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Everyone is wrong about the future. Man can only be certain about the present
moment. But is that quite true either? Can he really know the present? Is he in a
position to make any judgment about it? Certainly not. For how can a person
with no knowledge of the future understand the meaning of the present? If we do
not know what future the present is leading us toward, how can we say whether
this present is good or bad, whether it deserves our concurrence, or our suspicion,
or our hatred?

Milan Kundera - Ignorance
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1. Introduction

1.1. Context

The dashing progress of technology and scientific computation in the last decades made
the numerical modeling a discipline of growing and growing success. The huge potential
of modeling in describing a very wide variety of processes through Partial Differen-
tial Equations (PDESs) is been applied to many different sciences: physics, engineering,
biology, chemistry, medicine, but also to social sciences such as economics, sociology,
political science and so on. Numerical methods allow to the translation of a mathemat-
ical model (which can be explicitly solved only occasionally) into algorithms that can
be solved by computers under mathematical manipulation. Computational Fluid Dy-
namics (CFD) plays an important role in this scenario, providing a prediction of fluid
flows solving mathematical modeling with numerical methods. Physical applications are
various: numerical weather predictions, aerospace engineering, computational hemody-
namics (study of blood flow/circulation) and so on.

This PhD thesis fosuses on the study, development and applications of numerical meth-
ods for non-linear differential problems in the CFD context. In particular I applied the
theoretical study to a specific geophysical application, the quasi-geostrophic model, so
I dealt with the vorticity equation and the Jacobian differential operator. In this chap-
ter an introduction to this context with particular attention to atmospheric modeling
is provided, trying to give to the reader a state of the art of the main results achieved
during last decades.

1.1.1. Mimetic schemes

Once an appropriate mathematical model is chosen, we need to design a numerical
method which obtains the solution with sufficient efficiency and accuracy for the prob-
lem considered. The main techniques used to convert the partial differential equations
which form our mathematical model into a set of algebraic equations that can be solved
on a computer are finite difference (our choice), finite volume, and finite element. Each
of these methods involve dividing or discretizing space and time in some manner.

A significant class of numerical methods are the so-called mimetic schemes [I]; these
schemes mimics fundamental properties of mathematical and physical systems such as
conservation laws, symmetry and positivity of solutions, duality of differential opera-
tors, as well as exact mathematical identities of the vector and tensor calculus. The
preservation of conservation laws in a discrete model is necessary for modeling flows
with strong shocks or, as in our case, for non-linear problems, when the energy transfer
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between different scales occurs and need to be correctly discretized to avoid numerical
instabilities. Most of PDE’s are formulated in terms of divergence, gradient and curl,
and conservation of integral properties (e.g. mean kinetic energy or mean square vortic-
ity) depends on analytical properties of such operators and resulting theorems of vector
analysis. The need of conserving energy (as well as other physical quantities) is one of
the most important example in fluid dynamics of the applications of mimetic schemes. A
typical problem comes from the finite size of the mesh cells: while the PDEs can resolve
all the scales of motion, its numerical simulation may be more restricted. For example,
the energy dissipation due to the molecular viscosity could result to be important but
at the same time cannot be resolved numerically. We need, then, to avoid unphysical
energy growth with the correct numerical scheme.

The idea of constructing mimetic schemes, firstly appear in the late mid-fifties (even if
the world mimetic appeared many years later), when easy strategies to construct discrete
analogs of analytical differential operators orthogonal meshes are used [2], [3].

Based on rectangular meshes, Arakawa [4] proposed the construction of a finite difference
scheme for the vorticity equation. In this paper Arakawa underlines the importance of
integral constraints on quadratic quantities and he shows that these quantities would
not be maintained using a general finite difference scheme unless the finite difference
Jacobian expression for the advection term is restricted to a form which properly rep-
resents the interaction between grid points. It is shown that the derived form of the
finite difference Jacobian prevents nonlinear computational instability and then allows
to long-term numerical integrations, as we will see in details in Chapter L. In [5], Arakawa
shows with numerical examples the necessity and the superiority of such conservative
schemes. Together with Lamb, Arakawa proposed a potential enstrophy and energy con-
serving scheme for the shallow water equations [6]; the idea of this work has been then
extended for mimetic finite elements by McRae and Cotter [7], who presented a family
of conservative spatial discretizations of the nonlinear rotating shallow-water equations.
These are based on two-dimensional mixed finite element methods and then do not re-
quire an orthogonal grid as some finite difference methods do. Another approach for
a potential enstrophy and energy conserving scheme is given by Salmon [§] who used
Nambu brackets: in this way one need only discretize the Nambu bracket in such a
way that the antisymmetry property is maintained. Using this strategy, Salmon derives
explicit finite-difference approximations for the shallow-water equations that conserve
mass, circulation, energy, and potential enstrophy on a regular square grid and on an
unstructured triangular mesh.

Almost twenty years earlier, Salmon and Talley proposed a generalization of Arakawa’s
Jacobian [9], where a simple method yields discrete Jacobians that obey analogues of the
differential properties needed to conserve energy and enstrophy for a two-dimensional
flow. This is a generalization in the sense that this method is independent of the type
of discretization and thus applies to an arbitrary representation in grid points, finite
elements, or spectral modes, or to any mixture of the three. In particular the method is
illustrated by deriving simple energy and enstrophy conserving Jacobians for an irregular
triangular mesh in a closed domain, and for a mixed grid point and mode representation
in a semi-infinite channel.
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Starting by Arakawa’s works, other authors presented different kind of generalizations
of Arakawa’s conservative scheme, see [10], [I1], [12], [13] for details; in Section [2.2.3]1
explain the difference between mine and existing generalizations.

Mimetic methods with similar properties have been more recently proposed in [14] and
[15] on triangular meshes and in 2008, Abba and Bonaventura also proposed a mimetic
finite difference discretization for the incompressible Navier-Stokes equations [16]. The
results obtained in different papers demonstrate the advantages and the superiority of
mimetic methods especially for a long-term numerical integration of incompressible fluid
motion.

In [I7] discrete numerical approximations with conserved quantities are developed for
barotropic geophysical flows using Poisson brackets. Mathematical, numerical, and also
statistical properties of these approximations are studied.

In this class of works it’s worth quoting also a paper of Bas van’t Hof and Arthur E.P.
Veldman [I8], “Mass, momentum and energy conserving (MaMEC) discretizations on
general grids for the compressible Euler and shallow water equations”.

Different works, involving domain with complex shapes and Lagrangian approach ap-
peared approximately in the mid-seventies. In this period the derivation of compatible
discrete operators are not carried out independently for each operator as before and, in
most papers, the stability and convergence are proved in the energy norms induced by
the mimetic inner product. The energy estimate together with the mimetic ideas can also
be found in the more recent works of Olsson [19], [20], Mattsson, Nordstrom and Svérd,
[21], [22] (see Chapter IV for more references), where finite difference approximations of
differential operators on rectangular grids and weighted inner products are composed in
order to make the discrete analogous of summation by parts formula consistent with the
continuous case. It’s precisely the analogy between the discrete and the continuum cal-
culus the basic idea, as a matter of fact the stability estimates for these finite difference
schemes are obtained following the argument used for continuum initial and boundary
value problems; this method has been mainly applied to hyperbolic, parabolic, and mixed
hyperbolic-parabolic systems and will be further discussed and applied in Chapter IV.
A third class of mimetic schemes born with the beginning of a systematic devolopment of
Discrete Vector and Tensor Calculus (DVTC) and the extension to more general meshes.
In [23], natural discrete analogs of grad, curl and div are constructed and discrete analogs
of several important theorems of the continuum calculus are then proved, as, for exam-
ple, that div(A) = 0 if and only if A = curl(B). In this paper, the world mimetic refered
to a numerical discretization is adopted for the first time even if the word mimetic had
already been used in another unpublished report of Hyman and Scovel (1988). In [24],
the construction of the derived operators is based on the duality principle, e.g.

[un, GRADpp)p = —[DIVuy, pplo, Yup, € Fy, pp € Ch,

where Fj, and Cpare discrete spaces for face and cell grid functions, respectively. The in-
ner products in discrete spaces are introduced and corresponding matrices are developed.
The set of primary and derived discrete operators allows to construct discrete analogs
of other operators, like second-order operators as div grad, grad div, curl curl, and so
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on, which are needed to discretize various PDEs.

Nowadays, when we refer to mimetic schemes, we think of research activity carried out
by the collaboration between the Los Alamos National Laboratory, USA, and a research
group of Pavia, Italy, see works of Brezzi, Cangiani, Lipnikov, Shashkov, Manzini etc.
The application of new technology to a wide range of PDEs is developed for arbitrary-
order discretizations concerning primarily elliptic problems, the stability analysis and
discrete maximum principles. This work is not placed in this category, but for complete-
ness the interested reader is referred to [25], [26], [27] and related bibliography.

Much more references about mimetic schemes can be found in [I].

1.1.2. Atmospheric modeling

It is considered that Wilhelm Bjerknes (1904) was the first to point out that the future
state of the atmosphere can in principle be obtained by an integration of differential
equations governing the atmosphere and a first practical attempt at a numerical weather
prediction was made by Richardson. After very long computations, Richardson obtained
a totally unacceptable result; his work is described in the famous book Weather predic-
tion by Numerical Process [28]. Richardson estimated that 64000 men are necessary to
advance the calculations as fast as the weather itself is advancing; this, together with
the total wrong result, left some doubt if the method would be of practical use. Later, a
number of developments that followed improved the situation: Courant, Friedrichs and
Lewy (1928) figured out that space and time increments in integrations of this type have
to meet a certain stability criterion (CFL condition), Rossby’s works in the late 1930’s
on easiest model for describing large-scale motions of the atmosphere and finally, in
1945, the first electronic computer ENTAC (Electronic Numerical Integrator and Com-
puter) was constructed. In late 1940’s, the vorticity conservation equation, and this first
electronic computer, were used by Charney, Fjgroft and von Neumann [29] for the first
successful numerical forecast. This, together with the improvement of faster and faster
computers, has been the starting point for the development of increasingly sophisticated
numerical simulations.

Most models in atmospheric science are formulated by starting from conservation laws:
conservation of mass, conservation of momentum, conservation of thermodynamic en-
ergy, and the radiative transfer equation. A priori, these equations can describe the
evolution of the atmosphere in extreme detail, but practically, of course, we cannot use
too high spatial and temporal resolution, and so we must represent some important pro-
cesses parametrically [30], [3I]. Parameterization in a climate model within numerical
weather prediction refers to the method of replacing processes that are too small-scale,
e.g. cloud microphysics, radiative parameterizations, etc. Obviously, mathematical meth-
ods are needed to solve the equations of a model, and in practice the methods are almost
always approximate, which means that they entail errors. Many different errors arise in
the numerical solution of a geophysical model: the model is sensitive to the initial and
boundary conditions, the approximation of the model itself, the numerical method used
to discretize the equation will also introduce errors and so on. There are various types
of numerical models designed for atmospheric purposes, a good introductory course is
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given by Randall [32]; he also made a collection of significant papers in [33]. A brief
history of atmospheric general circulation modeling (GCM) is given by Edwards: start-
ing from the early 20th century, with Bjerknes, going through the Richardson forecasts,
the war, the Swedish Institute of Meteorology (the first in the world to begin routine
real-time numerical weather forecasting, meaning broadcast of forecasting in advance
of weather) and the Joint Numerical Weather Prediction Unit (built by Von Neumann,
Charney and others around 1952), he traced the history of atmospheric modeling until
late '80s. The first laboratory to develop a continuing program in general circulation
modeling opened in 1955: the General Circulation Research Section, under the direction
of Joseph Smagorinsky. In 1955-1956, Smagorinsky collaborated with Von Neumann,
Charney and Phillips to develop a two-level model using a subset of the primitive equa-
tions; in 1959 he continued with a nine-level primitive equation model and he studied the
need to couple ocean models to atmospheric GCMs. Jacob Bjerknes, already presented,
founded the UCLA Department of Meteorology in 1940 and his interest in the problem
of atmospheric circulation continued with Yale Mintz, a graduate student of him. Mintz
recruited a Japanese meteorologist, Akio Arakawa, to help him in building GCMs. The
first generation UCLA-GCM was completed in 1963; then Arakawa went back to Japan,
but Mintz persuaded him to return to UCLA permanently in 1965, where he is now an
Emeritus Professor . There exist a very interesting interview to Arakawa made by
Edwards at University of California, Los Angeles in 1997, where his scientific history
(and not only) is narrated.

Figure 1.1.: Akio Arakawa

As already underlined in the previous paragraph, Arakawa’s work was innovative for
his different way in approach numerical modeling, his attention was focused on the real-
ism of the physical properties in the discrete system (in this sense mimetic). Historically,
the incentive for this approach came by Norman Phillips who discovered the mechanism
of non linear instability due to the systematic distorsion of the energy spectrum studied
on a two-dimensional incompressible flow [34]. A straightforward remedy adopted by
Phillips was a Fourier filtering aimed to prevent the fatal accumulation of energy at the
smallest scales. Arakawa’s mimetic solution [4], instead, was able to prevent nonlinear
instability maintaining the discrete analogs of domain-averaged kinetic energy and en-
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strophy, ensuring no change in the average wave number, [5], [35] (and see chapter
for details). Other relevant papers to underline how mimetic methods can result essen-
tial for climate modeling are: [36], where Mesinger and Arakawa proposed a publication
reviewing methods for numerical simulation of the atmosphere and [6] and [37] where
Arakawa and Lamb proposed also a new parametrization of the sub-grid scale processes.
It’s worth noting that, in 1960s, another important research center was established: the
National Center for Atmospheric Research -NCAR-, with scientists such as Kasahara
and Washington who started developing a two-layer global model.

After this brief historical presentation, some more practical considerations about nu-
merical techniques: a general introduction to numerical analysis for computational fluid
mechanics is given in [38], where the author shows and analyze the main numerical
techniques to integrate PDEs with particular attention to the Navier-Stokes equations.
By far, this (N-S equationss) is the most commonly used model for fluid dynamics; the
Navier-Stokes equations can accurately predict the dynamics of most common fluids
under a wide range of conditions (the most notable exceptions are non-Newtonian flu-
ids, rarefied gases, and flows with very strong shock waves). In addition to the direct
numerical simulation (DNS), where the Navier-Stokes equations are numerically solved
without any turbulence model, meaning that the whole range of spatial and temporal
scales of the turbulence must be resolved, we can treat N-S equations at different levels:

1. Averaging (or more generally filtering) is one of the primary means of simplifying
our mathematical model. For example, as long as the process that we wish to simu-
late is approximately two-dimensional we can average the Navier-Stokes equations
in one space dimension, or apply a scale analysis in order to select the magnitude
of each dimension (e.g. Quasi-Geostrophic Model).

2. We can otherwise use a low-pass filter in space to obtain the so-called Large Eddy
Simulation (LES) equations. This model can be useful for turbulent flows which
generally have a wide range of spatial length scales. By using a low-pass filter we
only include the large scales, or eddies, in our computation while the small-scale
eddies are modeled using empirical relationships. This is convenient because the
large eddies contain most of the energy, while the small eddies are nearly isotropic
and therefore easier to model.

3. At the next level, we can average the Navier-Stokes equations also in time, where
the equations obtained are called the Reynolds Averaged Navier-Stokes (RANS)
equations. The idea behind the equations is Reynolds decomposition, whereby
an instantaneous quantity is decomposed into its time-averaged and fluctuating
quantities, an idea first proposed by Osborne Reynolds.

This list is clearly just a simplification of mathematical models for CFD; it is possible,
under certain circumstances, to make further approximations that take into account
special physical characteristics of the flow under consideration.

Another important issue in numerical discretization, lies in the form that we choose for
our model; to be more precise let’s consider the advection equation. This is based on
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one of the following forms:

(23 +v-Vq=0, Eulerian advective form (1.1)
omq . .
v + V- (mvq) =0, Eulerian flux (divergence) form (1.2)
D
F(t] =0, Lagrangian form (1.3)

Here ¢ is a quantity per unit mass to be advected, v is the velocity field, m is the mass
per unit and D /Dt is the material time derivative. Each of the previous forms, automat-
ically satisfy a specific property: eq. has the constancy, meaning that, if initially ¢ is
constant, it remains so in time; eq. is conservative, in the sense that the area-averaged
over a closed domain G does not change in time (note that the conservation here refers
just to the first moment, ¢ and not to higher moments such as m7q2), finally, the auto-
matic property of eq. is to be stable in the sense of the boundedness of predicted q.
Maybe the constancy is the minimum requirement for an advection scheme, anyway it
is not always guaranteed for example in the case of the flux divergence form. Generally,
Lagrangian schemes do satisfy constancy but not conservation and they have the advan-
tage of no restriction in time step, in contrast to Eulerian schemes (our choice) that are
restricted by the Courant-Friedrich-Levy (CFL) condition. Of course it is possible, and
sometimes necessary, mix different forms to obtain one or more properties in the discrete
space, as we will see in details for the Arakawa’s Jacobian. The splitting technique and
its relation with stability problems is also discussed by Nordstréom using SBP operators
([39] and related bibliography).

1.2. The Burgers equation

In order to clarify the meaning of non-linear energy transfer, we consider a simple 1D
model, the Burgers equation:

ou ou 0%u

For simplicity, we consider the solution defined in the domain D = [0,27) and to be
periodic with zero mean value. We can expand the solution as:

u(z,t) = Ag(t)sin(kz). (1.5)
k=1

Using this expansion, we have:

Eg; = ZAk(t)sin(k:c) (1.6)
k=1
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o= > kAg(t)cos(kz) (1.7)
k=1
0%u >
Fre i k* Ay (t)sin(kz) (1.8)
k=1
ugz = Z Z Ai(t) Ay, (t)msin(lz)cos(max)
. =1 m=1 (19)
=2»> W{Sm[(z +m)z] + sin[(l — m)z]}.

Putting all of this inside eq. we obtain:

Z Ay (t)sin(kx) + Al(t)A;(t)m{sm[(l + m)z| + sin[(l —m)z]}
k=1 =1 m=1 (1‘10)

=—v Z E* A (t)sin(kzx).
k=1

Now we recall the orthogonality of the function sin:

27
/0 sin(pz)sin(qz) = m(0p.g — 0—p,q)s (1.11)

and then, multiplying eq. times sin(kx) and integrating over D, we have:

Atyr+ 3% ”Al(t)‘;m(t)m — kA1), k=1,2,...,00 (1.12)
=1 m=1

where the two summations consider only indices m and [ such that
e l+m=%k

e l—m=k

o /—m=—k
e [+ m = —k (this condition brings nothing because it means [ < 0).
So eq. becomes
i S AmAk—m AmAk+m AmAm—k: o 2 o
Ak+m¥1m( P )= —vk?A,, k=1,2,...,00 (1.13)

This equation says that the change of A in time depend on two different causes: one
linear and one non-linear.
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e Linear terms:
If we consider only linear terms, eq. becomes

A = —vk? A, = A(t) = 400 k=1,2,... (1.14)

meaning that each component Aj decreases as fast as the fluid is viscous and
the structure is small (meaning that k is large). The important remark on the
linear term is that the evolution of each A is independent from the others, so if
initially Ax(0) depends only on a finite number of k (for example k = 1,2,3), it
means that the solution would decrease only on initial modes (k = 1,2, 3) each one
independently from the others.

e Non-linear terms:
Differently, non-linear terms completely modify the structure of the solution, trans-
ferring the momentum of the k-component to components k +m, k — m, m — k.
If we consider, for simplicity, only the first three terms in the general summation

(instead of o0), we have, by eq.
. 1
A+ 5(141140 + A1Ay — A1Ag) + (A2A_1 + AxAs — ArAy)
3
—1-5(14314—2 + A3Ay — A3Az) = —VA;

. 1
Az + §(A1A1 + A1 A3 — AL A 1) + (A Ag + A Ay — Ay Ap)

3 (1.15)
+§(A3A71 + A3zAs — A3Ay) = —vdA
. 1
Az + §(A1A2 + A1 Ay — AlA_g) + (AzAl + A9 As — AQA_l)
3
+§(A3A0 + AzAg — AzAg) = —19A3
but considering A, = 0 for p < 0 and p > 3,
. 1 1
A1 — *AlAQ — *A2A3 = —UAl
2 2
AQ + %AlAl — A1A3 = —v4As (1.16)

Ag + gA]_AQ = —1v9A43

Now, if we consider an initial condition containing only Aj, it’s immediate to see
it’ll results Ay # 0, due to the term AlTAl; similarly, when Ay # 0, it’ll results
also Az # 0, and so on: if we didn’t limit k as we did but we consider the infinite

summation, we would have an energy transfer towards smaller and smaller scales
(bigger k).
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This easy example shows the basic mechanism of turbulence, which will be discussed in
Chapter V: the Reynolds number is defined as the ratio of inertial forces to viscous forces
and it is often used to characterize different flow regimes such as laminar or turbulent
flow. For what we have seen so far, when the Reynolds number is small, viscous forces will
dominate over inertial forces and then the energy will decrease and the energy transfer
will be restrained. Differently, when we consider a fluid with high Reynolds number,
non-linear terms will dominate viscous effects, the energy transfer will be activated and
the original structure will bring smaller fluid-dynamical structures.

1.3. Organization

This PhD thesis focuses on the study, development and application of numerical methods
for nonlinear advective problems with additional conservative and symmetry properties.
In particular, the work is of interest in climatology and meteorology with particular
attention to the quasi-geostrophic model characterized by the dynamic of the vorticity
equation.

The work is divided in three main parts:

Part 1 e In Chapter 2 I recall basic notions about the vorticity equation and a par-
ticular finite-difference scheme to discretize it: I start with the Navier-Stokes
equation to derive the vorticity equation for a two-dimensional incompressible
flow, I show analytical properties of the Jacobian operator involved, and then
I give to the reader a review of Arakawa’s work, a mimetic finite difference
discretization for the vorticity equation.

e Chapter 3 is about the development of a systematic method to construct
mimetic finite difference schemes. In particular the whole chapter is intended
to a particular application of this method: the generalization of Arakawa’s
Jacobian. The general scheme found is then studied both in physical and
Fourier space and many numerical examples are given.

This work has been submitted to Journal of Computational Physics [40] and
presented in [41].

Part 2 In Chapter 4 I deal with Summation-by-parts (SBP) operators: I will give an
introduction to the argument to then show how it is possible to read the original
Arakawa’s Jacobian in an abstract form using SBP operators and then proving all
the mimetic properties desired in this more general space [42].

Part 3 Chapter 5 is the geophysical application of this theorical study: I present the
simulation of a quasi-geostrophic model discretized using mimetic finite-difference
presented in the previous chapters. In particular I investigate about the energy
spectra and on physical and numerical parameters of the Q.G. model [43].

In the last Chapter I summarize the conclusions and the possible further developments
of this work.



2. Introduction to finite-difference schemes
for incompressible flows

2.1. The Vorticity Equation

Consider the Euler equation for an incompressible inviscid fluid
ov
— +v-Vv = -Vp

ot (2.1)
Vv =0
for x € D, where D is a bounded region in 3. The vorticity vector w is defined as the
curl of the velocity field v, i.e.,
w=Vxv (2.2)

such that in a Cartesian frame with coordinate (z,y, z) and corresponding velocity com-
ponent (u,v,w), we have

ow Ov Ju Ow OJv OJu
w=|——-"5 ===, ———=—. (2.3)
Oy 0z 0z Ox O0x Oy
For deriving the vorticity equation we recall the following identity
_ (Iv*)
v-Vv=uw ><v—|—VT,
(for details see [44],[45]) which transforms the Euler equation (2.1) to
ov |v2|
E‘FWXV = —V<p+2 (2‘4)

Vv = 0

By taking the curl of the momentum equation in (2.4) and using the incompressible
relation, we get

%:—&-V-Vw—w-Vv:O. (2.5)

By considering a velocity field with a zero vertical component w we obtain the vorticity
for a two-dimensional incompressible fluid. In this setting, (2.3) becomes w = (0,0, (),
where ( = (Ov/0x — Ou/dy). From (2.5) the vorticity equation for an incompressible
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flow on a general two-dimensional spatial domain is

9¢
= 2.
En +v-V(=0. (2.6)
with
V-v=0. (2.7)
In this section we will work in a biperiodic domain D. Thanks to relation we can
write eq. [2.6] as

o¢
b} = 2.
ot +V-(v()=0 (2.8a)
and introduce the stream function v such that:
v=kx Vi (2.8b)
(=k-Vxv=V2% (2.8¢)
where k is the unit vector normal to the plane of motion. We can introduce the Jacobian
operator
Oa 0b  Oa Ob
J(a,b) = —— — —— 2.9
(a,) Ordy Oyox (2:9)
with the following properties:
e Skew-symmetry:
J(a,b) =—J(b,a) (2.10)
e Integral property:
aJ(b,c) =cJ(a,b) (2.11)

where f = %D‘ fD fdxdy.

The skew-symmetry property (2.10) follows by definition, while property (2.11)) follows
by integration by parts over a biperiodic domain:

—_— 1 obdc b 80

6 (% o, Ob
]D]// c%(aa—)dazdy]

2.12
D 8y ox Oazay “ox oy 6y8m 4
da 8b Ba 0b
\D\ // 8 837 o 9y —)dzdy = c¢J(a,b)
We can rewrite equation as:
0
% J(C ). (2.13)

ot
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Conserved quantities:
For any motion governed by equation (2.6 we have physical constraints such as conser-
vation of mean kinetic energy,

0K 10(Vy)® _ a(VY) _ O(AY)
(E) T2 ot (Vo) a - VT ar (2.14)
= =TGR =0

and conservation of enstrophy, defined as the mean square vorticity, which is a quantity
directly related to the kinetic energy and it is particularly useful in the study of turbulent
flows,

0G, 19(¢?) ¢ v
Cor) =5 ar —Ca —ICw=0 219

The RHS of both equations is zero thanks to the skew-symmetric (2.10)) and the integral

(2.11]) properties with, respectively, a = ¢ =1 and a = b = (.
Expanding 9 into the series of orthogonal armonic functions, 1, which satisfy

v27pn + k}%q/)n = 07 (2.16)
we get that the average wave number &, defined as

kK
p2 = ZnFaln 2.1

is conserved, thanks to the energy and enstrophy conservation:

d loe——os
_— p— ) —_ - 2
g En K, =0, with K, 2(an) (2.18)

d 1l
y7 En G, =0, with G, 2(v ¥n)? = k2K,. (2.19)

This means that no systematic one-way cascade of energy into smaller scales can occur.
It is well known that non-linear problems as system require the correct modeling of
sub-grid terms (see, for example, J. Smagorinsky 1963 [30], J. W. Deardorff 1970 [31]).
Moreover, a false transfer of energy between different scales can occour depending on
different forms of truncation error, corresponding to different forms of discretization. In
1959 Phillips [34], treating non-linear numerical instability, proposed to add a smoothing
term to equation , but his solution resulted to be physically incorrect and to
compromise the simulation. To overcome this problem, Arakawa [4] introduced the use
of a mimetic scheme and, alternatively, higher order schemes have been devoloped ([46],
[47], [48]). The latter choice is not necessarily preferable to a mimetic solution as pointed
out in [49]; in this paper higher order schemes are compared with Arakawa’s Jacobian
which results to be the better candidate for under-resolved simulations.
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Arakawa’s solution is a mimetic scheme able to conserve integral quantities and then
satisfying other important constraints on the spectral distribution of the energy. His
scheme has been widely used (see, for example [49],[13],[50]) and studied: Dubinkina
and Frank [5I] examined the statistical properties of Arakawa’s discretization, while
Lilly [52] proposed a detailed paper based on a spectral analysis.

Also different generalization of the particular Arakawa’s solution have been presented
(see [10], [11],[9], [12]) but none of them is a general procedure to produce the overall
set of solutions.

We will start introducing and analyzing Arakawa’s solution, then we will present our
general proceduce to create mimetic finite-difference schemes and we will finally compare
the particular Jacobian of Arakawa with the general solution found with the new method.

2.2. Arakawa’s Jacobian

In this section i will denote a generic grid point i = (7, j) and a generic discrete Jacobian

W2 Ji(¢, ) = Z Z ¢y i Ciri Vit (2.20)

/

is:

i
where h is the spatial step size, supposed to be uniform in x and y direction. Arakawa
looked for a mimetic Jacobian discretization, satisfying then the discrete analogous of

(2.14)-(2.15)), so he imposed:

D_WGA(G ) =0 (2.21)
Z W29 Ji(C, ) =0 (2:22)
It is useful to write equation 1as:
R H(CY) = D asiiGiar (2.23)
where
A 541 = Z i Vit i (2.24)

Multiplying eq. (2.23)) times (;, we obtain:

RPGI(CY) = asiv GGy (2.25)

If we sum over i, the RHS must be zero in order to satisfy (2.21]), and then the enstrophy
conservation; this is true if we impose

ai—‘ri/,i = —ai’i+i’, Vi, i’ (226)
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Similarly, Arakawa imposed the energy conservation, with a similar trick he wrote the

discrete jacoabian as:

h2Ji(C, ) = Z by ivi Vigi

where

by iyi = E Cyr i Giti's
i/

obtaining now
- .
bivyr i = —byipr, Vi1

The Laplacian operator can be easily discretized using central finite-difference:

1
Gj= ﬁ(ipi—i-l,j + i1y + Vi + i1 — i)

which satisfies 1yV2¢ = —(V@D)z.
Arakawa considered three analogous analytical forms for the Jacobian:

L. J(Ca ¢) - Cx?by - gywz
2. J(C, %) = — £ (G¥) + 2 (Gd)
3. J(C ) = 5 (Cby) — 55 (Cebw)

corresponding to three different discretization:

1

(2.27)

(2.28)

(2.29)

(2.30)

(J1)ig = 73 (Gt = Gimrg) (Wigr = Yig-1) = (Gt = Gig1) (Wirg = Yi1)] (2.31)

1
(J2)ij = m[_(gi-i-l,j—l—l — Cit1,j—1)%it1,5 + (Gim141 — Gim1,j—1)Vi-1,5

+(Git1,+1 — Gim1,j41) Wi 41 — (Gig1j—1 — Cim1,j—1)Vi j—1]

1
(J3)ij = m[(%ﬂ,jﬂ — Yit1,j-1)Cit+1,5 — Wi—1j41 — Yi—1,j-1)Ci—1,5
—(Yig1,j41 — Yim1,j41)Cig+1 + (WVig1,j—1 — Vie1,j-1)Gij—1)

Using the above mentioned discrete properties, Arakawa proved that:
e J; is only skew-symmetric
e Js is only enstrophy-conserving

e J3 is only energy-conserving

(2.32)

(2.33)
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Moreover, J3 is written in divergence form, and we can read in the same form also Jy
and Jy just rotating the axis:

(J1)ij = — 1 [¢i+1,j — Vi1 Gl T Gijr1  Vig—1 — Vi-1,5 Gij—1+Gi-1j
T VI ok 2 V2h 2 (2.34)
+1/1i,j+1 — i1 G+ + G- Vit — Yig—1 Gy + Ci,j—l] '
V2h 2 V2h 2
(Ja)iy = — 1 [T/JHLJ‘ — Vit Gt + Gy Yig—1 — Yic1 Gy + Gim1,-1
7 \/§h V2h 2 \/ih 2 (2 35)

+1/1i,j+1 —Yic1 Gi—1j01 TGy Ve —Vij-1Gy + Ci+1,j—1]
V2h 2 V2h 2

In this form, expressions in brackets represent vorticity fluxes calculated on the diagonals

of the grid (fig. [2.1)).

tv Lty ty

il Jj tli#r  del ] jadl

Ly Lly Liv
tat | bl ]

Ly Ly Ly
e

IR

Figure 2.1.: A square grid used for the finite-difference vorticity equation

We observe that another possible skew-symmetric form, opposite to J;, can be made
writing the classical Jacobian J (¢, ) = {31y — (y¥, but using again rotated axis:

1
Ji (G ) = W[(Ci—&-l,j—&-l — Gim1,j-1)(Yic1j+1 — Yig1,5-1)
—(Gi—1,54+1 = Git1,5-1) (Vi 1,541 — Yiz1,5-1)]

Looking for a discrete Jacobian with all the above mentioned properties, Arakawa
considered the linear combination of Jy, Jo, J3 and J**:

(2.36)

Ja(C )iy = a(Jr)ij+ B(J2)iy +v(J3)ij +0(J )iy (2.37)

with o + 8+ v+ 6 = 1, and he proved that the choice « = =+~ =1/3 and § = 0,
is the only possible linear combination of Ji, Jo, J3 and J** which is together skew-
symmetric, energy and enstrophy preserving. From now on we will refer to this solution
as Arakawa’s Jacobian.
Other possible discretizations:
It is possible to construct more discretizations of the Jacobian different from Ji, Jo, J3, J**, Ja
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but always considering the linear combination of Ji, Jo, J3, some examples follow. In fig-
ure (2.2) we emphasize verified properties for each jacobian and the grid points used.

o Jy=35(J1+ J2)

Nl—= D=

o J5s=5(J2+ J3)

[ ] J6 == %(Jl + Jg)

O={-PoiyT usED
¥ == POINT USED

sl el

J| J!
ENSTROPHY ENERGY
CONSERVING CONSERVING
%%
X
Ja Js Jg
ENERGY ENSTROPHY
CONSERVING. CONSERVING
JA

ENERGY B ENSTROPHY
CONSERVING

Figure 2.2.: Schematic representation of ¢ and 1 points used in constructing the finite-
difference Jacobians

Remark 2.1. Due to the grid points used, as well as in [2.36, we can interchangeably
refer to

o Jy as JtT
o Jy as JXT
o J3 as JTX

If we consider more grid points (figure [2.3), Arakawa showed how it is possible to
construct a forth order scheme with all properties required. Considering also grid points
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(i+2.j), (i-2j), (1,j+2) e (i,j-2) we can define:
1
Tp(C) = 177G ) + TG W) + TG )] (2:38)
where J**((,) is defined in and
1
(JYH) = W[(¢i,j+2 — Yit2,7)Cit1,541 — (Vim2j — Vi j—2)Ci-1,j-1 (2.30)
— (Vi 42 — Yi—25) G141 + (Viv2,; — Vi j—2)Cit1,j—1]
1
(JH) = W[(%H,J‘H — Pit1j-1)Cit2, — (i1 j+1 — Yio1,j-1)Ci—2,j (2.40)

—(Vig1j41 — Yim1,j+1)Gig+2 + (WVit1,j—1 — Yie1,j—1)Gij—2)

Q —
— —
XX
PSI —
Q —
x+
PSI e
Q —
% -
LLL]]
BEN

Figure 2.3.: Grids used for Jp

It’s worth noting that Jp presents the same structure of truncation error of J4 as we

will see in the next section.

2.2.1. Analysis of truncation error
Using Taylor expansion, we obtain:

h2
6

3 3 3 3
DOy _ocoy  PCop 0o o

Jl(C: ¢) = J(Cv w) + ox 8y3 8y ox3 oz3 8y 83/3 oz

(2.41)
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- h?2  0CO% OCo OOy O
RV =T+ G g 55 ~ 5,903 "o ey o or
¢ 0%y 0% oy ¢ Y 8¢ 4
8x6y(8y2 B (9:62) (8731 0xd%y %8@/82:6) +O(R)

B h? 0C 0%  9CO3 B3¢ oy O3 O
J3(€7¢)—J(C71/1)+§[%37y3—8fy@ 92 9y 05 O
¢ & 9¢ PP ¢ 9%¢, 0%y 4
(% ox20y ﬁiya’n@yﬂ (@ B 67342)811:831] +O(R)

h? OC 03  OCY  PCop I

= Ja(C,¥) = J(C’¢)+E[%8Tﬁ_ oy 08 03 0y 0 0w

o Py ¢ P ¢ 9%, %y

(% 0x20y 87489581/2) (W B 872)8:1:83;

oy ¢ 8¢ Py Py, 9%¢
_(% 020y ETyaxayQ) B (8352 © Oy? )8x8y

In terms of velocity this means:

+3

]+ 0(n?)

h? 0C0%*u 0Cd*v 093¢ 93¢ .
W2 OC 0% OC v B¢ 9%
9?¢C v Ou 03¢ 93¢ A
520y 5z T 3y T3 Wagary T Ve H O
_ h2 9C*u  0C%v 93¢ 93¢

0C 0%u  0C 0% 0%¢  0%*C Ou 4
Dz 2 + @@) + (@ - Tyg)%] + O(h%)

W2 9¢C%u  ACv ¢ I

= AV =IO+ Tl 55 + 5o T o T ot

0°¢C v Ou 93¢ 03¢

8x8y(% 87/) + (u8x82y + ”aya%)
0C %u ¢ 0% 0%¢  0%*C . 0Ou 4
%@4‘%@) (W_aiyg)%] O(h%)

+3(

+(

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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And, for Jp:

h? o¢ 93 ¢ 93 03¢ 0 93¢0
Tal6 ) = HC ) + (5 55~ G as + s g~ 56 B
_1_(% >y _ 9 >y ) (& _ %) 0%y
Ox 0x20y Oy 0x0y? ox?  0y?’ 0x0y

o 03¢ oY 93¢ 0% 0%, 0%
_(%m B (‘Tyax(‘)yQ) B (83:2 - Oy? )8x8y

(2.49)

]+ 0(n?)

2.2.2. Spectral analysis

Here after I present the analysis made by Lilly [52], this is a spectral analysis to show
different errors generated by Arakawa’s Jacobian. Lilly showed there are three kinds of
errors, two of them are related to the truncation error of first and second order derivatives
(and then they can be minimized raising the order of accuracy), and the last type is the
aliasing error, responsible of instability problems showed by Phillips in ([34]).

The starting point for Lilly’s analysis is expressing the stream function and the vorticity
as a series of complex exponential functions with vector wave number M = (m,n), as

follows: '
=" Ay =3 "y (2.50)
M M
where R = (z,y). The vorticity will be:
¢ ==Y [MPAye M = =N | M Py (2.51)
M M

and the Jacobian:

T, Q)= Y (k-M'xM")|M"Ppripnm = % D (MM (M P=| M *)orpr g
M M M/ M
(2.52)
An important fact is that the three different Jacobians of Arakawa’s construction, cor-
respond respectively to

1 Ji(¥,¢) = 6,97 0,¢" — 6,4"6,C"
06,0

2. Jo(,C) = 6, (10,8") — 6, (10,C")
3. Ja(1h,C) = —6,(C,0") +6,(COnt")

where (assuming uniform grid h = Az = Ay)

5F(@) = TP+ %)~ Fa = 1)
@) = S(Fa+ 1)+ Pl - 1)
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5, F(@)° = 6anFl) = %[F(x ) = F(z—h)],
VF = (6,F",5,F").
Following this notation: ' '
VelMB) — (M )ieMF) (2.53)
where . A o (nh
S(M) = (sm(m x)’ sin(n )) (2.50)
h h
and: A _
V2 M) — _4185(M/2)2e!MF), (2.55)

We don’t have algebraic identities between analytical and numerical derivates because

S(M) # M. Lilly analyzed then spectral forms of each Jacobian, obtaining:

h=kVExVC=2 S k- [S(M') x S(M")]{|5(M7
MM

Jy = k-V x (V)

2= SCE ) pinring (250

= 23 ko S(M 4+ M) x {S(M")|S(M) 2 + S(M)|S (L) 2} oarbar

Jy = —k-V x ((VY)

(2.57)

=23 g ko S(MT+ M") < {S(M")[S(AE) 2 + S(M')[S(X) [ bar toarn

Ja = %ZM',M” k- {S(M') x S(M")

HIS(M + M) x [S(M") = S(M)]} - {ISCF) P = 1S5 P Yarar

(2.58)

(2.59)

Comparing equations (2.56)-([2.59) with equation (2.52)), Lilly focused on three kinds of

error:

e First derivative errors:

Errors due to first derivatives approximation arise because S(M) # M, that is
the replacement of wave numbers by their sines, and this replacement is present in
almost every interaction. sono presenti in quasi tutte le interazioni; these errors may
be reduced by using a higher order difference scheme, for which S(M) is replaced
by the Fourier sine series converging toward M in the range from —7n/h to 7/h in

each coordinate direction.

e Second derivative errors:

Errors due to second derivative approximation arise because 45(M/2)? # M - M
which comes from the calculation of the vorticity as the laplacian of the stream
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function. Again these errors can be reduced by expanding the network of points to
compute the Laplacian.

e Aliasing error:
We cannot see aliasing error in the spectral equations, this kind of error arises
because only limited wave numbers can be representabled in a discrete space;
the highest representable wave number is m = 7, higher wave numbers will be
misinterpreted as wave numbers —7 + m causing spurious interactions involving
reflections of one or both components.

It is clear that wrong interactions arise for all discrete Jacobians, but numerical in-
stabilities arise only with the non-conservative ones, as shown in [5].

2.2.3. Generalizations

Different kinds of Arakawa’s generalization have been presented in literature; hereafter
I will give just a summary of the main ones in order to show differences and strengths
of the systematic method I developed to discretize mimetic non-linear operator.

e in 1974-1975 Jespersen [10] and Fix [II] studied different classes of conservative
finite-element Jacobians. In particular Jespersen reinterpreted Arakawa’s solution
as a finite-element method, showing how any nine-point second-order method obey-
ing the conservation laws is a linear combination of two finite-element schemes,
bilinear elements in rectangles and linear elements in triangles. He showed conser-
vative finite-difference nine-points schemes is a one-parameter family solution;

e In 1989, Salmon and Talley [9] proposed a generalization of Arakawa’s Jacobian
in terms of indipendence of type of discretization. The method presented is an
integral generalization of Arakawa’s solution to apply to an arbitrary number of
gridpoints for finite-difference schemes, or finite elements, or spectral modes, or
to any mixture of the three. In particular they derived Arakawa’s Jacobian as the
particular solution for the 9 grid-points, an energy-enstrophy conserving Jacobian
for an irregular triangular mesh in a closed domain and for a mixed gridpoint/mode
representation in a semi-infinite channel;

e In 1998, McLachlan [12] using symmetry groups and skew-symmetric finite differ-
ence tensors, presented a systematic method for discretizing PDEs with a known
list of integrals. The problem of this method is that the required symmetry prop-
erties make the the finite differences unavoidably complicated, except for special
cases (as Arakawa’s solution);

e In collaboration with Professor Nordstrom and PhD student Cristina La Cognata
of Link6ping University, I also found a generalization of Arakawa’s Jacobian written
in terms of Summation-by-parts operator [42]. This generalization will be presented
in a succeeding chapter.
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Also Hu and Fulton, in the technical report [13], tried to generalize Arakawa’s idea for
a general second order compact stencil conservative and skew-symmetric scheme. They
found a whole set of solution depending on one parameter, exactly the same that I will
find in the next sections, the problem of their work is that it is ill-posed. As a matter
of fact, they impose the consistency of the general discrete scheme with the analytical
Jacobian imposing the following three properties:

1. J;j(1,9) =0
3. Jm‘(l’,y) =1

for all suitably smooth functions ¢ and . It’s easy to show that these conditions are

necessary but not sufficient to guarantee consistency. To prove that, let’s consider the

following counterexample:
0%¢

Ov DU, P 00 O DbOC 0wk
or 0Oy B 8x6y<8x oy Oz Jdy 0Oy Ox

(2.60)

Discretizing such operator (for example with central finite differences) we obtain a dis-
crete operator which respects properties 1.-2.-3. (and which is also skew-symmetric) but
this is anyway not consistent with an analytical Jacobian.

The solution obtained by Hu and Fulton is correct only because they consider the class
of solution which obey concurrently to 1.-2.-3., skew-symmetry, energy and enstrophy
preserving requirements. It is only the intersection of these properties which guarantees
consistency, but if we would consider only subsets of solutions, the method results to be
incorrect.

The systematic method to construct mimetic finite-difference schemes for incompress-
ible flows presented below is the correct generalization of this method to a generic non-
linear operator which uses arbitrary grid-points and with arbitrary order of accuracy
and properties. Moreover, this is the only generalization able to guarantee the overall
set of solutions for each specific class of schemes we are looking for.



3. A systematic method to construct
mimetic finite-difference schemes for
incompressible flows

3.1. The General Method

We start by considering a general finite differences discretization of a general non-linear
operator L in N variables:

Li(¢', ™) =D > Z«bn,lg, ,1NH¢1+1k (3.1)

i iz

where i is a generic index which has as many components as the dimension of the problem
(one for a scalar problem, two for a bi-dimensional problem and so on) and i; has the
same size of i but it is defined depending on the stencil we are using. This is a special
form in writing a non-linear operator: the non-linearity is hidden in the products of
sequences which contains every variables, while the coefficients are out of the product
but depend on each variable. In such a way it’s natural to construct a linear system
for the coefficients ¢11 . As a matter of fact, once we specify domain and stencil, we
will translate numerlcal arld physical requests on the general operator in terms of linear
equations for coefficients ¢, . i, -

To be more precise, the N-summations indexes depend on the stencil we are using: if we
consider a compact stencil, the summation will include only the nearest grid-point, and
will then include only 0, +1, —1; if we consider a larger stencil with one more point it will
be on —2,-1,0,1,2, and so on. The general coefficient ¢;, 5, . i, should generally take
care and correlate each variable, this is the reason of all the indexes. Of course we could
a priori also consider a different stencil and a different correlation for each variable, and
the general expression include them all. B

In this way we just need to impose any property that we need to the coefficients ¢;, 5, . iy,
we could ask for example the skew-symmetric property alone or all three Arakawa’s
requests together and so on. Every different choice leads to different linear systems and
then to different solutions; in next section we will consider a special case in order to
show how to apply the general procedure concretely.
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3.2. An application: Non uniqueness of Arakawa’s Jacobian

Let us consider a specific case: we fix the set of solutions as the set of all non-linear
discrete operators with a compact stencil, constant spatial step size h, with the following
properties:

a) skew symmetry (eq. [2.10);
b) enstrophy conserving (eq. [2.15));
¢) energy conserving (eq. [2.14));
d) second order consistency with the analytical Jacobian (eq. .

In order to impose such constraints, we started from Arakawa’s work [4] to generalize
his idea. We re-write equation (3.1) as

Ji(¢, ) = Zch i Girr i Pi i (3.2)

where now it is clear that the generic i index is defined as i = (7, ), 1’,i” can assume

values in the set Ax A with A = {0, 1, —1}, and of course J;(¢, v) = J({(x4, y5), ¥ (i, y5))-
In this explicit example it is easy to see the trick in writing linear equations: cp j» are
coeflicients of the non-linear variable (v, for this reason we don’t have 949 non-linear
unknowns but a linear system in the 81 unknows c¢p 3» (which correspond to the general

coefficients 5117_41\, of the original operator )
It is useful to read again the Jacobian as Arakawa did:

Ji(C) = aiiqwGiai, where aijap = Y cp g (3.3)

i? ill

or

Ji(C) =) bigyirthir where bigr =Y crprCiyr (3.4)

i» i’

in order to translate properties a) —b) —c) —d) in terms of coefficients ap 3, by, , ¢ 7.
Indeed, discrete analogues of requirements a) — b) — ¢) — d) are:

a) Ji(¢, ) = —Ji(¢,¢), Vi

E § Cy, ”Cl—i—l wl-i-l” = - § § Cy, ”C1+1”¢1+1
i’ i” i’ i”

= = G p
b) 35 G ¥) =0
Z Gidi C 7!} Z Z aq i+i’ ClCl"Fl, =0

= Qi4i’i = —aii+i
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) 2 ¥idi(¢ ) = 0

Z wiJi(Ca 1/)) = Z Z bi,i+i”1/}i1/}i+i” =0

= bitii = —biitv

(3.7)

d) to obtain consistency we use Taylor expansion of equation (3.2]) in each grid point
(l‘i, y])

n—1n—1 8l+m<. .
- Z > el Z llml Lk 3331((32 yj>)

i gl i g nillz(]:?:() (38)
Z ( ”h //h) 8l+mw(aji7 y]) )]
it l'm' Oxloym

With the help of a symbolic manipulator, we obtain linear equations for coefficients
¢y i nullifying any equation proportional to RO, h', k3, and we save only the

contribution proportional to h? of the Jacobian, meaning ( 84 g’;) and (%%’).

Equations (3.5) and (3.8) are clearly written in terms of coefficients ¢; ;» while equations
and (3.7) are, respectlvely, in terms of a4y and bj 4. By definition ( . .
coefﬁments a; i+ and bj i are linear combinations of ¢ and ¢, so that we can read
equations and as system of equations in the unknowns c; ;.

It’s worth noting that analytical identities from LHS to RHS of equations -
are not exactly verified in the discrete space; as a matter of fact, with regards to enstrophy
conservation, the identity is verified except for time derivative approximations, while for
energy conservation we go through integration by parts:

O(Vy) O(Ay)
. = — 3-9
(V) S = S (39)
and then what we are actually imposing is the integral constraint
YJ(C ) =0 (3.10)
for energy conservation and
¢J(¢¥) =0 (3.11)

for enstrophy conservation. We want to underline that this is just a possible choice, as
well as the choice of imposing all requirements a) — b) — ¢) — d); we could impose less
properties to look for wider sets of solutions.

By imposing conditions a) — b) — ¢) — d) we obtain a huge number of equations, but,
using a symbolic manipulator, we can see that only 80 of them are linearly independent,
meaning that the system exhibits oo! solutions. We proved the following theorem:

Theorem 3.2.1. Non-uniqueness of Arakawa’s Jacobian
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There exists a whole set of solutions for the discrete 2" order Jacobian which satisfies
conservation of energy and enstrophy and skew-symmetric property; this set depends on
one parameter, when the parameter is zero, we recover Arakawa’s solution.

This discrete set of solutions can be written in each grid point i = (7, j) as:
s Tz
J () = 5G (3.12)
where:

= T
i = (Yig1,j41, Vi1, Vir1,j-1, Vi1, Vig Yij—1, Yic 1,541, Vi1, Yi1,j-1)" 5

= T
G = (G141 Cit1,js Git1,i—15 Cijr15 Gigir Girj15 Gim 1,415 Gim1,55 Gim1,j—1) " 3

and
0 —s~ 0 s~ 0 0 0 0 0
5~ 0 st —st 0 —s= 0 0 0
0 —st 0 0 0 st 0 0 0
1 —s~ st 0 0 0 0 —st s~ 0
S = 1272 0 0 0 0 0 0 0 0 0
0 s —st 0 0 0 0 st —s=
0 0 0 st 0 0 0 —st 0
0 0 0 —s~ 0 —st st 0 s~
0 0 0 0 0 s 0 —s~ 0

with s" =s—1and st =s+ 1.

3.2.1. Special cases: s = +1

Let’s start by analyzing the special case s = 1; the general scheme becomes:

1
Js=1(C, ) = W{QHJ(W,J’H —ir1-1) — Gim1,5 (Vi1 — Yic1441)
+Gi 1 (Vim1 jr1 — Yigr15) — Gij—1(Vig1,j—1 — Yiz1) (3.13)
+Cit1,j-1 (Vig1,j — Yijo1) — CGim1 41 (Yic1; — Yij1)}

If we want to give a geometric reading of the special scheme (3.13)), we can see that it
uses grid points in figures (3.1])-(3.2]) that we can read, respectively, as:

Cx(wy - %) - Cy(wx + %) (figure

(ot ) (figure

which, combined, give rise to the Jacobian. With a better analysis, we can decompose

such discretization as in figures ({3.3] and (3.6)):

Now it is clear the new reading of the scheme, adding and subtracting the ghost-node
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9 ¥
Figure 3.1.: (; (% %“) — Cy(z + wzy)
9 ¥
Figure 3.2.: (¢ + Cy)(%)
(i,5):
1
Js=1(G, %) = o ll(Girry = ) Wigr — i + Yij = Yivrj-1)
+(Gig = Gim15) (Wim1j41 — Yig + Yig — Yij-1)] (figurd3.7)
—[(Gigr = Gig) W1y — iy + iy — Yic1541)
H(Gij = Gig—1) Wit1j-1 = Vi + Vi — Yim15)] (figured.§) (3.14)

—[(Wit1,5 — ¥ij)(Gig — Cit1,5-1)

+ (Vi — Yim1,5)(Cim1,j+1 — Gig)] (figurd3.9)
(Wi 41 — i) (G — Gi—1,5+41)

+(tij = Vij—1)(Gir1j-1 — i)} (figurd3.10)}
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W ¥
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Figure 3.4.: Scomposizione di 9,

W ¥
S R e B R S R e i R S A R B
i+ j+

[ SRR N SR YR i P ES—.. R
i i
2 ; i

12 i1 i+1 i+2 2 i i+ i+2

Figure 3.5.: Scomposizione di 9,
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9 ¥
i+ i+
i 3]
Figure 3.6.: (¢, + C) (Z25%)
Figure 3.7.: Cz1y
5 5
Figure 3.8.: (yv,
The special case s = —1 is symmetric respect to s = 1 using the opposite diagonals:

Jo=—1(¢, ) = #{Cﬂ-l,j-kl(wi,j—i—l = Yit1) = Gi—1,-1(Yij—1 — Vi1

)
+Cij+1(Yi-1j — Yiv1j41) — Gij—1(Yig1j — Yi-1,4-1) (3.15)
FCit1,(Yir15401 — Vig—1) = G-1(Wim15-1 — Yij+1)}
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Figure 3.9.: (yv,

Figure 3.10.: (39,

and the grid points used are those in figures (3.11H3.12)).

Remark 3.1. As already noted, Arakawa’s Jacobian is the linear combination of three
different readings of the analytical Jacobian:

b Cx% - Cy%
o — & (GY)+ a%(cm)
o F(Cy) — 2 (Cta).

We can easily note that also the special cases Js—1 and Js—_1 are linear combination of

such three readings, what changes is the way of discretization, the grid points used.
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R AR R R B R B R R g P R

Figure 3.11.: s = —1

R AR R R B R B R R g P R

Figure 3.12.: s = —1

3.2.2. J, and sub-solutions
The previous observation, leads to write the general Jacobian as

I+ J® 1+ g

Js: )
3

where: 1
JI(¢, ) = a2 WGty = Gim1g) (Vi — Wig-1)
+5(Giv1,j — 2Gij + Gij—1)(Wiv1j — 205 + Vi 1)
—(Yit1,5 — Yim1,5)(Gir1 — Gij—1)
—8(Yit1,5 — 20i5 + Yij-1)(Git1,5 — 2Cij + Gig—1)}

(3.16)
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1
J(C, ) = m{—(%H,j[(QHJH — Git1,j-1) = 8(Giv1,5+1 — 2Gij + Giv1,i-1)]

— i1 [(Cim1,j4+1 — Ci—1,j—1) + 8(Ci—1,j+1 — 2Cij + Gi—1,j-1)]) (3.17)
i i1 [(Gi1,4+1 — Gim1,j41) — S(Cit1,j+1 — 2Gij + Gim1,5+1)]
=i j—1[(Gig1,-1 — Gi—1,j—1) + 5(Cit15-1 — 2Gij + Gi—1,5-1)]}

1
T (¢, ) = Thg{gi+1,j[(¢i+l,j+l —Yip1j-1) = b(Vig1j11 — 25 j + Yiv1j-1)]

—Gi-14[(im1j41 = Yic1j-1) + s(Wi1j01 = 2055 + Yic15-1)] (3.18)
—(Gi 1 [(Vig1 41 — Vim1j4+1) — S(Vig1 j+1 — 245 + i1 j41)]
—Gij—1[(Vit1,j—1 — Vi1 j—1) + s(Wig1,j-1 — 2¢ij + Yi—15-1)])}

The truncation error shows that only in the special case s = 0, each of the three Jacobian
is consistent, while, in general only JY and (JS(Q) + J§3)) /2 mantain consistency:

TEW = (G — 9aty)
1
12 (2 Py Gaza — Vizaly = Yol + VunsCe) = 5 (Pralyy + Vi)
1
+h4(%(wyyny:ﬂx - djxazxgyyy) + %(d}yygxmcz - djxmx:(:ny - wszyyyy + ¢yyyy<mx))

S
_|_h6 % (wyyyygx:pxx - ¢azxzz nyyy)
(3.19)
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TT? = (e = ¥aly) + 5(¥aCe — yGy)
+h2(%(wnyxx - 3¢:c€a:xy - 3%:(:@;/ - 1/}zxx€y - %nyy + 3¢y§yyz + 3wyyCzy + wyyygx)

+%(3¢WC99 — 3VyyCaz + 2V0Coze + 3Va2Coz + 2V220Ca

+6¢1nyw — 69y Cray — 20y Cyyy — 3¢yyny — 2y Cy))
+h4(%(6¢yyﬁxmy — 6YnanCory — 3VaraeCey — 6YaaCyyye — 6raCoary
~ 200 Cyyy + 20Uy Caza + 60Uy Cyyye + 60Uy Cuye + 30uyuyCey)

17 (B¥saCaren + WoaoCono + oo Con + 18YoConyy

_3¢yygmzzx + 12¢xmz§yyw + 3¢zx:}c:p<yy + 3¢:px£yyyy - 18wyyg’r:pyy

_12'(/)yyygmsy - 3¢yyyy<ﬂ:x B 3¢yy§yyyy - 4¢yyynyy - 3¢yyyy<yy))
6

+%(4¢yyyy§vmy — YraaCyyye — AWazzaCoory + 40yyyyCyyya

+3(¢mxmex:m:m + wa:czxgxa:yy + wx:vacmnyyy - wyyyyga:xac;t - Gdjyyyyé_macyy - wyyyyCyéJyy)))
3.20

TI® = (=Cte + Gtby) — 5(Gotbe — Gtby)
1
_hz(g(gyw:mx - 3C:v¢zxy - 3Cmc¢zy - Cm::]cwy - Cx¢yyy + 3Cy¢yyw + 3ny¢xy + nyywat)

5 (3Ceathyy — 3thra + 2thass + 3arthar + 2azat

F6CeVyye — 6Cythany — 2Cy¥yyy — 3Cyythyy — 2Cyyyty))

o (O — OCeastinny — Bansatiey — OCartiyyye — 6Certiarey
—2CaaaVyyy + 2CyyyWYazs + 6CyyYyyya + 6CyyyPyya + 3nyyy1/’wy)

2 (3ontrare + Wrnrthare + 3raata + 18Catiany

3y tanre + 12Geaatyye + 3azaatyy + 3Ceatuyyy — 18y Prayy
—12CyyyVaay = 3CyyyyVaz — 3CyyVyyyy — 4CyyyVyyy — 3nyyy¢yy))

h6
_%(4nyyy¢mxy — AazzaVyyye — 4Crrzaazay + 4CyyyyVyyya

+3(mexz¢xxmx + 6<mzzx1/}xmyy + me:xwyyyy - nyyy¢mxzx - 6nyyywmzyy - nyyy@byyyy))
(3.21)
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The global truncation error is then:
JS(CJ/’) = wny - 1/}sz
h2
Jrg [¢y<xmx - waxczry - ¢mc<xy + Q;Z)xygmc - wmcICy + ,(zZ}IJSyCI

—%nyy + wy(yyfﬂ - wwygyy + wyyg’ry - wyyﬂcCy + wyyny (3'22)
2 (2WrCyye — 2y Comy + Vraly — YyuCar + gy — 2yyae)]
+O(h%).

In a more compact form, we can read the general scheme as Arakawa’s Jacobian plus a
term depending on the parameter:

Jo=Js+sJ (3.23)

where ~
J = G j+1(Vit1,+1 + Vic1 j+1 — Viv1,j — Yi-1,j)

+Gij—1(Vit1j-1 +Yic1j-1 — Yit1; — Yio1,5)

—Cit1,5(Vit1,5+1 + Yir1j-1 — Yije1 — Yij-1)

(Yic1j41 +Yic1j-1 — Yijr1 — Yij-1)

+Giv1,j+1 (Vi1 — Vi)
)

)

)

G- (3.24)

(
FCit1,j—1(Vig1,j — Vi1
+Gim1,+1(Yim1,j — Yij1
+Gi1,j-1(Vie1j — Vi1

3.2.2.1. Different sets of solutions

As outlined before, many classes of possible solutions arise: one possible choice is the
family of skew-symmetric 2nd-order Jacobians. To obtain this special set of schemes we
should impose only conditions a) and d), obtaining a wider family of solutions depending
on many parameters. Here we observe that the special cases presented in the previous
section J and (Js@ + J§3)) /2 belong to this subset. For semplicity, we will rename
them as:

(¢ ) = TN (3.25)
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and 1
Sk _ (2) (3) —
FHCH) = (D + IO 2= o

{=(ir1,5[(Cir1541 — Gir1j—1) — 8(Giv1,j41 + Gir1,5-1)]
— i1 5[(Gim1j41 — Gim1,j-1) + (G141 + Gi—1,5-1)])
+ij+1[(Gir1+1 = Gi—1,5+1) = 8(Cit1j+1 + Gim1,5+1)]
—ij-1[(Gir1,j-1 — Gim15-1) + (G151 + Cim1,5-1)] (3.26)
+Cir1,j[(Viv1,41 — Yit1,5-1) — s(Yir1 541 + Yiv1,5-1)]
—Gim1,j[(Yic1 11 — Yic1-1) + 8(Yim1 41+ ic15-1)]
—=(Gij+1[(Yir1541 — Yic 1) = 5(Vigr541 + Yic141)]
—Gij-1[(Vig1,j-1 —Yi—15-1) + s(Wit1j-1 +Yic1;-1)])}
refering to the grid points that they use.
We summarize some examples of different subsets of solutions in table and, in the
next section, we will show their different behaviors.

Table 3.12.: Examples of 2nd order Jacobians with different properties

Skew-symmetric Enstrophy Conserving FEnergy Conserving

J? J? J?
Js* (J+>< + J—H-)/Q (J><+ + J-H—)/Q
Jer J><+ J+><

3.2.3. Analysis of the general scheme
3.2.3.1. Error analysis in the physical space

Let’s consider now the special case where the velocity field is assumed to be constant,

(k1,k2) = (u,v), meani