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1. Introduction

A quantum Markov semigroup (QMS) is a one-parameter semigroup (Pt)t≥0 of com-
pletely positive operators on a C∗-algebra A. QMS are typically used to describe the 
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non-unitary evolution of quantum systems, as in the case of (weak) interaction with 
thermal baths or in measurement processes [7,25]. See also [5] for the relevance of QMS 
in the context of quantum information theory. The generator of a QMS is referred to as 
the Lindblad generator. We focus to the case in which Pt is self-adjoint with respect to 
the GNS inner product induced by a state σ. In particular, σ is an invariant state for Pt.

Given an initial state ρ, we are interested in the exponential convergence of its evo-
lution ρPt to the invariant state σ, that we quantify in terms of the trace distance, 
the non-commutative version of the total variation distance. In the context of classical 
Markov semigroups, this topic has become a central issue in probability theory that it has 
been addressed by different methods such as: coupling arguments, functional inequalities, 
and spectral theory. We refer to [15] for a review on the subject.

To the best of our knowledge, a decay to equilibrium for QMS based on a non-
commutative version of coupling arguments has not been discussed in literature.

The methods based on functional inequalities can be directly extended to the non-
commutative case. Indeed, in view of the quantum Pinsker inequality, see e.g. [27, 
Thm.11.9.5], the exponential convergence in trace distance can be deduced by the expo-
nential decay of the quantum relative entropy of ρPt with respect to σ. This exponential 
decay of the quantum relative entropy is in fact equivalent to the validity of the modi-
fied log-Sobolev inequality. Sufficient criteria for the latter, along the same lines of the 
celebrated Bakry-Émery criterion [4], have been discussed in [6,8,9,12,16,28,29].

The methods based on spectral theory require a detailed knowledge of the spectral 
decomposition of the generator of the semigroup, but, when such knowledge is available, 
they provide sharp bounds on the decay rate. In the present paper we deduce the expo-
nential convergence to equilibrium in trace distance for QMS by spectral methods. More 
precisely, following [26], we introduce a non-commutative version of the χ2-divergence 
and observe that it provides, as in the commutative case, an upper bound for the trace 
distance between states. We then show that the exponential decay of the χ2-divergence 
between ρPt and σ can be deduced from the spectral decomposition of the Lindblad 
generator L. We emphasize that the eigenvectors of L are normalized with respect to 
the GNS inner product, but the previous estimate requires a control on their operator 
norm. This is the non-commutative counterpart of an L∞-bound on the L2-normalized 
eigenfunctions of the Markov generator discussed in [15, §12.6]. We also remark that, as 
in the commutative case, the quantum relative entropy of a state ρ with respect to σ is 
controlled by the χ2-divergence of ρ with respect to σ, see e.g. [26, Thm.8]. Hence, this 
approach also yields the exponential decay of the quantum relative entropy of ρPt with 
respect to the stationary state σ with a quantitative decay rate.

As discussed in [8, Thm.3.1] and [2, Thm.3], the explicit construction of a Lindblad 
generator that is self-adjoint with respect to the GNS inner product induced by a given 
state σ requires the eigenvalues and eigenvectors of the modular operator associated 
to σ. Identifying the state σ with the corresponding density matrix, we recall that the 
modular operator associated to σ is the map a �→ σaσ−1. For this reason, concrete 
examples of QMS that are self-adjoint with respect to given GNS inner products have 
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been so far limited to special models. If h is the Hamiltonian of a harmonic oscillator and 
σ is the thermal state e−βh/ Tr(e−βh) for some β > 0, the bosonic Ornstein-Uhlenbeck 
semigroup is a QMS that is self-adjoint with respect to the GNS inner product induced 
by σ. Its construction has been carried out, by Dirichlet form techniques, in [11]. The 
corresponding decay rate to equilibrium in entropic sense has been proven in [8, Theorem 
8.5] using Mehler type formulae and intertwining relationships. As we show in Section 5, 
the decay to equilibrium in trace distance, with the same rate as in [8], can also be 
obtained from the spectral decomposition of the Lindblad generator.

The other paradigmatic example discussed in [8] is the fermionic Ornstein-Uhlenbeck 
semigroup, which is self-adjoint with respect to the GNS inner product associated to a 
free fermion thermal state. In this case the underlying Hilbert space is finite dimensional 
and the exponential convergence in trace distance holds uniformly with respect to the 
initial state. The sharp exponential rate has been computed in [8, Thm.8.6], again by 
intertwining relationships. In Section 3 we show that, also in the fermionic case, the 
decay to equilibrium in trace distance can be obtained from the spectral decomposition 
of the Lindblad generator, with the same rate as in [8].

A simple and popular QMS is the so-called depolarizing channel [21]. The exponential 
decay of the quantum relative entropy has been obtained in [20]. It has also been analyzed 
in [9,10,12] in terms of a lower bound on a “Ricci curvature”, however the decay rate of 
the quantum relative entropy obtained there is not sharp. Section 4 contains the main 
novelty of the present paper: the analysis of the sharp decay rate for a family of QMS 
parametrized by a finite dimensional semisimple Lie algebra g and a finite dimensional 
irreducible g-module V , in which the Lindblad generator is given by the adjoint action of 
the Casimir element. As discussed in [5], these QMS can also be obtained by ‘transference’ 
from heat kernel of the connected compact Lie group associate to the Lie algebra g. Such 
QMS are self-adjoint with respect to the normalized Hilbert-Schmidt inner product on 
End(V ). The corresponding generators can be viewed as non-commutative versions of the 
Laplace-Beltrami operator on suitable manifolds. The depolarizing channel mentioned 
above is obtained as the special case when g = sl2 and V is its defining 2-dimensional 
representation. It appears that the exponential decay of the quantum relative entropy 
for such family of QMS cannot be obtained by applying the criteria in [8,9,12]. On 
the other hand, the representation theory of finite dimensional semisimple Lie algebras 
gives detailed information on the spectrum of the corresponding Lindblad generators. In 
fact, sharp bounds on the eigenvalues and eigenvectors of the Lindblad generator lead 
to exponential decay of the quantum χ2-divergence. As a consequence, we deduce the 
exponential convergence of ρPt to σ both in trace distance and in entropic sense for all 
the QMS in the family. We emphasize that for this class of QMS the bound that we 
obtain for the rate of the exponential convergence in trace distance coincides with the 
inverse of the spectral gap of the Lindblad generator, and it is therefore optimal. More 
precisely, we show that there are reals g0, A > 0, depending on the Lie algebra g but 
independent of the g-module V , such that, for any t ≥ 0 and any initial state ρ,
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dtr
(
ρPt, σ

)
≤ Ae−g0t ,

where dtr denotes the trace distance and the stationary state σ is the normalized trace 
on V .

2. Convergence in trace distance for quantum Markov semigroups

In this section we recall some basic facts about QMS and the trace distance between 
states. We then prove a general inequality yielding the exponential ergodicity of QMS 
in trace distance, generalizing the bound stated in [15, §12.6] for classical Markov semi-
groups. The discussion will be carried out in the context of QMS on the C∗-algebra 
of linear operators on a finite dimensional Hilbert space. This setting, that avoids the 
functional analytic technicalities of infinite dimensional C∗-algebras, is sufficient to ac-
commodate the Fermi Ornstein-Uhlenbeck semigroup that we discuss in Section 3, and 
the Lie algebra based QMS that we introduce in Section 4. As in the case of Markov 
chains with finite state space, the main emphasis is to obtain sharp bounds relative to 
the dimension of the underlying Hilbert space. In contrast, the Bose Ornstein-Uhlenbeck 
semigroup acts on an infinite dimensional C∗-algebra and will be discussed in Section 5, 
where we provide the needed additional details.

We refer to [8] for the more general setting of abstract finite dimensional C∗-algebras 
and for a discussion on the self-adjointness of QMS with respect to other inner products 
than the GNS inner product considered here. See also [3,13] and references therein for a 
discussion of QMS on infinite dimensional C∗-algebras.

2.1. Quantum Markov semigroups and Lindblad generators

Let H be a finite dimensional Euclidean space over C, the inner product on H is 
denoted by · and the corresponding Euclidean norm by | · |. Let A := End(H) be the 
algebra of linear operators on H. The algebra A becomes a finite-dimensional C∗-algebra 
when it is endowed with the operator norm ‖a‖ := sup|x|=1 |ax| and the involution 
A � a �→ a∗ ∈ A, where a∗ is the adjoint of a, i.e. a∗x · y = x · ay. The identity 
in A is denoted by 1. An element a ∈ A is self-adjoint if a = a∗; the collection of 
self-adjoint elements in A is denoted by Asa. An element a ∈ Asa is positive if there 
exists b ∈ A such that a = bb∗; equivalently if all the eigenvalues of a are positive. The 
cone of positive elements in A is denoted by A+. A linear map φ : A → A is positive
if φ(A+) ⊂ A+. The map φ is completely positive if for any positive integer k the map 
id ⊗ φ : End(Ck) ⊗A → End(Ck) ⊗A is positive.

A quantum Markov semigroup (QMS) on A is a one-parameter, strongly continuous, 
semigroup (Pt)t≥0 on A such that for each t ≥ 0 the map Pt : A → A is completely 
positive and satisfies Pt1 = 1. By the properties of completely positive maps on C∗-
algebras, if (Pt)t≥0 is a QMS then ‖Pta‖ ≤ ‖a‖ for any a ∈ A and t ≥ 0, i.e. (Pt)t≥0 is 
a contraction semigroup on A. Moreover, (Pta)∗ = Pta

∗ for any a ∈ A and t ≥ 0.
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According to the Hille-Yoshida theorem, a strongly continuous contraction semigroup 
(Pt)t≥0 on the Banach space A has the form Pt = exp{tL} for some generator L ∈
End(A). If (Pt)t≥0 is a QMS on A, then its generator L is characterized by the following 
structure theorem [17]. There exists h ∈ Asa, a positive integer N , and �j ∈ A, j =
1, . . . , N , such that L has the form

La = i[h, a] +
∑
j

(
[�∗j , a] �j + �∗j [a, �j ]

)
(2.1)

where [a, b] = ab −ba. Conversely, for any choice of h ∈ Asa, N , and �j ∈ A, j = 1, . . . , N , 
the operator L on A defined by the right hand side of (2.1) generates a QMS. In the 
physical literature, the operator L in (2.1) is called Lindblad generator, h Hamiltonian, 
and the �j jump operators.

2.2. Reversible quantum Markov semigroup

Let A′ be the dual of A and denote by A′
+ its positive cone, i.e. the set of elements 

σ ∈ A′ satisfying σ(A+) ⊂ R+. A state σ on A is an element of A′
+ satisfying σ(1) = 1. 

The set of states on A is denoted by A′
+,1. Letting Tr be the trace on A, we here 

identify the state σ with its density matrix in A, still denoted by σ, satisfying σ ≥ 0
and Tr(σ) = 1. Namely, σ(a) = Tr(σ a). The state σ is faithful when σ(aa∗) = 0 implies 
a = 0, equivalently when the eigenvalues of the density matrix σ are strictly positive. 
If σ is a faithful state, the corresponding GNS inner product 〈·, ·〉σ on A is defined by 
〈a, b〉σ := σ(ba∗) = Tr(a∗σb). When equipped with this inner product, A becomes an 
Euclidean space over C denoted by L2(σ), while the corresponding Euclidean norm is 
denoted by ‖ · ‖σ.

Let (Pt)t≥0 be a QMS on A; by duality (Pt)t≥0 defines a semigroup on A′, i.e. 
(ρPt)(a) := ρ(Pta). The conditions of complete positivity and the normalization Pt1 = 1
imply that (Pt)t≥0 preserves the set of states. If the generator of Pt is the operator L in 
(2.1), then the generator of the dual of (Pt)t≥0 is

L†ρ = −i[h, ρ] +
∑
j

(
[�jρ, �∗j ] + [�j , ρ�∗j ]

)
.

The state σ is invariant if σPt = σ for all t ≥ 0 or, in terms of the Lindblad generator, 
if L†σ = 0. If σ is an invariant state then the semigroup (Pt)t≥0 is also a contraction 
semigroup on L2(σ), i.e. ‖Pta‖σ ≤ ‖a‖σ. This statement is direct consequence of the 
Kadison-Schwarz inequality (Pta)(Pta

∗) ≤ Pt(aa∗), t ≥ 0, a ∈ A, which holds by the 
complete positivity of Pt and Pt1 = 1.

The QMS (Pt)t≥0 on A is reversible with respect to the state σ if Pt is a self-adjoint 
operator on L2(σ) for t ≥ 0. Equivalently, the generator L in (2.1) is self-adjoint as 
an operator on L2(σ). In the commutative case, reversibility of a Markov semigroup is 
equivalent to the invariance under time reversal of the law of the associated stationary 
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process. The following statement, proven by a direct computation, provides the analogue 
in the present non-commutative setting.

Lemma 2.1. Let (Pt)t≥0 be a QMS on A. Given n ∈ N, 0 ≤ t1 ≤ · · · ≤ tn, and 
a1, · · · , an ∈ A, set

a1(t1) · · · an(tn) := Pt1

(
a1Pt2−t1

(
a2 · · ·Ptn−tn−1

(
an
)
· · ·
))

a1(tn) · · · an(t1) := Pt1

(
· · ·Ptn−1−tn−2

(
Ptn−tn−1

(
a1
)
a2
)
· · · an

)
.

Then (Pt)t≥0 is reversible with respect to σ if and only if for each n ∈ N, 0 ≤ t1 ≤ · · · ≤
tn ≤ T , and a1, · · · , an ∈ A,

σ
(
a1(t1) · · · an(tn)

)
= σ

(
a1(T − t1) · · · an(T − tn)

)
.

Fix β > 0 and consider the faithful state represented by the density matrix σ :=
exp{−βh}/ Tr

(
exp{−βh}

)
, where h ∈ Asa is the Hamiltonian appearing in (2.1). Then 

the first term in the right-hand side of (2.1) corresponds to the Heisenberg evolution, 
that is skew-adjoint as an operator on L2(σ). We denote by L0 the second term, i.e.

L0a =
∑
j

(
[�∗j , a] �j + �∗j [a, �j ]

)
. (2.2)

In the next statement we provide a necessary and sufficient condition for the self-
adjointness of L0 as an operator on L2(σ).

Lemma 2.2. Let Adσ : A → A be the modular operator a �→ σaσ−1. The generator L0 in 
(2.2) is self-adjoint in L2(σ) if and only if

2
∑
j

(
�j ⊗ Adσ(�∗j ) − �∗j ⊗ �j

)
= 1 ⊗

∑
j

(
Adσ(�∗j �j) − �∗j �j

)
, (2.3)

where 1 is the identity operator on A. Furthermore, a sufficient condition for the self-
adjointness of L0 in L2(σ) is∑

j

�j ⊗ Adσ(�∗j ) =
∑
j

�∗j ⊗ �j . (2.4)

Proof. By direct computation 〈b, L0a〉σ = 〈L0b, a〉σ for all b ∈ A is equivalent to∑
j

(
σ[�∗j , a]�j + σ�∗j [a, �j ]

)
=
∑
j

(
[�jσa, �∗j ] + [�j , σa�∗j ]

)
which can be rewritten as

2
∑

(Adσ(�∗j )σa�j − �jσa�
∗
j ) −

∑
(Adσ(�∗j �j) − �∗j �j)σa = 0
j j
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The above equation holds for all a ∈ A if and only if (2.3) holds.
For the last assertion, it is enough to notice that (2.4), when applied two times, implies 

that the right-hand side of (2.3) vanishes. �
As discussed in [8, Thm.3.1] and [2, Thm.3], given a faithful state σ there is a simple 

algorithm to construct self-adjoint Lindblad generators on L2(σ). Find eigenvectors of 
Adσ, i.e. solve the equation

σvσ−1 = eω v (2.5)

where ω ∈ R and v ∈ A. By the self-adjointness of σ, if (ω, v) is a solution to (2.5) then 
(−ω, v∗) is also a solution. Given a collection {vj} of eigenvectors of Adσ that is closed 
with respect to ∗-adjunction, set

L0a =
∑
j

eωj/2
(
[v∗j , a]vj + v∗j [a, vj ]

)
(2.6)

where ωj is the eigenvalue associated to vj . The generator in (2.6) has the form (2.2)
with �j = eωj/4vj . It is then straightforward to check that condition (2.4) holds, so that 
L0 is indeed self-adjoint on L2(σ). In [8, Thm.3.1] and [2, Thm.3] it is shown that any 
Lindblad generator that is self-adjoint on L2(σ) can be written in the form (2.6) for a 
suitable collection of vj ’s that are eigenvectors of Adσ.

Let σ = exp{−βh}/ Tr(e−βh) for some h ∈ Asa and β > 0. In particular, setting 
adh(v) := [h, v], we have Adσ = exp{−βadh}. Equation (2.5) thus amounts to find the 
eigenvectors of adh, i.e. to solve adh(v) = γv and then set ω = −βγ. The operators 
vj can be constructed from the spectral decomposition of h. Using the bra-ket Dirac 
notation, let h =

∑
n εn|n〉〈n| be the spectral decomposition of h. Then |m〉〈n| ∈ A is 

an eigenvector of adh with eigenvalue εm − εn. Given a Hermitian matrix (cm,n)m,n, 
the family 

{
cm,n|m〉〈n|

}
m,n

is closed under ∗-adjunction. The Lindblad generator self-
adjoint in L2(σ) associated to this family as in (2.6) then reads

L0a =
∑
m,n

e
β
2 (εn−εm)|cm,n|2

(
2〈m|a|m〉 |n〉〈n| − a|n〉〈n| − |n〉〈n|a

)
.

We finally mention that if L0 has the form (2.6) and σ = exp{−βh}/ Tr
(
e−βh

)
for some β > 0, then L0 commutes with the Heisenberg generator i adh. Hence the 
semigroups generated by L0 and i adh commute [2].

2.3. Ergodicity

We first consider the second term on the decomposition (2.1) of the Lindblad generator 
L that we denote by L0 as in (2.2). We further assume that L0 is reversible with respect 
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to the faithful state σ and we regard it as an operator on L2(σ). The corresponding 
Dirichlet form Eσ : L2(σ) → R+ is defined by

Eσ(a) := −〈L0a, a〉σ =
∑
j

〈
[�∗j , a], [�∗j , a]

〉
σ

=
∑
j

∥∥ [�∗j , a]
∥∥2
σ

(2.7)

where ‖ ·‖σ is the norm in L2(σ) and the second equality follows by a direct computation.
Let (Pt)t≥0 be the semigroup generated by L0. By the spectral theorem, the following 

statements are equivalent.

(i) For each a ∈ A, limt→∞ ‖Pta − σ(a)1‖σ = 0;
(ii) 0 is a simple eigenvalue of L0;
(iii) Eσ(a) = 0 implies that a is a multiple of 1.

The semigroup Pt = exp{tL0}, t ≥ 0, is ergodic when any (and hence all) of the above 
conditions is met. In view of (2.7), the semigroup (Pt)t≥0 is ergodic if and only if the 
commutant (or centralizer) in A of the family {�∗j} is C1. Loosely speaking, in order to 
ensure ergodicity the Lindblad generator has to be defined with enough jump operators.

Fix γ > 0. Again by the spectral theorem, the following statements are equivalent.

(i) For any t ≥ 0 and any a ∈ A

∥∥Pta− σ(a)1
∥∥
σ
≤ e−γt

∥∥a− σ(a)1
∥∥
σ
; (2.8)

(ii) γ ≤ gap(−L0), the second smallest eigenvalue of −L0;
(iii) γ

∥∥a − σ(a)1‖2
σ ≤ Eσ(a) for all a ∈ A.

If σ = exp{−βh}/ Tr(e−βh) for some β > 0 then, as observed before, L0 and i adh

commute. Hence, if L0 is ergodic then also the semigroup generated by L = i adh +L0

in (2.1) is ergodic in the sense that statement (i) holds. Moreover, if (2.8) holds for the 
semigroup generated by L0, then the same inequality holds for the semigroup generated 
by L.

2.4. Trace distance and quantum χ2-divergence

In the context of QMS, the most relevant question on the velocity of convergence to 
the invariant state is the following: starting from an arbitrary state ρ, how large t needs to 
be in order that ρPt is close to the stationary state σ? The L2 ergodicity discussed above 
does not really answer this question because it involves the L2 distance with respect to 
the stationary state. We address this issue by considering the trace distance on the set 
of states and analyzing its behavior as t → ∞.
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The trace distance on the set of states A′
+,1 is defined by

dtr(ρ, σ) := 1
2 sup

‖a‖=1

∣∣ρ(a) − σ(a)
∣∣ = 1

2 sup
‖a‖=1

∣∣Tr
(
(ρ− σ) a

)∣∣ (2.9)

where ‖ · ‖ is the operator norm on A. Equivalently,

dtr(ρ, σ) = 1
2 Tr

(√
(ρ− σ)2

)
= 1

2
∑
i

|λi|

where λi are the eigenvalues of ρ −σ. The normalizing factor 1/2 in (2.9) has been chosen 
so that dtr reduces to the total variation distance in the commutative case.

Fix a faithful state σ and recall that L2(σ) denotes the Euclidean space over C
obtained by endowing A with the GNS inner product 〈a, b〉σ := Tr(a∗σb). Following 
[26], the quantum χ2-divergence is the map Dχ2(·|σ) : A′

+,1 → R+ defined by

Dχ2(ρ|σ) := sup
‖a‖σ=1

∣∣ρ(a) − σ(a)
∣∣2 = sup

‖a‖σ=1

∣∣〈σ−1ρ− 1, a〉σ
∣∣2 (2.10)

where we emphasize that ‖ · ‖σ is the norm on L2(σ). By duality,

Dχ2(ρ|σ) =
∥∥σ−1ρ− 1

∥∥2
σ

= Tr
(
(ρ− σ)σ−1(ρ− σ)

)
.

Note that Dχ2(·|·) is not symmetric so that it cannot be used to introduce a distance 
on the set of states. However, as in the commutative case, the trace distance can be 
bounded in terms of the quantum χ2-divergence.

Lemma 2.3. Let σ be a faithful state. Then for each ρ ∈ A′
+,1

dtr(ρ, σ)2 ≤ 1
4 Dχ2(ρ|σ).

A more general statement is proven in [26, Lem.5]. For the reader’s convenience, we 
provide here an elementary variational proof.

Proof. Since σ ∈ A′
+,1, for each a ∈ A,

‖a‖2
σ = 〈a, a〉σ = σ(aa∗) ≤ ‖aa∗‖ = ‖a‖2.

The statement thus follows from the variational representations (2.9) and (2.10). �
We observe that the quantum relative entropy can be controlled in terms of the Dχ2-

divergence. We refer to [26, Prop.6] for the proof of the following statement.
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Lemma 2.4. Let σ be a faithful state and set Ent(ρ|σ) = Tr(ρ(log ρ − log σ)). Then

Ent(ρ|σ) ≤ Dχ2(ρ|σ) .

The next statement is the non-commutative version of a classical bound for reversible 
Markov chains, see e.g. [15, §12.6]. Under suitable conditions on the spectral decom-
position of the generator, it can be used to deduce the exponential ergodicity of the 
semigroup (Pt)t≥0 in trace distance uniformly with respect to the initial state.

Theorem 2.5. Let (Pt)t≥0 be an ergodic QMS on A reversible with respect to the faithful 
state σ. Let the corresponding generator L have spectral decomposition

−L =
∑
j≥0

λj〈fj , ·〉σfj (2.11)

where λ0 = 0 and f0 = 1. Then for any ρ ∈ A′
+,1 and t ≥ 0.

dtr(ρPt, σ)2 ≤ 1
4
∑
j≥1

e−2λjt
∣∣ρ(fj)∣∣2. (2.12)

In particular,

sup
ρ∈A′

+,1

dtr(ρPt, σ)2 ≤ 1
4
∑
j≥1

e−2λjt‖fj‖2. (2.13)

We emphasize that in the bound (2.13) the set {fj}j≥0 is an orthonormal basis in 
L2(σ), so that ‖fj‖σ = 1 while ‖fj‖ ≥ 1 is the operator norm of fj . By ergodicity λj > 0
for j ≥ 1.

Proof. Since (ρPt)(a) = ρ(Pta), by definition (2.10), the invariance of σ, the self-
adjointness of Pt on L2(σ), and the spectral theorem,

Dχ2(ρPt|σ) = sup
‖a‖σ=1

∣∣〈σ−1ρ− 1, Pta〉σ
∣∣2 = sup

‖a‖σ=1

∣∣〈Pt(σ−1ρ) − 1, a〉σ
∣∣2

=
∥∥Pt(σ−1ρ) − 1

∥∥2
σ

=
∥∥∥∑

j≥0
e−λjt〈fj , σ−1ρ〉σfj − 1

∥∥∥2

σ

=
∥∥∥∑

j≥1
e−λjt〈fj , σ−1ρ〉σfj

∥∥∥2

σ
=
∑
j≥1

e−2λjt
∣∣〈fj , σ−1ρ〉σ

∣∣2
=
∑
j≥1

e−2λjt
∣∣ρ(fj)∣∣2,

where we used ρ(f∗
j ) = ρ(fj). The statement now follows from Lemma 2.3. �
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Corollary 2.6. Let (Pt)t≥0 be a QMS with Lindblad generator L = i adh +L0, where L0
is reversible with respect to the state σ = e−βh/ Tr(e−βh) for some β > 0. Assume that 
−L0 has spectral decomposition given by the right-hand side of (2.11). Then the bound 
(2.12) holds for any ρ ∈ A′

+,1 and t ≥ 0.

Proof. As observed before, under the assumptions of the Corollary, the semigroups gen-
erated by L0 and i adh commute. Since dtr(ρei adh t, σ) = dtr(ρ, σ), the claim follows 
directly from Theorem 2.5. �
3. Fermi Ornstein-Uhlenbeck semigroup

Given a positive integer N , let ak, a∗k, k = 1, . . . , N be a family of operators satisfying 
the canonical anticommutation relations (CAR)

{ah, ak} = {a∗h, a∗k} = 0, {ah, a∗k} = δh,k1, (3.1)

where {a, b} = ab + ba denotes the anticommutator of a and b. Let A be the C∗-
algebra generated by the ak, a∗k, k = 1, . . . , N . This algebra can be realized as the 
C∗-algebra of operators on the Hilbert space H = (C2)⊗N in terms of the Jordan-Wigner 
transformation:

ak = σ⊗(k−1)
z ⊗ σ+ ⊗ 1⊗(N−k)

2 , a∗k = σ⊗(k−1)
z ⊗ σ− ⊗ 1⊗(N−k)

2 ,

where

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σz =

(
1 0
0 −1

)
, 12 =

(
1 0
0 1

)
.

Let nk = a∗kak, k = 1, . . . , N , be the fermionic number operators, which are pairwise 
commuting, self-adjoint, and satisfy n2

k = nk. For a collection {ωk}Nk=1 of reals, consider 
the free fermionic Hamiltonian h =

∑
k ωknk and set σ = e−h/ Tr(e−h), where we have 

absorbed the dependence of the inverse temperature β in the parameters ωk. Following 
[8], we introduce a QMS reversible with respect to σ. Let w be the self-adjoint and 
unitary element of A given by w =

∏N
k=1(2nk − 1), and set vk = wak and v∗k = a∗kw. 

Observe that, since w commutes with h,

adh(vk) = −ωkvk , adh(v∗k) = ωkv
∗
k .

We then define the Lindblad generator

L =
∑
k

{
eωk/2

(
[v∗k, · ]vk + v∗k[ · , vk]

)
+ e−ωk/2

(
[vk, · ]v∗k + vk[ · , v∗k]

)}
, (3.2)

which is self-adjoint in L2(σ).
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According to the standard terminology for Markov semigroups, see e.g. [15, §4.5], 
given ε ∈ (0, 1/2), we define the ε-mixing time by

tmix(ε) := sup
ρ∈A′

+,1

inf
{
t > 0: dtr(ρPt, σ) ≤ ε

}
,

where we recall that A′
+,1 is the set of states on A. In words, for any t ≥ tmix(ε) and 

any state ρ the state ρPt is ε-close to σ in trace distance. The exponential ergodicity in 
trace distance of the QMS (Pt)t≥0 generated by L is the content of the following result.

Theorem 3.1. Set Λ = infk=1,...,N 2 ch
(
ωk

2
)
. Then

4 sup
ρ∈A′

+,1

dtr(ρPt, σ)2 ≤ (1 + 9e−2Λ(t−1))N − 1.

In particular, for any ε ∈ (0, 1/2)

tmix(ε) ≤ 1 + 1
2Λ log

( 9N
log(1 + 4ε2)

)
. (3.3)

The dependence on N of the mixing time provided by (3.3) is optimal in general. 
Indeed, in the case ωk = 0, k = 1, . . . , N , by restricting the action of (Pt)t≥0 to diagonal 
matrices we get a version of the classical Markov semigroup corresponding to the random 
walk on the hypercube {0, 1}N . As follows from §18.2.2 and Theorem 20.3 in [15], the 
mixing time of this process has the same N -dependence as the right-hand side of (3.3).

Proof. The spectral decomposition of −L has been obtained in [8]. A complete system 
of eigenvector of −L, parametrized by α = (α1, . . . , αN ) ∈ ({0, 1} ×{0, 1})N , is given by

gα = g1,α1 . . . gN,αN
,

where

gk,(0,0) = 1 , gk,(1,0) = ak , gk,(0,1) = a∗k , gk,(1,1) = eωk/2nk − e−ωk/2(1 − nk) .

The corresponding eigenvalue is

λα = 2
n∑

k=1

|αk| ch
(
ωk

2
)
,

where |αk| = i + j for αk = (i, j) ∈ {0, 1} × {0, 1}.
By direct computation,

〈gα, gβ〉σ = δα,β

N∏
A(ωk)αk

where A(ωk) =
(

1 1
1+eωk

1
−ω 1

)
,

k=1 1+e k
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while

‖gα‖ =
N∏

k=1

B(ωk)αk
where B(ωk) =

(
1 1
1 e|ωk|/2

)
.

Theorem 2.5 and elementary computations yield

4 sup
ρ∈A′

+,1

dtr(ρPt, σ)2 ≤
∑
α

e−2λαt ‖gα‖2

‖gα‖2
σ

− 1

=
N∏

k=1

(
1 + 8 ch2(ωk/2) ch(ωk)e−4 ch(ωk/2)t + e|ωk|e−8 ch(ωk/2)t

)
− 1

≤
N∏

k=1

(
1 + 9e2|ωk|−4 ch(ωk/2)t

)
− 1

≤ (1 + 9e−2Λ(t−1))N − 1 ,

where, in the first inequality we used chx ≤ e|x|, while in the second inequality we used 
|x| ≤ ch x and the definition of Λ. �
4. Adjoint action of the Casimir element as a Lindblad generator

In this section we analyze a family of QMS parametrized by a finite dimensional 
semisimple Lie algebra g and a finite dimensional irreducible g-module V . As discussed 
in [5,16], these QMS can be obtained by ‘transference’ from the heat semigroup on 
the corresponding connected compact Lie group. For this family we prove exponential 
ergodicity in trace distance with a rate depending on g but not on V .

4.1. A motivating example

Let �1, �2, �3 be the orbital angular momentum of a quantum particle in R3. In the 
Schrödinger representation they are given by �j = εjhk xh pk = −i εjhk xh ∂xk

where εjhk
is the totally antisymmetric tensor of rank three and we used Einstein convention of 
summing over repeated indices. Note that �j are Hermitian and satisfy the commutation 
relations [�j , �h] = i εjhk �k. Denote by S2 the two-dimensional sphere and by Σ the 
uniform probability on S2. Let also A be the family of bounded operators on L2(S2; dΣ)
endowed with the operator norm, and consider the Lindblad operator on A given by

La =
3∑

j=1

{
[�j , a]�j + �j [a, �j ]

}
= −

3∑
j=1

[�j , [�j , a]]

that is well defined for a suitable dense subset of A. This operator can be seen as a 
non-commutative analogue of the Laplace-Beltrami operator on S2.
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The operator L is not ergodic in L2(S2; dΣ), its ergodic decomposition is however 
simply achieved. Decompose L2(S2; dΣ) into the eigenspaces of the Casimir operator 
�2 =

∑3
j=1 �

2
j , i.e. L2(S2; dΣ) =

⊕∞
n=0 Vn, where Vn, the space of spherical harmonics 

of degree n, has dimension 2n + 1. In particular, �2 acts on Vn as the scalar operator 
n(n + 1)1.

Let An be the C∗-algebra End(Vn) endowed with the operator norm. It is simple to 
check that L restricted to An is reversible with respect to the normalized trace σn and 
ergodic. The next natural issue regards the speed of convergence to the invariant state 
σn on each ergodic component. Relying on Theorem 2.5, we will next show that such 
convergence is in fact uniform in n. More precisely, denoting by A′

n,+,1 the set of states 
on An, the following bound holds. There exists a universal constant A ∈ (0, ∞) such 
that for any n ∈ Z+ and any t ≥ 0

sup
ρ∈A′

n,+,1

dtr
(
ρPn

t , σn

)
≤ Ae−2t (4.1)

where Pn
t is the restriction of the semigroup generated by L to An.

4.2. Lie algebraic formulation

Let g be a semisimple finite dimensional Lie algebra over C and let g0 be its compact 
real form, which has negative definite Killing form κ, see e.g. [14]. Then g = g0 ⊗R C

is equipped with the conjugation (a0 + ib0)∗ := −a0 + ib0 and the Euclidean inner 
product 〈a, b〉g := κ(a∗, b). Let π : g → gl(V ) be a finite dimensional irreducible unitary 
representation of g on V . Namely, V is a Euclidean space over C with inner product 
(· , ·)V and π is a Lie algebra homomorphism such that π(g0) ⊂ u(V ). Here gl(V ) denotes 
the general linear Lie algebra End(V ) with Lie bracket given by the commutator, while 
u(V ) ⊂ End(V ) is the real Lie algebra of skew-Hermitian endomorphisms of V . Observe 
that, by linearity, π(g∗) = π(g)∗, g ∈ g. As customary in Lie theory, we will typically 
drop π from the notation.

Let d := dim(g) and fix an orthonormal basis {�j}dj=1 of the real Euclidean space 
ig0. Then {�j}dj=1 is also basis of the complex space g. Let A be the C∗-algebra End(V )
endowed with the operator norm ‖ · ‖ and consider the Lindblad generator L : A → A
given by

L := −
d∑

j=1
ad2

�j , (4.2)

which is reversible with respect to σ, the normalized trace on A. The operator −L

corresponds to the adjoint action of the Casimir element of g on the g-module End(V ). 
In particular, (4.2) does not depend on the choice of the orthonormal basis {�j}dj=1. 
Moreover, by the irreducibility of V , the QMS (Pt)t≥0 generated by L is ergodic.
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As in Section 2, L2(σ) is the complex Euclidean space A endowed with the inner 
product

〈a, b〉σ = Tr(a∗b)
dim(V ) , (4.3)

i.e. 〈· , ·〉σ is the (normalized) Hilbert-Schmidt inner product. Since V is a unitary g-
module, L2(σ) is also a unitary g-module with respect to the adjoint action of g.

Theorem 4.1. There exists a constant g0 ∈ (0, 1] depending on the Lie algebra g but 
independent of the representation V such that gap(−L) ∈ [g0, 1]. Furthermore, there is 
a constant A ∈ (0, ∞) depending on g but independent of V such that for any t ≥ 0

sup
ρ∈A′

+,1

dtr
(
ρPt, σ

)
≤ Ae− gap(−L) t. (4.4)

If g is simple, then the value of g0 is given in the following table where r ∈ N.

g slr+1 so2r+1 sp2r so2r E6 E7 E8 F4 G2

g0 1 r
2r−1

r
r+1 1 1 1 1 2

3
1
2

For simple Lie algebras the bound gap(−L) ≥ g0 is optimal in the sense that for each 
Lie algebra g there exists a representation V for which gap(−L) coincides with the value 
of g0 in the above table. In fact, we have gap(−L) = g0 unless g is of type B, C, F, G, 
and, even in these cases, gap(−L) = g0 except for “few” irreducible representations V .

The example discussed at the beginning of this section corresponds to the choice 
g = so3 � sl2 together with its unique irreducible representation Vn of dimension 2n +1. 
Observe that the factor 2 on the right-hand side of (4.1), with respect to the value 
g0 = 1 for g = sl2 in Theorem 4.1 is due to a different normalization on the generators 
�j , j = 1, 2, 3.

4.3. Bounding operator norm by Hilbert-Schmidt norm

In view of Theorem 2.5, a key step for the proof of Theorem 4.1 consists in obtaining 
a bound on the operator norm of the eigenvectors of L in terms of their norm in L2(σ).

Recall the following basic fact in harmonic analysis. Let G be a compact group that 
acts transitively on a set X and endow X with the probability measure μ that is left 
invariant by the action of G. If B is a finite-dimensional G-stable subspace of L2(X; μ)
then for any b ∈ B the bound ‖b‖∞ ≤

√
dim(B) ‖b‖L2(X;μ) holds. The present aim, which 

has an independent interest, is to provide a non-commutative version of this statement.

Theorem 4.2. Let B be a g-submodule of L2(σ). Then, for every b ∈ B,

‖b‖ ≤
√

dim(B) ‖b‖σ . (4.5)
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Proof. Pick an orthonormal basis {bi} of B. We claim that

B :=
∑
i

b∗i bi = dim(B)1. (4.6)

Indeed, for g ∈ g

∑
i

[g, b∗i ]bi =
∑
i,j

〈b∗j , [g, b∗i ]〉σb∗j bi

=
∑
i,j

〈bi, [bj , g]〉σb∗jbi =
∑
j

b∗j [bj , g]

where we used that {b∗i } is an orthonormal basis of B∗ := {b∗, b ∈ B} and B, B∗ are 
g-submodules. We deduce that [g, B] = 0. Hence, by the irreducibility of V and Schur’s 
lemma, B = c1 for some c ∈ R. Moreover,

c = 〈1, B〉σ =
∑
i

〈bi, bi〉σ = dim(B)

as claimed.
We next show that for each u, v ∈ V we have

∑
i

∣∣(u, biv)V ∣∣2 ≤ dim(B) (u, u)V (v, v)V . (4.7)

Indeed, by Cauchy-Schwarz inequality and (4.6),

∑
i

∣∣(u, biv)V ∣∣2 ≤
∑
i

(u, u)V (biv, biv)V

= (u, u)V
(
v ,
∑
i

b∗i biv
)
V

= dim(B) (u, u)V (v, v)V .

We finally complete the proof by showing that the bound (4.7) implies (4.5). Observe 
that if b ∈ B then b =

∑
i〈bi, b〉σbi and ‖b‖ = supu,v

∣∣(u, bv)V ∣∣ where the supremum is 
carried out over u, v ∈ V such that (u, u)V = (v, v)V = 1. By Cauchy-Schwarz inequality 
we then get

‖b‖2 = sup
u,v

∣∣(u, bv)V ∣∣2 = sup
u,v

∣∣∣∑
i

(u, biv)V 〈bi, b〉σ
∣∣∣2

≤ sup
u,v

∑
i

∣∣(u, biv)V ∣∣2 ∑
i

∣∣〈bi, b〉σ∣∣2 ≤ dim(B) ‖b‖2
σ

where we used (4.7) in the last step. �
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4.4. Convergence in trace distance

In this section we complete the proof of Theorem 4.1. Referring the unfamiliar reader 
e.g. to [14], we recall some basic facts about finite dimensional representations of semisim-
ple Lie algebras.

Let (E, Φ) be the root system associated to the Lie algebra g. Here E is a real Euclidean 
space of dimension r = rank(g), with inner product (· | ·), and Φ ⊂ E is a finite set 
of roots. Let also Δ = {α1, . . . , αr} be a base of Φ, i.e. a basis of E such that Φ =
Φ+ � (−Φ+), where Φ+ = Φ ∩ E+, in which E+ =

∑
i R+αi is the positive cone of E. 

The elements of Δ are the simple roots and the elements of Φ+ are the positive roots. 
The collection of fundamental weights Π = {℘1, . . . , ℘r} ⊂ E is defined by 2(αi|℘j)

(αi|αi) = δi,j . 
Finally, the set of dominant weights is Λ+ =

{
n1℘1 + · · · + nr℘r

}
n1,...,nr∈Z+

.
A basic result in representation theory of Lie algebras is that the isomorphism classes 

of the irreducible finite dimensional representations of g are in one-to-one correspondence 
with Λ+. For λ ∈ Λ+, we denote by Vλ the corresponding irreducible representation. The 
Weyl dimension formula then reads

dim(Vλ) =
∏

α∈Φ+

(λ + δ|α)
(δ|α) , (4.8)

where δ := 1
2
∑

α∈Φ+
α.

By the Schur Lemma, the Casimir element C =
∑d

i=1 �
2
j acts as a scalar on each 

irreducible representation Vλ. More precisely,

C|Vλ
= cλ1Vλ

, cλ = (λ|λ + 2δ)
(θ|θ + 2δ) , (4.9)

where θ ∈ Φ+ is the highest root, i.e. the dominant integral weight associated to the 
adjoint representation. Indeed, the value by which the Casimir element acts on the 
irreducible representation Vλ is cλ = c (λ, λ + 2δ), where the constant c does not depend 
on the representation Vλ, see e.g. [14]. On the other hand, by the very definition of the 
Killing form and of the Casimir element C, its value on the adjoint representation is 
cθ = 1, whence c = (θ, θ + 2δ)−1.

Given λ1, λ2 ∈ Λ+, consider the decomposition of the tensor product Vλ1 ⊗ Vλ2 into 
its irreducible components, namely

Vλ1 ⊗ Vλ2 =
⊕
μ∈Λ+

V
⊕nλ1,λ2 (μ)
μ . (4.10)

Moreover, nλ1,λ2(μ) = 0 unless λ1 + λ2 − μ ∈ P+ :=
{
n1α1 + · · · + nrαr

}
.

n1,...,nr∈Z+
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Lemma 4.3. For each μ ∈ Λ+,

sup
λ1,λ2∈Λ+

nλ1,λ2(μ) ≤ dim(Vμ) .

Proof. The claim follows directly from the PRV formula [22, Thm.2.1]. �
We are now ready to complete the proof of the convergence in trace distance.

Proof of Theorem 4.1. Let λ ∈ Λ+ be the dominant weight corresponding to the rep-
resentation V , i.e. V � Vλ. Consider the canonical isomorphism EndV � V ⊗ V ∗ =
Vλ⊗Vλ∗ , where λ∗ is the dominant weight associated to the dual representation V ∗

λ . The 
eigenspaces of the Lindblad generator L in (4.2) can then be obtained from (4.10),

L2(σ) =
⊕
μ∈Λ+

V
⊕nλ,λ∗ (μ)
μ , (4.11)

and the corresponding eigenvalues can be read out of (4.9):

−L|
V

⊕nλ,λ∗ (μ)
μ

= (μ|μ + 2δ)
(θ|θ + 2δ) 1

V
⊕nλ,λ∗ (μ)
μ

. (4.12)

In particular, V0, the trivial 1-dimensional representation of g, appears with multiplicity 
nλ,λ∗(0) = 1, and corresponds to C1, the eigenspace associated to the eigenvalue 0 of 
L. Since the adjoint representation is always present in the decomposition (4.11), we get 
gap(−L) ≤ 1. Moreover, by the observation following (4.10), λ + λ∗ ∈ P+, so that the 
dominant weights appearing in the right hand side of (4.11) must lie in Λ+ ∩P+. Hence, 
by (4.9), we deduce that

gap(−L) ≥ g0 := min
μ∈Λ+∩P+\{0}

(μ|μ + 2δ)
(θ|θ + 2δ) . (4.13)

This concludes the proof of the uniform lower bound on the spectral gap.
To prove the bound (4.4), we first observe that, since dtr(ρ, σ) ≤ 1, we can assume 

t ≥ 1. By Theorem 2.5 and (4.12), for t ≥ 0 and ρ ∈ A′
+,1,

dtr
(
ρPt, σ

)2 ≤ 1
4

∑
μ∈Λ+∩P+\{0}

e−2 (μ|μ+2δ)
(θ|θ+2δ) t

∑
j

‖f (μ)
j ‖2 ,

where f (μ)
j is an orthonormal basis of the eigenspace V

⊕nλ,λ∗ (μ)
μ . Let g := gap(−L), by 

(4.13), for t ≥ 1 the right hand side above is bounded by

1
4e

−2gt
∑

+ +

e−2
( (μ|μ+2δ)

(θ|θ+2δ) −g
)∑

‖f (μ)
j ‖2 .
μ∈Λ ∩P \{0} j
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By Theorem 4.2 we have ‖f (μ)
j ‖2 ≤ dim(Vμ)‖f (μ)

j ‖2
σ = dim(Vμ), so that

∑
j

‖f (μ)
j ‖2 ≤ nλ,λ∗(μ) dim(Vμ)2 ≤ dim(Vμ)3 ,

where we used Lemma 4.3. Combining the above bounds, we deduce (4.4) with

A = 1
2e

g
( ∑

μ∈Λ+∩P+\{0}
e−2 (μ|μ+2δ)

(θ|θ+2δ) dim(Vμ)3
) 1

2
,

which is finite thanks to (4.8).
It remains to show that, for simple Lie algebras, the value of g0 as defined in (4.13) is 

the one in the statement. This is achieved by a case by case analysis that is carried out 
in Appendix A. �
4.5. Explicit eigenvectors of the Lindblad operator when g = sl2

In the special case when g = sl2 � so3, we provide explicit formulae for the eigenvec-
tors of the Lindblad generator (4.2). These can be viewed as a non-commutative version 
of the spherical harmonics.

Recall that the standard basis {e, f, h} of sl2 has commutation relations [h, e] =
2e, [h, f ] = −2f, [e, f ] = h. In this basis the Killing form is represented by the matrix

⎛⎜⎝ 0 4 0
4 0 0
0 0 8

⎞⎟⎠
Hence, the dual basis of the standard basis with respect to the Killing form is 
{1

4f, 
1
4e, 

1
8h}. As a consequence, the Lindblad operator associated to an irreducible rep-

resentation π : sl2 → gl(V ) is

L = −1
4

(
adπ(e) adπ(f) + adπ(f) adπ(e) +1

2 ad2
π(h)

)
. (4.14)

Let Vλ be the n-dimensional irreducible representation of sl2 (of highest weight λ =
n − 1). An explicit realization of the action of the sl2-generators on Vλ = Cn is given by 
the following matrices

e =
n∑

x=1

√
x(n− x)Ex,x+1 , f =

n∑
x=1

√
x(n− x)Ex+1,x , h =

n∑
x=1

(n + 1 − 2x)Ex,x .

The spectral decomposition of L acting on gl(V ) is (cf. (4.12))
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gl(Vλ) � Vλ ⊗ V ∗
λ =

n−1⊕
i=0

V2i , −L|V2i = i(i + 1)
2 .

An orthonormal basis of V2i ⊂ End(Vλ) with respect to the inner product (4.3) is 
{v(i)

� }2i
�=0, where

v
(i)
� = i!

√
n

�!
√(2i

�

)(
n+i
2i+1

) ∑
x

γ
(i)
� (x)Ex,x+i−� , (4.15)

in which

γ
(i)
� (x) =

√
(x− 1)!(n− x− i + �)!
(x− 1 + i− �)!(n− x)!

�∑
j=0

(−1)�−j

(
�

j

)(
x + i− j − 1

i

)(
n− x + j

i

)
.

(4.16)

4.6. Action of the Lindblad generator on diagonal matrices for g = sl2

If g = sl2, then the generator L in (4.14) preserves the Abelian subalgebra of diagonal 
matrices. More precisely, given f : {1, . . . , n} → C, by direct computation,

L
n∑

x=1
f(x)Ex,x =

n∑
x=1

(Lclf)(x)Ex,x

where Ex,y are the elementary matrices and Lcl is the classical Markov generator on 
{1, . . . , n} given by

(Lclf)(x) = 1
2x(n− x)[f(x + 1) − f(x)] + 1

2(x− 1)(n− x + 1)[f(x− 1) − f(x)] ,

that is reversible with respect to the uniform probability on {1, . . . , n}. Note that the 
process generated by Lcl is a discrete version of the Wright-Fisher diffusion process.

The spectral decomposition of −Lcl can be obtained by restricting (4.15)-(4.16) to 
diagonal matrices. We have Cn =

⊕n−1
i=0 Cγ(i), where

γ(i)(x) =
√
n√(2i

i

)(
n+i
2i+1

) i∑
j=0

(−1)i−j

(
i

j

)(
x + i− j − 1

i

)(
n− x + j

i

)

= i!

√
(n− i− 1)!

(n + i)! (2i + 1)n
i∑

j=0
(−1)i−j

(
i

j

)(
x− 1
j

)(
n− x

i− j

)

and −Lclγ
(i) = 1

2 i(i +1)γ(i). Note that, by the second expression, γ(i)(x) is a polynomial 
in x of degree i. In fact, these are the discrete Chebyshev polynomials, see e.g. [1, §22.17].
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Finally, letting P cl
t = exp(tLcl) be the Markov semigroup generated by Lcl, as a 

Corollary of Theorem 4.1 we get that for any probability ρ on {1, . . . , n}

dTV
(
ρP cl

t , σ
)
≤ Ae−t

where dTV is the total variation distance. For the continuous Wright-Fisher diffusion 
semigroup this bound can be deduced from the exponential decay of the entropy which 
can be established by the Bakry-Émery criterion, see discussion below. For the jump 
process generated by Lcl, the criterion in [19] yields a logarithmic Sobolev inequality 
with a constant uniform in N but not sharp. It is unclear to us whether the sharp value 
of the (modified) logarithmic Sobolev constant can be obtained for this jump process.

4.7. Lower bound on the spectral gap via Bakry-Émery criterion

In the commutative case, a popular and easy to use criterion to deduce exponential 
ergodicity is the so-called Bakry-Émery curvature dimension condition, we refer to [4]
for an exhaustive reference on the subject. As discussed there, without additional re-
quirements, this criterion provides a lower bound on the spectral gap. In the special case 
of diffusion semigroups, this criterion also yields a logarithmic Sobolev inequality, which 
imply the exponential convergence of the entropy. Extensions of the Bakry-Émery theory 
to the non-commutative case are discussed in [6,8,9,12,16,28,29]. In the present setting 
of QMS with Lindblad generator given by the adjoint action of the Casimir element of 
a semi-simple Lie algebra, we here show that a uniform lower bound on the spectral gap 
can be obtained by using the Bakry-Émery curvature dimension condition. Note that this 
argument does not yield the sharp values of the spectral gap computed in Appendix A
with the machinery of representation theory and detailed in Theorem 4.1.

Let the carrè du champ Γ: A ×A → A be defined by

Γ(a, b) = 1
2

(
L(ab) − (La)b− a(Lb)

)
and the carrè du champ itéré Γ2 : A ×A → A be defined by

Γ2(a, b) = 1
2

(
LΓ(a, b) − Γ(La, b) − Γ(a, Lb)

)
.

The following general statement is proven as in the commutative case, see e.g. [4, 
Prop.4.8.1].

Proposition 4.4. Let L be an ergodic and reversible Lindblad generator. Assume that there 
exists a constant γ > 0 such that

Γ2(a, a∗) ≥ γ Γ(a, a∗) for all a ∈ A . (4.17)

Then gap(−L) ≥ γ.
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Theorem 4.5. Let L be the Lindblad generator in (4.2). Then the inequality (4.17) holds 
with γ = 1

4 . Hence, gap(−L) ≥ 1
4 .

Proof. By a direct computation

Γ(a, b) =
∑
j

(ad�j a)(ad�j b) ,

and

Γ2(a, b) =
∑
i,j

(ad�i ad�j a) (ad�i ad�j b) .

By a symmetrization procedure,

Γ2(a, a∗) = 1
4
∑
i,j

(ad[�i,�j ] a) (ad[�i,�j ] a
∗) + 1

4
∑
i,j

({ad�i , ad�j}a) ({ad�i , ad�j}a∗) ,

where, as usual, {A, B} = AB + BA. To conclude, we observe that the second term on 
the right hand side above is positive, while the first term is equal to Γ(a, a∗)/4 since∑

i,j

[�i, �j ] ⊗ [�i, �j ] = −
∑
j

�j ⊗ �j ,

as follows from the facts that 
∑

j �j ⊗ �j ∈ g⊗2 is left invariant by the adjoint action of 
g, and that the Casimir operator 

∑
i ad2

�i acts as the identity on g. �
5. Bose Ornstein-Uhlenbeck semigroup

In this section we consider the Bose Ornstein-Uhlenbeck semigroup corresponding to 
N free bosons and discuss the spectral decomposition of the corresponding Lindblad 
generator together with its exponential ergodicity in trace distance. In contrast to the 
previous examples, the underlying Hilbert space is infinite dimensional. According to the 
terminology in [13, §3], in such a context a QMS is defined on a von Neumann algebra 
rather than a C∗-algebra. In particular (Pt)t≥0 is required only to be weakly* continuous 
and not strongly continuous. For the present purposes it is however convenient to real-
ize the Bose Ornstein-Uhlenbeck semigroup as a strongly continuous semigroup on the 
C∗-algebra of compact operators on a suitable Hilbert space. In the commutative case, 
this choice corresponds to the realization of Markov semigroups as strongly continuous 
semigroups on the commutative C∗-algebra given by the continuous functions vanishing 
at infinity on some metric space. While the Bose Ornstein-Uhlenbeck semigroup depends 
only on the canonical commutation relationships between creation and annihilation op-
erators, it will be convenient, as in [11], to realize this operator in the Hilbert space in 
which the bosonic number operators are diagonal.
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Fix a positive integer N . In this section, we employ the usual multi-index notation. 
For �, j ∈ ZN

+ and z = (z1, . . . , zN ) ∈ CN , we denote |�| := �1 + · · ·+ �N , �! := �1! · · · �N !, 
j ≤ � if j1 ≤ �1,. . . , jN ≤ �N , z� := z�11 · · · z�NN , and 

(
�
j

)
:=
(
�1
j1

)
· · ·
(
�N
jN

)
.

Consider the Hilbert space H = �2(ZN
+ ) and denote by {|�〉}�∈ZN

+
its canonical or-

thonormal basis. The bosonic number operators nk, k = 1, . . . , N , are the self-adjoint 
pairwise commuting operators defined by nk|�〉 = �k|�〉, with domain

Dom(nk) =
{
v =

∑
�

v�|�〉 ∈ H :
∑
�

�2k|v�|2 < ∞
}
.

The annihilation and creation operators ak, a∗k on H, with domain Dom(ak) =
Dom(a∗k) = Dom(√nk), k = 1, . . . , N are defined by

ak|�〉 =
√

�k |�− ek〉, a∗k|�〉 =
√

�k + 1 |� + ek〉 (5.1)

where ek ∈ ZN
+ has coordinates (ek)k′ := δk,k′ . We understand that ak|�〉 = 0 when 

�k = 0. The operators ak, a∗k are closed, mutually adjoint, and they satisfy a∗kak = nk, 
aka

∗
k = nk + 1.

Fix a family {ωk}Nk=1 of strictly positive reals. We hereafter assume that they are 
bounded away from zero uniformly in N . Namely, there exists Λ ∈ (0, ∞) independent 
on N such that 2 sh(ωk/2) ≥ Λ, k = 1, . . . , N . The corresponding free boson Hamiltonian 
is h =

∑
k ωknk which is self-adjoint on Dom(h) =

⋂
k Dom(nk). We denote by B the 

C∗-algebra of bounded operators on H endowed with the operator norm ‖ · ‖. Let also K
be the C∗-subalgebra of B given by the compact operators on H, namely the ‖ · ‖ closure 
of finite rank operators on H. Note that B is unital while K is not.

Let σ be the positive trace class operator on H given by σ = e−h/ Tr(e−h). We regard 
σ also as a state on K by setting σ(f) = Tr(σf). We have absorbed the dependence 
on the inverse temperature on the frequencies ωk. Denote by D(0) the linear span of 
{|�〉〈�′|}�,�′∈ZN

+
, which is a dense subset of K invariant by left and right multiplication 

by ak, a∗k, k = 1, . . . , N . By direct computation, on D(0)

adh(ak) = [h, ak] = −ωkak, adh(a∗k) = [h, a∗k] = ωka
∗
k.

We then consider the operator L(0) on K defined on D(0) by

L(0) =
N∑

k=1

{
eωk/2

(
[a∗k, · ]ak + a∗k[ · , ak]

)
+ e−ωk/2

(
[ak, · ]a∗k + ak[ · , a∗k]

)}
. (5.2)

As follows from [11, Thm 5.1], the graph norm closure of L(0) generates a strongly 
continuous contraction semigroup (Pt)t≥0 on K (as a Banach space) such that Pt is a 
completely positive operator on K for any t ≥ 0. Furthermore, D(0) is a core for the 
generator of (Pt)t≥0 and σ is a reversible state. More precisely, in [11] the semigroup 
generated by L(0) is constructed first on the Hilbert space associated to the KMS inner 



24 L. Bertini et al. / Journal of Functional Analysis 286 (2024) 110340
product induced by the state σ by Dirichlet form techniques, and then it is shown that 
it has the Feller property, i.e., it preserves K. In view of [8, Thm.2.9], the notion of 
reversibility used in [11] is equivalent to the one employed here based on the GNS inner 
product induced by σ.

We denote by L2(σ) the Hilbert space obtained by completing K with respect to the 
Euclidean distance induced by the GNS inner product 〈f, g〉σ = σ(gf∗). We regard K as a 
dense subset of L2(σ). By the Kadison-Schwarz inequality, (Pt)t≥0 extends to a strongly 
continuous self-adjoint contractions semigroup on L2(σ) that is denoted by (P (2)

t )t≥0. 
Let finally L(2) with domain Dom(L(2)) be its self-adjoint generator. Observing that 
(L(0), D(0)) is symmetric when regarded as an operator on L2(σ), the generator L(2) can 
also be obtained, as stated in the next lemma, by taking the graph-norm closure in L2(σ)
of (L(0), D(0)).

Lemma 5.1. Regarding (L(0), D(0)) as densely defined operator on L2(σ), its graph-norm 
closure is (L(2), Dom(L(2))).

Proof. By direct computation (−L(0), D(0)) is a positive symmetric operator on L2(σ). 
On the other hand, by its very definition, (−L(2), Dom(L(2))) is a positive self-adjoint 
operator on L2(σ) that extends (−L(0), D(0)). It is therefore enough to show that 
(−L(0), D(0)) has a unique self-adjoint extension. Since the graph norm closure in K
of (L(0), D(0)) generates a strongly continuous contraction semigroup on K, the Lumer-
Philips Theorem, see e.g. [24, Thm.X.48], implies that for each λ > 0 the set (λ −L(0))D(0)

is dense in K. Since K is dense in L2(σ) we get that for each λ > 0 the set (−λ +L(0))D(0)

is dense in L2(σ). By the characterization of self-adjoint extensions of positive symmet-
ric operators in [24, Thm.X.2], we deduce that (−L(0), D(0)) has a unique self-adjoint 
extension. �

As next stated, the action of L(2) on polynomials in the annihilation and creation 
operators is still given by the informal expression on the right hand side of (5.2).

Lemma 5.2. Let W be the unital algebra generated by the operators ak, a∗k, k = 1, . . . , N in 
which we understand that the elements of W are defined on the linear span of {|�〉}�∈ZN

+
. 

Then W can be identified with a subset of L2(σ). Furthermore, under this identification, 
W ⊂ Dom(L(2)) and for each w ∈ W

L(2)w =
N∑

k=1

{
eωk/2

(
2a∗kwak − wa∗kak − a∗kakw

)
+ e−ωk/2

(
2akwa∗k − waka

∗
k − aka

∗
kw
)}

.

(5.3)

Proof. Given w ∈ W and α ∈ N, let wα ∈ D(0) be the operator defined by

wα|�〉 =
{
w|�〉 if �k ≤ α for all k = 1, . . . , N ,
0 otherwise.
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By direct computation, the sequence {wα} is Cauchy with respect to ‖ · ‖σ. The first 
statement is achieved by identifying w with the equivalence class of the Cauchy sequence 
{wα}.

To prove the second statement, fix w ∈ W and let {wα} be as in the previous displayed 
equation. Since, as observed before, L(2) can be obtained as the graph norm closure of 
(L(0), D(0)) in L2(σ), it is enough to show that the sequence {L(0)wα} is Cauchy in L2(σ)
and in the same equivalence class of the Cauchy sequence that represents the right hand 
side of (5.3). Again, this is achieved by a direct computation. �

In order to describe the spectral decomposition of −L(2), given j, m ∈ ZN
+ , let gj,m ∈

W ⊂ Dom(L(2)) be given by

gj,m :=
∑
i∈ZN

+

i!
(
j

i

)(
m

i

)
(−1)|i|γi(a∗)j−iam−i

=
∑
i∈ZN

+

i!
(
j

i

)(
m

i

)
(−1)|i|δiam−i(a∗)j−i ,

(5.4)

where a = (a1, . . . , aN ), a∗ = (a∗1, . . . , a∗N ), γ = (γ1, . . . , γN ), δ = (δ1, . . . , δN ), and

γk = e−ωk/2

2 sh(ωk/2) , δk = eωk/2

2 sh(ωk/2) . (5.5)

Theorem 5.3. The operator −L(2) has purely discrete spectrum given by

λj := 2
N∑

k=1

sh
(
ωk

2
)
jk, j ∈ ZN

+ . (5.6)

If sh(ωk/2), k = 1, . . . , N , are rationally independent, the eigenspace Uj associated to 
λj has dimension (j1 + 1) · · · (jN + 1). An orthonormal basis of Uj is given by fj,m :=
gj−m,m/‖gj−m,m‖σ, m ≤ j. The normalization is

‖gj,m‖2
σ = j!m! γj δm, j,m ∈ ZN

+ . (5.7)

For arbitrary ωk, the eigenspace associated to the eigenvalue λ is Uλ :=
⊕

j :λj=λ Uj.

We point out that the spectrum of the Lindblad generator of the QMS (Pt)t≥0 on 
K is different from the spectrum of the operator L(2) described in the above theorem. 
We refer to [18] for a discussion on this topic in the commutative setting. Postponing 
the proof of Theorem 5.3, we next discuss the convergence to equilibrium of the Bose 
Ornstein-Uhlenbeck semigroup. To this end, let ρ be a state on K. By [23, Thm.VI.26], 
there exists positive trace class operator on H with unit trace, still denoted by ρ, such 
that ρ(f) = Tr(ρf), f ∈ K. In order to formulate the exponential ergodicity in trace 
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distance of (Pt)t≥0, we need to impose some conditions on the initial state ρ. Indeed, 
in this infinite dimensional case, exponential ergodicity in trace distance cannot hold 
uniformly with respect to ρ. To this end, we denote by S the set of states on K for which 
the number operators nk have finite moments of any order. Namely, ρ belongs to S if 
for each j ∈ ZN

+

ρ(nj) :=
∑
�∈ZN

+

�j〈�|ρ|�〉 < ∞. (5.8)

Readily, the thermal state σ belongs to S. Given K ∈ (0, ∞), let finally SK be the set 
of ρ ∈ S such that

ρ
(
nj
)

=
∑
�∈ZN

+

�j 〈�|ρ|�〉 ≤ j! K |j|, ∀ j ∈ ZN
+ . (5.9)

Given ε ∈ (0, 1/2), we define the ε-mixing time in SK by

tmix(ε,SK) := sup
ρ∈SK

inf
{
t > 0: dtr(ρPt, σ) ≤ ε

}
,

so that for any t ≥ tmix(ε, SK) and any ρ ∈ SK the state ρPt is ε-close to σ in trace 
distance. Recalling that Λ is a uniform lower bound on 2 sh(ωk/2), as next stated, the 
semigroup (Pt)t≥0 is exponentially ergodic in trace distance uniformly on SK .

Theorem 5.4. For each K ∈ (0, ∞) there is a constant A = A(Λ, K) such that for any 
N ∈ N and t ≥ 0

4 sup
ρ∈SK

dtr(ρPt, σ)2 ≤
(
1 + Ae−2Λt

)N − 1 . (5.10)

In particular, for any ε ∈ (0, 1/2)

tmix(ε,SK) ≤ 1
2Λ log

( AN

log(1 + 4ε2)

)
. (5.11)

The proof of Theorem 5.3 is achieved by the next two lemmata. In the former, which 
is purely algebraic, we show that each fj,m is eigenvector of −L(2) with eigenvalue λj . 
In the latter we show that the linear span of {fj,m}m≤j is dense in L2(σ).

Lemma 5.5. As a formal power series,

g(z, w) :=
∑

j,m∈ZN
+

zjwm

j!m! gj,m (5.12)

satisfies
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−L(2)g(z, w) = 2
N∑

k=1

sh
(
ωk

2
)(

zk
∂

∂zk
+ wk

∂

∂wk

)
g(z, w) (5.13)

and

〈g(z̃, w̃), g(z, w)〉σ = e
∑

k

(
γk z̃kzk+δkw̃kwk

)
. (5.14)

Proof. In view of (5.4), a direct computation (at the level of formal power series) yields

g(z, w) = e−
∑

k γkzkwk eza
∗
ewa = e−

∑
k δkzkwk ewa eza

∗
.

Recalling (5.2) and applying the Leibniz rule,

− L(2)g(z, w)

=
N∑

k=1

[
eωk/2

(
zka

∗
kg(z, w) + g(z, w)wkak

)
− e−ωk/2

(
g(z, w)zka∗k + wkakg(z, w)

)]

= 2
N∑

k=1

sh
(
ωk/2

)(
zka

∗
kg(z, w) + g(z, w)wkak

)
− 2e−ωk/2zkwkg(z, w)

where we used [ak, g(z, w)] = zkg(z, w) and [a∗k, g(z, w)] = −wkg(z, w). Moreover, by a 
direct computation,

2
N∑

k=1

sh
(
ωk

2
)(

zk
∂

∂zk
+ wk

∂

∂wk

)
g(z, w)

= 2
N∑

k=1

sh
(
ωk/2

)(
zka

∗
kg(z, w) + g(z, w)wkak

)
− 4

N∑
k=1

sh
(
ωk/2

)
γkzkwkg(z, w).

Hence the identity (5.13) follows from (5.5).
In order to prove (5.14), we first observe that the canonical commutation relations of 

ak, a∗k, k = 1, . . . , N imply

ewaeza
∗

= e
∑

k zkwkeza
∗
ewa.

This identity and the definition (5.12) yield

Tr
(
g(z̃, w̃)∗e−hg(z, w)

)
= e−

∑
k δk(zkwk+z̃kw̃k) Tr

(
ez̃aew̃a∗

e−hewaeza
∗)

= e−
∑

k[δk(zkwk+z̃kw̃k)+zk z̃k] Tr
(
e(z+w̃)a∗

e−he(w+z̃)a). (5.15)

Computing the above trace in the basis {|�〉}�∈ZN
+

, using (5.1) and expanding the expo-
nentials, we get
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Tr
(
eza

∗
e−hewa

)
=
∑
�∈ZN

+

〈�|eza∗
e−hewa|�〉

=
∑

�,m∈ZN
+

(
�

m

)
zmwm

m! e−
∑

k ωk(�k−mk+1/2) .

Since

∑
�∈ZN

+

(
�

m

)
x� =

N∏
k=1

xmk

k

(1 − xk)mk+1 , x = (x1, · · · , xN ) ∈ CN ,

we have

Tr
(
eza

∗
e−hewa

)
=

N∏
k=1

{ e−ωk/2

1 − e−ωk

∞∑
m=0

1
m!

( zkwk

1 − e−ωk

)m}
= exp

{∑
k

[ zkwk

1 − e−ωk
− log

(
2 sh(ωk/2)

)]}
.

Noticing that δ−1
k = 1 − e−ωk , and plugging the above result in (5.15), we deduce

〈g(z̃, w̃), g(z, w)〉σ = e−
∑

k[δk(zkwk+z̃kw̃k)+zk z̃k] e
∑

k δk(zk+w̃k)(wk+z̃k)

which implies (5.14) as δk − 1 = γk. �
Lemma 5.6. Under the identification in Lemma 5.2, the set W is dense in L2(σ).

Proof. We follow the argument in [11, Lem.7.1]. For simplicity of notation, we prove the 
statement in the case N = 1. Since D(0) is dense in L2(σ), it is enough to show that for 
b ∈ D(0)

〈(a∗)iaj , b〉σ = 0 for all i, j ∈ Z+ =⇒ b = 0. (5.16)

Fix i, j ∈ Z+. By direct computation, for b =
∑

�,m b�,m|�〉〈m| ∈ D(0), we have

〈(a∗)iai+j , b〉σ = 1
1 − e−ω1

∑
�,m

b�,me−ω1�〈m|(a∗)i+jai|�〉

= 1
1 − e−ω1

∑
�

b�,�+je
−ω1�〈� + j|(a∗)i+jai|�〉 .

Since

〈� + j|(a∗)i+jai|�〉 = �(�− 1) · · · (�− i + 1)〈� + j|(a∗)j |�〉 ,
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the polynomial

b(j)(z) = 1
1 − e−ω1

∑
�

b�,�+je
−ω1�〈� + j|(a∗)j |�〉z�

satisfies

dib(j)

dzi

∣∣∣
z=1

= 〈(a∗)iai+j , b〉σ .

Hence, the assumption in (5.16) implies b(j)(z) = 0, which yields b�,�+j = 0 for every 
�, j ∈ Z+. Exchanging the roles of i and i + j and of � and m, we also get b�+j,� = 0, 
completing the proof of (5.16). �
Proof of Theorem 5.4. Within the present infinite dimensional context, we define the 
quantum χ2-divergence Dχ2(·|σ) as the map on the set of states on K defined by the 
variational formula (2.10), namely

Dχ2(ρ|σ) := sup
g∈K : ‖g‖σ=1

∣∣ρ(g) − σ(g)
∣∣2. (5.17)

We then notice that the variational proof of Lemma 2.3 presented in Section 2 applies 
also to the current setting.

We next claim that for each K ∈ (0, ∞) there exists TK such that the following holds. 
For each t ≥ TK , g ∈ K, and ρ ∈ SK we have

ρ
(
Ptg

)
=
∑
j∈ZN

+

∑
m≤j

e−λjt
〈
fj,m, g

〉
σ
ρ
(
fj,m

)
(5.18)

where {fj,m} are the eigenvectors of L(2) provided by Theorem 5.3 and λj the corre-
sponding eigenvectors. Note that ρ

(
fj,m

)
is well defined as ρ ∈ SK and fj,m ∈ W.

Postponing the proof of the equality in (5.18), we first show that the (numerical) series 
on its right hand side is absolutely convergent. By Cauchy-Schwarz inequality, (5.6), 
elementary estimates, and choosing TK large enough, this follows from the following 
bound. There exists C = C(K, ω) ∈ (0, ∞)N such that

∣∣ρ(fj,m)∣∣ ≤ Cj j,m ∈ ZN
+ ,m ≤ j. (5.19)

As follows from Theorem 5.3, this bound is equivalent to

∣∣ρ(g�,m)∣∣ ≤√
�!m!γ�δmC�+m �,m ∈ ZN

+ . (5.20)

According to (5.4),
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∣∣ρ(g�,m)∣∣ ≤ ∑
i∈ZN

+

(
�

i

)(
m

i

)
i!γi

∣∣ρ((a∗)�−iam−i
)∣∣. (5.21)

On the other hand, by the Kadison-Schwarz inequality and (5.9), for i ≤ �, m∣∣ρ((a∗)�−iam−i
)∣∣2 ≤ ρ

(
(a∗)�−iam−i(a∗)m−ia�−i

)
= ρ

( N∏
k=1

nk(nk − 1) · · · (nk − �k + ik + 1)

× (nk − �k + ik + 1)(nk − �k + ik + 2) · · · (nk − �k + mk)
)

≤ ρ
(
(n + � + m− 2i)�+m−2i

)
= ρ

( ∏
k : �k+mk−2ik>0

(nk + �k + mk − 2ik)�k+mk−2ik
)

≤ ρ
( ∏

k : �k+mk−2ik>0

2�k+mk−2ik−1(n�k+mk−2ik
k + (�k + mk − 2ik)�k+mk−2ik

))
≤ 2|�+m−2i|−|{k : �k+mk−2ik>0}|

∑
A⊂{k : �k+mk−2ik>0}

∏
α∈A

(�α + mα − 2iα)�α+mα−2iα

×
∏
β �∈A

(�β + mβ − 2iβ)!K�β+mβ−2iβ .

By using kk ≤ k!ek and assuming, without loss of generality, that K ≥ e, we deduce∣∣ρ((a∗)�−iam−i
)∣∣ ≤ (2K)|�+m−2i|/2√(� + m− 2i)!.

Plugging this bound into (5.21) we get

∣∣ρ(g�,m)∣∣ ≤ √
�!m!

∑
i∈ZN

+

√(
�

i

)(
m

i

)(
� + m− 2i

�− i

)
γi(2K)|�+m−2i|/2

≤
√

�!m!γ�δm2|�+m|/2
∑

i≤�,m

(4K
γ

)(�+m−2i)/2

where we used 
(
k
h

)
≤ 2|k| and δ ≥ γ. Above 4K/γ stands for 4K(γ−1

1 , . . . , γ−1
N ) ∈ (0, ∞)N . 

Without loss of generality we now assume 4K > e−ωk/2/ sh(ωk/2), which implies 
γk/(4K) ≤ 1/2, k = 1, . . . , N . Hence,

∣∣ρ(g�,m)∣∣ ≤√
�!m!γ�δm

(16K
γ

)(�+m)/2
.

The bound (5.20) thus holds with Ck = 4
√
K/γk, k = 1, . . . , N , and TK such that 

e−2ΛTK maxk=1,...,N Ck ≤ 1/2.
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To achieve the bound (5.10), we assume without loss of generality t ≥ TK and observe 
that σ(g) = 〈f0,0, g〉σ. In view of (5.17) and (5.18), by Cauchy-Schwarz inequality,

Dχ2(ρPt|σ) ≤
∑
|j|>0

e−2λjt
∑
m≤j

∣∣ρ(fj,m)∣∣2 ≤
N∏

k=1

∞∑
jk=0

(jk + 1)
(
e−4 sh(ωk/2)tC2

k

)jk − 1,

where we used (5.6) and (5.19). We then get

Dχ2(ρPt|σ) ≤
N∏

k=1

(
1 + Ake

−2Λt
)
− 1

where

Ak :=
∞∑
j=1

e−2ΛTK(j−1)(j + 1)C2j
k ≤ A

for a suitable constant A depending only on Λ and K.
It remains to prove the equality in (5.18). To this end, for r ∈ N let χr be the 

orthogonal projector on the span of 
{
|�〉, |�| ≤ r

}
and introduce the (finite rank) density 

matrix

ρr := 1
Zr

χrρχr

where Zr is the appropriate normalization constant. Denoting still by ρr the state on K
with this density matrix we readily deduce that the sequence {ρr} converges weakly* to 
ρ. Letting �r,σ be the finite rank operator given by

�r,σ =
N∏

k=1

(1 − e−ωk) ·
∑
|�|≤r

e
∑N

k=1 ωk�k |�〉〈�|ρr,

for each g ∈ K and r ∈ N we have

ρr(g) =
〈
�r,σ, g

〉
σ
.

Hence(
ρPt

)
(g) = ρ

(
Ptg

)
= lim

r→∞
ρr
(
Ptg

)
= lim

r→∞

〈
�r,σ, Ptg

〉
σ

= lim
r→∞

〈
�r,σ, P

(2)
t g

〉
σ
. (5.22)

On the other hand, by the spectral decomposition in Theorem 5.3, for each g ∈ K ⊂ L2(σ)

P
(2)
t g =

∑
j∈ZN

∑
m≤j

e−λjt
〈
fj,m, g

〉
σ
fj,m. (5.23)
+
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In view of (5.9), the definition of ρr, and the arguments used to deduce (5.19), letting 
C ∈ (0, ∞)N be as in (5.19), we have

sup
r∈N

∣∣ρr(fj,m)∣∣ ≤ Cj .

Plug (5.23) on the right hand side of (5.22). In view of the previous bound, the expression 
(5.6) for the eigenvalues λj , and dominated convergence, we can exchange the limit as 
r → ∞ with the summation over j ∈ ZN

+ and deduce the claim (5.18). �
5.1. Commutative case: restriction to diagonal matrices

Consider the continuous time Markov chain on state space ZN
+ whose pre-generator 

Lcl acts on compactly supported functions f : ZN
+ → R as

(
Lclf

)
(�) =

N∑
k=1

{
c+k (�k)

[
f(� + ek) − f(�)

]
+ c−k (�k)

[
f(�− ek) − f(�)

]}
where we recall that ek has coordinates (ek)k′ = δk,k′ and the jump rates are given by

c+k (l) = 2 (l + 1) e−ωk/2, c−k (l) = 2 l eωk/2. (5.24)

The chain generated by Lcl corresponds to N independent birth and death processes 
with birth and death rate given by c+k , c−k , respectively. It is simple to check that

L(0)
∑
�∈ZN

+

f(�)|�〉〈�| =
∑
�∈ZN

+

(
Lclf

)
(�) |�〉〈�|.

In particular, if the state ρ has the form ρ =
∑

�∈ZN
+
μ(�) |�〉〈�| for some probability 

μ on ZN
+ , then ρPt =

∑
�∈ZN

+

(
μP cl

t

)
(�) |�〉〈�| where (P cl

t )t≥0 is the Markov semigroup 

on c0(ZN
+ ) generated by Lcl. Clearly, the generator Lcl is reversible with respect to the 

probability π on ZN
+ given by π(�) = Z−1e−

∑
k ωk�k , where Z is the appropriate normal-

ization. Theorem 5.3 thus provides, as a corollary, the spectral decomposition of L(2)
cl . 

Here we have denoted by L(2)
cl the generator of the semigroup (P cl,(2)

t )t≥0, the extension 
to L2(ZN

+ , π) of (P cl
t )t≥0. More precisely, recalling (5.6), spec(−L

(2)
cl ) = {λcl

� }�∈ZN
+

with 

eigenvalues λcl
� given by

λcl
� = 2λ� = 4

N∑
k=1

sh
(
ωk

2
)
�k.

The corresponding orthonormal basis {f cl
� } of L2(ZN

+ , π) of eigenvectors is given by
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f cl
� (m) = 1

γ�/2δ�/2

∑
j∈ZN

+

(
�

j

)(
m

�− j

)
(−1)|j|γj ,

where γ and δ are given by (5.5). Indeed, by (5.4) and (5.7),

f2�,� =
∑
m

f cl
� (m) |m〉〈m|.

Furthermore, Theorem 5.4 implies the following statement regarding the exponential 
ergodicity of (P cl

t )t≥0. Fix K > 0 and denote by PK the set of probabilities μ on ZN
+

satisfying

∑
m∈ZN

+

μ(m)m� ≤ K |�|�! . (5.25)

Then, for each K > 0 there exists A = A(K, Λ) such that for each N ∈ N and t ≥ 0

4 sup
μ∈PK

dTV(μP cl
t , π)2 ≤

(
1 + Ae−4Λt

)N − 1 ,

where dTV denotes the total variation distance.
The classical example of a birth and death chain reversible with respect to π has 

jump rates c+k (l) = e−ωk , c−k (l) = 1(lk > 0). It provides a popular example for which the 
modified logarithmic Sobolev inequality fails. In contrast, as follows from [8, Thm.8.5], 
this inequality holds for the jump rates specified in (5.24). The value of the modified 
logarithmic Sobolev constant is 4Λ. By applying the general bound for one-dimensional 
chain in [19], it is also possible to prove directly a logarithmic Sobolev inequality uniform 
in N but the value of the corresponding constant is not sharp. To our knowledge, the 
convergence in total variation for initial states satisfying the bound (5.25) has not been 
previously analyzed in the literature.
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Appendix A. Gap of the Lindblad generator for simple Lie algebras

In the case of classical Lie algebras, i.e. for types Ar, Br, Cr and Dr, we rely on specific 
representations of the root systems, see e.g. [14]. For the exceptional Lie algebras E6, 
E7, E8, F4 and G2, we do not rely on a specific representation of the root system but 
only on the computation of the inverse of the Cartan matrix.

A.1. Case Ar = sln, n = r + 1 ≥ 2

The root system of type Ar is

Φ =
{
ei − ej

}
1≤i�=j≤n

where e1, . . . , en is the canonical basis of the Euclidean space Rn. In this case E =
(e1 + · · · + en)⊥ ⊂ Rn. We fix the base Δ = {α1, . . . , αr}, where αi = ei − ei+1. With 
this choice of the base, the subset of positive roots is Φ+ =

{
ei−ej

}
1≤i<j≤n

, the highest 
root is θ = e1 − en, and the sum of positive roots is

2δ =
∑

α∈Φ+

α =
n∑

i=1
(n + 1 − 2i)ei .

The root lattice is P = SpanZ{Φ} = Zn ∩ E, while its positive cone is

P+ = SpanZ+
{Φ+} =

{ n∑
i=1

kiei ∈ Zn ∩ E :
i∑

j=1
kj ≥ 0, i = 1, . . . , n

}
.

The system of fundamental weights associated to the base Δ is Π = {℘1, . . . , ℘r}, 
where

℘i = n− i

n

i∑
j=1

ej −
i

n

n∑
j=i+1

ej , i = 1, . . . , r .

The corresponding weight lattice is

Λ = SpanZ{Π} =
{ n∑

i=1
(ki − k̄)ei : k1, . . . , kn ∈ Z

}
,

where k̄ = 1
n

∑n
i=1 ki. In other words, Λ is the orthogonal projection of Zn onto E. The 

positive cone of dominant integral weights is

Λ+ = SpanZ+
{Π} =

{ n∑
(ki − k̄)ei ∈ Λ : k1 ≥ k2 ≥ · · · ≥ kn

}
.

i=1
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It follows that

P+ ∩ Λ+ =
{ n∑

i=1
kiei ∈ Zn : k1 ≥ k2 ≥ · · · ≥ kn−1 ≥ 0,

n∑
i=1

ki = 0
}
.

Observe that, if μ =
∑n

i=1 kiei ∈ P+ ∩ Λ+, then

(μ|μ + 2δ) =
n∑

i=1
ki(ki + n + 1 − 2i) =

n∑
i=1

ki(ki + 2(n− i)) ,

where, for the second equality, we used 
∑n

i=1 ki = 0. Now each i-th summand in the 
right hand side is positive and increasing in ki. Hence, the minimum in (4.13) is achieved 
for μ = e1 − en = θ, which corresponds to the adjoint representation Vθ = ad g. As a 
consequence g0 = 1, as claimed in Theorem 4.1.

A.2. Case Br = so2r+1, r ≥ 2

The root system of type Br is

Φ =
{
± ei ± ej

}
1≤i<j≤r

�
{
± ei

}
1≤i≤r

where e1, . . . , er is the canonical basis of the Euclidean space E = Rr. We fix the base 
Δ = {α1, . . . , αr}, where αi = ei−ei+1 for i = 1, . . . , r−1 and αr = er. With this choice 
of the base, the subset of positive roots is

Φ+ =
{
ei ± ej

}
1≤i<j≤r

�
{
ei
}

1≤i≤r
,

the highest root is θ = e1 + e2, and the sum of positive roots is

2δ =
∑

α∈Φ+

α =
r∑

i=1
(2r + 1 − 2i)ei .

The root lattice is P = SpanZ{Φ} = Zr, while its positive cone is

P+ = SpanZ+
{Φ+} =

{ r∑
i=1

kiei ∈ Zr :
i∑

j=1
kj ≥ 0, i = 1, . . . , r

}
.

The system of fundamental weights associated to the base Δ is Π = {℘1, . . . , ℘r}, 
where

℘i =
i∑

ej , i = 1, . . . , r − 1 , ℘r = 1
2

r∑
ej .
j=1 j=1
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The corresponding weight lattice is Λ = SpanZ{Π} = Λ0̄ � Λ1̄, where

Λ0̄ =
{ r∑

i=1
kiei : k1, . . . , kr ∈ Z

}
and Λ1̄ =

{ r∑
i=1

kiei : k1, . . . , kr ∈ 1
2 + Z

}
.

The positive cone of dominant integral weights is Λ+ = SpanZ+
{Π} = Λ+

0̄ � Λ+
1̄ , where

Λ+
a =

{ r∑
i=1

kiei ∈ Λa : k1 ≥ k2 ≥ · · · ≥ kr ≥ 0
}
, a ∈ {0̄, 1̄} .

It follows that P+ ∩ Λ+ = Λ+
0̄ .

Observe that, if μ =
∑r

i=1 kiei ∈ Λ+
0̄ , then

(μ|μ + 2δ) =
r∑

i=1
ki(ki + 2r + 1 − 2i) .

Now each i-th summand in the right hand side is positive and increasing in ki. Hence, 
the minimum in (4.13) is achieved for μ = e1 = ℘1, where it has value (℘1|℘1 +2δ) = 2r. 
On the other hand, the highest root is θ = e1 + e2 = ℘2, and (θ|θ + 2δ) = 2(2r − 1). As 
a consequence g0 = r

2r−1 < 1, as claimed in Theorem 4.1.
We conclude the study of this case by exhibiting a representation of g for which 

gap(−L) = g0 and another representation for which gap(−L) = 1. For the defining 
representation V = V℘1 we have EndV � V0 ⊕ Vθ ⊕ V2℘1 , so that, in this case, V℘1

does not appear and gap(−L) = 1. On the other hand, for V = V℘r
we have EndV �

V0 ⊕
(⊕r−1

i=1 V℘i

)
⊕ V2℘r

. Since, in this case, V℘1 does appear in the decomposition, we 

have gap(−L) = g0.

A.3. Case Cr = sp2r, r ≥ 3

The root system of type Cr is

Φ =
{
± ei ± ej

}
1≤i<j≤r

�
{
± 2ei

}
1≤i≤r

where e1, . . . , er is the canonical basis of the Euclidean space E = Rr. We fix the base 
Δ = {α1, . . . , αr}, where αi = ei − ei+1 for i = 1, . . . , r − 1 and αr = 2er. With this 
choice of the base, the subset of positive roots is

Φ+ =
{
ei ± ej

}
1≤i<j≤r

�
{
2ei
}

1≤i≤r
,

the highest root is θ = 2e1, and the sum of positive roots is

2δ =
∑

α = 2
r∑

(r + 1 − i)ei .

α∈Φ+ i=1
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The root lattice is

P = SpanZ{Φ} =
{ r∑

i=1
kiei ∈ Zr :

r∑
i=1

ki ∈ 2Z
}
,

while its positive cone is

P+ = SpanZ+
{Φ+} =

{ r∑
i=1

kiei ∈ P :
i∑

j=1
kj ≥ 0, i = 1, . . . , r

}
.

The system of fundamental weights associated to the base Δ is Π = {℘1, . . . , ℘r}, 
where

℘i =
i∑

j=1
ej , i = 1, . . . , r .

The corresponding weight lattice is Λ = SpanZ{Π} = Zr, while the positive cone of 
dominant integral weights is

Λ+ = SpanZ+
{Π} =

{ r∑
i=1

kiei ∈ Zr : k1 ≥ k2 ≥ · · · ≥ kr ≥ 0
}
.

It follows that

P+ ∩ Λ+ =
{ r∑

i=1
kiei ∈ Zr : k1 ≥ k2 ≥ · · · ≥ kr ≥ 0,

r∑
i=1

ki ∈ 2Z
}
.

Observe that, if μ =
∑r

i=1 kiei ∈ P+ ∩ Λ+, then

(μ|μ + 2δ) =
r∑

i=1
ki(ki + 2(r + 1 − i)) .

Now, each i-th summand in the right hand side is positive and increasing in ki. Hence, 
the minimum in (4.13) is achieved either for the highest root θ = 2e1, corresponding to 
the adjoint representation, or for ℘2 = e1 + e2. By computing the two values, we get 
(θ|θ + 2δ) = 4(r + 1) and (℘2|℘2 + 2δ) = 4r. As a consequence g0 = r

r+1 < 1, as claimed 
in Theorem 4.1.

Also in this case, we conclude by exhibiting a representation of g for which gap(−L) =
g0 and another representation for which gap(−L) = 1. For the defining representation 
V = V℘1 we have EndV � V0 ⊕ Vθ ⊕ V℘2 , so that, in this case, V℘2 does appear in the 
decomposition and gap(−L) = g0. On the other hand, for V = V℘r

we have EndV �
V0 ⊕

(⊕r
i=1 V2℘i

)
. Since, in this case, V℘2 does not appear, we have gap(−L) = 1.
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A.4. Case Dr = so2r, r ≥ 4

The root system of type Dr is

Φ =
{
± ei ± ej

}
1≤i<j≤r

where e1, . . . , er is the canonical basis of the Euclidean space E = Rr. We fix the base 
Δ = {α1, . . . , αr}, where αi = ei − ei+1 for i = 1, . . . , r − 1 and αr = er−1 + er. With 
this choice of the base, the subset of positive roots is

Φ+ =
{
ei ± ej

}
1≤i<j≤r

,

the highest root is θ = e1 + e2, and the sum of positive roots is

2δ =
∑

α∈Φ+

α = 2
r∑

i=1
(r − i)ei .

The root lattice is

P = SpanZ{Φ} =
{ r∑

i=1
kiei ∈ Zr :

r∑
i=1

ki ∈ 2Z
}
,

while its positive cone is

P+ = SpanZ+
{Φ+} =

{ r∑
i=1

kiei ∈ P :
i∑

j=1
kj ≥ 0, i = 1, . . . , r − 1, |kr| ≤

r−1∑
j=1

kj

}
.

The system of fundamental weights associated to the base Δ is Π = {℘1, . . . , ℘r}, 
where

℘i =
i∑

j=1
ej , i = 1, . . . , r − 2 , ℘r−1 = 1

2

( r−1∑
i=1

ei − er

)
, ℘r−1 = 1

2

r∑
i=1

ei .

The corresponding weight lattice is Λ = SpanZ{Π} = Λ0̄ � Λ1̄, where

Λ0̄ =
{ r∑

i=1
kiei : k1, . . . , kr ∈ Z

}
and Λ1̄ =

{ r∑
i=1

kiei : k1, . . . , kr ∈ 1
2 + Z

}
.

The positive cone of dominant integral weights is Λ+ = SpanZ+
{Π} = Λ+

0̄ � Λ+
1̄ , where

Λ+
a =

{ r∑
kiei ∈ Λa : k1 ≥ k2 ≥ · · · ≥ kr−1 ≥ |kr|

}
, a ∈ {0̄, 1̄} .
i=1
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It follows that

P+ ∩ Λ+ =
{ r∑

i=1
kiei ∈ Zr : k1 ≥ k2 ≥ · · · ≥ kr−1 ≥ |kr|,

r∑
i=1

ki ∈ 2Z
}

Observe that, if μ =
∑r

i=1 kiei ∈ P+ ∩ Λ+, then

(μ|μ + 2δ) =
r∑

i=1
ki(ki + 2(r − i)) .

Now each i-th summand in the right hand side is positive and increasing in ki. Hence, the 
minimum in (4.13) is achieved either for the highest root θ = e1+e2 = ℘2, corresponding 
to the adjoint representation, or for 2e1 = 2℘1. By computing the two values, we get 
(θ|θ + 2δ) = 4(r − 1) < 4r = (2℘1|2℘1 + 2δ). As a consequence g0 = 1, as claimed in 
Theorem 4.1.

A.5. Case E6

The Dynkin diagram of E6 is

�

� � � � �

1 2 3 4 5

6

The corresponding Cartan matrix thus reads:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and its inverse is

A−1 = 1
3

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 5 6 4 2 3
5 10 12 8 4 6
6 12 18 12 6 9
4 8 12 10 5 6
2 4 6 5 4 3
3 6 9 6 3 6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote by α1, . . . , α6 the simple roots and by ℘1, . . . , ℘6 the associated fundamental 
weights. Up to an overall normalization constant, the Cartan matrix A is the Gram 
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matrix for the basis of simple roots α1, . . . , α6, while the inverse matrix A−1 is the Gram 
matrix for the basis of fundamental weight ℘1, . . . , ℘6. In particular, (α1, . . . , α6) =
(℘1, . . . , ℘6)A. By a direct computation, the maximal root is

θ = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 = ℘6 ,

and the sum of positive roots is

2δ = 16α1 + 30α2 + 42α3 + 30α4 + 16α5 + 22α6 . (A.1)

By definition, P+ =
∑6

i=1 Z+αi, while Λ+ =
∑6

i=1 Z+℘i. Hence,

P+ ∩ Λ+ =
{ 6∑

i=1
ni℘i : n ∈ Z6

+ , A−1n ∈ Z6
+

}
,

where nT = (n1, . . . , n6). By the explicit expression of the matrix A−1, the condition 
A−1n ∈ Z6

+ is equivalent to the equation

n1 − n2 + n4 − n5 ≡ 0 mod 3 . (A.2)

For μ =
∑6

i=1 ni℘i, we have

(μ|μ + 2δ) = nTA−1n + RTn ,

where RT = (16, 30, 42, 30, 16, 22) (cf. (A.1)).
Since both the matrix A−1 and the vector R have positive entries, a direct comparison 

shows that the minimum of (μ|μ + 2δ) for μ =
∑

i ni℘i with ni ∈ Z+ satisfying (A.2) is 
achieved when ni = δ6,i, i.e. when μ = ℘6 = θ. Hence, in this case gap(−L) = g0 = 1, as 
claimed in Theorem 4.1.

A.6. Case E7

The Dynkin diagram of E7 is

�

� � � � � �

1 2 3 4 5 6

7



L. Bertini et al. / Journal of Functional Analysis 286 (2024) 110340 41
The corresponding Cartan matrix thus reads:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and its inverse is

A−1 = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 4 5 6 4 2 3
4 8 10 12 8 4 6
5 10 15 18 12 6 9
6 12 18 24 16 8 12
4 8 12 16 12 6 8
2 4 6 8 6 4 4
3 6 9 12 8 4 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As before, we denote by α1, . . . , α7 the simple roots and by ℘1, . . . , ℘7 the associated 
fundamental weights. By a direct computation, the maximal root is

θ = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 2α7 = ℘6 ,

and the sum of positive roots is

2δ = 27α1 + 52α2 + 75α3 + 96α4 + 66α5 + 34α6 + 49α7 . (A.3)

We have

P+ ∩ Λ+ =
{ 6∑

i=1
ni℘i : n ∈ Z7

+ , A−1n ∈ Z7
+

}
,

where nT = (n1, . . . , n7). By the explicit expression of the matrix A−1, the condition ∑7
j=1(A−1)ijnj ∈ Z+ is equivalent to the equation

n1 + n3 + n7 ≡ 0 mod 2 . (A.4)

For μ =
∑7

i=1 ni℘i, we have

(μ, μ + 2δ) = nTA−1n + RTn ,

where RT = (27, 52, 75, 96, 66, 34, 49) (cf. (A.3)).
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Since both the matrix A−1 and the vector R have positive entries, a direct comparison 
shows that the minimum of (μ|μ + 2δ) for μ =

∑
i ni℘i with ni ∈ Z+ satisfying (A.4) is 

achieved when ni = δ6,i, i.e. when μ = ℘6 = θ. Hence, in this case gap(−L) = g0 = 1, as 
claimed in Theorem 4.1.

A.7. Case E8

The Dynkin diagram of E8 is

�

� � � � � � �

1 2 3 4 5 6 7

8

The corresponding Cartan matrix thus reads:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and its inverse is

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4 5 6 4 2 3
3 6 8 10 12 8 4 6
4 8 12 15 18 12 6 9
5 10 15 20 24 16 8 12
6 12 18 24 30 20 10 15
4 8 12 16 20 14 7 10
2 4 6 8 10 7 4 5
3 6 9 12 15 10 5 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As before, we denote by α1, . . . , α8 the simple roots and by ℘1, . . . , ℘8 the associated 
fundamental weights. By a direct computation, the maximal root is

θ = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8 = ℘1 ,

and the sum of positive roots is

2δ = 58α1 + 114α2 + 168α3 + 220α4 + 270α5 + 182α6 + 92α7 + 136α8 . (A.5)
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In this case, since the matrix A−1 has integral entries, we have

P+ ∩ Λ+ = Λ+ =
{ 8∑

i=1
ni℘i : ni ∈ Z+

}
.

For μ =
∑8

i=1 ni℘i, we have

(μ|μ + 2δ) = nTA−1n + RTn ,

where RT = (58, 114, 168, 220, 270, 182, 92, 136) (cf. (A.5)).
Since both the matrix A−1 and the vector R have positive entries, a direct comparison 

shows that the minimum of (μ|μ + 2δ) for μ =
∑

i ni℘i with ni ∈ Z+ is achieved when 
ni = δ1,i, i.e. when μ = ℘1 = θ. Hence, in this case gap(−L) = g0 = 1, as claimed in
Theorem 4.1.

A.8. Case F4

The Dynkin diagram of F4 is

� � � �〉
1 2 3 4

The corresponding Cartan matrix thus reads:

A =

⎛⎜⎜⎜⎝
2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

⎞⎟⎟⎟⎠ .

We denote by α1, . . . , α4 the simple roots and by ℘1, . . . , ℘4 the associated fundamental 
weights, which are defined by 2(α1|℘j)

(αi|αi) = δi,j . The inverse of the Cartan matrix is

A−1 =

⎛⎜⎜⎜⎝
2 3 2 1
3 6 4 2
4 8 6 3
2 4 3 2

⎞⎟⎟⎟⎠ .

By the definition of the fundamental weights, (α1, . . . , α4) = (℘1, . . . , ℘4)A and 
(℘1, . . . , ℘4) = (α1, . . . , α4)A−1.

Assuming, without loss of generality, that ||α1||2 = ||α2||2 = 2 and ||α3||2 = ||α4||2 =
1, the Gram matrix for the fundamental weights ℘1, . . . , ℘4 is
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S = DA−1 =

⎛⎜⎜⎜⎝
2 3 2 1
3 6 4 2
2 4 3 3

2
1 2 3

2 1

⎞⎟⎟⎟⎠ where D =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 1

2

⎞⎟⎟⎟⎠ .

By a direct computation, the maximal root is

θ = 2α1 + 3α2 + 4α3 + 2α4 = ℘1 ,

and the sum of positive roots is

2δ = 16α1 + 30α2 + 42α3 + 22α4 . (A.6)

By definition, P+ =
∑4

i=1 Z+αi, while Λ+ =
∑4

i=1 Z+℘i and, since A−1 has integer 
positive entries, Λ+ ⊂ P+. Hence, P+ ∩ Λ+ = Λ+.

For μ =
∑4

i=1 ni℘i, we have

(μ|μ + 2δ) = nTSn + RTDn ,

where RT = (16, 30, 42, 22) (cf. (A.6)).
Since both the matrix S and the vector R have positive entries, a direct comparison 

shows that the minimum of (μ|μ + 2δ) is achieved when ni = δ4,i, i.e. when μ = ℘4. The 
corresponding value is (℘4|℘4 + 2δ) = 12. On the other hand, we have (θ|θ + 2δ) = 18. 
As a consequence g0 = 2

3 , as claimed in Theorem 4.1.
We conclude by exhibiting a representation of F4 for which gap(−L) = 2

3 and another 
representation for which gap(−L) = 1. For the 26-dimensional representation V = V℘4

we have EndV � V0 ⊕ V℘4 ⊕ V2℘4 ⊕ V℘3 ⊕ V℘1 , so that, in this case, V℘4 does appear in 
the decomposition and gap(−L) = 2

3 . On the other hand, for the adjoint representation 
V = V℘1 we have EndV � V0 ⊕ V℘1 ⊕ V2℘1 ⊕ V℘2 ⊕ V2℘4 . Since, in this case, V℘4 does 
not appear, we have gap(−L) = 1.

A.9. Case G2

The Dynkin diagram of G2 is

� �〉
1 2

The corresponding Cartan matrix thus reads:

A =
(

2 −1
−3 2

)
.
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We denote by α1, α2 the simple roots and by ℘1, ℘2 the associated fundamental weights, 
defined by 2(α1|℘j)

(αi|αi) = δi,j . The inverse of the Cartan matrix is

A−1 =
(

2 1
3 2

)
.

Hence, α1 = 2℘1 − 3℘2, α2 = ℘1 + 2℘2 and ℘1 = 2α1 + 3α2, ℘2 = α1 + 2α2.
By the definition of the Cartan matrix, we have 2(α1|α2)

(α1|α1) = −1 and 2(α2|α1)
(α2|α2) = −3, 

so that (α1|α1)
(α2|α2) = 3. We can assume, without loss of generality, that ||α1||2 = 2 and 

||α2||2 = 2
3 . With this choice, the Gram matrix for the fundamental weights ℘1, ℘2 is

S = DA−1 =
(

2 1
1 2

3

)
where D =

(
1 0
0 1

3

)
.

By a direct computation, the maximal root is

θ = 2α1 + 3α2 = ℘1 ,

and the sum of positive roots is

2δ = 6α1 + 10α2 . (A.7)

Since A−1 has integer positive entries, Λ+ ⊂ P+ so that P+ ∩ Λ+ = Z+℘1 + Z+℘2. 
For μ = n1℘1 + n2℘2 we have

(μ|μ + 2δ) = nTSn + RTDn ,

where nT = (n1, n2) and RT = (6, 10) (cf. (A.7)).
Since both the matrix S and the vector R have positive entries, a direct comparison 

shows that the minimum of (μ|μ + 2δ) is achieved when ni = δ2,i, i.e. when μ = ℘2. The 
corresponding value is (℘2|℘2 + 2δ) = 4. On the other hand, we have (θ|θ + 2δ) = 8. As 
a consequence g0 = 1

2 , as claimed in Theorem 4.1.
We conclude by exhibiting a representation of g for which gap(−L) = 1

2 and another 
representation for which gap(−L) = 1. For the 7-dimensional representation V = V℘2

we have EndV � V0 ⊕ V℘1 ⊕ V℘2 ⊕ V2℘1 , so that, in this case, V℘2 does appear in the 
decomposition and gap(−L) = 1

2 . On the other hand, for the adjoint representation 
V = V℘1 we have EndV � V0 ⊕ V℘1 ⊕ V2℘1 ⊕ V2℘2 ⊕ V3℘2 . Since, in this case, V℘2 does 
not appear, we have gap(−L) = 1.
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