > .
i#£]

Vl(y) = uly,0) if y € {an = 0} \ S(u).

By construction we have

C
n
‘ij‘ < a
If we define u; as
u(x) if x, <0
uj = qvj(y) ifex=(y,t) with0<¢t<1/j

%en) if x, > 1/j,

then we have u; — u and

limsup Fj(u) < / |Vu|? da +/ Y(lut —u” ) dH ™+, H (S ().
J Q S(u)

The thesis then follows by the arbitrariness of 7. ]

Remark 2.4.5 If K is the closure of a relatively open subset of a locally finite union of hyper-
planes
Hl:{<1'—$l,l/l>:0}, ZEL,

then we can localize the argument above. The general form of the limit is then

Fre (g3 (u, Q) = / |Vu|? dz + Z/ Ur(Jut —u|)||w | dH™ Y, (2.4.82)
Q I S

(u)NI;NQ

where each 1); is of the form (2.4.80).

2.4.2 Homogenized energies

In this section we consider sequences of planar systems invading the space R™. As a consequence
the constraint S(u) C K will be lost in the limit, and will appear only through inequalities on
the limit energy densities. Moreover, by a density argument of the functions in PC(Q2) the
I-limit will be characterized on the whole GSBV(Q).

4. Limit energies of the type
F(u,Q) :/ |Vul? dx—i—/ o(v)dH" 1, (2.4.83)
Q S(u)nQ

where ¢ is any even convex function positively homogeneous of degree one with
o) = [l (2.4.84)

Note that in particular we can obtain the Mumford-Shah functionals

F.(u,Q) = /Q |Vul? do + ¢ H™ 1 (S(u) NQ), (2.4.85)
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corresponding to ¥ (v) = c||v||2 (the Euclidean norm), provided that ¢ > y/n.

To define the approximating functionals we consider a dense sequence {v : k € N} in S7~1
set
I = {z: (z,v;) = 0}, (2.4.86)

and consider the family of hyperplanes (see Fig. 2.7)

<

'

> g
—

Figure 2.7: A system of hyperplanes

1 |
{}Z"Jrﬂk:k:l,...,j} = {IU, :m € M}, (2.4.87)

where M; is a set of indices such that II7, # an, if m # m’ (we can directly take M; =
Z" x {1,...,j} if all vy are irrational directions: i.e., if tvy, € Z™ only if ¢t = 0).
We then take
K= |J 1, (2.4.88)
meM;

and F} defined as in Remark 2.4.3(ii) by FKj){aanbzn}(u, Q), where

, 1 . ,
ay, = ———¢,) and b, =0;
[ |1
i.e.,
Fy(u) = / VulPdr+ Y ad, M (S(u) N, N Q) (2.4.89)
Q2 meM;

always with the constraint S(u) C K;.

Theorem 2.4.6 The functionals F; in (2.4.89) I'-converge to the functional F,, in (2.4.83).
Moreover recovery sequences can be constructed in PC(£2).

PRrROOF. To prove the liminf inequality it suffices to remark that if Fj(u;) < +oo then
Fu) = [ [VuPdot [ ) dn = Faw)
Q S(u;)NQ
so that the desired inequality immediately follows from the lower semicontinuity of Fi,.

To prove the limsup inequality by approximation it suffices to treat the case when u €
PC(Q); in particular S(u) is a finite union of n— 1-dimensional simplexes with disjoint closures.
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If S(u) = K is a single simplex in
HO = {<.’17 - $07U0>} with g € KO,

then we find a neighborhood U of K, choose v, with k; < j converging to vp and z; € %Z”
converging to zp, and smooth invertible ®; € Id +C§°(U; U) with

®; — Id in WH(U;R™)

and
®;(Ko) =x; + Rj(Ko + (z; — o)),

where R; is a rotation such that R,y = v;. Then, we set
-1
uj(z) = u(®; @),

so that S(u;) C {(x — z;,1,)} (note that this hyperplane is of the form I17,), and
lim sup F) (1) = / IVl da + (oYK" (Ko) = F(u).
J Q

If S(u) is composed of more than one simplex then the same construction must be repeated
locally, taking care of choosing disjoint neighborhoods. ]

5. Limit energies of the type
Fy(u,Q) :/ |Vu|2dx+/ Y(jut —u”))dH" (2.4.90)
Q S(u)nQ

where 9 is any concave function on (0, +00) with

inf ¢ > v/n. (2.4.91)

Note that this constraint is optimal, and derives from the inequality

¥(2) = |,

which must hold for all z > 0 and v € S7~1.

Since 9 is concave, we can find two sequences {a;} and {b;} such that
Y(z) = inf{a; +b;2% 1 j=0,1,...}

for all z > 0 (see Fig. 2.8). Moreover, the convergence is uniform on bounded subsets of (0, +00).

////// g

e

z

Figure 2.8: Approximation of a concave function
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Note that a; > \/n and b; > 0 for all j. We define ¢; as in (2.4.80) by

b;(2) = min{Z(al +0z2) s T {0, g), T£0, S = z} (2.4.92)

leJ leJ

We have 1; > 9 and 1; — ¢ uniformly on bounded sets of (0, +00).
We consider the hyperplanar networks {II/, };mens, as in (2 4.87), and their union as the
corresponding K; defined in (2.4.88). Denoted by v, the normal to 1 EA

W) = — () (2.4.93)

[

min{Z( o +”b ) J c {o,. ..,j},J#@,Zzl:z}.

ie7 vl I e

Since a; > v/n > |[v||1 for all v € S™~! the functions 97, satisfy the hypotheses of Remark
2.4.5 (with the system of planes {II7, } in place of {I;}). The functionals F; are then defined
by Fye. rpi, }(u,Q) in (2.4.82); namely,

Fj(u)

/|Vu|2dx+ 3 /S W (ut — )|l dH Y (2.4.94)

meM; (u)ﬁH,nﬂQ

[vars 3 f Uyt |,
S

meM; (w)NIIZ, NQ

with the constraint S(u) C Kj.

Theorem 2.4.7 The functionals F; in (2.4.94) T'-converge to the functional Fy in (2.4.90).
Moreover recovery sequences can be constructed in PC(2).

PRrROOF. To prove the liminf inequality it suffices to remark that, since ¢; > v, if Fj(u;) <
400 then

Fu) 2 [ Vot [ wuf gt = Fo(w)
Q S(uj)ﬂQ

so that the desired inequality immediately follows from the lower semicontinuity of Fy.

To prove the converse inequality, we can follow the same construction of Theorem 2.4.6. For
the functions u; defined therein we have

IN

lim sup Fj(u,)
J

lim( |Vu|2dx—|—/ wj(\u+—u7|)d7-[”71>
J Q S(u)

/|Vu|2dx+ ot — ) dH
Q S(u)

by the uniform convergence of 1; to ¥ on bounded sets of (0,+00) (recall that we can always
assume u in L™ by a truncation argument). ]

Remark 2.4.8 (a wider class of surface energy densities) Theorem 2.4.7 is sharp on the
set of concave target functions . The same proof holds for a wider class, namely that of non-
decreasing lower-semicontinuous subadditive functions that can be written as an infimum of
functions v; as in (2.4.80). It is not clear if there is a more transparent characterization of this
class, which is strictly larger than the class of concave functions, containing for example

_ : ; 1 2.5
wl(z)f\/ﬁmm{]Jr}z .]71,2,...}
(the subadditive envelope of \/n(1 + 22)), and

Pa(2) = Vi min{l + 2,2},
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or if these are all the accessible energy densities.
Note that not all subadditive non-decresing functions are in this class, as for example

Jn ifz<1
1/)3('2){2\/5 if 2> 1

(all functions ¥ such that sup® < 2infe are subadditive), which does not seem to be an
accessible target function.

2.4.3 Locally inhomogeneous energies

We can reach all energies of the form
F(u) = / \Vu|? dz + / a(x)Y(jut —u™ (v (u)) dH" (2.4.95)
Q S(u)NQ

with a lower semicontinuous with a > 1, ¢ concave with ¢ > 1, and ¢ convex and ¢(v) > ||v||1
on S"~!. The approximating energies can be easily constructed by localizing the arguments in
the previous sections.

2.4.4 Proof of Theorem 2.2.2

We are eventually in the position to prove Theorem 2.2.2 using a diagonal procedure. Since all
functionals we considered have the weak-membrane functional as a lower bound, we can use the
metrizability of I'-convergence ([39] Theorem 10.22), and a diagonal argument to deduce that
there exists a sequence of sets K; such that the energies F, ; defined as in (2.4.63) I'-converge
to the energy F in (2.4.95).

We call that if u € PC(£2) then the recovery sequences constructed in Section 2.4.1 again
belong to PC(2), while again we have used a density argument with that set in Section 2.4.2.
As a consequence, also the functionals

H (u) . FKi,b ifue PC(Q)
Kb ] 4+ otherwise

I’-converge to the same F'.
On the other hand, Theorem 2.3.1 ensures that for all 7 there exist a family W;J such that

i

) WE 1 . . .
the I'-limit F** of F, 7, which we can always suppose exists up to subsequences, satisfies
Fr,» < F' < Hg, , (2.4.96)

so that also F* T-converges to F. 4

We then conclude the existence of W, = WEZJ] satisfying the thesis of Theorem 2.2.2 by
a diagonal argument. Finally, note that again by Theorem 2.3.1, for given 6§ we can always
suppose that the limit density of WEZJ is ¢ for all 4, and then that this holds also for W, . [
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Chapter 3

Phase transition in presence of
surfactants: from discrete to
continuum

3.1 Introduction

The free energy of a system where two or more phases coexist can be altered by the presence of
low concentrations of a surfactant (a contraction for surface-active-agent), a substance which, by
being adsorbed onto the interfaces, may significantly reduce the surface tension of the system.

In order to give a variational description of the effects caused by the presence of surfac-
tants in phase-separation phenomena, several attempts have been made to model the physical
system both as a continuum and as a discrete. Among the continuum theories, the first descrip-
tion of phase transitions in presence of surfactants has been developed by Laradji-Guo-Grant-
Zuckermann (see [50, 51]), who suggested a variational model involving a two order parameters
Ginzburg-Landau functional. Several generalizations have been later considered by Gompper
and Schick in [49]. In [50] and [51] one of the two order parameters represents the local differ-
ence of density of the two phases (as in the standard Cahn-Hillard model in the gradient theory
of phase transitions), while the other one represents the local surfactant density. The two order
parameters are energetically coupled to favor the segregation of the surfactant at the phase in-
terface. The coarse-graining analysis of this model has been performed through I'-convergence
methods by Fonseca, Morini and Slastikov in [47], while the mathematical analysis of more
general continuum models is the subject of [1].

Many of the discrete models are variants of the one which was originally introduced by
Blume, Emery and Griffiths (BEG) in [15] (see also [49] and the references therein); this chapter
deals with its variational analysis in the framework of I'-convergence. In their seminal paper,
Blume, Emery and Griffiths introduced a simple nearest-neighbors spin-1 model as a variant of
a classical Ising type spin-1/2 model, with the aim of describing a different kind of phenomena,
namely He3-He* A-transitions. In the setting of phase transitions in presence of surfactants,
BEG model can be briefly described as follows. On the two dimensional square lattice Z2, we
consider a ternary system driven by an energy which is defined on functions parameterized on
the points of the lattice and taking only three possible values (which we may suppose to be
—1,0,1). We can identify the values of u with three different phases (in particular, the value 0
is associated with the surfactant). Omitting the chemical potentials, for a given configuration
of particles, the free energy E of this system is given by

E(u) ==Y u(a)u(b) + Y _ k(u(a)u(b))?, (3.1.1)

n.n.

where n.n. means that the summations are taken over all nearest neighboring sites; i.e., the



elements a, b of the lattice such that |a —b| equals the lattice spacing. The constant k > 0 is the
quotient between the so-called bi-quadratic and the quadratic exchange interaction strengths;
its range will be specified later on, such as the scaling factor for the energy.

In this chapter we will perform a I'-limit analysis of these functional. As a result, we will
be able to describe the behavior of the ground states of the BEG system as € tends to 0. More
precisely, let 2 C R? be a bounded open set and let us consider the scaled energies

E.(u) = Z £2(—u(a)u(d) + k(u(a)u(b))?). (3.1.2)

Here the array {u(a)} can be seen as a function defined on £Z? N €. Upon identifying such
functions with their piecewise-constant interpolations, the energies E. can be interpreted as
defined on (a subset of) L!(); we can then develop a I'-convergence analysis in the framework
of L*(€2). As € tends to 0, the I-limit F of E. is particularly simple: under the trivial constraint
lu| < 1, it is constantly equal to the minimum value 2|Q2|(—1 + k) A 0, corresponding to the
uniform states. By choosing k£ < 1 we set the uniform states u = £1 to be the ground states.
Having fixed k < 1, the asymptotic behavior of E. implies that a sequence (u. ). can arbitrarily
mix the uniform phases —1 and 1 at a mesoscopic scale, though keeping its energy equal to the
energy of the uniform states plus an infinitesimal function, as ¢ — 0 (the asymptotic analysis
of the bulk scaling of more general spin-type models has been performed in [5]). Thus, in order
to get a better description of the ground states, in the spirit of development by I'-convergence
(see [21], [28], [4] and [2]), we select sequences which attain the minimum value with a sharper
precision, meaning that

E (ue) = c. +O(e),

where c. is the absolute minimum of E.; i.e., c. =Y., €*(k —1). For such configurations the
limit states u will take the values +1 only. The limit energy will be an interfacial-type energy:
it can be interpreted as the surface tension of the system which undergoes a phase separation
phenomenon between the phases {u = —1} and {u = +1}. At this scaling, it is necessary to
further specify the values of the parameter k, so that the phase 0 can be actually considered
a surfactant phase (meaning that it contributes to lower the surface tension). In particular it
can be easily shown (see Section 3.3) that, for % < k < 1, the energy for a transition from
phase —1 phase to phase +1 is lowered when the surfactant is at the interface. Moreover, the
measure of the phase 0 vanishes as we pass to the limit. This scaling is usually referred to as

low surfactant concentration regime. Thus, we study the rescaled functionals

ED (u) := Belw) —ee _ Yo et —u(@)u(d) = k(1 — (u(a)u(b))?).

3
a,bceZ?nQ
la—bl=¢

Note that the interaction between to particles of the same type —1 or 41 has zero energy, while
the interaction of a surfactant particle 0 with any other particle is repulsive and ‘costs’ the
positive value 1 — k. For this reason, the BEG functional is also said to describe a repulsive
surfactant model. In Theorem 3.3.2 we show that E.") I'-converges (in the L!(2)-topology) to
the interfacial-type energy functional

EMW(u) = Y(vy)dH?,
S(u)

where u € BV (Q;{£1}), S(u) is the (essential) interface between the sets {u = 1} and {u =
—1}, vy, is the inner normal to S(u) and ¥(v) = (1 — k)(3|v1| V |va| + 1] A |ve|) denotes the
anisotropic surface tension of the model.

Note that in this topology the limit order parameter u does not carry any information
about the surfactant phase. Actually, the role of the surfactant becomes clear when looking
at the minimizing microstructure leading to the computation of the surface density 1. In this
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direction, a natural further step in the analysis of the BEG model is the study of the dependence
of the surface tension on the concentration of the surfactant. The literature on this subject is
wide, both from the physical and the chemical point of view (see for example [49] and [54]).
However, no rigorous description of the microscopic geometry of the surfactant at the interface
is present in literature; all the previous documented attempts to study this problem are based on
numerical computations or on heuristic arguments. In order to rigorously address this problem,
we need to go beyond the standard formulation of the BEG model. In particular, the functional
which describes the energy of the system has to depend explicitly on the distribution of the
surfactant particles. To this end, we set

Ip(u) ={a € Q. : u(a) =0}

and we introduce the surfactant measure

wlu) = Z €0q.

a€lp(u)

Then, with a slight abuse of notation, we can extend EW to LY(Q) x M4 (Q) — [0, +00] as

(1) if =
EW ) = e (u)  if p=p(u)
e () {—l—oo otherwise.

In order to track the energy of the surfactants, we extend the functionals by decoupling the
order parameter of the model. In the continuum setting, instead, the functionals were extended
by introducing an additional variable (see [47] and [1]). The space L!(Q) x M, () is endowed
with the topology 71 X 72, where 71 denotes the strong topology in L'(2) and 7, refers to the
weak *-topology in the space of non-negative bounded Radon measures M, (2). In Theorem
3.3.3 we prove that ES) I-converges (with respect to 71 X To-topology) to the functional EM .
LY(Q) x MT(Q) — [0, +00] defined as

d,Lt 1 .
ol —=——, v JdH + (2k = 2)|p®|(QY) ifue BV(Q;{£1
E(l)(u,u) _ /S(u) (del LS(u) ) ( )| |( ) ( { })

400 otherwise,

where ¢ : R x ST — [0, +00) is computed explicitly. Looking at the graph of ¢ (Figure 3.2),
it stands out that an anisotropic threshold phenomenon occurs at the phase interface. Indeed,
for a fixed v € S, the surface tension o(z,v) decreases up to a certain value of the density
z of the surfactant, namely z = |v1| V |v2|. As the density of the surfactant increases further,
two events can happen: if the surfactants are not absorbed onto the interface, the surface
tension remains constant and the singular part of the surfactant measure increases; otherwise,
the surface tension increases. As an application of Theorem 3.3.3, at the end of Section 3.3
we study an optimization problem in which the volume fractions of the different phases are
prescribed.

The variety of models of phase transitions in presence of surfactants studied in the physi-
cal/chemical literature suggested that we should widen our analysis. In Section 3.4, we consider
the case of a n-dimensional discrete system, driven by an energy accounting for quite general
finite-range pairwise interactions, in the presence of different species of repulsive surfactant
particles. For such a general system, we obtain an integral representation result for the I'-limit,
in the spirit of homogenization theory, and we study some properties of its limit densities.
Namely, given 2 C R" and v : eZ™ N Q) — K we define the functional F; as

Fu= Y el (b_a,u(a),u(b)).

€
a,b€eZ’nNQ
la —b| < Re
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Figure 3.1: The local microstructure of a ground state of the BEG model at a fixed straight
interface (the dashed line normal to v) for three different values of the density of surfactants at
the interface. Black, white and grey dots stand for the 0, +1 and —1 values of the spin field w,
respectively.

where R > 0 is an interaction threshold and K = {m1, ma, s1,82,...,sm} C R describes the
finite number of phases in the system. Moreover, f : Z" x K2 — [0, +00) satisfies some sort of
discrete isotropy condition (see Remark 3.4.1 and 3.4.5) and is such that {(m1,m1), (me, m2)}
are absolute minima of f(z, -, -). In order to study the discrete-to-continuum limit of this system,
we introduce a notation which describes the subsets of ). corresponding to the different types
of surfactant. For [ € {1,2,..., M} we set

M
Li(u):={aeQ.: ula) =3}, I(u):= U Ii(u)

and we define

m) = S 60 () = (o), pa (), par ().

a€l;(u)

We then extend F. to L'(Q) x (M, ()M — [0, 4+o0] as

Fo(u) if p=p(u)

3.1.3
+00 otherwise. ( )

F.(u,p) := {

The space L'(Q) x (M4 (Q))™ is endowed with the topology 71 x T2, where 71 denotes the
strong topology in L!(Q2) and 75 stands for the weak*-topology in (M, (€2))*. In Theorem
3.4.4 we prove that F. I'-converges to the functional

f fhom (d?—[nfdiiu\_s(u)’y(u)) dHn—l + fQ ghom(:us)
S(u)

Flu,p) = for u € BV(Q; {m1,ma}), p = grmbigry B S(w) + 15 (3.1.4)

400 otherwise.

The limit densities from and grom are given by two asymptotic homogenization formulas, stated
in (3.4.21) and (3.4.22). Whereas the formula for fhem can be derived through a standard
argument in homogenization theory, this is not true for gpop,. We will need to combine some
abstract arguments of measure theory with a reflection construction, which uses the discrete
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isotropy assumption on the interaction densities, in order to prove that gpen, is well defined (see
Remark 3.4.5).

It should be noted that in our models the surfactants are represented as point-like particles,
with no internal structure. More general models have been developed: they describe the surfac-
tants as polar molecules with heads and tails interacting differently with the same phase (see
[36], [56] and [49]). In that setting, it is known that the presence of surfactants in a mixture
may lead to self-assembling and that a number of different microstructures may appear, even
with non-trivial topologies. Hopefully, the analysis performed in this chapter may provide the
basis to address the discrete-to-continuum limit for those systems.

3.2 Notation and preliminaries

In what follows, given z,y € R™ we denote by (z,y) the usual scalar product in R™ and we set
|z| = v/ (z,z). Moreover we denote by |- ||; the l;-norm in R™ defined as ||z|; = |z1]|+- - +]|zn]-
Given t > 0, we write [t] for the integer part of ¢t. For any measurable A C R™ we denote by
|A| the n-dimensional Lebesgue measure of A. Let Q be a bounded open subset of R with
Lipschitz boundary. For fixed € > 0 we consider the lattice eZ™ N Q) =: Q.. Given K C R we
denote by A.(Q; K) the set of functions

A K) :={u: Q. = K}.

Remark 3.2.1 A function v € A.(Q; K) will be identified with its piecewise-constant inter-
polation still denoted by u and given by u(z) = u(z%), where 25 € Z" is the closest point to x
(which is uniquely defined up to a set of zero measure). In this definition, we set u(z) = 0 if
z € eZ™\ Q. In such a way A.(Q; K) will be regarded as a subset in L(€).

We denote by H"~! the n — 1-dimensional Hausdorff measure. Given v = (vq,...,v,) € S"~!
we set

Qy = (_ru7ru)na
where r, > 0 is such that
HHQuNIL) =1,
with II, := { € R® : (x,v) = 0}. We drop the dependence on v whenever v = e; for
i€{1,2,...,n} and we set Q := Q., = (—3, %)n
For any T' > 0 we set
OE(TQ,) == {x € )TQ,) : +(x,v) >0}

and then we introduce the discrete boundary of T'Q, as
0F(TQ,) :=={a€eZ"NTQ, : (a+ [~Re, Re]") N 0*F(TQ,) # 0}.

Next we recall some basic properties of BV functions with values in a finite set (see [8] for a
general description of the subject). Let A be an open subset of R™ and let J be a finite subset
of R. We denote by BV (A;J) the set of measurable function v : A — J whose distributional
derivative Du is a measure with bounded total variation. We denote by S(u) the jump set of u
and by v, (x) the measure theoretic inner normal to S(u) at x, which is defined for H"~! a.e.
z € S(u).

We now recall a compactness result in BV (see [8]).

Theorem 3.2.2 Let u, € BV (A;J) such that
sup H" 1 (S(ug)) < +oo.

Then there exists a subsequence (not relabelled) and uw € BV (A; J) such that uy — u in the L
convergence.

If Q is a cube we will denote by BV#(Q;.J) the set of Q-periodic functions belonging to
BVipe(R™; J).
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3.3 The Blume-Emery-Griffiths model

In this section we briefly introduce the Blume-Emery-Griffiths model for phase transitions in
presence of surfactants.

3.3.1 A brief description of the model: from bulk to surface scaling

In its standard formulation the Blume-Emery-Griffiths model can be described as follows. Given
a bounded open set Q C R? with Lipschitz boundary, we consider the set A (Q; {£1,0}) := {u:
Q. — {£1,0}}, where Q. = Z2N(). The sites on which u = £1 corresponds to particles of water
(or oil), while the sites on which u = 0 correspond to particles of surfactant (in this framework
the scale is not precisely specified and the term particle means generically a molecule or an
aggregate of molecules). We then introduce the family of energies B9 (u) : A.(Q; {+1,0}) — R

Efw) = Y E(ul@u(d) + k(u@)u(b)?), (3:3.5)
a,b € Qe
la—0bl=¢

where k > 0 is a parameter which measures the relative strength of the quadratic vs the bi-
quadratic interactions. The asymptotic analysis of such a family of energies, as € tends to 0, is
particularly simple and can be obtained through a dual lattice approach as in [2]. Indeed, by
identifying the functions u € A.(€Q;{%1,0}) with their piecewise constant interpolations (see
Remark 3.2.1), we first extend the energies E'** in (3.3.5) to a functional E. : L*(Q2) — [0, +-oq]
as

E (u) =
=(u) 400 otherwise,

{Egatt(u) if A (Q; {£1,0})
and then compute the I'-limit of (FE.) with respect to the weak topology in L!((2).
As a result one obtains that the following Theorem holds true:

Theorem 3.3.1 The family (E.) T'-converges with respect to the L'(2)-weak topology to the
functional E : LY(Q) — RN {+oc} defined as
Bu) {2|Q|(k “DA0 ifue LN[-1,1)
400 otherwise.

Let us comment the previous result in the interesting case when £ < 1. In this regime the
lattice energy is minimized by the two pure states u = +1 and all the deviations of the order
parameter from these states count at order €2 in the discrete energy. This implies that, in the
continuum limit, it is possible to obtain, with finite energy, any value of the order parameter
w in [—1,+1] by arbitrarily mixing the two ground states on a mesoscopic scale ¢ < § < 1.
In particular this makes the energy of a phase separation negligible. More precisely, a phase
transition from a bulk —1 phase to a bulk +1 phase, separated by an interface of finite length,

has an energy of order . This suggests the correct scaling to track the energetic behavior of a
phase separation phenomenon. We observe that the absolute minimum value at scale € is given

by
me = Z e2(k—1).
a,b e Qe
la—0bl=¢

In order to get a richer description of the ground states we select the configurations corre-
sponding to functions u. which attain the minimum value with a sharper precision; i.e., such
that

Ea(ua) =me + O(E)-
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In other words this amounts to study the family of discrete energies BM LY(Q) — [0, +o<]
defined as

1 o E.(u) - Me
Eé )(U> =T
> e(1 —u(a)u(b) — k(1 — (u(a)u(b))?) if u € A (2;{0,41}),
EM (u) = ﬁ;b_ilﬂi . (3.3.6)
+00 otherwise.

Having picked this scaling, the measure of the surfactant phase has to be negligible in the
continuum limits. Namely, it is easy to see that, since each interaction with a surfactant
particle pays a positive energy 1 — k, the following estimate

EM(u) > #{a € Q. :u(a) =0}e(1 — k) > g\{x € Q:u(x) =0}

implies that the measure of the surfactant phase scales as €. As a result, the finite energy states
u will only take the values £1.

Moreover, it is possible to further specify the values of the parameter k£ in such a way that
the phase 0 can be actually considered a surfactant phase, meaning that it lowers the surface
tension in the continuum limit. To obtain an estimate on the values of k, we can proceed by
computing the energy for a transition from —1 to +1 in the simple case in which the interface
is a straight line parallel to one of the directions of the lattice (say e1). Suppose for simplicity
that Q = @ and that the interface is the set {z € Q : (z,e2) = 0}. Our estimate is obtained
by comparing the energy for such a macroscopic transition when the microscopic structure is
given by either u. or by v., where

ue(a) = {+1 if (a,e2) >0

—1 otherwise.

and
+1 if (a,e2) >0
ve(a) =<0 if (a,e2) =0
—1 otherwise.
We have:
EM(u) = 2+0(1)
EM(v,) = 3(1—k)+o(1).

If we require that Eél)(vs) < Eél)(ue), then the interface energy is lower for the the microstruc-

ture with the surfactant. This turns into the condition k& > % In Theorem 3.3.2, we will see
that such an estimate is sufficient to deal with the case of a more general interface.
Finally, we remark that the previous heuristic derivation of the range of parameter k leads

us to refer to this scaling as low surfactant concentration regime.

Theorem 3.3.2 Let + <k <1 and let (Eél))6 be the family of functionals defined as in (3.3.6).
Then we have

(i) for any sequence (u:) C LY(Q) such that

sup EW (u.) < C < 400
€
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there exist (ue, )ken and w € BV (Q;{£1}) such that
Ue, — U for k — 400
with respect to the L'(Q)-topology;
(ii) the family of functionals (Eél)) T-converges with respect to the L' (2)-topology to the func-
tional EM) : LY(Q) — [0, 400] defined by

By = | [, peat ifue BV@i (1) 337)

400 otherwise,
where ¥ : ST — [0, +00) is given by
(V) = (1 =E)Bln| V[ve| + 1] Alra]).

Proof. For the sake of simplicity we will derive the proof as a consequence of Theorem 3.3.3.
The compactness result in (i) is a straightforward consequence of the analogous result stated in
Theorem 3.3.3(i). In order to prove the I'-liminf inequality, let us first note that the function
©(+,-) defined in (3.3.10) satisfies

min{p(z,v) : 2 € Ry} = @(jm| Vv |val,v) = ¢ (v).
Hence the functionals E(M (-, ) defined in (3.3.9) verify
EW(u,p) > EM(u), for all (u, ) € BV (% {£1}) x MT(Q)

Let u. — u in L'(Q). By Theorem 3.3.3(i), we may assume that j(u.) — u weakly in the sense
of measures. Then

lim inf EM (u.) > ED (u, p) > ED (u).
€

By a density argument it suffices to prove the I'-limsup inequality for a function u with a
polyhedral jump set. Since the construction is local it is enough to consider u = u,,, where u,
is defined in (3.5.76). For such a function the optimizing sequence is given by v. (%), where
v, is defined in (3.5.77), with z = |11] V |va]. |

3.3.2 Low concentration of surfactants: discrete-to-continuum limit

As seen in the previous section, in the topology we chose the limit order parameter u does
not carry any information about the surfactant phase. Actually, the role of the surfactant
becomes clear when one looks at the minimizing microstructure leading to the computation of
the limiting surface density ¢. In this direction, a natural further step in the analysis of the
BEG model is the study of the dependence of the surface tension on the concentration of the
surfactant. To address this problem, we need to go beyond the standard formulation of the
BEG model and let the energy functional of the system depend explicitly on the distribution
of the surfactant particles. To this end, for all u € A.(€; {0, £1}) we set

In(u) ={a € Q. : u(a) =0},

and we introduce the following surfactant measure

wulu) = Z €dg.

a€lp(u)

Then, with a slight abuse of notation, we can extend EY to a functional B LY(Q) x
M4 (@) = [0, +00] as

O e

] (3.3.8)
+00 otherwise.
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We endow the space L'(2) x M () with the topology 71 x T where 71 denotes the strong
topology in L'()) and 75 denotes the weak*-topology in the space of non-negative bounded
Radon measures M ().

The following Theorem holds.

Theorem 3.3.3 Let Egl) be defined as in (3.3.8). We have:
(i) let e, — 0 and let (ug, ux) € L1(Q) x M (Q) be such that

Sup B (g, ) < +oc.

Then there exist a subsequence (not relabeled) such that (ug, pi) — (u, 1) with respect to
the 71 x T3 topology, for some (u,p) € L*(2) x M1 ();

(ii) the family (Es(l)) I'-converges with respect to the T X T topology to the functional EM)
LY(Q) x M, (Q) — [0, +00] defined by

f o
ED(u,p) = Jsq " \dH[S(u)’

400 otherwise,

)d%l 2k — 2)p0|(Q)  ifue BV(Q;{£1})

(3.3.9)
where, for any p € My (Q), p® indicates p® == p — %’Hl LS(u) and the function
0 :Ry x St — [0, +00) is given by

o(z,v) = max{p1(z,v), p2(z,v), p3(z,v)}, (3.3.10)
with
pi(z,v) = —dkz +2(|ni] + |va),
p2(2,v) = (1=3k)z+2(ln] V[re|) + (1 — k)([na] A |v2]),
p3(z,v) = 21 —=k)z+ (1= Fk)(jra] + [v2]).

We postpone the proof of this Theorem to Section 3.5, since it makes use of the integral
representation result stated in Theorem 3.4.4.

Remark 3.3.4 Looking at the graph of ¢ (see Figure 3.2), it is clear that an anisotropic
threshold phenomenon occurs at the phase interface. For fixed v € S' the surface tension
©(z,v) of the system may decrease only up to a certain value of the density z of the surfactant,
namely z = |v1| V |v2|. If the density of the surfactant increases further, then two cases can
occur: either the surfactant is not absorbed onto the interface and then surface tension remains
constant, or the surfactant is absorbed by the interface and the surface tension increases. In
the first case, the singular part of the surfactant measure increases.

As an application of the previous result, one may study the asymptotic behavior, as ¢ — 0, of
the following constrained optimization problem:

me = {ED (u), etlo(u) = ac, 4L (w) = B}, (3.3.11)

where
IL(u) ={a € Q. : ula) =1},

lim; . = a > 0 and lim, 8. = 8 > 0. Since we are not interested in boundary layer effects, we
consider the case in which € is a torus and we identify it with the semi-open cube Q := [0,1)2,
assuming that the admissible functions v in (3.3.11) are Q-periodic. In addition, we let e = 1/k,
k € N. The solution to this problem is a particular case of the result stated in Corollary 3.4.11
(see Remark 3.4.12).

95



o(z,v)
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Figure 3.2: The graph of the surface tension density ¢(z,v) as a function of the density z of
surfactant at the phase interface.

3.4 More general models

In this section we consider a class of energies that generalizes those involved in the BEG model
and in which long range interactions and different types of surfactant are taken into account.

Let Q C R™ be a bounded open set with Lipschitz boundary. We consider the family of
functionals F. : A.(Q; K) — [0,400) defined by

F.(u) = 3 en iy (b — % w(a), u(b)> (3.4.12)

3
a,beQ., |a—b|<Re

where R > 0, K = {my, ma, s1,82,...,5m} CR, M €N, and f:Z" x K? — [0, +00) satisfies
the following conditions:

F7H0) = Z7 x {(m1,m1), (ma, ms)}, (3.4.13)
f(R¢ u,v) = f(&,u,v) forallie {1,2,...,n}, (3.4.14)
where R¥(&1,&0,...,&,...,&) = (&1,&, ..., —&y ..., &) is the reflection with respect to the

i-th coordinate axis. Moreover we define a localized energy for every A C ) as

F.(u,A) = Z "y (b ; a7u(a), u(b)) . (3.4.15)

a,be ANeZ™, |a—b|<Re

Remark 3.4.1 We remark that (3.4.13) implies that the pure phases u = m;, i = 1, 2, are the
ground states of the energy F.. Assumption (3.4.14) is a sort of discrete isotropy condition on
the energy density; in particular, it is satisfied if f(&,u,v) = f(|¢],u,v).

Remark 3.4.2 We observe that the functional Egl) defined in (3.3.6) is a special case of
(3.4.12), with

—uv — k(1 —uv)? if &€ = de;, i€ {1,2}

) (3.4.16)
0 otherwise.

It satisfies assumptions (3.4.13) and (3.4.14) with K = {£1,0}, m; = —1 and ms = 1.
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We now set a notation to describe the sets of points in 2. corresponding to the different types
of surfactant and we introduce suitable measures associated to them. For [ € {1,2,..., M} and
A C Q, we set

L(u,A) ={a€e ANQ.: u(a) = s},

M
I(u, A) = | Ii(u, 4).
=1
For the sake of simplicity, let I;(u, Q) = I;(u) and I(u,Q) = I(u). Moreover we define

wi(u) = Z e" 15,
acl;(u)

p(u) = {p (), po(u), ..., par(w)}. (3.4.17)

With the identification given in Remark 3.2.1 and a slight abuse of notation, we can extend F;
to a functional F. : L} () x (M ()M — [0, +o0] as

F.(u) ifue A (QK), p=plu)

3.4.18
+00 otherwise. ( )

FE(’UHM) = {

We endow the space L'(Q) x (M (2))M with the topology 71 X T2 where 71 denotes the strong
topology in L () and 75 denotes the weak*-topology in (M (2))™. The choice of this topology
is suggested by the following compactness result.

Proposition 3.4.3 Let e, — 0 and let (ug, pi) be such that

sup Fy, (ug, p) < +00.
k

Then there exists a subsequence (not relabeled) such that (ug, px) — (u, p) with respect to the
1 X T2-topology, for some (u, ) € BV (Q;{m1,ma}) x (M (Q))M.

Proof. Firstly, note that
H* (S (ur)) + () < CF, (un, ). (3.4.19)
By Theorem 3.2.2 and the estimate
{z € Q: uk(z) & {m1, ma}}| < Ceppr(Q) — 0,

we easily get the conclusion. [

3.4.1 Main result

In this section we state and prove an integral representation result for the I'-limit of the family
F.. To this end, we introduce for any £ > 0 and v € S~ ! the class of discrete functions

BA(TQ,; K) = {u € A(TQ,; K) : u(a) =my for all a € 33 (TQ,), u(a) = my for all a € 97 (TQ,)}.

Theorem 3.4.4 The family (F.) T-converges with respect to the 11 X To-topology to the func-
tional F : LY(Q) x (M4 (Q)M — [0, +o0] defined by

F(u, p) = S(fu) Fhom (”‘%MLS(“)’ V(u)) AU+ Jo gnom () if u € BV (% {mth(;;)A.QO)

+o0 otherwise,
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where, for p € (M4 (Q)M, we set p* = p — W“LS(U)H”’%S(U). Here, from : (R )M x
St —[0,,+00) is defined as

fhom (Zy V) = lim lim

Jim lim o inf {Fl(u,TQl,) cueB(TQ, K), (3.4.21)

#4(wTQ,) | _ 5}

1e{1,....M} ’ Tn—1
while ghom : (Ry)M — [0, 4+00) is 1-homogeneous and, for any ¢ € (R4)M such that ||(||; = 1,
is defined as

— 2z

ghom(C) = 51_i)%1+ %Iilirg inf {m tue A (TQ, K), (3422)
Fi(u,TQ\ (T — R)Q) #14(u, TQ)

-G

#1(u,TQ) <O e ’#I(u,m) = 5} '

Remark 3.4.5 We observe that, while the formula for fy,, can be proved by using standard
arguments in homogenization theory, the same does not hold for gpom. In particular, as it will
be clear in the proof of Theorem 3.4.4, optimizing sequences for from(2,7) can be constructed,
as it is usual in this framework, by ”periodically gluing” a solution of the minimum problem on
TQ, given in (3.4.21). In such a construction, the energy due to the interactions which cross
the boundary of the periodicity cell is asymptotically negligible thanks to the Dirichlet type
condition we are allowed to impose by using a De Giorgi’s cut-off construction (see Lemma
3.4.1). The same arguments do not apply to grom- In fact, for this term, we cannot be sure
that, imposing the same type of boundary conditions, we do not modify too much the energy
of minimal configurations in (3.4.22) since the distribution of the phases m; and mgy for such
configurations is not known. This fact rules out the standard ”periodic gluing” construction.
Instead, we first make use of an abstract argument from measure theory which allows us to prove
that the minimal configurations do not concentrate energy at the boundary of the periodic cell
and then, by using hypothesis (3.4.14), we construct optimizing sequences for gjom (¢) through
a reflection argument (see the proof of Proposition 3.4.9).

Before proving Theorem 3.4.4, we point out some properties verified by from and gpom. In the
next Proposition we prove that the homogenization formula for fj., is well defined.

<a}.

Proof. For simplicity of notation we develop the proof in the case v = e,, but the argument
obviously applies to the general case. We recall that we set Q := Q., = (—%, %)” Let us define
#1(u, TQ)

Ir(z,0) := inf {Fl(u,TQ) cu € B (TQ;K), le{llnaXM} Tt A

Proposition 3.4.6 For any z € RM, v € S"~! and § > 0 there exists the limit

. 1 ) ) #1(u, TQ,)
TETOO Tnt inf {Fl(u, TQ,): uve B (TQ,; K), le{rlr}?i(M} T

< 5} . (3.4.23)

Given n > 0, let up € B1(TQ; K) be such that le{rlnaXM} w — zl‘ < ¢ and

Fi(ur,TQ) < Ir(z,6) +n.
Let ur be extended on the stripe ((—Z,Z)"~! x R) NZ" by setting
. T .
ur(a) =my if a, > oL ur(a) = mg if a,, < 3
Let us set 7 := 2 [g] For S > T, let vg € B1(SQ; K) be defined as

A ~yn—1
vs(a) = ur(a) ifae{_TT,...7%} X 7,
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and then extended by periodicity in the eq,...,e,_1 directions as
vs(a+jTe;) =vg(a) forall jeZ, ie{l,....,n—1}.
Note that, for S large enough, we have

#Il (US7 SQ)
T -z < é.

Hence, splitting the energy into two terms, the first one accounting for the interactions in-
_z 7"
272
interactions which cross the boundary of the same cells, we get

side each periodic cell of the type [ + jTe,;, and the second one accounting for the

1 1 1 781! -
WIS(276) S Snlel(vS7SQ) S Snfl |:T:| (F](uTaTQ)+CT )
TS CT" 2479
< S {T] (WIT(Z’5)+W1 :

By letting first S and then T' go to 400, by the arbitrariness of n we finally get

1
Tnfl

1
lim sup WIS(Z’ 0) < liminf Ir(z,9).

S—+o00 T—+o0

]

In the next Proposition we prove growth and convexity properties of the functions fre, and

Ghom- We remark that, in the proof the I'-convergence result, we will only use the continuity

of from and gnom and that their convexity will be a consequence of the lower semicontinuity of

the I'-limit. However, the proof of the continuity will rely on the same argument we use here
with no relevant simplification.

Proposition 3.4.7 Let from and grom be defined as in (3.4.21) and (3.4.22). We have:

(i) the 1-homogeneous extension of from in (Ry)M x R™ is convex. Moreover there exists
C' > 0 such that

from(z,v) < C(|z| + 1), for all (z,v) € (Ry)M x s"~1L, (3.4.24)

(1) Ghom is convex.

Proof of (i). By the 1-homogeneity of from the proof of its convexity reduces to prove that,
given v, v (2 € Sl and 2,21 22 € (R, )M such that (z,v) = I; (), vM) 41y (23, (),
for l1,ls € R, we have

From(2:0) < Ui from (1,00 + 1o from (2@, v2). (3.4.25)

Without loss of generality, for simplicity of notation we prove (3.4.25) under the assumption
that I1,lo >0, v=-e,, W 1@ c{z cR": 2y = =x,_5 =0} = I, (v, @) >0 and
the ordered base {v), ()} has the same orientation as {e,,e,_1}. Given > 0, let § > 0,
T> %, up € Bi(TQ,m; K), us € B1(TQ,; K) such that, for i € {1,2} it holds

1 . .
Tt (ui, TQyy) < fhom(z("), u(l)) +n

TTL
#(ui, TQ,») ()
AN s 2 A 5.
1e{1,....M} Tn—1 s
Fori € {1,2} we set r; := 7, so that Qo) = [~ %,
[_

%)%, Let u; be identified with its piecewise-
constant interpolation and extended to R™"~2 x T[—%,

%, %)% by periodicity in the {e1,...,e,—2}
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T
Figure 3.3: The zig-zag construction leading to ug in the proof of Proposition 3.4.7. On the
right, a zoom in on one of the triangles on the left.

directions. Moreover we set L; := H'({z € 1 : = = t(vD)+, t e R} NQ,») and (vW)L+ =
0,...,0, Y, —ufﬁl). We can then further extend u; by periodicity in the direction ()1 as
T T

wi(e+ L)) = wi(z), xR x LEJZ (715 512 + L)),

We now use a zig-zag construction to define a suitable test function us € B1(SQ; K), with
S > T, for the minimum problem occurring in the definition of fjom(2,v) (see Figure 3.3).
Let Vi={z ¢ R": 0 <,y <1}, IIF := {x € R* : £(z,v) > 0}, v € S"!, and let
w:V — {my, ma} be defined as

w(m) _ {ml ifxe 1_.[2_(1) U (Hj@) + ll(l/(l))L)
mo otherwise.

Let ¢1,co > 0 be such that ¢; Tlfl = CQTTIZQ =:r. Let u: R™ — R be the re,_;-periodic function

defined in rV as

uy () if 0 <2, 1 <[el]TLi(v ™M, e,)
uw(z) = Qup(x —ren_1) ifr—[ca]TLa(vP,e,) <y <7
w(¥) otherwise in rV,

extended by periodicity in the direction e,,_;. We define ug € B1(SQ,; K) as follows:

us(a) = u(a) fae(S—R)Q,NZ"
S uy(a) otherwise in SQ, NZ™.

Now it is possible to estimate the energy of ug:

1 1 &[S g 1"? )
WF:[(US,SQV) < W; [7‘} [ci] {Trj (F1(ui,TQ,,<i)) +CT" )

+ csm2 (3.4.26)

Sn—l

where the term of the type CT"~2 is the energetic contribution due to the interactions near
each set of the type O(TQ,w ) N 1II,), while the term of the type C'S™ 2 accounts for the
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interactions near 9(SQ, ) N1II,. By construction we have that for [ € {1,..., M}

#D(us,5Q) 1 =[S s 12
Gn—1 = gn-1 Z - [ci] T #1(ui, TQ,w)) + o(1). (3.4.27)
i=1 v
Taking into account the definition of ¢; and the fact that r?_zLi =1, we get
1 [s S1"7% _ hL+Cp
Gl [r} [ci] [TT} < o (3.4.28)

provided that T" and S are large enough. Hence, by (3.4.27) ug is a good test function for the
minimum problem defining f},om (2, 7). By (3.4.26) we obtain

fhom(za V) S llfhom(z(1)7 V(l)) + lthom(z(z)a V(Q)) + Cnv

which implies (3.4.25) since 7 is arbitrary.

Proof of (it).  In order to prove (3.4.24), we observe that the energy Fi(u,T'Q),) can be
rewritten as

FwTQ)= Y fb—au(a)u®)+F" (u,TQ,), (3.4.29)
(a,b)eD(u)

where
D(u) := {(a,b) € (Z" OTQV)2 :0<|b—al <R, ula) #ub), {u(a),u(d)} = {mima}}.

Here F7"" is the energy accounting only for the contribution due to the interactions of sur-
factant particles. Since f is bounded, the first term on the right hand side of (3.4.29) is
proportional to #D(u). Hence, since each particle has only an equi-bounded number of in-
teractions, F7“"(u,T'Q,) is proportional to #I(u,TQ,). Then the estimate (3.4.24) is proved
by choosing, in the problem defining fyom(2,v), any test function u such that #D(u) ~ CT™ 1.

In order to prove (i), by the 1-homogeneity of grom, it suffices to show that, given ¢W ¢ ¢
(RM with |V = |€®]|y =1 and ¢ € (0,1) we have

Grom (B + (1 = 1)CP) < tgrom(C) + (1 = t)ghom (C?). (3.4.30)

For any § > 0 and ¢ € (R )M with ||¢][; = 1, we set

g(6,¢) := liminfinf {Fl(u’TQ) u e A (TQ; K), (3.4.31)

T—+o00 #I(U, TQ)
Fi(u,TQ\ (T — R)Q) #1(u, TQ)
#1(u, TQ) <O e ’#I(mT@) = 5} '

Given § > 0 and 7 € {1,2}, let u; € A(TQ; K) be such that

-G

Fi(ui, TQ) (i) Fi(u;, TQ\ (T — R)Q)
Fi(u, 7q) =9 T i 1Q) 0
#1(u;, TQ) )

Having set C~ =1 M 4+ (1 —-1¢)¢ (2), we build a suitable test function for the minimum problem
defining ¢(9,¢). Let S = kT with 1 < k € N. Let h € N be such that h < k and

[t = A(R)| <6, (3.4.33)
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where
_ h#1(uy, TQ)

Without loss of generality we can assume that 7" is an even number. We extend u; by reflection
with respect to the coordinate axes. Namely, we set u; o = u; and we define u; ; by recursion

A(R)

for all j € {1,...,n}: u;; is the extension of u; ;—; on RJ x [—L, %}nﬂ satisfying
. T T n—(j—1)
u; j(a) = u; j(a+ (T —2a;)e;), forallaecRI™tx [2, 2} +mTe;, meZ.

Thus the function u; , extends u; to the whole Z". By the symmetry condition in (3.4.13), we
have
Fy (4, TQ+m) = Fi(u;, TQ) for all m € Z". (3.4.34)

Let u: Z™ N SQ — K be defined as

urp(a) if —S5/2<a, <—-5/2+h
u(@) =9 .
ug,n(a) otherwise.

By (3.4.32) and (3.4.33) we get:

#1(u, SQ) _¢ K" ht L (ua, TQ) + k"1 (k — h)#1(u2, TQ) iy
#1(u,5Q) ' krTh (un, TQ) + k7 (k — ) #(u2, TQ)
#L(n,TQ) (1) _ #h(u2, TQ) (2
= AW 1)~ T g, Tg)
+(ICP 1 VIICP11)s
< @+ [IKV v ICP )6,
We now estimate the energy i}(&gg))
Fy (’LL, SQ) < knithl (ul, TQ) + knil(k — h)Fl (’LLQ, TQ)
#1(u,5Q) #1(u, SQ)
+Ri1 + Rs. (3.4.35)

Here the first term on the right hand side derives from (3.4.34). Moreover R; is the energy due
to the interactions which cross the set SQ N {z, = —% + h}, where in the construction of u we
switch from uy to ug, while Ry accounts for all the other interactions which cross the boundary
of the cubes of type T'Q) + m with m € Z. An easy computation shows that

k-l T
<(— < (—.
B < Cs0) < %

In addition, by (3.4.32) we get

R UA TQ\ (T — RIQ) + Kk — h)Fi(us, TQ\ (T — R)Q)
g F1(u, 5Q)
k"fthl(ul, TQ \ (T — R)Q) + knfl(k - h)Fl(UQ,TQ \ (T - R)Q)
A L, TQ) + (k= ) (12, TQ)
Fi(un, TQ\ (T — R)Q) Fi(u2. TQ\ (T — R)Q)
Q) AT, Ty

Ry

A(h)

IA
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The first term in the right hand side of (3.4.35) can be estimated analogously. Then, by (3.4.32),
(3.4.33) and the upper bounds for R; and Ry, we get

Fi(u,5Q) A(R) Fi(u1,7TQ) Fi(u2,TQ)
#1(0,5Q) I, TQ) Fl(,TQ)
< 1g(6,¢0) + (1= 0g(8,¢?) + C6 + 7).

+ (1= A(h)) + Ry + Ry

Letting k£ tend to 400 we get
9(C6,¢) < tg(8,¢') + (1 = 1)g(6.¢*)) + 4.

As § — 0, we obtain the desired inequality. [
The proof of Theorem 3.4.4 will follow by Propositions 3.4.8 and 3.4.9 in which we prove the
I'-lim inf and the I'-lim sup inequality, respectively.

Proposition 3.4.8 (I'-lim inf inequality) We have

I-liminf F,(u, ) > F(u, 1) (3.4.36)
e—0

Proof. Let e, — 0. Up to subsequences, it suffices to consider (ug, pix) — (u, ) with respect
to the 71 X T»-topology such that

limkinf F., (ug, pg) = lilgn F., (ug, pg) < +o0. (3.4.37)

By Proposition 3.4.3 we know that v € BV(Q;{mi,ma}). We now consider the family of
measures (A;)r C M4 () defined as

A= Y > enlyf (b;ka,u(a),u(b)> Sa- (3.4.38)

a€Q:, beQ., : la—b|<Rey,

Note that A\ (Q) = F., (ug, ux). Then, by (3.4.37) there exist A € M, () such that A\, — A
upon passing to a subsequence (not relabeled). We now use a blow-up argument. By the Radon-
Nikodym Theorem, y can be decomposed into two mutually singular measures in (M (Q))M

p=2H"S(u) + p® = 21 S (u) + (et
and A can be decomposed into three mutually singular non-negative measures

A= EH TS (u) +llptfl + A7,
M
with ||p®]|1 := > pf. The proof is complete once we show that
=1

E(x0) > from(2(20), vu(20)), for H" '-a.e.xq € S(u) (3.4.39)
and

N(x0) > Grhom({(x0)), for |p’|-a.e.xzg € Q. (3.4.40)

The proof of (3.4.39) and (3.4.40) will be performed in two steps.
Step 1. Proof of (3.4.39).
By the properties of BV functions (see [9]), for " !-a.e.x¢ € S(u) we have
1
(i) lim — lu(x) — ut(xo)| dz =0,

n
P20 p w0+pru(mo)

103



1
(i) lim
p—0+ pnT

TH" (S (W) N {0 + pQu, 00y }) = 1

(iti) €(x0) = lim ——A({zo + pQu(o0r})

p—0+ pnT

(iv) 2(20) = lim ——p({zo + pQu(e0)})-

p—0+ P

For such a z¢ € S(u), let (p.,) be a positive infinitesimal such that

A(a{xo + meyu(%)}) =0 and \u|(8{m0 + meuu(wo)}) =0.

By (i) and (iii) we get

. 1 . 1
f(xo) = lgln pn_l A({IO + meuu(zo)}) > hrgl hlgn FFEk (uk7 {zO + PmQuu(wo)})-

m m

By (iv) we have

o1
lim hin = p(ur){xo + pmQu, (w0 }) = 2(0)- (3.4.41)

m

Note that, for every m and k we can find p,, ; and mlg € €, Z" such that limy prmr = pm,
limy, x’g = x¢ and

erZ™ N ({x’O“ + pm,kQuu(mo)}) =, Z" N {(E() + meyu(Io)}7

which implies
F, (ur, {wo + Pvau(:co)}) =F, (ur, {xlg + pm,kQuu(xo)})~

Then,
— 1
€(wo) > limlim —= Fe (uk, {6 + pm.k Qo (20)})- (3.4.42)
m,k
Let
k €k n
Um, k(@) = ug (25 + pm ka), a€ ——7Z"NQy,(z)
Pm,k

and

Since u — u in LY(Q), by (i) we get
lim liin [t k() — up(z)| dx = 0. (3.4.43)
Moreover, by (3.4.41) we have

liy{Ln lilgn (U k) (Quy (20)) = 2(Z0) (3.4.44)

Note that (3.4.42) can be rewritten as

&(xg) > limlilgnFsik (Um,k, Quy (20))- (3.4.45)

Pm .k
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Let us show that the mass of p(um 1) does not concentrate near 0Q,,, (,,) for m and k large
enough. Given 6 > 0, by (iv) there exists p(d) such that for all p < p(d) and for alll €
{1,..., M} we have

4]

P (z(wo) — g) < (o + PQuy (we)) < " (21(x0) + 1)'

Let m(d) be such that p,,, < p(§) for all m > m(d). Then, for every ¢t € (0,1] we get:

) ]
(tom)" " (21(wo0) = ) < (@0 + tpmQu, () < ()" (21(w0) + 7). (3.4.46)
Thus, for all ¢ such that |u|(zo + 9(tpmQyu, (z4))) = 0, by (3.4.46) we get
1) (xO + (meuu(zo) \ tmel/u(Zo))) = (130 + meuu(wo)) — M (130 + tmeuu(aco))
4]
< ot (e -+ 3) (3.4.47)

Let ¢(5) < 1 be such that for every [ € {1,..., M} we have z(0)(1 — (t(6))"~!) < $. Then, by
(3.4.47), for every t € (¢£(4),1)) we get

(o + (meuu(JJo) \tmeVu(IO))) < ép?nil (3.4.48)
Set ¢(d) := 1%@ and let t,, € (£(6),£(0)) be such that |u|(zo + O(tmPmQu, (z0))) = 0. Thus
lilgn p(ug)(zo + (mevu(zo) \ thmQuu(mo))) = p(wo + (PmQuu(zo) \ thmQuu(zo)))

and, by (3.4.48), we may conclude that for any m > m(d) there exists k(m) such that for every
le{l,...,M} and k > k(m) the following condition holds:

(1) (0 + (@ (20 \ EO)pm @ ))) < 001 (3.4.49)
Hence, by (3.4.49) we infere that for m and k large enough
111 (U k) (Quy (o) \ E(0)Qu (o)) < 0. (3.4.50)

Taking into account (3.4.43), (3.4.44), (3.4.45) and (3.4.50), by a standard diagonalization
procedure we can then find a sequence of positive numbers s; — 0 and a sequence w; €
As; (Qu,(20): K) such that w; — ug in L'(Qy, (,)) and

lm u(10,)(Qu, ) = (z0) (3.4.51)

(W) (Qu, (o) \E(0)Qu, (wy)) <0 forall 1€{l,... M}, (3.4.52)

5(;50) > lijlil st (wj7 Qvu(ro))'

Then, by Lemma 3.4.1, we can find a sequence (v;) C Bs,(Qy, (0); /) such that (3.4.64)
holds and

&(xo) > 11?1 Fs; (v, Quy (o)) (3.4.53)

Moreover, by (3.4.51), (3.4.52) and (3.4.64) we have that for j large enough

|11 (v;)(Qu, (20)) — 21(w0)| < 6 forall 1€ {1,...,M}. (3.4.54)
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Set Ty 1= [ L] and let ; € B1(TjQu, (vp): K) defined by
vj(a) :=wv(sja) a€Z"NTjQy, (z0)-
Then (3.4.54) implies that for j large enough

#1,(9)

n—1
Tj

| <d forall €{1,...,M}

and (3.4.53) reads

. 1 .
(o) > hjm WFI (Uja TjQyu(wo))~
J

Hence (3.4.39) immediately follows by the definition of fj,.,, and by Proposition 3.4.6.
Step 2. Proof of (3.4.40).
For |p®|-a.e zo € © we have

i Ao Q)
(v) o) = Iy o 20

. oy MEo+pQ)
(vi) Clwo) = limy o =0y

Fix such a g € Q and let (p,,) be a sequence of positive numbers converging to zero such that

AO{zo + pmQu, @) }) =0, [ul(0fz0 + PmQu, (w0)}) =0

By (v) and (vi) we get

)

Ak (o + pm @)

) = B T o + @ (3459
() = lim T~ @0+ Pm@) (3.4.56)

m ke lp(u)l1 (2o + pmQ)

We now show that for a suitable sequence k,,, € N the mass of A\, does not concentrate near

By the inner regularity of A, given § > 0, for any p > 0 with A(9(z¢ + pQ)) = 0 there exists
t(p) such that for all ¢t € [t(p), 1] we have

0 < Ao + pQ) — Mo + Q) < 8l (0 + pQ).
Let ty, € [t(pm), 1] be such that A(8(zo + tmpm@)) = 0. Then
)\(xO + (me \ tmme)) = )\(.’170 + me) - )\(370 + tmme) < 5”#”1(1’0 + me)

In particular, since limy, Ag (2o+(pmQ\tmpm@)) = AMzo+(pmQ\tmpmQ)) and limy, [|p(us)||1 (zo+
pm@) = el (o + pmQ), we have that for k large enough

k(o + (pm@Q \ tmpm @) < 8|l p(ur) 1 (zo + P Q).

Hence, by the previous inequality and by (3.4.55) and (3.4.56), we can find a sequence k,, such
that eg,, < pm and

A, (o + pm @) Fe (U, o + pm@Q)

n(xO) - hgln ”N(ukm)”l(lio + me) Z hgln ||[L(Uk;m)”1(l‘o + me)7 (3457)
C(wo) — lim W) @0+ Pm@) (3.4.58)

m [ u(ur,,) (2o + pm@)
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Ak (20 + (Pm Q@ \ tmpm@)) < 8|p(ur,, )1 (20 + pmQ);
Reg,, < pm(1 —tm).
Note that the two last inequalities imply that

Fey,, (ks w0 + (pm@\ (pm — Rew,,)Q)) < 6llp(up,,)

1(zo + pm Q) (3.4.59)

Observe that, for every m we can find p,, with lim,, /’jm =1 and 27’ € ey, Z" with lim,, z7* =
xg, such that

Ekan N ('1:81 + p~'"LQ) = 6kan N (1‘0 + me)

which implies
Fakm (ukm » L0 + me) = FEkm (ukm ’ 336” + ﬁmQ)
w(uk,, ) (@o + pmQ) = pluk,, ) (20" + pm@Q)-
Set Ty, 1= L= and let iy, € Ay (T,,Q; K) be defined by

U (a) = ug,, (0" +eg,,a) a € Z"NT,Q

Note that, by definition, ||p(tm)||1(A) = #I (G, A) for any A C R™. Then (3.4.57) and (3.4.58)
read

. Fl (ﬂma TmQ)
n(xo) > h;}l F (i T Q)" (3.4.60)
o (i) (@)
C(zo) = hnrln (i Tr Q) (3.4.61)
Moreover, by (3.4.59), we get
Fy (i TnQ \ (T — R)Q) < 6L (i, T Q). (3.4.62)

Hence, (3.4.40) immediately follows by the definition of gjom, taking into account (3.4.60),
(3.4.61) and (3.4.62).
|
Set, for v € 5" 71,

if 0
T L (3.4.63)
me if (z,v) <0.

Moreover we recall that we have set Q, = (—r,,r,)".

Lemma 3.4.1 Let s; — 07, v € S™! and let w; € As;(Qu; K) be such that w; — w, in
LY(Q,). Then there exist v; € Bs,(Qy; K) such that

v; =u, on @y \ Qj, (3.4.64)
where Q; = (—rj,7;)" C Qy, for some r; > 0 such that lim;r; =r,, and

limjinf Fo, (wj, Q) > limjinf F, (v,Qy). (3.4.65)

9 = / lw; —u,|dz
Q

v

Proof. Set
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Let k; € N be such that

; 1
% << kj << — (3.4.66)
S5 Sj
and set, for i € {0,...,k;},
Ty .
’I"; = |:S]:| + (’L — kj)M

Then we get

(5j2/ |wj—ul,\dx22/_ lwj — u,| de.
Q.\QY im0 YQ5TN\Qi

Hence, there exists i; € {0,...,k; — 1} such that, set S; := Q;ﬁ_l \ Q;j, we have
d; > kj/ lw; —uy|dx > Ckjsi#{a € s;Z" N S; 1 w;(a) # u,(a)}.
S

By (3.4.66), there follows that
5?71#{(1 eNZ NS wj(a) # uy(a)} — 0. (3.4.67)
Let, then, v; € B, (Q,; K) defined by

v(a) = wi(a) ifae€s;Z"N Q;»j
P Y uw(a)  otherwise.

Thus, by (3.4.67), we get
Fy(v,,Q)) < Fy(0;, Q%)+ Fy, (uy, Qu \ QF)
-‘rCs;.L’l#{a € s;Z" NS5 wj(a) # uy(a)} < Fj(wj, Q)+ o(1),
from which we get the conclusion. -

Proposition 3.4.9 (I'-lim sup inequality) We have

D-limsup F.(u, p) < F(u, p). (3.4.68)

e—0

Proof. We will use the notation F” := I'-lim sup F..We split the proof in several steps.

e—0

Step 1. Claim: (3.4.68) holds for every (u, ) € BV (€; {m1,ma}) x (M (Q))M such that S(u)
is a polyhedral set and p is of the form p = H" 1| S(u) + Zjvzl w;6,,, where ¢ : Q — RM is
a piecewise-constant function, N € N and, for all j € {1,2,..., N}, w; € (Ry)M and z; € Q.

Since the construction we provide is local, without loss of generality, we prove the claim in the
particular case u = u,, and p = Z’Hﬁ;(i) +wdy with v € S~ 1 2z w € (Ry)M. Here, without
loss of generality, we also suppose 0 € €. Note that

F(u, 1) = from (2, v)H" " (S(w)) + grom (C)l|wll1,

where ¢ = W By the lower semicontinuity of F”, in order to show (3.4.68), it suffices to

prove that there exists (p1;); C (M4 (2))M weakly converging to p as j — +oo such that, for
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every j € N, there exists u. € A.(Q; K) such that (u., p(u.)) = (u, ;) with respect to the
T1 X To-convergence and

limsup F.(ue) < F(u, p) + % (3.4.69)
€

For simplicity of notation we provide the construction of such u. in the case v = e, the same
argument applying to the general case. Such a wu. will be obtained by scaling the periodic
extension of an optimal function for the problem defining fp,m in a neighborhood of S(u)
and a proper extension of an optimal function for the problem defining gn,, in a suitable
neighborhood of 0.

Let 0 < §; < %, T; >0, u; € Bi(T;Q; K) and v; € A1 (T;Q; K) be such that

#ilv 1,€) | #h( 1Q) | s
te(tna0) ot =% ettt | #1(v;, T,Q) G =0
T!j’r}lFl(uJ’T]Q) < thm(Z7en) + %,

Filv;, T,9) 1

F(0,.1,Q) Ihom() + 5

Fi(v;, T;Q\ (T; — R)Q) o5
#I(szTjQ) -

Without loss of generality we choose T; to be an even number. With a slight abuse of notation
we consider u; to be extended by periodicity to Z". Moreover we extend v; by reflection with

respect to the coordinate axes. More precisely we set v; o = v; and, for all k € {1,...,n}, we
n—k
define v; , recursively as follows: v; ;, is the extension of v; ;—1 on Rk x [—%, %} satisfying

the following property

n—(k—1)
T, T;
— J] + hTjer, he€Z.

vik(a) = vjp(a+ (Tj — 2ay)ex), foralla € RF! x [ 5y

We have then obtained that the function v;, extends v; on all Z". Let us observe that, by the
symmetry hypothesis in (3.4.13), we have that

F1(vj,T;Q + h) = Fi(v;, T;Q) for all h € Z". (3.4.70)
Let @, : eZ™ — K be defined as

mi if a,, > 5%
e(a) = Quj (2) if lan| <el
mo if a,, < —5%

and set

3=

_ [wlly
o [(6"—1#1(%@@) ] : (3.4.71)

Note that @ — u, in L'(Q) and that ek. — 0. We now define u. : eZ" — K as

ue(a) = {U-j’n (%) lf a E EkETjQ

U (a) otherwise.

Then u. still converges to u, in L'(). Moreover, by construction, we have that u(u.) — pu? €
(M ()M where, for [ € {1,2,..., M},

i _ #0(u;, T;Q)

M #1;(v;, T;Q)
1 T;z—l

HLS )+ (v, T;Q)

[[w!|1d0-
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We can now estimate the energy of u.. Taking into account the invariance of the energy under
integer translations and (3.4.70), we get

Fe(ue) < {W] " P (uy, T5Q)

+  kIe"TUFR(v), T;Q) 4+ CkLe™ T Fi(v;, T;Q \ (T — R)Q) + o(1),

where the third term in the right-hand-side is obtained by estimating the energy due to the
interactions that cross the boundary of each cube of size €T} contained in e K. T;Q. By (3.4.70)
we eventually have

Fo(ue) < [W] eyt (fhom(z,en) . ;)

+ ke (v, TiQ) (ghom(g‘) +C8; + j) +o(1)

The conclusion follows passing to the limsup as € tends to 0, taking into account (3.4.71).
Step 2. Claim: (3.4.68) holds for every (u, i) as in Step 1 but with ¢ € C(Q;RM).

Let ¢ be a sequence of piecewise constant functions such that ¢, — ¢ with respect to the

LY(S(u); H"1) and let py = @ H" 1S (u) + Z;y:l w;0,,. Then py, — p, and by the convexity

and growth properties of from(+, ) stated in Proposition 3.4.7, F(u, pg) — F(u, ). Eventually,
by the lower semicontinuity of F”'(u, ) and by Step 1, we have

F'(u,p) < limkinf F" (u, pr) < limkinf F(u, p) = F(u, p).

Step 3. Claim: (3.4.68) holds for every (u,u) € BV (Q;{mi,ma}) x (M4 (2))™ such that
p=pH" 1 S(u) + Zjvzl w;6,, with ¢ € C(Q;RM),

Let uy € BV(Q;{m1, ma2}) be such that ux, — u in L*(Q; {m1,ma}), S(ux) is a polyhedral set
and H" (S (ug)) — H*L(S(u)). Let pp = oH™ 1| S(ur) + Zjvzl w;0,,. Then we have that
pr — pand || H" 7S (ur)(Q) = |e|H 1 S(u)(Q). Then, by the convexity of from stated in
Proposition 3.4.7 and by Reshetnyak’s theorem we have that F'(ug, pr) — F(u, p). Hence we
conclude as in Step 2.

Step 4. Claim: (3.4.68) holds for every (u, u) € BV (;{my,ma}) x (M4 ().

Let ¢ € C(;RM) be such that o — ¢ in L*(S(u); H" 1)) and let pj = Zjvzl w;6,; be such
that pg — p® and |pg|(Q) = [#5](2). Let then uyp = @M 1| S(u) + pj. We have that up — p
and, by the convexity and growth properties of fj,om (-, ) and the convexity of gnom stated in
Proposition 3.4.7, applying Reshetnyak’s theorem we get that F(ug, ux) — F(u, p). Hence we
conclude as in Step 2. ™

3.4.2 Prescribed volume-fractions

In this Section we study a generalization of the constrained minimum problems introduce at
the end of Section 3.3.2 in the case of the BEG model.

In what follows we set Q@ =[0,1)", ey = ¢, k € N (for simplicity of notation we will drop the k
and write ¢ instead of ),

A#(Q; K) := {u: eZ™ — K : u is Q-periodic}
and define F# : A¥(Q; K) — R as

FAu)= )" > e" ' f(& u(a), ula + £8)).

[§|<Ra€Qe
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Given o = (ay,az,...,apy) € RM and B € R, let a. = (a1¢,02¢,...,apn) — a and B — B
as ¢ — 0. We define the set of admissible functions A%"#(Q; K) as

AP (O K) = {ue AF(QK): " '#I(u, Q) = oy forallle {1,..., M},
e"#Im, (u, Q) = B |,

where we have set I, (u, Q) := {a € Q. : u(a) = m1}, and consider the family of minimum
problems

mgs,ﬁs = mlIl{Fs#(U) LU e A?)B(Q7 K)}

Note that if u € A%#=(Q; K) then p(u.)(Q) = a.. We are interested in studying the limit,
as € — 0, of m®#. To this end, we introduce the family of functionals F% : LT (R"; K) x
(Mf(Rn))M — [0, +00] defined as

FF(u) ifue A2oP(Q K), = p(u),
400 otherwise,

Féxe,ﬁg(wu) = {

where u € A%P<(Q; K) is identified with its piecewise-constant interpolation on the cells of
the lattice eZ™, p(u) is the surfactant measure defined in (3.4.17) and Mﬁ(R") is the space of
Q-periodic non negative Radon measures. We endow the space L} (R"; K) x (Mf(R"))M with

loc

the convergence 71 x 7o where 71 denotes the strong convergence in L}, .(R™) and 7, denotes

the weak*-convergence in (M (R"))™. Then the following Theorem holds.

Theorem 3.4.10 The family (F2<%<) T-converges with respect to the 7| x T convergence to
the functional F*P : L} (R™) x (Mf(R"))M — [0, +00] defined by

loc

Flu.p) if we BVFR" {mi,ma}), {z € Q: u(x) =mi}| =5,

FOB(u, 1) = and p(Q) = a,
400 otherwise,

where

Fum = [ fon (gt @) a4 [ gnn(a),
)

Q

_1|_

S(u)NnQ

W= p— Cm%‘m%”_l |S(u), and the densities from and gnom are defined in (3.4.21) and
in (3.4.22).

Proof. Tt is easy to show that if u. € A%#<(Q; K) and (u.,u(u:)) — (u, ) with respect to
the 71 x 7o convergence, then (u, ) € BV#(R"™; {my,ma}) x (/\/lf(}R”))M7 Hz € Q: u(x) =
mi1}| = B and (Q) = a. The I'-liminf inequality follows by Theorem 3.4.4.
The proof of the opposite inequality can be obtained by following the lines of the proof of the
I'-lim sup inequality of Theorem 3.4.4, with some extra care to show that the recovery sequence
ue for (u,p) € BV#(R™; {my,ma}) x (Mf(R”))M such that u(Q) = a and |[{x € Q : u(z) =
m1}| = B can be slightly modified so that u. € A%< (Q; K). |
As a consequence of the previous Theorem, by the standard properties of I'-convergence
(see e.g. [19] and [39]), we derive the following result about the convergence of the family of
minimum problems defined above.

Corollary 3.4.11 We have:
hgnm?f’ﬁs =min{F(u,pn), {z € Q: u(x)=m} =8, u(Q) =al.
Moreover if (u.) C A%P(Q; K) is such that
lign Fs"‘i’ﬁe (ueg) = lign m?f’ﬁf,

then any cluster point (U, ) of (ue, p(ue)) with respect to the 11 X T2 convergence is a minimizer

Jor min{F(u, ), {z € Q: u(z) =mi}| =3, n(Q) = a}.
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Remark 3.4.12 The previous Corollary applies to the case of the BEG model, f(§,u,v) being
defined in (3.4.16) and the limit energy densities from and gpom being given by

fhom(zay) :SD(Zal/)7 ghom(1> :2<1_k)7
with ¢ defined in (3.3.10).

3.5 The Blume-Emery-Griffiths model: proof of Theorem
3.3.3

By Remark 3.4.2, the functionals E( ) satisfy all the hypotheses of Proposition 3.4.3 and
Theorem 3.4.4. Hence the compactness result asserted in (i) follows by Proposition 3.4.3.
Moreover the integral representation result stated in Theorem 3.4.4 holds true for the I'-limit

of Eél). Thus, in order to conclude, it is only left to prove that, for all (z,v) € Rt x S,
from(2,v) = p(z,v),
Jhom (1) = 2(1 — k). (3.5.72)

Without loss of generality we prove (3.5.72) for vy, 5 > 0.
Step 1 (lower bounds). In this Step we prove the following two inequalities:

.fhom(zv V) > @(za V)a

Let us first prove the lower bound for fre,,. Without loss of generality we consider 7" to be an
even number. Let J; 7, Jo 7 be the following sets of integers:

nr={- L[]+ [ -0 52

na={=[F)-[5 ][50 [F)

Let u be an admissible test function in the problem defining from(z,v) in (3.4.21); that is
u € B.(TQ,;{£1,0}) and

‘w - z’ < 0. (3.5.74)

We define
JYp(u) ={i € Jir: 3 j € Zsuch that (i,5) € Io(u)}

and
J9p(u) ={j € Jo,r: 3 i€ Zsuch that (i,5) € Io(u)}.

Note that, by (3.5.74), for i € {1,2}
#J)p(u) < #1o(u, TQ,) < (2 + 0)T.

The proof will be the result of the following three estimates.

Estimate (i). By a slicing argument, splitting the energy into the contribution of the horizontal
and the vertical interactions, we get

EN (W) > 201 - k)#Ip(w) + 2(# 0 — #J07(0))
+2(1 - k)#JS,T(U) + 2(#J2r — #JS,T(U))
= —2k#J0 p(u) — 2k#T9 7 (u) + 2(# 07 + #o7)

—4k(z + 6)T +2 (2 {TVQ} +2 [T”D .

%

2 2
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There follows that:

from(z,v) > lim lim % (—4k(z + 0T 42 (2 {Tﬂ +2 [T;l]))

0—0T—+0
= —4kz+2(v1 + ).

Estimate (ii). We observe that we may split the energy of the surfactants into two terms.
The first term accounts for 2 vertical and 1 horizontal interaction for each column, while the
second term accounts for the remaining interaction in each row. By counting the energy due
to the non-surfactant particles as in estimate (i), we get

BN (W) > 31— k)Y p(u) + 2 — #000(u)
+(1 = k)#J3 p(u) + 2(#Jo, 0 — #J5 10(w))
> (1=3k)#J p(u) + 2411
+(1 = k)#JS p(u) + (1= k) (#Ja.r — #J9 1(u))
> (1=3k)(z+0)T +2#J1,r + (1 — k)#J27(u)

> (1-3K)(z +OT +4 {Tﬂ o k) {Tﬂ

By exchanging the role of JP .(u) with that of J3 ;-(u) in the previous estimate we have

B (u) > (1 - 3k)(= + 6)T + 4 [W} +o(1— k) {T(VIQW]

Therefore we get

—0T—+o00
> (1—3k)2+2(1/1 \/Vg)-i-(l—k)(l/l /\VQ).

fhom(z,v) > lim lim %(1 —3k)(z4+0)T +4 [T(Vlsz)} +2(1—k) [W]

Estimate (iii). We observe that the we may split the energy of the surfactant into three terms.
The first term takes into account two interactions for each surfactant particle. The other two
terms take into account in each row and column containing a surfactant at least one interaction
between a surfactant and a non-surfactant particle. Counting as in the previous estimates the
remaining interactions, we have

ENw) > 201 = k)#lo(u, TQ,) + 2(#Jir — #J07) + (1 — k)#J0 1
+2(#Ja1 — #JS,T) + (1 - k)#JS,T

> 21 —k)(z =0T+ (1 —k)#J11 + #Jor)
> 2(1—k)(z—6)T+(1—k)(2[7;w]+2{T2yz]>.

Hence we have

From(zv) > lim lim ;(2(1—k)(2—5)T+(1—k) (2 {T’“}H[TWD)

6—0T—+o0 2 2
21— k)z + (1 — k) (v1 + ).

\%

The lower bound in (3.5.73) for gnom is straightforward. In fact, let us observe that, except for
a negligible error due to the interactions at the boundary of T'Q), the energy accounts for at
least two interactions of each surfactant particle. Hence, for any test function « in the minimum
problem defining gpom (1) we have

B (u, TQ) > 2(1 — k)#1o(u, TQ) + o(1)
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Then

B (w,TQ)

> 1 I 1 B )
Jhom (1) > h}snhmef 7#10(%7162) >2(1 —k)
Step 2 (upper bounds). In this Step we conclude the proof by showing that the inequalities
from(2,v) < p(z,v),
Ghom(1) < 2(1 — k). (3.5.75)

hold true. With a slight abuse of notation, for v € S' we denote by u, : R? — {#£1} the
function defined in (3.4.63), with —1 and 1 in place of m; and mo, that is

)1 if(x,v) >0
uy () == {—H if (2,0) <0, (3.5.76)

and, for z € RT, we set
o = 2H[S(uy).

In order to prove the first inequality in (3.5.75), by Theorem 3.4.4 it is enough to construct
ue € A (;{0,£1}) such that (ue, u(us)) = (uy, f12,,) with respect to the 7 X mo-convergence
and

limsup EM (u.) < (2, v)H (S (u,) N Q).

g

To this end we find it useful to rewrite ¢ as

v1(z,v) H0<z< || Al
o(z,v) =< @a(z,v) if v Alve] <2 < ||V |s|
w3(z,v) if z > |v1| Vel

The construction of u, differs in the three cases 0 < z < || A |va], V1| A lva] < 2 < |iq| V |12
or z > |v1| V |ve|. Without loss of generality, for simplicity of exposition, we may suppose that
—v1 > vo > 0. Moreover, by the continuity of fhom(z,-) and ¢(z,-), by a density argument we
may assume that =2 € Q. Let p,q € N be such that =2+ = 2. By the continuity of from (-, V)

12 V2 q’
and (-, v) we may further assume that z’ := z1/p? + ¢> € Q. Hence, by possibly replacing
(p,q) by (mp, mq) for some m € N, we may reduce to the case 2’ € N.
Let us set 7 = % and let u%: {1,2,...,q} x Z — {£1,0} be defined as

o,y _ )0 ifa; =ay <qora;=gq, g<az <p
u(a) = :
ug(a) otherwise.

where a = (a1, a2).
Case 1: 0 < z < |v1| A |v2]. By the assumptions on vy, 15 this case corresponds to 2z’ < ¢. Let
Uy, Z2 — {£1,0} be such that
u,(a+(p,q)) =u.,(a), forallacZ?
and, on {1,2,...,q} X Z — {£1,0} is defined as (see Figure 4)

(a) ul(a) if0<a; <2
u,,(a) =
v U, otherwise.

Let then u. : eZ? — {%1,0} be such that u.(a) = u.,,(2). It holds that (ue, u(uc)) = (uy, fiz,)
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Figure 3.4: u,, in the periodicity cell {1,2,...,q} x {1,2,...,p} with¢="5,p=9 and 2/ = 3.

with respect to the 7 X my-convergence. In order to estimate the energy of u. we observe that
it concentrates on each rectangle of the type R, ; := (0,eq] x (0,ep] +¢j(p, q), j € Z where, by
periodicity, it takes the constant value

EM (ug, R j) = e (4(1 — k)2 +2(p — ') + 2(q — 2')) = e (—4k2" +2(p+ q)) -

g

Then

=
=
>
A

EM(ue, Reo)(#{j €Z: R.; CQ}+2)
(k7 +2p+ ) ( H(S(w) N Q)

IN

Eventually, letting € tend to 0 we obtain

limsup EM (u.) < o1 (2, v)H (S (1) N Q).

Case 2: |v1|A|v2| < 2 < |v1|V|ve|. This case corresponds to ¢ < 2’ < p. Let v, , : Z* — {£1,0}
be such that

v, (a+(p,q)) =v.,(a), forall ac Z?

and, on {1,2,...,q} X Z — {£1,0} is defined as (see Figure 5)

. (3.5.77)

@ -1 ifa; =qanday > 2
vy (a) =
v u otherwise.

Let then v, : eZ® — {£1,0} be such that v.(a) = v;,(2). It holds that (v.,pu(ve)) —
(Uy, fhz,) With respect to the 71 X To-convergence. By arguing as in Case 1, taking into account

that

(4(1 = k)g+3(1 = k)(z' = q) +2(p — )

Eél)(vg7RE7j) = ¢
e((1—3k)z"+ (1 —k)g+ 2p),
n 2> |

we get

H(S(u,) N Q)

EM(us) < e((1—3k)2 + (1-k)g+2p) ([
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Figure 3.5: u,, in the periodicity cell {1,2,...,q} x {1,2,...,p} with¢=5,p=9and 2/ = 7.

Eventually, letting € tend to 0 we obtain

limsup EM (v.) < @a(z, v)H (S(u,) N Q).

€

Case 3: z > |v1| V |va|. This case corresponds to 2’ > p. Let us extend the function u® to Z?2
in such a way that
u’(a+ (p,q)) = u’(a), forall a € Z?

We now construct w,, : Z> — {£1,0} by modifying the function u° suitably increasing the
numbers of its zeros in order to match the density constraint on the surfactant phase. More

precisely we set 2" 1=z’ — [%]p and
B
Iy = U (Io(u®) +mey) N U{a €Z%: jp+1<ay<jp+2"}
m=0 JEZL
R (' /p] -1
Ip="|J (@) +me)n|J{a€Z: jp+2"+1<ay < (j+1)p}
m=0 JEZ

we define (see Figure 6)

w;(a) =

0

0 ifae fo @] f()
u” otherwise.

Let then w. : eZ? — {£1,0} be such that w.(a) = w,,(2). It holds that (w.,u(w.)) —

€
(uy, ptz,) with respect to the 7 X mp-convergence. An easy computation shows that, the energy

of each stripe S, ; ;=R x (jp,(j +1)p], j € Z, is

EWD(w.,8-;) = e((1=3k)p+(1—k)qg+2p+2(1—k)z —p))
= e(1-Kk)p+q+QQ-Fk)?2).
Then
Eél)(ws) < E§1)(w5,55,0)(#{j €Z: S.; CO}+2)
< ((-Rp+g+ -k ( [EW0D +2>
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Figure 3.6: u,, in the periodicity cell {1,2,...,¢} x{1,2,...,p} with ¢ =5, p =9 and 2’ = 20.

Eventually, letting € tend to 0 we obtain

lim sup Eél)(we) < p3(z, V)Hl(s(“u) naQ).

We now prove the second inequality in (3.5.75). To this end, by Theorem 3.4.4, given z( € €,
it is enough to construct a sequence of functions u. € A.(€Q;{0,£1}) such that (ue, u(ue)) —
(1,8,,) with respect to the 71 X To-convergence and that

limsup BEY (u.) < 2(1 — k).
€

=\ 2 9
,7) >ﬂ€Z

Let us observe that e#Iy(u:) = 14 o(1) and that, each surfactant particle whose interactions

2
do not cross the boundary of zo+ (—é, %) gives a contribution to the energy which is equal

We set

ol

0 ifac <x0+<

1 otherwise.

ue(a) =

to 2(1 — k). Moreover, since the number of the remaining surfactants scales as %, we have

EW(u.) = e 2(1 — k)#o(us) + o(1) = 2(1 — k) + o(1).

Letting € tend to 0 we get the conclusion. [
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