

## Probability ACSAI 2024-25 L. Bertini and V. Silvestri

## Week 11

**Exercise 1.** Let  $X_i$ , i = 1, 2 be independent uniform random variables in [0, 1].

- 1) Compute the distribution (i.e. the probability density function) of  $X_1 + X_2$ .
- 2) Compute the distribution (i.e. the probability density function) of  $\max\{X_1, X_2\}$ .
- 3) Compute the distribution (i.e. the probability density function) of  $\min\{X_1, X_2\}$ .

**Exercise 2.** Let U be a uniform random variable in [0,1], and let V be a random variable independent of U, uniformly distributed in [-1,1].

- 1) Compute the distribution (i.e. the probability density function) of  $V^2$ .
- 2) Compute the distribution (i.e. the probability density function) of  $\log(1/U)$ .
- 3) Compute  $\mathbb{P}(U \leq V)$ .

**Exercise 3.** Let X be a Gaussian random variable with mean 2 and variance 25. Provide answers to the following questions by using the Gaussian integral tables.

- 1) Compute  $\mathbb{P}(|X-2| \geq 7)$ .
- 2) Compute  $\mathbb{P}(0 \le X \le 7)$ .
- 3) Determine  $\alpha$  such that  $\mathbb{P}(X \geq \alpha) \leq 0.1$ .

Exercise 4. In order to transmit a bit from a source A to a receiver B via a pair of electrical wires, one applies a potential difference of  $+2\,\mathrm{V}$  for the value 1 and  $-2\,\mathrm{V}$  for the value 0. Due to electromagnetic disturbance, if A applies  $\mu=\pm 2\,\mathrm{V}$ , B reads  $X=\mu+Z$ , where Z represents the noise, described by a Gaussian random variable of mean 0 and variance  $1\,\mathrm{V}^2$ . After reading X, B registers the message with the following rule: if  $X\geq 0.5\,\mathrm{V}$  then B registers 1, while if  $X<0.5\,\mathrm{V}$  then B registers 0.

- 1) If A sends 0, compute the probability that B registers 1.
- 2) If A sends 1, compute the probability that B registers 0.

Suppose now that A sends 0 or 1 with equal probability.

- 3) Compute the probability that B registers 1.
- 4) If B has registered 1, compute the probability that the message registered coincides with the message sent.

**Exercise 5.** Two fair dice are rolled 300 times. Let X denote the number of rolls at which the pair (1,1) is obtained.

- 1) Compute  $\mathbb{E}(X)$  and  $\mathbb{V}(X)$ .
- 2) Using the Gaussian approximation, compute the probability of obtaining (1,1) more than 10 times.

Now consider the case where the two dice are rolled n times.

3) Using the Gaussian approximation, determine how large should n be so that the probability of obtaining (1,1) at least 10 times exceeds 1/2.