

Corso di Laurea in Matematica, A.A. 2020-21 **Probabilità 1**, Canale 1 (Docenti: L. Bertini, V. Silvestri) ESERCIZI SETTIMANALI

Gli esercizi e le domande contrassegnate con * sono impegnativi. Si consiglia quindi di affrontarli dopo aver risolto gli altri.

Settimana 10

Esercizio 1. A e B giocano al seguente gioco: A scrive 1 o 2 su un foglio e B deve indovinare il numero scritto da A Se A ha scritto $i \in \{1,2\}$ e B indovina allora A paga i euro a B. Se invece B non indovina allora B paga 0.75 euro ad A.

Si supponga che B adotti una strategia casuale dichiarando 1 con probabilità p e 2 con probabilità 1-p.

- 1) Supponendo che A abbia scritto 1 determinare il guadagno medio di B
- 2) Supponendo che A abbia scritto 2 determinare il guadagno medio di B
- 3) determinare il valore di p che massimizza il minimo tra i 2 guadagni medi precedenti.

Si supponga che A adotti una strategia casuale scrivendo 1 con probabilità q e 2 con probabilità 1-q.

- 4) Supponendo che B dichiari 1 determinare la perdita media di A.
- 5) Supponendo che B dichiari 2 determinare la perdita media di A.
- 6) determinare il valore di q che minimizza la massima tra le 2 perdite medie precedenti.

Confrontare le risposte ai punti 3 e 6.

Esercizio 2. Siano X_i , i = 1, 2 variabili aleatorie uniformi in [0, 1] indipendenti.

- 1) Calcolare la distribuzione (ovvero la densità di probabilità) di $X_1 + X_2$.
- 2) Calcolare la distribuzione (ovvero la densità di probabilità) di $\max\{X_1, X_2\}$.
- 3) Calcolare la distribuzione (ovvero la densità di probabilità) di $\min\{X_1, X_2\}$.

Esercizio 3. Siano U una variabile aleatoria uniforme in (0,1) e V una variabile aleatoria indipendente da U uniforme in (-1,1).

- 1) Calcolare la distribuzione (ovvero la densità di probabilità) di V^2 .
- 2) Calcolare la distribuzione (ovvero la densità di probabilità) di log(1/U).
- 3) Calcolare $\mathbb{P}(U \leq V)$.

Esercizio 4. Siano T_i , i = 1, 2 variabili aleatorie esponenziali di parametro $\lambda > 0$ indipendenti.

- 1) Calcolare la distribuzione (ovvero la densità di probabilità) di $T_1 + T_2$.
- 2) Calcolare la distribuzione (ovvero la densità di probabilità) di $\max\{T_1, T_2\}$.
- 3) Calcolare la distribuzione (ovvero la densità di probabilità) di $\min\{T_1, T_2\}$.

Esercizio 5. Ogni giorno Vanya beve un volume d'acqua aleatorio, ed assumiamo che il volume X_k bevuto al giorno k sia una variabile aleatoria positiva, di attesa finita, ma non limitata (ossia $\mathbb{P}(X_k > v) > 0$ per ogni $v \in \mathbb{R}$). Assumiamo inoltre che le variabili aleatorie X_1, X_2, \ldots siano indipendenti ed abbiamo tutte la stessa legge.

Per $v \ge 0$, definiamo $T_v := \inf\{k \in \mathbb{N} : X_k > v\}$. Ossia T_v è il numero di giorni trascorsi prima che Vanya beva (in un giorno) almeno un volume v di acqua.

- 1) Determinare la legge della variabile aleatoria T_v , a partire dalla distribuzione di X.
- 2) Calcolare il valore di attesa di T_v e mostrare che $\lim_{v\to+\infty} \mathbb{E}T_v = +\infty$.
- 3) Mostrare che $\lim_{v\to+\infty} \mathbb{P}(T_v > \mathbb{E}T_v) = e^{-1}$.

Esercizio 6. Si consideri il circuito in figura, dove i tempi di rottura dei componenti 1, 2, 3 sono

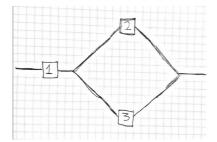


FIGURA 1. Il circuito si considera funzionante se il componente 1 funziona ed almeno uno tra i componenti 2 e 3 funziona.

variabili aleatorie esponenziali indipendenti rispettivamente di parametri $\lambda_1, \lambda_2, \lambda_3$.

- 1) Determinare la legge del tempo di rottura del circuito.
- 2) Calcolare esplicitamente il valore di attesa del tempo di rottura del circuito.
- 3) Sapendo che al tempo T il circuito funziona, calcolare la probabilità che uno tra i componenti 2 e 3 si sia rotto.

Esercizio 7. Siano X_1, X_2, \ldots, X_n variabili aleatorie indipendenti ed identicamente distribuite con distribuzione di Poisson di parametro λ/\sqrt{n} , $\lambda > 0$. Sia inoltre $Y_n := \max_{i=1,\ldots,n} X_i$. Dimostrare che Y_n converge in legge ad una variabile aleatoria Y ed identificare la distribuzione di Y. Sugg. Scrivere la probabilità dell'evento $\{Y_n \leq \ell\}$ per $\ell = 0, 1, 2$ e passare al limite per $n \to \infty$.

Esercizio 8^{*} (DISTANZA IN VARIAZIONE TOTALE) Sia $\mathcal{P}(\mathbb{Z}_+)$ l'insieme delle probabilità su $\mathbb{Z}_+ := \{0,1,\ldots\}$ (rispetto alla σ-algebra di tutti i sottoinsiemi di \mathbb{Z}_+). Sia $d_{\mathrm{TV}} : \mathcal{P}(\mathbb{Z}_+) \times \mathcal{P}(\mathbb{Z}_+) \to \mathbb{R}_+$ la funzione (distanza in variazione totale) definita da

$$d_{\text{TV}}(\mu, \nu) := \frac{1}{2} \sum_{i=0}^{\infty} |\mu(i) - \nu(i)|$$

ove $\mu(i) = \mu(\{i\}), i \in \mathbb{Z}_{+}$.

- 1) Verificare che $d_{\rm TV}$ è una distanza.
- 2) Dimostrare che

$$d_{\mathrm{TV}}(\mu,\nu) = \sup_{A \subset \mathbb{Z}_+} |\mu(A) - \nu(A)|.$$

3) Dimostrare che

$$2 d_{\text{TV}}(\mu, \nu) = \sup_{\substack{f : \mathbb{Z}_+ \to \mathbb{R} \\ |f| < 1}} \left| \mathbb{E}_{\mu}(f) - \mathbb{E}_{\nu}(f) \right|$$

ove $\mathbb{E}_{\mu}(f)$ è il valore di attesa di f rispetto a μ .

4) Dimostrare che $\mathcal{P}(\mathbb{Z}_+)$ con la distanza d_{TV} è uno spazio metrico completo.