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We examine two analytical characterisation of the metastable behavior
of a sequence of Markov chains. The first one expressed in terms of its tran-
sition probabilities, and the second one in terms of its large deviations rate
functional.

Consider a sequence of continuous-time Markov chains (X
(n)
t : t ≥ 0)

evolving on a fixed finite state space V . Under a hypothesis on the jump

rates, we prove the existence of time-scales θ
(p)
n and probability measures

with disjoint supports π
(p)
j , j ∈ Sp , 1 ≤ p ≤ q, such that (a) θ

(1)
n → ∞,

θ
(k+1)
n /θ

(k)
n → ∞, (b) for all p, x ∈ V , t > 0, starting from x, the distribution

of X
(n)

tθ
(p)
n

converges, as n → ∞, to a convex combination of the probability

measures π
(p)
j . The weights of the convex combination naturally depend on

x and t .
Let In be the level two large deviations rate functional for X

(n)
t , as

t → ∞. Under the same hypothesis on the jump rates and assuming, fur-
thermore, that the process is reversible, we prove that In can be written

as In = I (0) + ∑1≤p≤q(1/θ
(p)
n )I (p) for some rate functionals I (p)

which take finite values only at convex combinations of the measures π
(p)
j :

I (p)(μ) < ∞ if, and only if, μ =∑j∈Sp
ωjπ

(p)
j for some probability mea-

sure ω in Sp .
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1. Introduction. The metastable behavior of continuous-time Markov chains has at-
tracted some interest in recent years. We refer to the monographs [12, 34, 38, 54] for the
latest developments. In this article, we propose to investigate the Markov chains metastable
behaviour from an analytical perpective, by showing that the Markov chains semigroup and
large deviations rate function encode the metastable properties of the process. The main re-
sults explain how to extract from these functionals the metastable time-scales, states and
wells.

To tackle this problem we consider a sequence of continuous-time Markov chains (X
(n)
t :

t ≥ 0) evolving on a finite state space V . Under a natural hypothesis on the jump rates of
these chains, stated in equation (2.4) below, we prove the existence of:

(a) time-scales θ
(1)
n , . . . , θ

(q)
n such that, as n → ∞, θ

(1)
n → ∞, θ

(p+1)
n /θ

(p)
n → ∞ for 1 ≤

p < q;
(b) and metastable states π

(p)
1 , . . . , π

(p)
np

, 1 ≤ p ≤ q.

The parameter p is called the level and indicates the depth of the wells or, equivalently,
the time-scale at which a metastable behaviour is observed. The metastable states π

(p)
j are

probability measures on V . It will be shown that, for each fixed level p, the support of the
measures π

(p)
1 , . . . , π

(p)
np

are disjoint. They represent the wells among which the process X
(n)
t

evolves in the time-scale θ
(p)
n . The number of the metastable set decreases as the time-scales

increase: np+1 < np . A metastable state at level p + 1 is a convex combination of metastable

states at level p: for each 1 ≤ p < q and 1 ≤ m ≤ np+1, π
(p+1)
m =∑j ω

(m)
j π

(p)
j for some

probability measure ω(m) on {1, . . . ,np}.
The first main result of this article, Theorem 3.1.(b), states that for all t > 0, x ∈ V , the

distribution of X
(n)

tθ
(p)
n

starting from x converges to a convex combination of the measures π
(p)
j ,

1 ≤ j ≤ np . More precisely, denote by p
(n)
t (x, y) the transition probabilities of the Markov

chain X
(n)
t . Then, for each 1 ≤ p ≤ q, t > 0, x ∈ V , there exists a probability measure ω

(p)
t,x (·)

on {1, . . . ,np} such that

(1.1) lim
n→∞p

(n)

tθ
(p)
n

(x, ·) =
np∑

j=1

ω
(p)
t (x, j)π

(p)
j (·).

The weights ω
(p)
t,x (j) of this convex combination naturally depend on x and t , and are obtained

by a recursion procedure.
Theorem 3.1 also characerises the asymptotic behavior of the transition probabilities at

all intermediate time-scales βn. Fix 0 ≤ p ≤ q, set θ
(0)
n = 1, θ

(q+1)
n = +∞, and consider a

sequence βn such that βn/θ
(p)
n → ∞, βn/θ

(p+1)
n → 0. Theorem 3.1 provides a formula for
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the limit of p
(n)
βn

(x, ·) as n → ∞. It corresponds to the limit obtained in (1.1) by letting t → ∞
after n → ∞.

Freidlin and Koralov [23], after [2] and [45], examined sequences of Markov chains on fi-
nite state spaces under the same hypothesis (2.4) assumed below and taken from [2, 45]. Their
main results describe the asymptotic behavior of the transition probabilities at the interme-
diate time-scales βn introduced above. These results demonstrate the interest of the theory
developed in [1, 5, 37, 38, 53], which permits to investigate the asymptotic behavior of the
Markov chain exactly at the metastable time-scale, and not just before or after it.

We turn to the large deviations. Denote by In the level two large deviations rate functional
of the Markov chain X

(n)
t , as t → ∞ [58]. Under the hypothesis of reversibility, the second

main result of this article provides a �-expansion of the functional In as

(1.2) In = I (0) +
q∑

p=1

1

θ
(p)
n

I (p).

This expansion has to be understood in the sense that In, θ
(p)
n In, 1 ≤ p ≤ q, �-converge to

I (0), I (p), respectively. The rate functionals I (p) take finite values only at convex combi-
nations of the metastable states π

(p)
j : I (p)(μ) < ∞ if, and only if, μ =∑j∈Sp

ωjπ
(p)
j for

some probability measure ω in Sp .
Therefore, both the semigroup and the level two large deviations rate functionals encode all

characteristics of the metastable behaviour of a Markov chain. They provide the time-scales,
the metastable states and the wells. In particular, it becomes a natural problem to prove such
an expansion in other contexts.

We believe that the inductive approach presented here provides a general method to derive
these results, as well as the metastable behavior in the classical sense [1], of Markov chains
with wells of different depths, even if the state space is not fixed, as assumed here. To be
applied, one needs (a) to show that the process quickly reaches one of the wells (the initial
step of the induction procedure) and (b) to compute the capacities (2.7) and the asymptotic
jump rates (2.10).

More precisely, inspecting the proof of Theorem 3.5 reveals that it essentially relies on
the convergences of the generator of the trace process on the wells (more exactly on the
convergence of the average rates r

(p)
n (i, j) introduced in (2.9) below). Since this convergence

has been obtained in many different contexts, by following the strategy proposed here it
should be possible to derive the metastable �-expansion of the large deviations level two rate
function for dynamics in which the state space is not fixed.

This includes random walks in potential fields [41, 43], condensing zero-range models [3,
33, 56], inclusion processes [11, 18, 27, 29, 30], or statistical mechanical models in which the
volume grows as the temperature decreases. For example, the Curie–Weiss model in random
environment [10, 14], the Blume–Capel model [36], the Potts model [32, 42, 46], or the
Kawasaki dynamics for the Ising model [26].

In particular, it should be possible to apply this approach to nonreversible diffusions in
potential fields, [15, 40, 44, 47, 48, 55, 57], extending Di Gesù and Mariani [21], who prove
the �-expansion in the reversible case in which there is only one well at each different depth.

Outline. The paper is organized as follows. In Section 2, we introduce the notation, the
main hypothesis, and recall the multiscale metastable behavior of the model introduced
above. At the end of this section we provide an example to illustrate the tree construction
and the metastable behavior of the Markov chain. In Section 3, the main results of the article
are stated. In Section 4, we prove that in the first metastable time-scale, the law of the process
converges to a convex combination of metastable-states, in Section 5, this result is extended
to all metastable time-scales, and, in Section 6, the metastable-states are characterized as the



METASTABLE �-EXPANSION OF LARGE DEVIATIONS RATE FUNCTIONS 3823

stationary state conditioned to the metastable sets. This first part of the article does not re-
quire reversibility. In Section 7, we present some estimates needed in the analysis of the rate
functionals �-expansion, which is proved in the following section. In the Appendix, some
results in potential theory needed in the article are stated.

2. The model. Let G = (V ,E) be a finite directed graph, where V represents the finite
set of vertices, and E the set of directed edges. Denote by (X

(n)
t : t ≥ 0), n ≥ 1, a sequence of

V -valued, irreducible continuous-time Markov chains, whose jump rates are represented by
Rn(x, y). We assume that Rn(x, y) > 0 for all (x, y) ∈ E and n ≥ 1. The generator reads as

(Lnf )(x) = ∑
y : (x,y)∈E

Rn(x, y)
{
f (y) − f (x)

}
.

Denote by λn(x), x ∈ V , the holding rates of the Markov chain X
(n)
t and by pn(x, y), x,

y ∈ V , the jump probabilities, so that Rn(x, y) = λn(x)pn(x, y).
Let πn stand for the unique stationary state. The so-called Matrix tree theorem [24],

Lemma 6.3.1, provides a representation of the measure πn in terms of arborescences of the
graph (V ,E).

Denote by D(R+,W), W a finite set, the space of right-continuous functions x : R+ → W

with left-limits endowed with the Skorohod topology and the associated Borel σ -algebra.
Let Px = Pn

x , x ∈ V , be the probability measure on the path space D(R+,V ) induced by the
Markov chain X

(n)
t starting from x. Expectation with respect to Px is represented by Ex .

Denote by p
(n)
t (x, y) the transition probability of the Markov chain X

(n)
t :

p
(n)
t (x, y) := Pn

x

[
X

(n)
t = y

]
, x, y ∈ V, t > 0.

Since the chain is irreducible and πn is the unique stationary state, by the ergodic theorem
for finite state-spaces Markov chains,

lim
t→∞p

(n)
t (x, y) = πn(y) for all x, y ∈ V .

Longer time-scales. Assume that limn Rn(x, y) exists for all (x, y) ∈ E, and denote by
R0(x, y) ∈ [0,∞) its limit:

(2.1) R0(x, y) := lim
n

Rn(x, y), (x, y) ∈ E.

Let E0 be the set of edges whose asymptotic rate is positive: E0 := {(x, y) ∈ E : R0(x, y) >

0}, and assume that E0 �= ∅. The jump rates R0(x, y) induce a continuous-time Markov
chain on V , denoted by (Xt : t ≥ 0), which, of course, may be reducible. Denote by L(0) its
generator.

Denote by V1, . . . ,Vn, n ≥ 1, the closed irreducible classes of Xt , and let

(2.2) S := {1, . . . ,n}, V := ⋃
j∈S

Vj , 	 := V \ V .

The set 	 may be empty and some of the sets Vj may be singletons.
Let Qx be the probability measure on D(R+,V ) induced by the Markov chain Xt starting

from x.
For two sequences of positive real numbers (αn : n ≥ 1), (βn : n ≥ 1), αn ≺ βn or βn 	 αn

means that limn→∞ αn/βn = 0. Similarly, αn 
 βn or βn � αn indicates that either αn ≺ βn

or αn/βn converges to a positive real number a ∈ (0,∞).
Let

γn := max
(x,y)∈E\E0

Rn(x, y)
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so that γn ≺ 1. Choose a sequence βn such that 1 ≺ βn ≺ γ −1
n . Couple X

(n)
t and Xt making

them jump as much as possible together. Denote by P̂x the coupling measure. Since βn ≺
γ −1
n , for all x ∈ V

lim
n→∞ P̂x

[
X(n)

t = Xt ,0 ≤ t ≤ βn

]= 1.

In particular, for all x, y ∈ V

lim
n→∞p

(n)
βn

(x, y) = lim
n→∞ P̂x[Xβn = y] =∑

j∈S

a(0)(x, j)π
�
j (y),

where π
�
j , 1 ≤ j ≤ n, represents the stationary states of the Markov chain X restricted to

Vj and a(0)(x, j) the probability that the chain Xt starting from x is absorbed by the closed
recurrent class Vj :

(2.3) a(0)(x, j) := lim
t→∞Qx[Xt ∈ Vj ].

In the first part of this article, we investigate the asymptotic behaviour of p
(n)
βn

(x, y) in dif-
ferent time-scales βn. The definition of the time-scales and the description of the asymptotic
behaviour is based on a construction of a tree [2, 45] presented after the statement of the main
hypothesis of the article.

The main assumption. Two sequences of positive real numbers (αn : n ≥ 1), (βn : n ≥
1) are said to be comparable if αn ≺ βn, βn ≺ αn or αn/βn → a ∈ (0,∞). This condition
excludes the possibility that the sequence αn/βn oscillates between two finite values and
does not converge.

A set of sequences (αu
n : n ≥ 1), u ∈ R, of positive real numbers, indexed by some finite

set R, is said to be comparable if for all u, v ∈ R the sequence (αu
n : n ≥ 1), (αv

n : n ≥ 1) are
comparable.

Let Z+ = {0,1,2, . . . }, and let m, m ≥ 1, be the set of functions k : E → Z+ such that∑
(x,y)∈E k(x, y) = m. We assume throughout this article that for every m ≥ 1 the set of

sequences

(2.4)
( ∏

(x,y)∈E

Rn(x, y)k(x,y) : n ≥ 1
)
, k ∈ m,

is comparable.

REMARK 2.1. This hypothesis on the jump rates is taken from [2] and [45]. It is a natural
condition in the investigation of the asymptotic behavior of sequences of Markov chains.

Indeed, a first reasonable hypothesis to impose consists in assuming that the jump rates
converge. However, this hypothesis does not insure that the trace of the chain on a subset of
the state space converges. To derive this property, a stronger assumption is needed. As proved
in [2, 45] condition (2.4) does the job.

This condition also appears in [23], which supports the assertion that this hypothesis is
natural in the context of metastability.

As observed in [2], assumption (2.4) is fulfilled by all statistical mechanics models which
evolve on a fixed state space and whose metastable behaviour has been derived. This includes
the Ising model [7, 16, 51, 52], the Potts model with or without a small external field [31,
50], the Blume–Capel model [19, 35] and conservative Kawasaki dynamics [6, 13, 20, 25].
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A rooted tree. In this subsection, we present the construction, proposed in [2, 45], of a
rooted tree which describes all different metastable behaviours of the Markov chain X

(n)
t .

This construction plays a fundamental role in the statement of the main theorems of this
article. The reader will find at the end of this section a simple example which may help to
understand the construction.

The tree satisfies the following conditions:

(a) Each vertex of the tree represents a subset of V ;
(b) Each generation forms a partition of V ;
(c) The children of each vertex form a partition of the parent.
(d) The generation p + 1 is strictly coarser than the generation p.

The tree is constructed by induction starting from the leaves to the root. It corresponds
to a deterministic coalescence process. Denote by q the number of steps in the recur-
sive construction of the tree. At each level 1 ≤ p ≤ q, the procedure generates a par-
tition {V (p)

1 , . . . ,V
(p)
np

,	p}, a time-scale θ
(p)
n and a {1, . . . ,np}-valued continuous-time

Markov chains X
(p)
t which describes the evolution of the chain X

(n)

tθ
(p)
n

among the subsets

V
(p)

1 , . . . ,V
(p)
np

, called hereafter wells.
The leaves are the sets V1, . . . ,Vn,	 introduced in (2.2). We proceed by induction. Let

S1 = S, n1 = n, V (1)
j = Vj , j ∈ S1, 	1 = 	, and assume that the recursion has produced the

sets V
(p)

1 , . . . ,V
(p)
np

,	p for some p ≥ 1, which forms a partition of V .
Denote by HA , H+

A , A ⊂ V , the hitting and return time of A :

(2.5) HA := inf
{
t > 0 : X(n)

t ∈ A
}
, H+

A := inf
{
t > τ1 : X(n)

t ∈ A
}
,

where τ1 represents the time of the first jump of the chain X
(n)
t : τ1 = inf{t > 0 : X(n)

t �= X
(n)
0 }.

For two nonempty, disjoint subsets A , B of V , denote by capn(A ,B) the capacity be-
tween A and B:

(2.6) capn(A ,B) := ∑
x∈A

πn(x)λn(x)Pn
x

[
HB < H+

A

]
.

Set Sp = {1, . . . ,np}, and let θ
(p)
n be defined by

(2.7)
1

θ
(p)
n

:= ∑
i∈Sp

capn(V
(p)

i , V̆
(p)

i )

πn(V
(p)

i )
where V̆

(p)
i := ⋃

j∈Sp\{i}
V

(p)
j .

The ratio πn(V
(p)

i )/capn(V
(p)

i , V̆
(p)

i ) represents the time it takes for the chain X
(n)
t , starting

from a point in V
(p)

i to reach the set V̆
(p)

i . Therefore, θ
(p)
n corresponds to the smallest time

needed to observe such a jump.
Recall from (A.1) the definition of the trace of a Markov chain. Denote by {Yn,p

t : t ≥ 0}
the trace of {X(n)

t : t ≥ 0} on V (p), and by R
(p)
n : V (p) × V (p) → R+ its jump rates. By

equation (2.5) in [34],

(2.8) R(p)
n (x, y) = λn(x)Pn

x

[
Hy = H+

V (p)

]
, x, y ∈ V (p), x �= y.

Denote by r
(p)
n (i, j) the mean rate at which the trace process jumps from V

(p)
i to V

(p)
j :

(2.9) r(p)
n (i, j) := 1

πn(V
(p)

i )

∑
x∈V

(p)
i

πn(x)
∑

y∈V
(p)

j

R(p)
n (x, y).
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Under the assumption (2.4), [45] proved that the sequences θ
(p)
n r

(p)
n (i, j) converge for all

i �= j ∈ Sp . Denote the limits by r(p)(i, j):

(2.10) r(p)(i, j) := lim
n→∞ θ(p)

n r(p)
n (i, j) ∈R+.

Denote by (X
(p)
t : t ≥ 0) the Sp-valued continuous-time Markov chain induced by the

jump rates r(p)(j, k), and by L(p) its generator. Let �p : V (p) → Sp be the projection which

sends the points in V
(p)

j to j :

�p := ∑
k∈Sp

kχ
V

(p)
k

.

In this formula and below, χA stands for the indicator function of the set A .
The next theorem is the main result in [45].

THEOREM 2.2. Assume that condition (2.4) is in force. Then, for each 1 ≤ p ≤ q, j ∈
Sp , x ∈ V

(p)
j , under the measure Pn

x , the sequence of Sp-valued, hidden Markov processes

�p(X
(n)

tθ
(p)
n

) converges weakly in the Skorohod topology to X
(p)
t . Moreover, the time spent in

	p is negligible in the sense that for all t > 0,

lim
n→∞ max

x∈V (p)
En

x

[∫ t

0
χ	p

(
X

(n)

sθ
(p)
n

)
ds

]
= 0.

The process X(p)
t describes therefore how the chain X

(n)
t evolves among the wells V

(p)
j in

the time-scale θ
(p)
n . Let p

(p)
t (i, j) be the transition probabilities:

(2.11) p
(p)
t (i, j) = Q

(p)
i [Xt = j ], t ≥ 0, i, j ∈ Sp,

where Q
(p)
i stands for the probability measure on the path space D(R+, Sp) induced by the

Markov chain X
(p)
t starting from i.

By [45], Theorem 2.7, there exists j , k ∈ S such that r(p)(j, k) > 0. Actually, by the proof
of this result

(2.12)
∑
k �=j

r(p)(j, k) > 0 for all j ∈ Sp such that lim
n→∞ θ(p)

n

capn(V
(p)

j , V̆
(p)

j )

πn(V
(p)

j )
> 0.

Denote by R
(p)
1 , . . . ,R

(p)
np+1 the recurrent classes of the Sp-valued chain X

(p)
t , and by Tp

the transient states. Let R(p) = ⋃j R
(p)
j , and observe that {R(p)

1 , . . . ,R
(p)
np+1,Tp} forms a

partition of the set Sp . This partition of Sp induces a new partition of the set V . Let

V (p+1)
m := ⋃

j∈R(p)
m

V
(p)

j , T (p+1) := ⋃
j∈Tp

V
(p)

j , m ∈ Sp+1 := {1, . . . ,np+1},

so that V = 	p+1 ∪ V (p+1), where

(2.13) V (p+1) = ⋃
m∈Sp+1

V (p+1)
m , 	p+1 := 	p ∪ T (p+1).

The subsets V
(p+1)

1 , . . . ,V
(p+1)
np+1 ,	p+1 of V are the result of the recursive procedure. We

claim that conditions (a)–(d) hold at step p+1 if they are fulfilled up to step p in the induction
argument.
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The sets V
(p+1)

1 , . . . ,V
(p+1)
np+1 , 	p+1 constitute a partition of V because the sets R(p)

1 , . . . ,

R
(p)
np+1 , Tp form a partition of Sp , and the sets V

(p)
1 , . . . ,V

(p)
np

, 	p one of V . Conditions
(a)–(c) are therefore satisfied.

To show that the partition obtained at step p + 1 is strictly coarser than {V (p)
1 , . . . ,

V
(p)
np

,	p}, observe that, by (2.12), r(p)(j, k) > 0 for some k �= j ∈ Sp . Hence, either j is

a transient state for the process X
(p)
t or the closed recurrent class which contains j also

contains k. In the first case 	p � 	p+1, and in the second one there exists m ∈ Sp+1 such

that V
(p)

j ∪ V
(p)

k ⊂ V
(p+1)

m . Therefore, the new partition {V (p+1)
1 , . . . ,V

(p+1)
np+1 ,	p+1} of V

satisfies the conditions (d).
The construction terminates when the Sp-valued Markov chain X

(p)
t has only one recurrent

class so that np+1 = 1. In this situation, the partition at step p + 1 is V
(p+1)

1 , 	p+1.
This completes the construction of the rooted tree. Recall that we denote by q the number

of steps of the scheme. As claimed at the beginning of the procedure, for each 1 ≤ p ≤
q, we generated a time-scale θ

(p)
n , a partition Pp = {V (p)

1 , . . . ,V
(p)
np

,	p}, where P1 =
{V1, . . . ,Vn,	}, Pq+1 = {V (q+1)

1 ,	q+1}, and a Sp-valued continuous-time Markov chain

X
(p)
t .
Furthermore, by construction,

(2.14) 	p ⊂ 	p+1, 1 ≤ p ≤ q,

by [45], Assertion 8.B,

(2.15) θ(p)
n ≺ θ(p+1)

n , 1 ≤ p < q,

and by [45], Assertion 8.A, or equation (8.2) of this article,

(2.16) lim
n→∞

πn(x)

πn(V
(p)

j )
exists and belongs to (0,1]

for all 1 ≤ p ≤ q+ 1, j ∈ Sp , x ∈ V
(p)

j .
The partitions P1, . . . ,Pq+1 form a rooted tree whose root (0th generation) is V , first

generation is {V (q+1)
1 ,	q+1} and last ((q + 1)th) generation is {V1, . . . ,Vn,	}. Note that

the set V (p+1) corresponds to the set of recurrent points for the chain X
(p)
t . In contrast, the

points in 	p+1 are either transient for this chain or negligible in the sense that the chain X
(n)
t

remains a negligible amount of time on the set 	p in the time-scale θ
(p)
n (cf. [2, 45]).

Example. We conclude this section with an example to help the reader understanding the
tree’s construction. Let V = {0, . . . ,29}, and consider the energy H : V → {0, . . . ,4} given in
Figure 1. Note that H(k + 1)−H(k) = ±1 for 0 ≤ k < 29. The energy H has 9 local minima,
represented in Figure 1 by x1, . . . x9.

Consider the V -valued continuous-time Markov chain X
(n)
t whose jump rates are given

by Rn(k, j) = 0 if j �= k ± 1 and Rn(k, k ± 1) = exp{−n[H(k ± 1) −H(k)]+}, where a+ =
max{a,0}. Hence if H(k ± 1) −H(k) = −1 the chain jumps from k to k ± 1 at rate 1, while
if H(k ± 1) − H(k) = +1 it jumps from k to k ± 1 at rate e−n. More simply, observing the
energy landscape presented in Figure 1, the chain jumps “downwards” at rate 1 and jumps
“upwards” at rate e−n.

It is easy to check that the stationary state, denoted by πn, is given by πn(k) =
(1/Zn) exp{−nH(k)}, where Zn is a normalising constant, and that πn satisfies the de-
tailed balance conditions. In particular, and since the downward jump rates are equal to 1,
cn(j, k) := πn(j)Rn(j, k) = πn(j) ∧ πn(k). It follows from this identity and Lemma 7.3 be-
low that the capacities introduced in (2.6) are easy to estimate in this example.



3828 L. BERTINI, D. GABRIELLI AND C. LANDIM

FIG. 1. The energy landscape of the Markov chain X
(n)
t .

Consider the tree construction presented at the beginning of this section.
Step 1: the leaves. In the first step we determine the leaves of the tree, which corre-

spond to the closed irreducible classes of the chain Xt . In this example, the closed irre-
ducible classes are the local minima of the energy H so that n = 9, Vj = {xj }, 1 ≤ j ≤ 9,
	 = V \ {x1, . . . , x9}, and the leaves are the sets 	 and Vj , 1 ≤ j ≤ 9.

Denote by q+ 1, q ≥ 0, to total number of generations of the tree. The exact value of q+ 1
will only be known at the end of the construction.

Step 2: the generation q. The second step consists in determining the smallest transition
time between a well Vj to a well Vk . This is the smallest time-scale it takes for the process

X
(n)
t starting from Vj to hit Vk . In the above example this time-scale is θ

(1)
n = en. In this time

scale, the trace of X
(n)
t on V =⋃j Vj evolves as a Markov chain and converges, as n → ∞,

to a V -valued Markov chain, represented by X
(1)
t . The states x1 and x2 are transient states for

X
(1)
t and absorbed at the recurrent state x3. Similarly, the states x5 and x6 are transient states

for X(1)
t and are absorbed by x4. The states x7, x8 form a closed irreducible class of X(1)

t , as
well as the point x9.

Therefore, T1 = {1,2,5,6}, R(1)
1 = {3}, R(1)

2 = {4}, R(1)
3 = {7,8}, R(1)

4 = {9}, so that

V (2)
1 = {x3}, V (2)

2 = {x4}, V (2)
3 = {x7, x8}, V (2)

4 = {x9}, T2 = {x1, x2, x5, x6}. Moreover, the

generation q of the tree has 5 elements: 	2 = 	 ∪ T2, and V (2)
j , 1 ≤ j ≤ 4.

Step 3: the generation q − 1. At this point, we need to determine the smallest transition
time between the wells V (2)

1 , V (2)
2 , V (2)

3 and V (2)
4 . In this example the smallest transition

time is θ
(2)
n = e2n.

Let V (2) =⋃1≤j≤4 V (2)
j , and denote by Y

n,2
t the trace of the process X

(n)
t on V (2). Con-

sider the projection �2 : V (2) → S2 = {1,2,3,4} which sends the points in V (2)
j to j . Note

that �2 is not a bijection. In consequence the process �2(Y
n,2
t ) is not a Markov chain. It

is however possible to prove (cf. [1]) that the process �2(Y
n,2

tθ
(2)
n

) converges to a S2-valued

Markov chain, denoted by X
(2)
t .

The states 1 and 3, which corresponds to the sets V (2)
1 and V (2)

3 , respectively, are transient

for the chain X
(2)
t , while the states 2 and 4, which corresponds to the sets V (2)

2 and V (2)
4 ,

respectively, form closed irreducible classes. The state 1 is absorbed at 2, while the state 3
may be absorbed at 2 or 4.

Thus, in this example, T2 = {1,3}, R(2)
1 = {2}, R(2)

2 = {4}, so that V (3)
1 = {x4}, V (3)

2 =
{x9}, T3 = {x3, x7, x8}. The generation q− 1 of the tree has 3 elements: 	3 = 	2 ∪ T3, and
V (3)

j , j = 1,2.
Step 4: the generation q − 2. We need now to determine the smallest transition time be-

tween the wells V (3)
1 and V (3)

2 . In this example it is θ
(3)
n = e3n.
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FIG. 2. The tree or coalescence process generated by the Markov chain X
(n)
t .

Let V (3) = V (3)
1 ∪ V (3)

2 , and denote by Y
n,3
t the trace of the process X

(n)
t on V (3). It is

however possible to prove (cf. [1]) that the process Y
n,3

tθ
(3)
n

converges to a {1,2}-valued Markov

chain, denoted by X
(3)
t .

The states {1,2} form a irreducible class for X(3)
t . Hence T3 is empty and R(3) = R

(3)
1 =

{1,2}, so that V (4)
1 = {x4, x9}, T4 = ∅. The generation q − 2 of the tree has 2 elements:

	4 = 	3, and V (4)
1 .

As there is only one closed irreducible class, the construction is completed and the value
of q is revealed. The partition {	4,V

(4)
1 } of V corresponds to the first generation. Since, by

construction, it is also the (q − 2)th generation, we deduce that q = 3 and that the tree has
q+ 1 = 4 generations. To get a rooted tree, we declare that the root, which corresponds to the
zeroth generation, is the set V = 	4 ∪ V (4)

1 . The tree associated to the example presented in
Figure 1 is depicted in Figure 2.

3. The main results. In this section, we enunciate the main results of the article. The
statements require a further layer in the tree construction presented in the previous section.
At each step 1 ≤ p ≤ q + 1, we introduce a set of probability measures π

(p)
j , j ∈ Sp , on

V . The construction of these measures is carried out below by induction. In Proposition 3.4,
however, we characterise the measure π

(p)
j as the limit of the stationary state πn conditioned

to V
(p)

j . In particular,

(3.1) the support of π
(p)
j is the set V

(p)
j .

Moreover, in Theorem 3.1.(b) we show that for all t > 0, x ∈ V , the distribution of X
(n)

tθ
(p)
n

starting from x converges to a convex combination of the measures π
(p)
j , j ∈ Sp . The weights

of this convex combination depend on x and t . This result asserts, therefore, that the measures
π

(p)
j are the metastable states of the process X

(n)
t observed on the time-scale θ

(p)
n .

We proceed by induction. Let π
(1)
j , j ∈ S1, be the probability measure on V (1)

j given by

π
(1)
j = π

�
j , where, recall, π

�
j represents the stationary states of the Markov chain Xt restricted

to the closed irreducible set V (1)
j = Vj . Clearly, condition (3.1) is fulfilled.

Fix 1 ≤ p ≤ q, and assume that the probability measures π
(p)
j , j ∈ Sp , has been de-

fined and satisfy condition (3.1). Denote by M
(p)
m (·), m ∈ Sp+1, the stationary state of the
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Markov chain X
(p)
t restricted to R

(p)
m . The measure M

(p)
m is understood as a measure on

Sp = {1, . . . ,np} which vanishes on the complement of R(p)
m . Let π

(p+1)
m be the probability

measure on V
(p)

m given by

(3.2) π(p+1)
m (x) := ∑

j∈R(p)
m

M(p)
m (j)π

(p)
j (x), x ∈ V.

Clearly, condition (3.1) is in force. Moreover, π
(p+1)
m is a convex combination of the mea-

sures π
(p)
j , j ∈R

(p)
m . A fortiori, for each 1 ≤ p ≤ q+1, m ∈ Sp , π(p)

m is a convex combination

of the measures π
�
j , j ∈ S.

We further add absorption probabilities at each step. Let a(0)(x, j), x ∈ V , j ∈ S1, be the
probability that the Markov chain Xt starting from x is absorbed at the closed irreducible set
V(1)

j :

(3.3) a(0)(x, j) := lim
t→∞Qx[Xt ∈ Vj ].

Note that a(0)(x, ·) is a probability measure on S1 for each x ∈ V .
Fix 1 ≤ p ≤ q and assume that a(p−1)(x, j) has been defined. Let A(p)(j,m), j ∈ Sp ,

m ∈ Sp+1, be the probability that the chain X
(p)
t starting from j has been absorbed at the

closed irreducible set R(p)
m :

(3.4) A(p)(j,m) := lim
t→∞

∑
k∈R(p)

m

p
(p)
t (j, k), j ∈ Sp,m ∈ Sp+1.

For x ∈ V , m ∈ Sp+1, let

(3.5) a(p)(x,m) := ∑
j∈Sp

a(p−1)(x, j)A(p)(j,m).

Since A(p)(j, ·) is a probability measure on Sp+1, it is easy to show by induction that
a(p)(x, ·) is a probability measure on Sp+1 for each x ∈ V , 1 ≤ p ≤ q.

Let θ
(0)
n = 1, θ

(q+1)
n = +∞ for all n ≥ 1. The first main result of the article reads as

follows. It provides a complete description of the ergodic behavior of the Markov chain X
(n)
t .

THEOREM 3.1. Assume that condition (2.4) is in force. Then:

(a) For each 1 ≤ p ≤ q + 1, sequence (βn : n ≥ 1) such that θ
(p−1)
n ≺ βn ≺ θ

(p)
n , and

x ∈ V ,

(3.6) lim
n→∞p

(n)
βn

(x, ·) = �p−1(x, ·) := ∑
j∈Sp

a(p−1)(x, j)π
(p)
j (·).

(b) For each 1 ≤ p ≤ q, t > 0, x ∈ V ,

(3.7) lim
n→∞p

(n)

tθ
(p)
n

(x, ·) = ∑
j∈Sp

ω
(p)
t (x, j)π

(p)
j (·),

where

ω
(p)
t (x, j) = ∑

k∈Sp

a(p−1)(x, k)p
(p)
t (k, j).
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(c) For all 1 ≤ p ≤ q, j ∈ Sp , x ∈ V ,

lim
t→0

lim
n→∞p

(n)

tθ
(p)
n

(x, ·) = ∑
j∈Sp

a(p−1)(x, j)π
(p)
j (·).

(d) For all 1 ≤ p ≤ q, 1 ≤ j ≤ np , x ∈ V ,

lim
t→∞ lim

n→∞p
(n)

tθ
(p)
n

(x, ·) = ∑
m∈Sp+1

a(p)(x,m)π(p+1)
m (·).

Moreover,

(3.8) lim
n→∞πn(	q+1) = 0, lim

n→∞πn(x) exists and belongs to (0,1]

for all x ∈ V (q+1).

Note that the right-hand side of (c) and (d) coincide with the one obtained in (a). These
assertions state that at the time-scale θ

(p)
n a smooth transition between two different regimes

is observed.
Part (b) of this theorem states that, starting from x, the distribution of the process at time

tθ
(p)
n is close to a convex combination of the measures π

(p)
k , k ∈ Sp . The weight of the

measure π
(p)
k is given by the probability that the process is initially attracted to a well V

(p)
j

times the probability that the dynamics among the wells drives the process from the well Vj

to the well Vk in the “macroscopic” time intervall [0, t]. We

REMARK 3.2. Consider the example introduced at the end of the previous section. The-
orem 3.1 states that in the time-scale θ

(1)
n the law of the Markov chain X(n) is close to the law

of a continuous-time Markov chain on {x1, . . . , x9}. More precisely, it asserts that the dis-
tribution of X

(n)

tθ
(1)
n

converges to the distribution of X(1)
t , where X(1) is a {x1, . . . , x9}-valued

continuous-time Markov chain.
In other words, it asserts that a process evolving in a very large state-space, with, say, 2N

states, where N represents the number of vertices of a graph, can be accurately approximated
by a much simpler dynamics evolving on a typically finite state space.

REMARK 3.3. Fix a function u : V →R, and consider the discrete parabolic equation{
∂tun = Lnun,

un(0, ·) = u(·).
According to Theorem 3.1, for all 1 ≤ p ≤ q, t > 0,

lim
n→∞un

(
tθ (p)

n , x
)= ∑

j∈Sp

ω
(p)
t (x, j)E

π
(p)
j

[u].

In particular, the values of the solution in the time-scale θ
(p)
n are determined uniquely by the

values of the initial conditions in the support of the measures π
(p)
j , j ∈ Sp .

The next result provides a formula for the measures π
(p)
j and for the absorbing probabili-

ties a(p−1)(x, j). Recall that for each x ∈ V , a(p−1)(x, ·) is a probability measure on Sp .
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PROPOSITION 3.4. Fix 1 ≤ p ≤ q+ 1, j ∈ Sp . For all z ∈ V
(p)

j ,

lim
n→∞

πn(z)

πn(V
(p)

j )
= π

(p)
j (z).

If x ∈ V
(p)

j , then a(p−1)(x, k) = δj,k , k ∈ Sp . On the other hand, if x /∈ V (p), then

a(p−1)(x, j) = lim
n→∞ Pn

x[HV
(p)

j

< H
V̆

(p)
j

].

Large deviations rate function expansion. We assume from now on that the dynamics is
reversible: πn(x)Rn(x, y) = πn(y)Rn(y, x) for all (x, y) ∈ E. For a probability measure ν

on a finite space W and two functions f , g : W →R, let

〈f,g〉ν = ∑
x∈W

f (x)g(x)ν(x).

By [58], for each fixed n ≥ 1, the occupation time distribution of the chain X
(n)
t , defined

by

1

t

∫ t

0
δ
X

(n)
s

ds,

satisfies a large deviations principle as t → ∞, the so-called level 2 LDP. In this formula,
δx , x ∈ V , represents the Dirac measure concentrated at x, so that t−1 ∫ t

0 δ
X

(n)
s

ds is a random
element of P(V ), the space of probability measures on V . Denote by In : P(V ) → [0,∞]
the level two large deviations rate function:

(3.9) In(μ) = − inf
u

∑
x∈V

(Lnu)(x)

u(x)
μ(x),

where the infimum is performed over all functions u : V → (0,∞). Since we assumed re-
versibility and πn(x) > 0 for all x ∈ V , for all measures μ ∈ P(V ), by [22], Theorem 5,

(3.10) In(μ) = 〈√fn, (−Ln)
√

fn

〉
πn

,

where fn(x) = μ(x)/πn(x).
The second main result of this article provides an expansion of the rate function In. Recall

that we denote by L(0) the generator of the Markov chain Xt introduced right after (2.1). Let
I (0) : P(V ) →R+ be given by

(3.11) I (0)(μ) = − inf
u

∑
x∈V

μ(x)
(L(0)u)(x)

u(x)
,

where the infimum is carried over all functions u : V → (0,∞). Theorem 3.5 below states
that the sequence of rate functions In �-converges to I (0). In (8.8), we show that I (0)(μ) =
0 if and only if there exists a probability measure ω on S1 such that

(3.12) μ = ∑
j∈S1

ωjπ
(1)
j .

For such measures μ, it is natural to consider the limit βnIn(μ) for some sequence βn → ∞.
Fix 1 ≤ p ≤ q. Denote by P(Sp) the set of probability measures on Sp . Let I (p) :

P(V ) → [0,+∞] be the functional given by

(3.13) I (p)(μ) :=

⎧⎪⎪⎨⎪⎪⎩
− inf

h

∑
j∈Sp

ωj

L(p)h
h

if μ = ∑
j∈Sp

ωjπ
(p)
j and ω ∈ P(Sp),

+∞ otherwise.
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In this formula, the infimum is carried over all functions h : Sp → (0,∞). We prove in (8.12)
that

I (p+1)(μ) < ∞ if and only if I (p)(μ) = 0.

By (3.12), this assertion holds also for p = 0.
Recall the definition of �-convergence. We refer to [17] for an overview on this subject.

Fix a Polish space X and a sequence (Un : n ∈ N) of functionals on X , Un : X → [0,+∞].
The sequence Un �-converges to the functional U : X → [0,+∞] if and only if the two
following conditions are met:

(i) �-liminf. The functional U is a �-liminf for the sequence Un: For each x ∈ X and
each sequence xn → x, we have that lim infn Un(xn) ≥ U(x).

(ii) �-limsup. The functional U is a �-limsup for the sequence Un: For each x ∈ X there
exists a sequence xn → x such that lim supn Un(xn) ≤ U(x).

THEOREM 3.5. The functional In �-converges to I (0). Moreover, for each 1 ≤ p ≤ q,
the functional θ

(p)
n In �-converges to I (p).

This theorem provides an expansion of the large deviations rate function In which can be
written as

(3.14) In = I (0) +
q∑

p=1

1

θ
(p)
n

I (p).

Therefore, the rate function In encodes all the characteristics of the metastable behavior of
the chain X

(n)
t . The time-scales θ

(p)
n appear as the weights of the expansion, and the meta-

stable states π
(p)
j , j ∈ Sp , generate the space where the rate functional I (p)(μ) is finite.

Indeed, by (8.9), I (p)(μ) is finite if and only if μ is a convex combination of the measures
π

(p)
j , j ∈ Sp .
The next result is a simple consequence of the level two large deviations principle and the

�-convergence stated in Theorem 3.5 (cf. Corollary 4.3 in [49]).

COROLLARY 3.6. Fix 0 ≤ p ≤ q and recall that θ
(0)
n = 1. For every x ∈ V , closed subset

F and open subset G of P(V ),

lim sup
n→∞

lim sup
t→∞

θ
(p)
n

t
log Pn

x

[
1

t

∫ t

0
δ
X

(n)
s

ds ∈ F

]
≤ − inf

μ∈F
I (p)(μ),

lim inf
n→∞ lim inf

t→∞
θ

(p)
n

t
log Pn

x

[
1

t

∫ t

0
δ
X

(n)
s

ds ∈ G

]
≥ − inf

μ∈G
I (p)(μ).

Theorem 3.5 extends to the context of continuous-time Markov chains evolving on finite
state-spaces a result by Di Gesù and Mariani [21] proved for reversible diffusions with a
single valley at each different depth.

REMARK 3.7. Theorem 3.5 should hold for nonreversible dynamics. Reversibility is
assumed here only to compute the �-limsup through formula (3.10). It should also be possible
to obtain a metastable �-expansion for the level 2.5 large deviations rate function derived in
[9].
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REMARK 3.8. The proof of Theorems 3.1 and 3.5 do not require the full strength of
assumption (2.4), but only the ability to compute some capacities, the limit of the ratio of
some measures and of mean jump rates. Stating, however, the minimal conditions would
require much work.

REMARK 3.9. Large deviations is a fundamental tool in statistical mechanics. The
macroscopic fluctuation theory [8] is built on a large deviations theorem. In several contexts
the large deviations rate functional is flat in a region of the system. For example, in the case
of asymmetric simple exclusion process [28, 59], where it vanishes along weak solutions of
the hydrodynamic equation. In these situations, it is natural to multiply the logarithm of the
probability of a deviation by a diverging sequence in order to obtain a nontrivial limit. This
corresponds to speeding up the dynamics.

According to [49], Corollary 4.3, a large deviations for the speeded-up process holds
if the sequence of rate functionals �-converge. It is therefore natural to investigate the �-
convergence when the rate functional vanishes at more than one point.

Theorem 3.5 asserts that there is a close relation between the phenomenon described
above and metastability. Moreover, the proof of this result provides tools to derive the �-
convergence of the rate functionals.

This result can also be interpreted in the reverse direction. A �-expansion of the large
deviations rate functional is a strong evidence of the metastable behavior of the system. The
weights of the expansion provide the time-scales and the zero-level sets of the rate functional
the metastable sets.

4. The first time-scale. In this section, we prove conditions (a) and (b) of Theorem 3.1
for p = 1. Throughout the article, we adopt the following notation, O(ε) represents a term
whose absolute value is bounded by C0ε for some constant C0 independent of n and ε.
Similarly, on(1) represents a term which vanishes as n → ∞.

Recall that we denote by (Xt : t ≥ 0) the V -valued continuous-time Markov chain with
jump rates R0(x, y), and by Qx the probability measure on D(R+,V ) induced by the chain
Xt with jump rates R0 starting from x. For x, y ∈ S, let

(4.1) ω(x, y) := lim
t→∞Qx[Xt = y].

Clearly,

(4.2) ω(x, y) = 0, y ∈ 	 and ω(x, y) = a(0)(x, j)π
�
j (y), y ∈ Vj ,

where a(0)(x, j) has been introduced in (3.3).
Denote by Wj , j ∈ S, the set of points in V which may end in the set Vj :

(4.3) Wj := {x ∈ V : a(0)(x, j) > 0
}
.

Note that V =⋃j Wj . Let Bj be the set of points attracted to Vj :

Bj := {x ∈ V : a(0)(x, j) = 1
}
.

Clearly, Vj ⊂ Bj ⊂ Wj , and Bj = Wj \ (
⋃

k �=j Wk) = V \ (
⋃

k �=j Wk). In other words, Bc
j =⋃

k �=j Wk . Moreover, as a(0)(x, j) = 0 for x ∈⋃k �=j Bk and a(0)(x, j) = 1 for x ∈ Bj ,

(4.4) ω(x, y) = 0, ω(x, z) = π
�
j (z), x, z ∈ Vj , y ∈ Vk, k �= j.

The first result describes the asymptotic behavior of p
(n)
t (x, y) in the slowest time-scale,

t = O(1).
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LEMMA 4.1. For every ε > 0, there exists Tε such that

lim sup
n→∞

∣∣Pn
x[XTε = y] − ω(x, y)

∣∣≤ ε for allx, y ∈ V,

where ω(x, y) has been introduced in (4.1).

PROOF. Fix ε > 0. By the ergodic theorem, there exists Tε < ∞ such that

(4.5) |Qx[XTε = y] − ω(x, y)| ≤ ε

for all x, y ∈ V .
Couple X

(n)
t and Xt making them jump together as much as possible. Denote by P

(n)
x the

measure on D(R+,V × V ) induced by the basic coupling starting from (x, x). By (2.1), for
all T > 0,

(4.6) lim
n→∞P(n)

z

[
Xt = X

(n)
t ,0 ≤ t ≤ T

]= 1.

The assertion of the lemma follows from (4.5) and (4.6) with T = Tε . �

Recall the definition of the sets Vj , 1 ≤ j ≤ n, introduced in (2.2). The chain Xt has only
one closed irreducible class if, and only if, n= 1.

COROLLARY 4.2. Assume that n = 1, Then, limn→∞ p
(n)
βn

(x, y) = π�(y) for all x, y ∈
V , βn 	 1.

PROOF. Fix ε > 0, and let Tε be the constant given by Lemma 4.1. By the Markov
property,

p
(n)
βn

(x, y) =∑
z∈V

p
(n)
βn−Tε

(x, z)p
(n)
Tε

(z, y).

By Lemma 4.1 and (4.2), since a(0)(y,1) = 1 for all y ∈ V , the right-hand side is equal to∑
z∈V

p
(n)
βn−Tε

(x, z)π�(y) + O(ε) + on(1) = π�(y) + O(ε) + on(1),

which completes the proof of the corollary. �

Corollary 4.2 shows that the asymptotic behavior of the transition probability p
(n)
t is trivial

if n = 1, that is, if the Markov chain Xt has a unique closed irreducible class. Assume that
n≥ 2.

The time-scale θ
(1)
n . Recall the definition of n1, S1, and the sets V (1)

j , j ∈ S1, 	1, intro-

duced just above (2.5). Let θn = θ
(1)
n be given by (2.7) with p = 1.

Recall from [45], Section 2.3, the definition of the sequence αn. In the present context, by
(2.1), the sequence αn converges to a positive real number. By Assertions 7.B and equation
(7.4) in [45], θn 	 1. The next result is the first assertion of Theorem 3.1.

PROPOSITION 4.3. Let (βn : n ≥ 1) be a sequence such that 1 ≺ βn ≺ θn. Then, (3.6)
holds for all x, y ∈ V .

Recall that we call the sets Vj wells. A time scale βn ≺ θn is not long enough to allow the
process to jump from a well to another. This is the content of the next two results. Lemma 4.4
states that starting from a well Vj the process does not visit another well (the set V̆j intro-
duced in (2.7)) in a time-scale βn such that βn ≺ θn. Corollary 4.5 extends this result asserting
that the points that might end up in another well (the set

⋃
k �=j Wk) are also not visited in this

time-scale.



3836 L. BERTINI, D. GABRIELLI AND C. LANDIM

LEMMA 4.4. Let (βn : n ≥ 1) be a sequence such that βn ≺ θn. Then, for all j ∈ S1,
x ∈ Vj ,

lim
n→∞ Pn

x[HV̆j
< βn] = 0.

PROOF. Fix j ∈ S, x ∈ Vj . By Lemma A.4 and (2.16), the probability appearing in the
statement of the lemma is bounded by C0βncapn({x}, V̆j )/πn(Vj ) for some finite constant
C0, independent of n and whose value may change from line to line. By equation (B2) in
[34], this expression is bounded by C0βncapn(Vj , V̆j )/πn(Vj ). By the definition (2.7) of θn,
this expression is less than or equal to C0βn/θn. This concludes the proof of the lemma. �

COROLLARY 4.5. Let (βn : n ≥ 1) be an increasing sequence such that βn ≺ θn. Then,
for all j ∈ S, x ∈ Vj ,

lim
n→∞ Pn

x[HBc
j
< βn] = 0.

PROOF. Assume first that βn 	 1. Fix j ∈ S and x ∈ Vj and keep in mind that Bc
j =⋃

k �=j Wk .
We proceed by contradiction. Suppose the assertion does not hold. In this case, there exists

δ > 0, k �= j , z ∈ Wk and a subsequence n′, still denoted by n, such that Pn
x[Hz < βn] > δ for

all n. By the strong Markov property and this bound,

Pn
x[HV̆j

< 2βn] ≥ Pn
x[Hz < βn]Pn

z [HV̆j
< βn] ≥ δPn

z [HV̆j
< βn].

Since z ∈ Wk , there exists δ′ > 0 and T0 < ∞, such that Qz[HVk
< T0] > δ′. By (4.6) this

estimate extends to X
(n)
t : Pn

z [HVk
< T0] > δ′/2 for all n sufficiently large.

Combining the previous estimates yields that Pn
x[HV̆j

< 2βn] ≥ δδ′/2 for all n sufficiently
large because βn → ∞. This result contradicts the assertion of Lemma 4.4 and completes the
proof of the corollary in the case βn 	 1.

If the sequence βn is bounded, the result follows from the coupling (4.6) because
Qx[HWk

< ∞] ≤ Qx[HV c
j

< ∞] = 0 for all x ∈ Vj , k �= j . �

PROOF OF PROPOSITION 4.3. Fix x, y ∈ V , ε > 0, and recall the definition of ω(x, y)

introduced in (4.1). Since V represents the set of recurrent points of the chain Xt , there exists
Tε > 0 such that

(4.7) Qw[XT ∈ V ] ≥ 1 − ε,
∣∣Qw[XT = z] − ω(w, z)

∣∣≤ ε

for all w, z ∈ V , T ≥ Tε .
Assume first that y ∈ 	. By the Markov property,

Pn
x[Xβn = y] =∑

z∈V

Pn
x[Xβn−Tε = z]Pn

z [XTε = y].

By (4.6), (4.7) and (4.2), the right-hand side is bounded by on(1) + ε, which proves (3.6) for
y ∈ 	.

Assume that y ∈ Vk for some k ∈ S1. By the Markov property,

Pn
x[Xβn = y] =∑

z∈V

Pn
x[XTε = z]Pn

z [Xβn−Tε = y].

By (4.6), (4.7) and (4.2), the right-hand side is equal to∑
j∈S

∑
z∈Vj

a(0)(x, j)π
�
j (z)Pn

z [Xβn−Tε = y] + on(1) + O(ε).
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Since βn ≺ θn, by Corollary 4.5, we may add inside the probability the event {HBc
j
≥ βn}.

The previous sum is thus equal to∑
j∈S

∑
z∈Vj

a(0)(x, j)π
�
j (z)Pn

z [Xβn−Tε = y,HBc
j
≥ βn] + on(1) + O(ε).

As y belongs to Vk and Vk ∩ Bj =∅ if j �= k, this sum is equal to∑
z∈Vk

a(0)(x, k)π
�
k (z)Pn

z [Xβn−Tε = y,HBc
k
≥ βn] + on(1) + O(ε).

In view of the presence of the event {HBc
k
≥ βn}, the previous probability is equal to∑

w∈Bk

Pn
z [Xβn−Tε = y,Xβn−2Tε = w,HBc

k
≥ βn].

By Corollary 4.5, we may remove the event {HBc
k
≥ βn} at a cost on(1) and apply the Markov

property to conclude that the previous sum is equal to∑
w∈Bk

Pn
z [Xβn−2Tε = w]Pn

w[XTε = y] + on(1).

By (4.6), (4.7) and (4.2), this expression is equal to∑
w∈Bk

Pn
z [Xβn−2Tε = w]a(0)(w, k)π

�
k (y) + on(1) + O(ε).

Since w belongs to Bk , a(0)(w, k) = 1 and the previous expression is equal to

π
�
k (y)Pn

z [Xβn−2Tε ∈ Bk] + on(1) + O(ε).

Since z belongs to Vk and {Xβn−2Tε /∈ Bk} ⊂ {HBc
k
≤ βn}, by Corollary 4.5, the expression

in the previous displayed equation is equal to π
�
k (y) + on(1) + O(ε).

Combining the previous estimates yields that

Pn
x[Xβn = y] = ∑

z∈Vk

a(0)(x, k)π
�
k (z)π

�
k (y) + on(1) + O(ε)

= a(0)(x, k)π
�
k (y) + on(1) + O(ε),

as claimed. �

The time-scale tθn. We turn to the proof of Theorem 3.1.(b) for p = 1.

PROPOSITION 4.6. Assertion (3.7) holds for p = 1 and all t > 0, x ∈ V .

The proof of this result relies on the following lemma.

LEMMA 4.7. Recall the definition of the set 	 introduced in (2.2). Then,

lim
δ→0

lim sup
n→∞

max
j∈S

max
x∈Vj

sup
2δ≤s≤3δ

Pn
x[Xsθn ∈ 	] = 0.

PROOF. Fix ε > 0 and let Tε be the constant given by Lemma 4.1. By the Markov prop-
erty, the probability appearing in the statement of the lemma is bounded by

max
y∈V

Pn
y[XTε ∈ 	].
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By (4.2) and Lemma 4.1, this expression is bounded by ε + on(1), which proves the lemma.
�

By [37], Proposition 2.1, [45] and Lemma 4.7, Theorem 2.7, for every t > 0, j , k ∈ S1,
x ∈ Vj ,

(4.8) lim
n→∞ Pn

x[Xtθn ∈ Vk] = p
(1)
t (j, k),

where the transition probability p
(1)
t has been introduced in (2.11).

PROOF OF PROPOSITION 4.6. Suppose that y ∈ 	 and fix t > 0, ε > 0. In this case, by
the Markov property

Pn
x[Xtθn = y] =∑

z∈V

Pn
x[Xtθn−Tε = z]Pn

z [XTε = y],

where Tε is given by Lemma 4.1. By this lemma, the second probability on the right hand
side is bounded by ω(z, y) + ε + on(1). By (4.2), as y ∈ 	, ω(z, y) = 0 so that

lim
n→∞ Pn

x[Xtθn = y] = 0,

as claimed.
Suppose that y ∈ Vm for some m ∈ S1 and fix t > 0, ε > 0. By the Markov property

Pn
x[Xtθn = y] = ∑

z,z′∈V

Pn
x[XTε = z]Pn

z

[
Xtθn−2Tε = z′]Pn

z′ [XTε = y],

where Tε is given by Lemma 4.1. By this lemma and (4.2), which asserts that ω(x′, y′) = 0
if y′ ∈ 	, this expression is equal to∑

z′∈V

∑
j∈S1

∑
z∈Vj

ω(x, z)Pn
z

[
Xtθn−2Tε = z′]ω(z′, y

)+ ε + on(1).

The first part of the proof permits to restrict the first sum to z′ ∈ V . Since y ∈ Vm, by (4.4),
we may further restrict the sum to z′ ∈ Vm, and then replace ω(z′, y) by π

(1)
m (y). Hence the

previous sum is equal to

π(1)
m (y)

∑
j∈S1

∑
z∈Vj

ω(x, z)Pn
z [Xtθn−2Tε ∈ Vm] + ε + on(1),

where we summed over z′ ∈ Vm. By (4.8), as n → ∞, this expression converges to

π(1)
m (y)

∑
j∈S1

∑
z∈Vj

ω(x, z)p
(1)
t (j,m) + ε = ∑

j∈S1

a(0)(x, j)p
(1)
t (j,m)π(1)

m (y) + ε,

as claimed. �

5. Longer time-scales. In this section, we complete the proof of Theorem 3.1. We first
derive some properties of the weights a(p) needed in the argument. Recall that q represents the
number of time-scales or steps in the construction of the rooted tree in Section 2. Moreover,
the chain X

(q)
t has only one closed irreducible class.

The next result states that a point in the closed irreducible class V
(p+1)

� is not absorbed at

V
(p+1)

m for m �= �.

LEMMA 5.1. For all 0 ≤ p < q, � ∈ Sp+1, x ∈ V
(p+1)

� ,

(5.1) a(p)(x,m) = 0 for all m ∈ Sp+1 \ {�}.
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PROOF. The proof is by induction in p. For p = 0, by definition (3.3) of a(0), for all
� ∈ S1, x ∈ V�, m ∈ S1 \ {�},

a(0)(x,m) = lim
t→∞Qx[Xt ∈ Vm] = 0

because the sets Vk are the closed irreducible classes of the chain Xt .
Assume that (5.1) holds for 0 ≤ p ≤ r − 1. Fix � ∈ Sr+1, x ∈ V (r+1)

� , m ∈ Sr+1 \ {�}. By
definition of a(r)(x,m),

a(r)(x,m) := ∑
j∈Sr

a(r−1)(x, j)A(r)(j,m).

We may restrict the sum to j ∈ R
(r)
m . Indeed, since Sr \ R

(r)
m =⋃k∈Sr+1\{m}R

(r)
k and since

the sets R
(r)
k , k ∈ Sr+1, are the closed irreducible classes of the chain X

(r)
t , A(r)(j,m) = 0

for j ∈ Sr \R(r)
m . Hence,

a(r)(x,m) := ∑
j∈R(r)

m

a(r−1)(x, j)A(r)(j,m).

On the other hand, as x ∈ V (r+1)
� =⋃

i∈R(r)
�

V (r)
i and R

(r)
� ∩ R

(r)
m = ∅ because � �= m, x

belongs to some V (r)
i with i /∈ R

(r)
m . Thus, by the induction assumption a(r−1)(x, j) = 0 for

all j ∈ R
(r)
m , which yields that a(r)(x,m) = 0, as claimed. �

The previous result is stated for p < q because X
(q)
t has only one irreducible class which

makes Sq+1 a singleton.
It has been noted, just before the statement of Theorem 3.1, that a(p)(x, ·) is a probability

measure on Sp+1 for all x ∈ V . Therefore, by the previous lemma, for all 1 ≤ p < q, � ∈ Sp+1,

x ∈ V
(p+1)

� ,

(5.2) a(p)(x, �) = 1 so that �p(x, ·) = π
(p+1)
� (·),

where �p(x, ·) has been introduced in (3.6). In particular, under these conditions on � and x,

(5.3) �p(x, y) = 0

for all y ∈ V
(p+1)

m , m ∈ Sp+1 \ {�}.
This identity can be extended. Since the support of the measure π

(p+1)
m (·) is the set V

(p+1)
m ,

m ∈ Sp+1, and
⋃

m V
(p+1)

m = V (p+1),

(5.4) �p(x, y) = 0 for all x ∈ V,y ∈ (V (p+1))c = 	p+1.

Induction hypotheses:. Assume that we proved for some 1 ≤ p < q that for all t > 0, x,
y ∈ V ,

(5.5) lim
n→∞p

(n)

tθ
(p)
n

(x, y) = ∑
k∈Sp

ω
(p)
t (x, k)π

(p)
k (y),

where ω
(p)
t , π

(p)
k are as in the statement of Theorem 3.1. This assertion for p = 1 is the

content of Proposition 4.6.
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The time scale tθ
(p)
n , as t → ∞. Recall the definition of A(p)(j,m), m ∈ Sp+1, j ∈ Sp ,

introduced in (3.4). With this notation, for every j , k ∈ Sp ,

(5.6) lim
t→∞p

(p)
t (j, k) = ∑

m∈Sp+1

A(p)(j,m)M(p)
m (k),

where, recall, M
(p)
m (·), m ∈ Sp+1, the stationary state of the Markov chain X

(p)
t restricted to

R
(p)
m . In particular, limt→∞ p

(p)
t (j, k) = 0 for every k ∈ Tp .

By the induction assumption (5.5), the definition of ω
(p)
t , (5.6) and the fact that the support

of the measure M
(p)
m is the set R(p)

m , for all x ∈ V ,

lim
t→∞ lim

n→∞p
(n)

tθ
(p)
n

(x, ·) = ∑
j∈Sp

∑
m∈Sp+1

∑
k∈R(p)

m

a(p−1)(x, j)A(p)(j,m)M(p)
m (k)π

(p)
k (·).

By definition of the measures π
(p+1)
m and by the one of a(p)(x,m), given in (3.5), this ex-

pression is equal to∑
j∈Sp

∑
m∈Sp+1

a(p−1)(x, j)A(p)(j,m)π(p+1)
m (·) = ∑

m∈Sp+1

a(p)(x,m)π(p+1)
m (·).

Hence, we proved that for all x ∈ V ,

(5.7) lim
t→∞ lim

n→∞p
(n)

tθ
(p)
n

(x, ·) = ∑
m∈Sp+1

a(p)(x,m)π(p+1)
m (·) = �p(x, ·).

The argument above shows that Theorem 3.1.(d) follows from Theorem 3.1.(b). Assertion
(c) of this theorem follows from the fact that p

(p)
t (j, k) converges to δj,k as t → 0.

The time scale θ
(p)
n ≺ βn ≺ θ

(p+1)
n . By (5.7) and (5.4),

(5.8) lim
t→∞ lim

n→∞ max
x∈V

Pn
x

[
X

tθ
(p)
n

/∈ V (p+1)]= 0.

In particular,

(5.9) lim
t→∞ lim sup

n→∞
max
x∈V

Pn
x

[
HV̆ (p+1) > tθ(p)

n

]= 0.

Suppose that Sp+1 is a singleton. In other words, that the chain X
(p)
t has a unique closed

irreducible class. In this case p = q and θ
(p+1)
n = +∞ for all n ≥ 1. If Sp+1 is not a singleton,

recall from (2.7) the definition of θ
(p+1)
n . As stated in (2.15), by [45], Assertion 8.B, θ

(p)
n ≺

θ
(p+1)
n .

LEMMA 5.2. Let (βn : n ≥ 1) be a sequence such that θ
(p)
n ≺ βn ≺ θ

(p+1)
n . Then, for all

m ∈ Sp+1,

lim
n→∞ max

x∈V
(p+1)

m

Pn
x[HV̆

(p+1)
m

< βn] = 0,

where V̆
(p+1)

m has been introduced in (2.7).

PROOF. Fix m ∈ Sp+1, x ∈ V
(p+1)

m . By Lemma A.4 and (2.16), the probability ap-

pearing above is bounded by C0βncapn({x}, V̆ (p+1)
m )/πn(V

(p+1)
m ) for some finite con-

stant C0 independent of n. By equation (B2) in [34], this expression is bounded by
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C0βncapn(V
(p+1)

m , V̆
(p+1)

m )/πn(V
(p+1)

m ). By the definition (2.7) of θ
(p+1)
n , this expression

is less than or equal to C0βn/θ
(p+1)
n . This concludes the proof of the lemma. �

Let 	p+1,m, m ∈ Sp+1, be the set of points in 	p+1 which may be absorbed by a set

V
(p+1)

� , � �= m, in the time-scale θ
(p)
n :

	p+1,m :=
{
x ∈ 	p+1 : ∑

�∈Sp+1\{m}
a(p)(x, �) > 0

}
.

COROLLARY 5.3. Let (βn : n ≥ 1) be a sequence such that θ
(p)
n ≺ βn ≺ θ

(p+1)
n . Then,

for all m ∈ Sp+1,

lim
n→∞ max

x∈V
(p+1)

m

Pn
x[H	p+1,m

< βn] = 0.

PROOF. Suppose the assertion is not true. Then, there exists δ > 0, x ∈ V
(p+1)

m and a
subsequence n′, still denoted by n, such that

Pn
x[H	p+1,m

< βn] ≥ δ

for all n sufficiently large.
Fix t > 0 to be chosen later. Denote by ϑs : D(R+,V ) → D(R+,V ), s ≥ 0, the semigroup

of translations of a trajectory: (ϑsx)(r) = x(r + s), r ≥ 0. By the strong Markov property,

Pn
x

[
H

V̆
(p+1)

m
< βn + tθ (p)

n

]≥ Pn
x

[
H	p+1,m

< βn,HV̆
(p+1)

m
◦ ϑH	p+1,m

< tθ(p)
n

]
≥ Pn

x[H	p+1,m
< βn] min

z∈	p+1,m

Pn
z

[
H

V̆
(p+1)

m
< tθ(p)

n

]
≥ Pn

x[H	p+1,m
< βn] min

z∈	p+1,m

Pn
z

[
X

tθ
(p)
n

∈ V̆ (p+1)
m

]
.

By the first part of the proof, the first term is bounded below by δ for n sufficiently large. By
Theorem 3.1.(d), proved in the previous subsection for p, for each z ∈ 	p+1,m, the second
probability converges, as n → ∞ and then t → ∞, to∑

�∈Sp+1\{m}
a(p)(z, �).

By definition of 	p+1,m, this term is strictly positive for each z ∈ 	p+1,m. Therefore, there
exist δ′ > 0 and t0 < ∞ such that

lim inf
n→∞ min

z∈	p+1,m

Pn
z

[
X

t0θ
(p)
n

∈ V̆ (p+1)
m

]≥ δ′.

Putting together the previous estimates yields that

lim inf
n→∞ Pn

x

[
H

V̆
(p+1)

m
< βn + t0θ

(p)
n

]
> 0,

in contradiction with the statement of Lemma 5.2. This completes the proof of the corollary.
�

For m ∈ Sp+1, let

U (p+1)
m := {x ∈ V : a(p)(x,m) = 1

}
.

By (5.2) and the definition of the set 	p+1,m, introduced just before the statement of

Corollary 5.3, the set U
(p+1)

m is equal to V
(p+1)

m ∪ [	p+1 \ 	p+1,m]. Thus, (U
(p+1)

m )c =
V̆

(p+1)
m ∪ 	p+1,m.
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PROPOSITION 5.4. Let θ
(p)
n ≺ βn ≺ θ

(p+1)
n . Then, for all x ∈ V ,

lim
n→∞p

(n)
βn

(x, ·) = �p(x, ·),
where �p(x, ·) has been introduced in (3.6).

PROOF. Fix ε > 0. By (5.7), there exists tε such that

(5.10)
∣∣∣ lim
n→∞p

(n)

tθ
(p)
n

(x, y) − �p(x, y)
∣∣∣< ε

for all x, y ∈ V , t > tε .
Fix t > tε . By the Markov property,

p
(n)
βn

(x, y) =∑
z∈V

p
(n)

tθ
(p)
n

(x, z)p
(n)

βn−tθ
(p)
n

(z, y).

By (5.10) and (5.4), this expression is equal to

(5.11)
∑

z∈V (p+1)

�p(x, z)Pn
z [Xβn−tθ

(p)
n

= y] + on(1) + O(ε).

Fix s > 0, and rewrite the sum appearing in (5.11) as∑
m∈Sp+1

∑
z∈V

(p+1)
m

∑
w∈V

�p(x, z)Pn
z [Xβn−tθ

(p)
n

= y,X
βn−(t+s)θ

(p)
n

= w].

We have shown just above the statement of the proposition that (U
(p+1)

m )c = V̆
(p+1)

m ∪
	p+1,m. Hence, by Lemma 5.2 and Corollary 5.3, we may restrict the third sum to w ∈
U

(p+1)
m by paying a price of order on(1). Apply the Markov property to rewrite the resulting

expression as∑
m∈Sp+1

∑
z∈V

(p+1)
m

∑
w∈U

(p+1)
m

�p(x, z)Pn
z [Xβn−(t+s)θ

(p)
n

= w]Pn
w[X

sθ
(p)
n

= y].

By (5.7) the last probability converges, as n → ∞, and then s → ∞, to �p(w,y). By

the definition of �p and the one of U
(p+1)

m , since w ∈ U
(p+1)

m and a(p)(x, ·) is a proba-

bility measure on Sp+1, �p(w,y) = π
(p+1)
m (y). This expression does not depend on w. By

Lemma 5.2 and Corollary 5.3, the previous sum is thus equal to∑
m∈Sp+1

∑
z∈V

(p+1)
m

�p(x, z)π(p+1)
m (y) + on(1).

By the definition (3.6) of �p , this expression is equal to∑
�∈Sp+1

a(p)(x, �)π
(p+1)
� (y),

as claimed. �

The time scale θ
(p+1)
n . If Sp+1 is a singleton, p = q, θ

(p+1)
n = +∞ for all n and the

proof of Theorem 3.1 ends at the previous step where we considered the time-scale θ
(p)
n ≺

βn ≺ θ
(p+1)
n ≡ +∞.

Assume that Sp+1 is not a singleton. The next result completes the recursive argument and
the proof of Theorem 3.1. It states that the induction hypothesis (5.5) holds at level p + 1 if
it holds at level p.
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PROPOSITION 5.5. For all t > 0, x, y ∈ V ,

lim
n→∞p

(n)

tθ
(p+1)
n

(x, y) = ∑
m∈Sp+1

ω
(p+1)
t (x,m)π(p+1)

m (y).

The proof of this result is based on Lemma 5.6 below.

LEMMA 5.6. Recall the definition of the set 	p+1 introduced in (2.13). Then,

lim
δ→0

lim sup
n→∞

max
m∈Sp+1

max
x∈V

(p+1)
m

sup
2δ≤s≤3δ

Pn
x[Xsθ

(p+1)
n

∈ 	p+1] = 0.

PROOF. Fix δ > 0, ε > 0. By (5.8), there exists tε < ∞
(5.12) lim

n→∞ max
x∈V

Pn
x

[
X

tθ
(p)
n

/∈ V (p+1)]≤ ε

for all t ≥ tε . By the Markov property, since θ
(p)
n ≺ θ

(p+1)
n , the probability appearing in the

statement of the lemma is bounded by

max
y∈V

Pn
y[Xtεθ

(p)
n

∈ 	p+1]
for all x ∈ V , s ∈ [2δ,3δ]. By (5.12), this expression is bounded by ε + on(1), which proves
the lemma. �

By [37], Proposition 2.1, [45], Theorem 2.7, and Lemma 5.6 for every t > 0, �, m ∈ Sp+1,

x ∈ V
(p+1)

� ,

(5.13) lim
n→∞ Pn

x

[
X

tθ
(p+1)
n

∈ V (p+1)
m

]= p
(p+1)
t (�,m),

where, recall, p
(p+1)
t (�,m) is the transition probability of the Sp+1-valued Markov chain

X
(p+1)
t .

PROOF OF PROPOSITION 5.5. Suppose that y ∈ 	p+1 and fix t > 0, ε > 0. Recall the
definition of tε introduced in (5.12). By the Markov property,

Pn
x[Xtθ

(p+1)
n

= y] =∑
z∈V

Pn
x[Xtθ

(p+1)
n −tεθ

(p)
n

= z]Pn
z [Xtεθ

(p)
n

= y]

≤ max
z∈V

Pn
z [Xtεθ

(p)
n

= y].
By (5.12), this maximum is bounded by ε + on(1), so that

lim
n→∞ Pn

x[Xtθ
(p+1)
n

= y] = 0,

as claimed.
Suppose that y ∈ V

(p+1)
m for some m ∈ Sp+1 and fix t > 0, ε > 0. Recall the definition of

�p , introduced in (3.6). Choose tε large enough for

(5.14) max
z,z′∈V

∣∣∣ lim
n→∞p

(n)

tθ
(p)
n

(
z, z′)− �p

(
z, z′)∣∣∣≤ ε

for all t ≥ tε .
By the Markov property, as θ

(p)
n ≺ θ

(p+1)
n ,

Pn
x[Xtθ

(p+1)
n

= y]
= ∑

z,z′∈V

Pn
x[Xtεθ

(p)
n

= z]Pn
z

[
X

tθ
(p+1)
n −2tεθ

(p)
n

= z′]Pn
z′ [X

tεθ
(p)
n

= y].
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By (5.14) and (5.4), this expression is equal to∑
z′∈V

∑
�∈Sp+1

∑
z∈V

(p+1)
�

�p(x, z)Pn
z

[
X

tθ
(p+1)
n −2tεθ

(p)
n

= z′]�p

(
z′, y
)+ O(ε) + on(1).

The first part of the proof permits to restrict the first sum to z′ ∈ V (p+1). Since y ∈ V
(p+1)

m , by
(5.3) we may further restrict the sum to z′ ∈ V

(p+1)
m . At this point, by (5.2), we may replace

�p(z′, y) by π
(p+1)
m (y). Hence, the previous sum is equal to

π(p+1)
m (y)

∑
�∈Sp+1

∑
z∈V

(p+1)
�

�p(x, z)Pn
z

[
X

tθ
(p+1)
n −2tεθ

(p)
n

∈ V (p+1)
m

]+ O(ε) + on(1),

where we summed over z′ ∈ V
(p+1)

m . By (5.13), as n → ∞, this expression converges to∑
�∈Sp+1

∑
z∈V

(p+1)
�

�p(x, z)p
(p+1)
t (�,m)π(p+1)

m (y) + O(ε).

By the definition (3.6) of �p and since the measure π
(p+1)
k (·), k ∈ Sp+1, is supported on

V
(p+1)

k , the previous expression is equal to∑
�∈Sp+1

a(p)(x, �)p
(p+1)
t (�,m)π(p+1)

m (y) + O(ε),

as claimed. �

Proof of (3.8). Recall that θ
(q+1)
n ≡ +∞, and fix a sequence βn such that θ

(q)
n ≺ βn ≺

θ
(q+1)
n . Since πn is the stationary state,

πn(	q+1) = ∑
x∈V

πn(x)Pn
x[Xβn ∈ 	q+1] ≤ max

x∈V
Pn

x[Xβn ∈ 	q+1].

By the tree construction, Sq+1 is a singleton and there is only one measure at step q + 1,

the measure π
(q+1)
1 which is concentrated on V

(q+1)
1 = V (q+1). Since π

(q+1)
1 (	q+1) = 0, by

(3.6), and the previous displayed equation,

lim sup
n→∞

πn(	q+1) ≤ π
(q+1)
1 (	q+1) = 0.

It follows from the previous estimate that limn→∞ πn(V
(q+1)) = 1. Hence, by (2.16), for

all x ∈ V (q+1),

lim
n→∞πn(x) exists and belongs to (0,1].

6. Proof of Proposition 3.4. The proof is divided in several lemmata. We start with the
asymptotic behavior of the stationary states πn.

LEMMA 6.1. For all j ∈ S1, x ∈ Vj ,

lim
n→∞

πn(x)

πn(Vj )
= π�(x) > 0.

PROOF. Fix j ∈ S1. By (2.16), the limit πn(x)/πn(Vj ) exists for all x ∈ Vj and is strictly
positive. It remains to show that it is equal to π�(x). Denote the limit by m(x). Since πn is a
stationary state, for all x ∈ Vj ,∑

y∈V

πn(x)Rn(x, y) = ∑
y∈V

πn(y)Rn(y, x) ≥ ∑
y∈Vj

πn(y)Rn(y, x).
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As Vj is a closed irreducible class for the chain Xt , dividing by πn(Vj ) and passing to the
limit yields that ∑

y∈Vj

m(x)R0(x, y) ≥ ∑
y∈Vj

m(y)R0(y, x).

Summing over x ∈ Vj shows that this inequality must be an identity for all x ∈ Vj . Therefore,
m is a stationary state for the chain Xt on Vj what implies that m = π�, as claimed. �

LEMMA 6.2. Fix 1 ≤ p ≤ q. For all m ∈ Sp+1, j ∈ R
(p)
m ,

lim
n→∞

πn(V
(p)

j )

πn(V
(p+1)

m )
= M(p)

m (j).

PROOF. Fix 1 ≤ p ≤ q and m ∈ Sp+1. Consider the sequence of measures on R
(p)
m de-

fined by mn(j) = πn(V
(p)

j )/πn(V
(p+1)

m ). By (2.16), it converges to a limiting measure, de-
noted by m(j).

By [1], Proposition 6.3, πn(·)/πn(V
(p)) is the stationary state of the chain Y

n,p
t , the trace

of X
(n)
t on V (p). Hence, for all j ∈ R

(p)
m , x ∈ V

(p)
j ,∑

y∈V (p)

πn(x)R(p)
n (x, y) = ∑

y∈V (p)

πn(y)R(p)
n (y, x) ≥ ∑

k∈R(p)
m

∑
y∈V

(p)
k

πn(y)R(p)
n (y, x).

Sum over all x ∈ V
(p)

j to get that∑
k∈Sp

∑
x∈V

(p)
j

πn(x)R(p)
n

(
x,V

(p)
k

)≥ ∑
k∈R(p)

m

∑
y∈V

(p)
k

πn(y)R(p)
n

(
y,V

(p)
j

)
,

where R
(p)
n (z,V

(p)
� ) =∑

w∈V
(p)

�

R
(p)
n (z,w). Remove on both sides of this inequality the case

k = j . By (2.9), this new expression divided by πn(V
(p+1)

m ) is equal to

πn(V
(p)

j )

πn(V
(p+1)

m )

∑
k∈Sp\{j}

r(p)
n (j, k) ≥ ∑

k∈R(p)
m \{j}

πn(V
(p)

k )

πn(V
(p+1)

m )
r(p)
n (k, j).

By the assumption on the measure mn and by (2.10), as n → ∞, this expression multiplied
by θ

(p)
n on both sides converges to

m(j)
∑

k∈Sp\{j}
r(p)(j, k) ≥ ∑

k∈R(p)
m \{j}

m(k)r(p)(k, j).

Since R
(p)
m is a closed irreducible class for the chain X

(p)
t , r(p)(j, k) = 0 for all k /∈ R

(p)
m ,

and the first sum can be restricted to this later set. Summing over j yields that this inequality
must be an identity for all j . Therefore, m is a stationary state for the Markov chain X

(p)
t

restricted to R
(p)
m . By ergodicity, m = M

(p)
m , as claimed. �

COROLLARY 6.3. Fix 1 ≤ p ≤ q+ 1. For all j ∈ Sp , x ∈ V
(p)

j ,

lim
n→∞

πn(x)

πn(V
(p)

j )
= π

(p)
j (x).
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PROOF. The proof is performed by induction. Lemma 6.1 covers the case p = 1. Assume
that this corollary has been proven for all 1 ≤ p < p0, where p0 ≤ q + 1. Fix j ∈ Sp0 and

x ∈ V
(p0)

j . By construction of V
(p0)

j , there exists k ∈ Sp0−1 such that x ∈ V
(p0−1)

k ⊂ V
(p0)

j .
We can write

πn(x)

πn(V
(p0)

j )
= πn(x)

πn(V
(p0−1)

k )

πn(V
(p0−1)

k )

πn(V
(p0)

j )
·

By Lemma 6.2 and the induction assumption, as n → ∞, this expression converges to

π
(p0−1)
k (x)M

(p0−1)
j (k).

By (3.2), this expression is equal to π
(p0)
j (x) as claimed. �

We turn to the absorbing probabilities. We first consider the case where the state belongs
to the valley.

LEMMA 6.4. For all 1 ≤ p ≤ q+ 1, j ∈ Sp and x ∈ V
(p)

j , a(p−1)(x, j) = 1.

PROOF. The proof is by induction on p. Fix j ∈ S1 and x ∈ Vj . By (3.3), a(0)(x, j) = 1
because Vj is a closed irreducible class for Xt and x belongs to Vj .

Suppose that the results has been proved for p−1. This means that if j ∈ Sp and x ∈ V
(p)

j ,

then a(p−1)(x, j) = 1. As a(p−1)(x, ·) is a probability measure on Sp , a(p−1)(x, k) = 0 for all
k ∈ Sp \ {j}.

Fix m ∈ Sp+1 and x ∈ V
(p+1)

m . As V
(p+1)

m =⋃
j∈R(p)

m
V

(p)
j , x ∈ V

(p)
j for some j ∈ R

(p)
m .

By (3.5), and since, by the induction hypothesis, a(p−1)(x, k) = δj,k ,

a(p)(x,m) = ∑
k∈Sp

a(p−1)(x, k)A(p)(k,m) = A(p)(j,m).

As j ∈ R
(p)
m and R

(p)
m is a closed irreducible class for X(p)

t , by the definition (3.4) of A(p),
A(p)(j,m) = 1, which completes the proof of the lemma. �

It follows from this lemma and from (3.6) that for all 1 ≤ p ≤ q+ 1, j ∈ Sp , x ∈ V
(p)

j and

sequences βn such that θ
(p−1)
n ≺ βn ≺ θ

(p)
n

(6.1) lim
n→∞p

(n)
βn

(x, ·) = π
(p)
j (·).

Lemma 6.4 provides a formula for a(p−1)(x, ·) when x ∈ V (p). Lemma 6.5 completes the
characterisation of a(p−1)(x, ·). The proof of this result relies on the following bound.

We claim that for all a > 0, 1 ≤ p ≤ q+ 1, x /∈ V (p) and sequence βn such that θ
(p−1)
n ≺

βn ≺ θ
(p)
n ,

(6.2) lim
n→∞ max

x∈V
Pn

x[HV (p) > aβn] = 0.

If x ∈ V (p), there is nothing to prove. Fix x /∈ V (p) and observe that {HV (p) > aβn} ⊂∫
[0,aβn] χ	p(Xn

s ) ds ≥ aβn. Hence, by the Chebyshev inequality,

Pn
x[HV (p) > aβn] ≤ Pn

x

[∫ aβn

0
χ	p

(
Xn

s

)
ds ≥ aβn

]
≤ 1

a

∫ a

0
En

x

[
χ	p

(
Xn

sβn

)
ds
]
.
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The last term can be written as ∑
z∈	p

1

a

∫ a

0
p

(n)
sβn

(x, z) ds.

For each fixed 0 < s < a the sequence sβn satisfies the hypotheses of Theorem 3.1.(a). Hence,
since π

(p)
j (	p) = 0 for all j ∈ Sp , p

(n)
sβn

(x, z) → 0. Therefore, by the dominated convergence
theorem, the previous expression vanishes, which proves claim (6.2).

LEMMA 6.5. For all 1 ≤ p ≤ q+ 1, j ∈ Sp , x ∈ V ,

a(p−1)(x, j) = lim
n→∞ Pn

x[HV
(p)

j

< H
V̆

(p)
j

].

PROOF. Fix 1 ≤ p ≤ q+ 1 and j ∈ Sp . If x ∈ V (p), this result follows from Lemma 6.4.

Assume that x /∈ V (p) and fix a sequence βn such that θ
(p−1)
n ≺ βn ≺ θ

(p)
n . On the one hand,

by (3.6),

lim
n→∞

∑
y∈V

(p)
j

p
(n)
βn

(x, y) = a(p−1)(x, j).

On the other hand,∑
y∈V

(p)
j

p
(n)
βn

(x, y) = Pn
x

[
Xβn ∈ V

(p)
j

]= ∑
k∈Sp

Pn
x

[
H

V
(p)

k

= HV (p) ,Xβn ∈ V
(p)

j

]
.

Fix k ∈ Sp and 0 < ε < 1. By (6.2), the previous probability for the fixed k is equal to

Pn
x

[
HV (p) < εβn,HV

(p)
k

= HV (p) ,Xβn ∈ V
(p)

j

]+ on(1).

By the strong Markov property at HV (p) , the previous probability is equal to

En
x

[
HV (p) < εβn,HV

(p)
k

= HV (p) ,Pn
X(HV (p) )

[
Xβn−HV (p)

∈ V
(p)

j

]]
.

In this formula, one computes the probability Pn
X(HV (p) )

[Xβn−t ∈ V
(p)

j ] and then replace t by

HV (p) . After the proof of this lemma, we show that for all z ∈ V

(6.3) sup
t≤εβn

Pn
z

[
Xβn−t ∈ V

(p)
j

]≤ max
y∈V

(p)
j

Pn
y[HV̆

(p)
j

< εβn] + Pn
z

[
Xβn ∈ V

(p)
j ∪ 	p

]
.

By (6.4),

lim
n→∞ max

y∈V
(p)

j

Pn
y[HV̆

(p)
j

< εβn] = 0.

Therefore, up to this point, we proved that

a(p−1)(x, j)

≤ ∑
k∈Sp

lim inf
n→∞ En

x

[
HV (p) < εβn,HV

(p)
k

= HV (p) ,Pn
X(HV (p) )

[
Xβn ∈ V

(p)
j ∪ 	p

]]
.

By (3.6) and Lemma 6.4, if k �= j the previous expectation vanishes as n → ∞. If k = j by
the same reasons, the probability inside the expectation converges to 1 as n → ∞. Hence,

a(p−1)(x, j) ≤ lim inf
n→∞ Pn

x[HV (p) < εβn,HV
(p)

j

= HV (p)].
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Therefore, by (6.2), for all j ∈ Sp ,

a(p−1)(x, j) ≤ lim inf
n→∞ Pn

x[HV
(p)

j

= HV (p)].
The previous inequality implies that equality holds for all j ∈ Sp . Indeed, assume that

strict inequality holds for some j ∈ Sp . Then, as a(p−1)(x, ·) is a probability measure on Sp ,

1 = ∑
j∈Sp

a(p−1)(x, j) <
∑
j∈Sp

lim inf
n→∞ Pn

x[HV
(p)

j

= HV (p)]

≤ lim inf
n→∞

∑
j∈Sp

Pn
x[HV

(p)
j

= HV (p)] = 1,

which is a contradiction. �

We turn to the proof of (6.3). Inserting the event {Xβn ∈ V
(p)

j ∪ 	p} and its complement
inside the probability appearing on the left-hand side of (6.3) yields that this probability is
bounded by

Pn
z

[
Xβn−t ∈ V

(p)
j ,Xβn /∈ V

(p)
j ∪ 	p

]+ Pn
z

[
Xβn ∈ V

(p)
j ∪ 	p

]
≤ max

y∈V
(p)

j

Pn
y

[
Xt /∈ V

(p)
j ∪ 	p

]+ Pn
z

[
Xβn ∈ V

(p)
j ∪ 	p

]
,

where we used the Markov property to estimate the first by the second line. As t ≤ εβn, this
expression is clearly bounded by

max
y∈V

(p)
j

Pn
y[HV̆

(p)
j

< εβn] + Pn
z

[
Xβn ∈ V

(p)
j ∪ 	p

]
,

as claimed in (6.3).
To complete the proof of Lemma 6.5, it remains to show that for all 1 ≤ p ≤ q, j ∈ Sp ,

(6.4) lim
a→0

lim sup
n→∞

max
x∈V

(p)
j

Pn
x

[
H

V̆
(p)

j

< aθ(p)
n

]= 0.

Fix 1 ≤ p ≤ q, j ∈ Sp , x ∈ V
(p)

j . Recall that Yn,p represents the trace of the process Xn
t on

V (p), and that �p : V (p) → Sp stands for the projection which sends x ∈ V
(p)

j to j . By [45],

Theorems 2.1 and 2.12, under Pn
x , the process �p(Y

n,p

tθ
(p)
n

) converges weakly in the Skorohod

topology to X
(p)
t . In particular,

lim
a→0

lim sup
n→∞

Pn
x

[
H

V̆
(p)

j

(
Yn,p)< aθ(p)

n

]= 0.

In this formula, H
V̆

(p)
j

(Y n,p) stands for the hitting time of V̆
(p)

j for the process Y
n,p
t . Since

H
V̆

(p)
j

(Y n,p) ≤ H
V̆

(p)
j

, assertion (6.4) follows from this last result.

We complete this section with a consequence of Lemma 6.5. Recall from (2.11) that Q(p)
k

stands for the measure on D(R+, Sp) induced by the process X(p)
t starting from k ∈ Sp .

LEMMA 6.6. For all 2 ≤ p ≤ q, i ∈ Sp−1 and x ∈ V
(p−1)

i ,

a(p−1)(x, j) = Q
(p−1)
i [H

R
(p)
j

< H
R̆

(p)
j

], j ∈ Sp,

where R̆
(p)
j =⋃k∈Sp\{j}R

(p)
k .
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PROOF. Recall that Y
n,p−1
t represents the trace of X

(n)
t on V (p−1). By [2], Theorem 2.1,

under the measure Pn
x the process Xn,p−1

t := �p−1(Y
n,p−1

tθ
(p−1)
n

) converges weakly in the Skoro-

hod topology to the Sp−1-valued process X(p−1)
t introduced below (2.10).

Clearly, under the measure Pn
x ,{

H
V

(p)
j

(
Xn)< H

V̆
(p)

j

(
Xn)}= {H

V
(p)

j

(
Yn,p−1)< H

V̆
(p)

j

(
Yn,p−1)}.

This identity asserts that the process X(n) hits the set V
(p)

j before the set V̆
(p)

j if and only if

this happens to the trace process Yn,p−1. By projecting the process Yn,p−1 with �p−1, the
last event becomes {

H
R

(p)
j

(
Xn,p−1)< H

R̆
(p)
j

(
Xn,p−1)}.

Therefore, by Lemma 6.5, for 2 ≤ p ≤ q+ 1, j ∈ Sp

a(p−1)(x, j) = lim
n→∞ Pn

x[HV
(p)

j

< H
V̆

(p)
j

]

= lim
n→∞ Pn

x

[
H

R
(p)
j

(
Xn,p−1)< H

R̆
(p)
j

(
Xn,p−1)].

As Xn,p−1 converges weakly in the Skorohod topology to X(p−1),

lim
n→∞ Pn

x

[
H

R
(p)
j

(
Xn,p−1)< H

R̆
(p)
j

(
Xn,p−1)]= Q

(p−1)
i [H

R
(p)
j

< H
R̆

(p)
j

],

as claimed. �

7. Preliminary estimates. In this section, we present some estimates needed in the proof
of Theorem 3.5. We assume throughout it that the process is reversible. We start with some
estimates on the stationary state, now assumed to be reversible.

Fix x ∈ 	. As x is a transient state for the chain Xt , it is eventually absorbed by a closed
irreducible class Vk , k ∈ S1. Fix j ∈ S1 such that a(0)(x, j) > 0, where a(0)(x, j) has been
introduced in (2.3). We claim that

(7.1) πn(x) ≺ πn(Vj ).

Indeed, as a(0)(x, j) > 0, there exists a sequence x = x0, . . . , x� of elements of V such
that R0(xi, xi+1) > 0, xi ∈ 	, 0 ≤ i < �, x� ∈ Vj . By reversibility,

πn(xi)

πn(xi+1)
= Rn(xi+1, xi)

Rn(xi, xi+1)
·

Since Rn(xi, xi+1) → R0(xi, xi+1) > 0, by (2.1), πn(xi) 
 πn(xi+1). As x�−1 ∈ 	, x� ∈ Vj ,
Rn(x�, x�−1) →R0(x�, x�−1) = 0, so that πn(x�−1) ≺ πn(x�), which proves claim (7.1).

Next result extends this estimate

LEMMA 7.1. Fix 2 ≤ p ≤ q, j ∈ Sp , x ∈ V (p−1) \ V (p). If a(p−1)(x, j) > 0, then,

πn(x) ≺ πn(V
(p)

j ).

PROOF. The proof is similar to the one presented to derive (7.1). Suppose that x ∈
V

(p−1)
i \ V (p) for i ∈ Sp−1. As x does not belong to V (p), i ∈ Tp−1.
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As a(p−1)(x, j) > 0, by Lemma 6.6, there exists a sequence i = i0, . . . , i� of elements of
Sp−1 such that r(p−1)(ia, ia+1) > 0, ia ∈ Tp−1, 0 ≤ a < �, i� ∈ R

(p−1)
j . By reversibility, (2.8)

and (2.9),

(7.2)
πn(V

(p−1)
ia

)

πn(V
(p−1)

ia+1
)

= r
(p−1)
n (ia+1, ia)

r
(p−1)
n (ia, ia+1)

·

Since θ
(p−1)
n r

(p−1)
n (ia, ia+1) → r(p−1)(ia, ia+1) > 0, by (2.10), πn(V

(p−1)
ia

) 
 πn(V
(p−1)

ia+1
).

As i�−1 ∈ Tp−1, i� ∈R
(p−1)
j , θ(p−1)

n r
(p)
n (i�, i�−1) → r(p)(i�, i�−1) = 0, so that πn(V

(p−1)
i�−1

) ≺
πn(V

(p−1)
i�

). Since i� ∈ R
(p−1)
j , V

(p−1)
i�

⊂ V
(p)

j , and the lemma is proved. �

COROLLARY 7.2. Fix 2 ≤ p ≤ q, j ∈ Sp , x ∈ V \ V (p). If a(p−1)(x, j) > 0, then,

πn(x) ≺ πn(V
(p)

j ).

PROOF. Fix x ∈ V \ V (p) and let r(x) be the element r of {1, . . . , p} such that x ∈
V (r−1) \ V (r), where V (0) = V . The proof is by induction on r(x).

If r(x) = p, the assertion corresponds to the one of Lemma 7.1. Suppose that the corollary
has been proved for y ∈ V (r−1) \ V (r) and all r ∈ {s + 1, . . . , p}, and fix x ∈ V (s−1) \ V (s).
By the strong Markov property at time HV (s) ,

a(p−1)(x, j) = lim
n→∞ Pn

x[HV
(p)

j

< H
V̆

(p)
j

]

= lim
n→∞

∑
k∈Ss

∑
z∈V

(s)
k

Pn
x

[
H

V
(s)

k

= HV (s) ,X(HV (s) ) = z
]
Pn

z [HV
(p)

j

< H
V̆

(p)
j

].

The sum can be restricted to elements k ∈ Ss and z ∈ V (s)
k such that a(s−1)(x, k) > 0,

a(p−1)(z, j) > 0. By Lemma 7.1, πn(x) ≺ πn(V
(s)

k ) and by the induction assumption,

πn(z) 
 πn(V
(p)

j ). The previous estimate may not be strict as it might happen that z belongs

to V
(p)

j . By (2.16), πn(V
(s)

k ) ∼ πn(z) so that πn(x) ≺ πn(V
(p)

j ), as claimed. �

Potential theory. We turn to estimates involving the capacity. Recall the definition of
comparable sequences introduced just before the main hypothesis (2.4). Let cn : E → R+
be given by cn(x, y) := πn(x)Rn(x, y) and note that cn is symmetric. It follows from (2.4)
(cf. equation (2.5) in [2]) that the sequences cn(x, y) are comparable. A self-avoiding path
γ from A to B, A , B ⊂ V , A ∩ B = ∅, is a sequence of sites (x0, x1, . . . , xm) such that
x0 ∈ A , xm ∈ B, xi �= xj , i �= j , Rn(xi, xi+1) > 0, 0 ≤ i < m. Denote by �A ,B the set of
self-avoiding paths from A to B and let

cn(A ,B) := max
γ∈�A ,B

cn(γ ), cn(γ ) := min
0≤i<m

cn(xi, xi+1).

Note that there might be more than one optimal path and that cn({x}, {y}) ≥ cn(x, y), with
possibly a strict inequality. The next result is [2], Lemma 4.1.

LEMMA 7.3. There exists a positive and finite constant C1 such that

C−1
1 ≤ capn(A ,B)

cn(A ,B)
≤ C1

for all n ≥ 1 and nonempty, disjoint subsets A , B of V .
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Fix two disjoint, nonempty subsets A , B of V , and let hA ,B be the equilibrium potential
between A and B:

hA ,B(x) := Pn
x[HA < HB], x ∈ V.

Denote by Dn(f ) the Dirichlet form of a function f : V →R:

Dn(f ) := 〈f, (−Ln)f
〉
πn

.

It is well known [34], equation (B.7), that

capn(A ,B) = Dn(hA ,B).

LEMMA 7.4. There exists a finite constant C0, independent of n, such that

hA ,B(x)2 ≤ C0
capn(A ,B)

capn({x},B)

for all x /∈ A ∪ B.

PROOF. Let h = hA ,B , and let γ = (x = x0, . . . , xm) be a self-avoiding path between x

and B. Hence Rn(xi, xi+1) > 0, xi /∈ B, 0 ≤ i < m and xm ∈ B. As xm ∈ B, h(xm) = 0 so
that

h(x)2 = (h(x0) − h(xm)
)2 ≤

m−1∑
i=0

cn(xi, xi+1)
[
h(xi+1 − h(xi)

]2 m−1∑
i=0

1

cn(xi, xi+1)
·

As the path is self-avoiding, this quantity is bounded by

|E|Dn(h) max
0≤i<m

1

cn(xi, xi+1)
= |E|capn(A ,B) max

0≤i<m

1

cn(xi, xi+1)
·

Minimising over all possible paths γ from x to B yields that

hA ,B(x)2 ≤ |E|capn(A ,B)
1

maxγ min0≤i<m cn(xi, xi+1)
·

The assertion of the lemma follows from Lemma 7.3. �

LEMMA 7.5. Fix 1 ≤ p ≤ q, and suppose that r(p)(j, k) > 0 for some j , k ∈ Sp . Then,

lim inf
n→∞

θ
(p)
n

πn(V
(p)

j )
capn

(
V

(p)
j ,V

(p)
k

)
> 0.

We do not exclude the possibility that this lim inf is +∞.

PROOF. We argue by contradiction, proving that if the lim inf vanishes then r(p)(j, k) =
0, but we first derive a consequence of the positivity of r(p)(j, k).

Fix x ∈ V
(p)

j . The main result in [2] states that under the measure Pn
x , the process Xn,p

t =
�p(Y

n,p

tθ
(p)
n

) converges weakly in the Skorohod topology to the Sp-valued process X(p)
t . Hence,

if r(p)(j, k) > 0, for every a > 0,

(7.3) lim inf
n→∞ Pn

x

[
H

V
(p)

k

(
Yn,p)< aθ(p)

n

]≥Q
(p)
j [Hk < a] > 0.

Denote by Y
n,j,k
t the trace of Xn

t on V
(p)

j ∪ V
(p)

k . By [1], Theorem 2.6 (for the process

Y
n,j,k
t and with B = W = V

(p)
j , Bc = V

(p)
k ) and [2], Theorem 7.1 (Condition T4 ensures
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that the hypothesis (2.14) of [1], Theorem 2.6, is in force), under Pn
x , the random variable

H
V

(p)
k

(Y n,j,k)/θ
j,k
n converges in distribution to a mean-one exponential random variable. In

this formula,

θj,k
n = π

j,k
n (V

(p)
j )

capj,k
n (V

(p)
j ,V

(p)
k )

, πj,k
n

(
V

(p)
j

)= πn(V
(p)

j )

πn(V
(p)

j ∪ V
(p)

k )
,

and capj,k
n stands for the capacity with respect to the trace process Y

n,j,k
t . By [1], Lemma 6.9,

capn(V
(p)

j ,V
(p)

k ) = πn(V
(p)

j ∪ V
(p)

k ) capj,k
n (V

(p)
j ,V

(p)
k ), so that

θj,k
n = πn(V

(p)
j )

capn(V
(p)

j ,V
(p)

k )
·

Suppose by contradiction that the limit appearing in the statement of the lemma van-
ishes, so that θ

(p)
n /θ

j,k
n → 0 and Pn

x[HV
(p)

k

(Y n,j,k) < aθ
(p)
n ] → 0 for all a > 0. Hence, as

H
V

(p)
k

(Y n,j,k) ≤ H
V

(p)
k

(Y n,p),

lim
n→∞ Pn

x

[
H

V
(p)

k

(
Yn,p)< aθ(p)

n

]= 0.

This contradicts (7.3), and therefore one must have that r(p)(j, k) = 0, completing the proof
of the lemma by contradiction. �

Fix 1 ≤ p ≤ q, j ∈ Tp . Let Aj be the recurrent points of the chain X
(p)
t which can be hit

before any other recurrent point when the chain starts from j . More precisely, � ∈ Aj if, and
only if, � ∈ R(p) and there exists a path j0 = j, j1, . . . , jm = � such that r(p)(ja, ja+1) > 0,
ja ∈ Tp , 0 ≤ a < m. Let Aj =⋃�∈Aj

V
(p)

� .

LEMMA 7.6. Fix 1 ≤ p ≤ q, x ∈ V
(p)

j , j ∈ Tp . Then,

lim inf
n→∞

θ
(p)
n

πn(x)
capn

({x},Aj

)
> 0.

PROOF. As x ∈ V
(p)

j , j ∈ Tp , there exists a path j0 = j, j1, . . . , jm such that r(p)(ja,

ja+1) > 0, ja ∈ Tp , 0 ≤ a < m, jm ∈ Aj . Moreover, for 0 ≤ a < m, by (7.2), with p instead

of p − 1, πn(V
(p)

ja
) 
 πn(V

(p)
ja+1

), and, by Lemma 7.5,

lim inf
n→∞

θ
(p)
n

πn(V
(p)

ja
)
capn

(
V

(p)
ja

,V
(p)

ja+1

)
> 0.

This limit is finite because this capacity is bounded by the one obtained by replacing V
(p)

ja+1

by V̆
(p)

ja
, and the limit for this later one is finite in view of (2.10).

By the previous displayed equation and Lemma 7.3, the exist a positive constant c0

and self-avoiding paths γa from V
(p)

ja
to V

(p)
ja+1

such that cn(γa) ≥ c0πn(V
(p)

ja
)/θ

(p)
n ≥

c0πn(V
(p)

j )/θ
(p)
n , 0 ≤ a < m.

Denote by ya , 0 ≤ a < m, the starting points of the paths γa , and by xa+1 its ending
point. Let x0 = x. Hence xa , ya belongs to the same well V

(p)
ja

. By Property (T4) in [2]
and Lemma 7.3, Theorem 7.1, there exist self-avoiding paths γ ′

a from xa to ya such that
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cn(γ
′
a) ≥ c0πn(V

(p)
ja

)/θ
(p−1)
n ≥ c0πn(V

(p)
j )/θ

(p)
n , where the value of the constant c0 may

change from line to line.
By concatenating the paths γa , γ ′

a , we obtain a path γ from x to Aj such that cn(γ ) ≥
c0πn(V

(p)
j )/θ

(p)
n . If it is not self-avoiding, we may shorten it improving the lower on cn(γ )

and keeping it as a path from x to Aj . At this point, the assertion of the lemma follows from
Lemma 7.3 and (2.16). �

Fix x ∈ 	. Let Ax be the recurrent points of the chain Xt which can be hit before any
other recurrent point when the chain starts from x. More precisely, y ∈ Ax if, and only if,
y ∈ V and there exists a path x0 = x, x1, . . . , xm = y such that R0(xa, xa+1) > 0, xa ∈ 	,
0 ≤ a < m.

LEMMA 7.7. Fix x ∈ 	. Then,

lim inf
n→∞

1

πn(x)
capn

({x},Ax

)
> 0.

PROOF. By definition of the path from x to Ax , R0(xa, xa+1) > 0 for all 0 ≤ a < m.
Hence πn(xa) 
 πn(xa+1) and cn(xa, xa+1) = πn(xa)Rn(xa, xa+1) � πn(xa) � πn(x). This
proves that cn(γ ) � πn(x) and completes the proof of the lemma in view of Lemma 7.3. �

LEMMA 7.8. Fix 1 ≤ p ≤ q. Then, for all for x /∈ V (p), j ∈ Sp ,

lim
n→∞

πn(x)

πn(V
(p)

j )
Pn

x[HV
(p)

j

= HV (p)]2 = 0.

PROOF. If πn(x)/πn(V
(p)

j ) → 0, the conclusion is straightforward. If πn(V
(p)

j ) ∼
πn(x), by Corollary 7.2, a(p−1)(x, j) = 0, so that, by Lemma 6.5,

lim
n→∞ Pn

x[HV
(p)

j

= HV (p)] = 0,

and the assertion of the lemma follows.
Assume that πn(V

(p)
j ) ≺ πn(x), and suppose that x ∈ V . Let 1 ≤ r < p such that x ∈ V (r)

k

for some k ∈ Tr . Such r exists and is smaller than p because x /∈ V (p).
Recall the definition of the sets Ak , Ak introduced just before Lemma 7.6. Add the index

r to recall that k ∈ Tr and write Ar,k , Ar,k instead of Ak , Ak , respectively. By definition,
Ar,k ⊂ V (r+1).

By the tree construction, since r < p, there exists B ⊂ Sr+1, such that V
(p)

j =⋃
i∈B V (r+1)

i . By Lemma 7.1, πn(x) ≺ πn(V
(r)

� ), � ∈ Ar,k . Thus, as πn(V
(p)

j ) ≺ πn(x),

πn(V
(r+1)

i ) ≺ πn(V
(r)

� ) for all i ∈ B , � ∈ Ar,k . Hence, since by (2.16), all elements of the

same valley have measures of the same order, Ar,k ∩ V
(p)

j =∅.
The proof is by induction on r . We first prove it for r = p − 1. In the sequel, we show that

if it holds for all r ∈ {r0 + 1, . . . , p − 1}, then it holds for r0 also. First, assume that r = p − 1
(and keep the index r of Ar,k as r , though r = p − 1). In this case, since Ar,k ⊂ V (p) and
Ar,k ∩ V

(p)
j = ∅, we have that Ar,k ⊂ V̆

(p)
j . Therefore,

Pn
x[HV

(p)
j

< H
V̆

(p)
j

] ≤ Pn
x[HV

(p)
j

< HAr,k
].
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By Lemma 7.4,

(7.4)
πn(x)

πn(V
(p)

j )
Pn

x[HV
(p)

j

< HAr,k
]2 ≤ C0

πn(x)

πn(V
(p)

j )

capn(V
(p)

j ,Ar,k)

capn({x},Ar,k)

for some finite constant C0. By equation (B.2) in [34],

capn

(
V

(p)
j ,Ar,k

)≤ capn

(
V

(p)
j , V̆

(p)
j

)
.

By (2.7), this expression is bounded by C0πn(V
(p)

j )/θ
(p)
n for some finite constant C0 whose

value may change from line to line.
On the other hand, by Lemma 7.6, as r = p − 1,

(7.5) capn

({x},Ar,k

)≥ c0πn(x)/θ(p−1)
n

for some positive constant c0. Putting together the two previous estimates, we obtain that the
expression in (7.4) vanishes as n → ∞. This completes the proof of the lemma in the case
r = p − 1.

We turn to the induction argument. Fix r < p and assume that the result holds for r +
1, . . . , p − 1. Recall the notation introduced at the beginning of the proof and write

(7.6) Pn
x[HV

(p)
j

= HV (p)] ≤ Pn
x[HV

(p)
j

< HAr,k
] + Pn

x[HAr,k
< H

V
(p)

j

< H
V̆

(p)
j

].
We estimate separately the square of each term on the right-hand side.

The argument for the first term is similar to the one presented for r = p−1. By Lemma 7.4,
(7.4) holds for some finite constant C0. By equations (B.1) and (B.2) in [34],

capn

(
V

(p)
j ,Ar,k

)≤∑
i∈B

capn

(
V (r+1)

i ,Ar,k

)≤∑
i∈B

capn

(
V (r+1)

i , V̆ (r+1)
i

)
.

By (2.7), this expression is bounded by
∑

i∈B πn(V
(r+1)

i )/θ
(r+1)
n = πn(V

(p)
j )/θ

(r+1)
n . On the

other hand, by Lemma 7.6, (7.5) is in force with θ
(r)
n in place of θ

(p−1)
n and some positive

constant c0. Putting together the two previous estimates, we obtain that the expression in (7.4)
vanishes as n → ∞.

We turn to the second term in (7.6). By the strong Markov property, it is bounded by

max
z∈Ar,k

Pn
z [HV

(p)
j

< H
V̆

(p)
j

].
To complete the proof, it remains to show that for all z ∈ Ar,k ,

lim
n→∞

πn(x)

πn(V
(p)

j )
Pn

z [HV
(p)

j

< H
V̆

(p)
j

]2 = 0.

Since πn(x) ≺ πn(z), it is enough to show that

(7.7) lim
n→∞

πn(z)

πn(V
(p)

j )
Pn

z [HV
(p)

j

< H
V̆

(p)
j

]2 = 0.

This follows from the induction hypothesis. Indeed, as z ∈ V (r+1), either z belongs to V (p) or
z belongs to some V (s)

� , r < s < p, for some � ∈ Ts . In the first case, the probability vanishes

because z ∈ V̆
(p)

j (as z ∈ V (p) ∩ Ar,k and Ar,k ∩ V
(p)

j = ∅, z ∈ V̆
(p)

j ). In the second case,
(7.7) holds by the induction hypothesis.

It remains to consider the case where πn(V
(p)

j ) ≺ πn(x) and x ∈ 	. We repeat the in-
duction argument. Write (7.6) with Ax instead of Ar,k . We estimate the first term on the
right-hand side of (7.6) as before, applying Lemma 7.7 instead of Lemma 7.6. The second
term is also bounded as before. At the end of the argument one needs to estimate (7.7) for
z ∈ V , πn(V

(p)
j ) ≺ πn(z). This has been done in the first part of the proof. �
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8. Proof of Theorem 3.5. We assume in this section that the dynamics is reversible:
πn(x)Rn(x, y) = πn(y)Rn(y, x) for all (x, y) ∈ E.

Elementary properties of πn. The proof of Theorem 3.5 requires some preparation. We
first introduce the transient equivalent classes of the chain X

(n)
t . We say that y is equivalent

to x, y ∼ x if y = x or if there exists a sequence x = x0, . . . , x� = y, y0 = y, . . . , ym = x such
that R0(xi, xi+1) > 0, R0(yj , yj+1) > 0 for all 0 ≤ i < �, 0 ≤ j < m.

This relation divides the set V into equivalent classes. Clearly the sets Vj are equiva-
lent classes, but there might be others. Denote by C1, . . . ,Cm the equivalent classes which
have more than one element and are not one of the sets Vj , 1 ≤ j ≤ n. Note that the sets
C1, . . . ,Cm, V1, . . . ,Vn may not exhaust V : the set V may contain elements which do not
belong to one of the Ck’s nor to one of the Vj ’s.

The first assertion extends (2.16) to the sets Ck . We claim that if x, y belong to the same
class Ck , then

(8.1) lim
n→∞

πn(x)

πn(y)
= a ∈ (0,∞).

Indeed, by definition, there exists a sequence x = x0, . . . , x� = y, such that R0(xi, xi+1) > 0,
for all 0 ≤ i < �. By reversibility,

πn(x)

πn(y)
= Rn(x�, x�−1) . . .Rn(x1, x0)

Rn(x0, x1) . . .Rn(x�−1, x�)
·

By hypothesis, the denominator converges to a positive real number. On the other hand, by
(2.1), the numerator converges to a nonnegative real number. This proves that πn(x)/πn(y) →
a ∈ [0,∞). Inverting the roles of x and y we conclude that a ∈ (0,∞), as claimed in (8.1).

Fix an oriented edge (x, y) ∈ E whose endpoints belong to the same equivalent class V (1)
j

or Ck , j ∈ S1, 1 ≤ k ≤m. We claim that

(8.2) R0(x, y) > 0 if and only if R0(y, x) > 0.

Indeed, assume that R0(x, y) > 0. Since πn(x)Rn(x, y) = πn(y)Rn(y, x), by (2.16) and
(8.1), limn→∞ Rn(y, x) =R0(x, y) limn→∞ πn(x)/πn(y) > 0.

Denote by L
(0)
j , L(0)

T ,k , j ∈ S1, 1 ≤ k ≤ m, the generators associated to the rates R0 re-

stricted to the equivalent classes V (1)
j , Ck , respectively. This means that we set to 0 all jumps

from Ck to its complement. Denote by νk the stationary state of the Markov chain associated
to the generator L(0)

T ,k .
We claim that for all 1 ≤ k ≤m,

(8.3) lim
n→∞

πn(x)

πn(Ck)
= νk(x) for all x ∈ Ck and that νk is reversible.

This result extends Lemma 6.1 to the transient sets Ck . To establish (8.3), let m ∈ P(Ck) be
the limit of the sequence of measures πn(·)/πn(Ck). This limit exists by (8.1). By reversibil-
ity, for all x, y ∈ Ck ,

πn(x)

πn(Ck)
Rn(x, y) = πn(y)

πn(Ck)
Rn(y, x).

Passing to the limit yields that m satisfies the detailed balance conditions with respect to R0.
Hence m is stationary (actually, reversible), and, by uniqueness, m = νk . This proves that the
sequence of measures πn(·)/πn(Ck) converges to νk and that νk is reversible.

The same statement yields that π
(1)
j is a reversible measure for the chain Xt restricted to

Vj , j ∈ S1.
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The functionals I (p). The first result of this section provides an alternative formula for
the functional I (0) introduced in (3.11). Its proof relies on the construction of a directed
graph without directed loops. The equivalence classes of the chain Xt form the set of vertices
of this directed graph. Denote them by Q1, . . . ,Q�. The sets Vj and Ck belong to this set
and are vertices of the graph. In other words, for each j ∈ S1, there exists 1 ≤ a ≤ � such that
Vj = Qa . A similar statement holds for the sets Ck .

Draw a directed arrow from Qa to Qb if there exists x ∈ Qa and y ∈ Qb such that
R0(x, y) > 0. Denote the set of directed edges by A and the graph by G = (Q,A), where
Q is the set {Q1, . . . ,Q�} of vertices.

A path in the graph G = (Q,A) is a sequence vertices (Qaj
: 0 ≤ j ≤ m), such that there

is a directed arrow from Qaj
to Qaj+1 for 0 ≤ j < m.

This directed graph has no directed loops because the existence of a directed loop would
contradict the definition of the sets Qa as equivalent classes. (Mind that undirected loops
might exist.) On the other hand, since the sets Vj are closed irreducible classes, these sets are
not the tail of a directed edge in the graph. Finally, fix an equivalent class Qa which is not a
set Vj . Hence, the elements of Qa are transient for the chain Xt . In particular, there is a path
(Qa = Qa0, . . . ,Qam) such that Qaj

is not a closed irreducible class for 0 ≤ j < m, and Qam

is one.
Fix an equivalent class Qa which is not a set Vj . Denote by D(Qa) the length of the

longest path from Qa to a closed irreducible class. The function D is well-defined because
(a) the set of vertices is finite, (b) there is at least a path, (c) there are no directed loops in the
graph.

Fix a, b such that there is a directed arrow from Qa to Qb. Then,

(8.4) D(Qa) ≥ D(Qb) + 1.

Indeed, it is enough to consider the longest path from Qb to the irreducible classes. Qa does
not belong to the path because there are no directed loops. By adding Qa at the beginning
of the path from Qb to the irreducible classes, we obtain a path from Qa to the irreducible
classes of length D(Qb) + 1, proving (8.4).

We may lift the function D to V by setting D(x) = D(Qa) for all x ∈ Qa .
Let J (0) : P(V ) → [0,+∞] be the functional defined by

(8.5)

J (0)(μ) = ∑
j∈S1

〈√
fj ,
(−L

(0)
j

)√
fj

〉
π

(1)
j

+
m∑

k=1

〈√
gk,
(−L

(0)
T ,k

)√
gk

〉
νk

+
m∑

k=1

∑
x∈Ck

∑
y /∈Ck

μ(x)R0(x, y) + ∑
x /∈C∪V

∑
y∈V

μ(x)R0(x, y).

In this formula, C =⋃k Ck , fj (x) = μ(x)/π
(1)
j (x), gk(z) = μ(z)/νk(z), x ∈ V (1)

j , z ∈ Ck .

LEMMA 8.1. For every μ ∈ P(V ), I (0)(μ) = J (0)(μ).

PROOF. Fix μ ∈ P(V ). We first prove that J (0)(μ) ≤ I (0)(μ). By definition of the
generator L(0),

(8.6) I (0)(μ) = sup
u>0

−
{ ∑

(x,y)∈E0

μ(x)

u(x)
R0(x, y)

[
u(y) − u(x)

]}
,

where the sum is performed over all directed edges of E0.
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Fix � ≥ 1, and define u� : V → (0,∞) by

u�(x) = �D(x)

√√√√μ(x) + ε

π
(1)
j (x)

, u�(y) = �D(y)

√
μ(y) + ε

νk(y)
, u�(z) = �D(z),

for x ∈ Vj , j ∈ S1, y ∈ Ck , 1 ≤ k ≤ m, and z /∈ V ∪ C . Here, ε = 1/� and guarantees that u

is positive. By definition of I (0),

(8.7) I (0)(μ) ≥ lim sup
�→∞

−
{ ∑

(x,y)∈E0

μ(x)

u�(x)
R0(x, y)

[
u�(y) − u�(x)

]}
.

We examine the asymptotic behavior of the right-hand of (8.7). Fix (x, y) ∈ E0, and sup-
pose, first, that x, y ∈ Vj for some j ∈ S1. In this case, the factors �D cancel, and, as � → ∞,
the corresponding term in (8.7) converges to

π
(1)
j (x)

√
fj (x)R0(x, y)

[√
fj (y) −

√
fj (x)

]
,

where fj (x) = μ(x)/π
(1)
j (x). Therefore, the contributions to the right-hand side of (8.7), of

the sum over the edges (x, y) ∈ E0 such that x, y ∈ Vj is〈√
fj ,
(−L

(0)
j

)√
fj

〉
π

(1)
j

.

The same argument yields that the contributions to the right-hand side of (8.7), of the sum
over the edges (x, y) ∈ E0 such that x, y ∈ Ck for some 1 ≤ k ≤m, is〈√

gk,
(−L

(0)
T ,k

)√
gk

〉
νk

,

where gk(x) = μ(x)/νk(x).
Up to this point we considered all edges (x, y) ∈ E0 whose head and tail belong to the

same equivalent class Vj or Ck . Assume now that this is not the case, and consider the term

− μ(x)

u�(x)
R0(x, y)

[
u�(y) − u�(x)

]= μ(x)R0(x, y) − μ(x)

u�(x)
R0(x, y)u�(y).

By definition, and since the measures π
(1)
j , νk are strictly positive, u�(y) ≤ C0�

D(y),

μ(x)/u�(x) ≤ C0�
−D(x) for some finite constant C0 independent of x, y and �. The abso-

lute value of the second term is thus bounded above by C0�
D(y)−D(x). Since there is an edge

from x to y, by (8.4), D(x) ≥ D(y) + 1, which proves that the second term of the previous
displayed equation vanishes as � → ∞.

Fix an edge (x, y) ∈ E0 whose head and tail do not belong to the same equivalent class
Vj or Ck . Since Vj is a closed irreducible class, x /∈ V . Suppose that x ∈ Ck . Hence, y /∈ Ck

because they do not belong to the same class. These are the terms which respond for the third
sum in (8.5), the terms in which x /∈ C respond for the fourth sum in (8.5), completing the
proof that I (0)(μ) ≥ J (0)(μ).

We turn to the reverse inequality, J (0)(μ) ≥ I (0)(μ). By (8.6),

I (0)(μ) ≤ ∑
j∈S1

I (0)
Vj

(μ) +
m∑

k=1

I (0)
Ck

(μ) + I (0)
R (μ),

where I (0)
Vj

(μ) is given by formula (8.6) when the sum is performed over the directed edges

(x, y) whose head and tail belong to Vj . I (0)
Ck

(μ) is defined similarly, while I (0)
R (μ) contains

the remaining edges.
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By [58], Theorem 5,

I (0)
Vj

(μ) = 〈√fj ,
(−L

(0)
j

)√
f
〉
π

(1)
j

,

where fj (x) = μ(x)/π
(1)
j (x), x ∈ Vj . An analogous result holds for I (0)

Ck
(μ). These two

terms correspond to the first two terms in (8.5).
We turn to I (0)

R (μ), which can be written as

I (0)
R (μ) = ∑

(x,y)

μ(x)R0(x, y) + sup
u>0

− ∑
(x,y)

μ(x)

u(x)
R0(x, y)u(y),

where the sums are performed over directed edges whose head and tail belong to different
equivalent classes. Since the second term is negative,

I (0)
R (μ) ≤ ∑

(x,y)

μ(x)R0(x, y).

We have seen in the first part of the proof that this sum can be written as the third and fourth
terms in J (0)(μ), completing the proof of the lemma. �

Note that for each 1 ≤ k ≤ m, there exists at least on x ∈ Ck such that R0(x, y) > 0
for some y /∈ Ck . On the other hand, as the Markov chain associated to L

(0)
T ,k is ergodic,

〈√g, (−L
(0)
T ,k)

√
g〉νk

= 0 entails that g is constant. Therefore, I (0)(μ) = 0 if and only if
there exists a probability measure ω on S1 such that

(8.8) μ = ∑
j∈S1

ωjπ
(1)
j .

Fix 1 ≤ p ≤ q, and let J (p) : P(V ) → [0,+∞] be the functional defined as follows. If

μ =∑j∈Sp
ωjπ

(p)
j for some probability measure ω in Sp , ω ∈ P(Sp),

(8.9) J (p)(μ) := ∑
m∈Sp+1

〈√
fm,
(−L(p)

m

)√
fm

〉
M

(p)
m

+ ∑
j∈Tp

∑
k∈Sp

ωj r
(p)(j, k).

In this formula, L(p)
m stands for the generator associated to Markov chain X

(p)
t restricted to the

closed irreducible set R(p)
m and fm(j) = ωj/M

(p)
m (j), j ∈ R

(p)
m . To complete the definition

of J (p), set

(8.10) J (p)(μ) := +∞ if μ is not a convex combination of π
(p)
j , j ∈ Sp.

Recall from (3.13) the definition of the functional I (p) : P(V ) → [0,+∞]. The proof of
Lemma 8.1 yields that

LEMMA 8.2. For all 1 ≤ p ≤ q, μ ∈ P(V ), I (p)(μ) = J (p)(μ).

Note that, by (8.9) and (3.2), I (p)(μ) = 0 if and only if there exists a probability measure
ω̂ in Sp+1 such that

(8.11) μ = ∑
m∈Sp+1

ω̂m

∑
j∈R(p)

m

M(p)
m (j)π

(p)
j = ∑

m∈Sp+1

ω̂mπ(p+1)
m .

On the other hand, if μ is not of this form, by (8.10), I (p+1)(μ) is set to be equal to +∞.
Hence, the functional I (p+1) is finite only at the 0-level set of I (p). Furthermore, since the
right-hand side of (8.9) is always finite,

(8.12) I (p+1)(μ) < ∞ if and only if I (p)(μ) = 0.

By (8.8), this assertion holds also for p = 0.
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The �-convergence. We turn to the proof of Theorem 3.5. We proceed by induction. We
first show that In �-converges to the functional I (0). Then, we observe that, according
to (8.8), the 0-level set of I (0) corresponds to the convex combinations of the measures
π

(1)
j , j ∈ S1. In the sequel, we prove that θ

(1)
n In �-converges to I (1). Clearly, by defini-

tion, I (1)(μ) = +∞ if μ is not a convex combinations of the measures π
(1)
j , j ∈ S1, while

I (1)(μ) < +∞ if it is. By (8.11), the 0-level set of I (1) consists of the convex combinations
of the measures π

(2)
j , j ∈ S2.

At this point, we iterate the procedure by examining the behavior of θ
(2)
n In, and so on

until proving that θ
(q)
n In �-converges to I (q). The 0-level set of this functional is the sin-

gleton formed by the measure π(q+1). As the level set is a singleton, the iterative procedures
ends. Note that this approach produced the state π(q+1) which is is the limit of the stationary
measures πn: π(q+1)(x) = limn→∞ πn(x), x ∈ V .

We turn to the proof that In �-converges to I (0).

PROPOSITION 8.3. The functional In �-converges to I (0).

PROOF. We start with the � − lim sup. Fix μ ∈ P(V ) and consider the sequence μn

constant equal to μ. By (3.10),

In(μ) = 1

2

∑
(x,y)∈E

πn(x)Rn(x, y)

{√
μ(y)

πn(y)
−
√

μ(x)

πn(x)

}2
.

Fix an edge (x, y) ∈ E. We examine the asymptotic behavior of

(8.13) πn(x)Rn(x, y)

{√
μ(y)

πn(y)
−
√

μ(x)

πn(x)

}2
.

By reversibility, this term is symmetric in x, y.
There are three types of edges. Assume first that Rn(x, y) → 0 and Rn(y, x) → 0.

By [45], Lemma 3.1, either πn(x)/πn(y) converges to a nonnegative real number or so
does πn(y)/πn(x). Assume, without loss of generality because (8.13) is symmetric, that
πn(y)/πn(x) → a ∈ [0,∞). In this case, (8.13) is equal to

Rn(y, x)

{√
μ(x)πn(y)

πn(x)
−
√

μ(y)

}2
,

which vanishes as n → ∞.
Assume that Rn(x, y) �→ 0 and Rn(y, x) → 0. Hence, R0(x, y) > 0, R0(y, x) = 0. In

particular, as the set Vj are closed irreducible classes, x /∈ V (if x ∈ Vj and R0(x, y) > 0,
then y ∈ Vj because it is a closed irreducible class. Hence, by (8.2), R0(y, x) > 0, which is a
contradiction). Two possibilities remain, either x ∈ Ck for some k or x /∈ C .

By reversibility, πn(x)/πn(y) → 0. Hence, (8.13) is equal to

Rn(x, y)

{√
μ(y)πn(x)

πn(y)
−√μ(x)

}2
,

which converges to μ(x)R0(x, y). If x ∈ Ck , by (8.2), y /∈ Ck . These are the pairs which
appear in the third term on the right-hand side of (8.5). If x /∈ C these pairs are responsible
for the fourth term on the right-hand side of (8.5).

Finally, assume that Rn(x, y) �→ 0 and Rn(y, x) �→ 0. This means that x and y belong
to the same equivalence class, say Vj or Ck . Assume that x and y ∈ Vj . The argument is
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identical if we replace Vj by Ck . Replace πn(x), πn(y) by πn(x)/πn(Vj ), πn(y)/πn(Vj ),

respectively. By Lemma 6.1, πn(x)/πn(Vj ) converges to π
�
j (x) = π

(1)
j (x) > 0. Hence, (8.13)

converges to

π
(1)
j (x)R0(x, y)

{√√√√ μ(y)

π
(1)
j (y)

−
√√√√ μ(x)

π
(1)
j (x)

}2
.

Putting together the previous estimates yields that In(μ) → J (0)(μ). To complete the
proof of the � − lim sup, it remains to recall the statement of Lemma 8.1.

We turn to the � − lim inf. Fix μ ∈ P(V ) and a sequence of probability measures μn in
P(V ) converging to μ. By definition of In,

In(μn) ≥ −
∫
V

Lnu

u
dμn = −∑

x∈V

μn(x)

u(x)

∑
y∈V

Rn(x, y)
[
u(y) − u(x)

]
for all u : V → (0,∞). As μn → μ and Rn →R0, this expression converges to

− ∑
(x,y)∈E0

μ(x)

u(x)
R0(x, y)

[
u(y) − u(x)

]
.

Therefore,

lim inf
n→∞ In(μn) ≥ sup

u>0
− ∑

(x,y)∈E0

μ(x)

u(x)
R0(x, y)

[
u(y) − u(x)

]= I (0)(μ),

which completes the proof of the lemma. �

Recall from (8.9) the definition of the functionals I (p), 1 ≤ p ≤ q.

PROPOSITION 8.4. Fix 1 ≤ p ≤ q. The functional θ
(p)
n In �-converges to I (p).

PROOF. We start with the � − lim sup. Fix μ ∈ P(V ). If μ is not a convex combi-
nations of the measures π

(p)
j , j ∈ Sp , there is nothing to prove. Assume, therefore, that

μ =∑j∈Sp
ωjπ

(p)
j for some weights ωj .

Let fn : V (p) → R+ be the function given by fn =∑j∈Sp
ωj (n)χ

V
(p)

j

, where ωj(n) =
ωj/πn(V

(p)
j ). To extend this function to V , solve the Poisson equation (A.2) with L = Ln,

V0 = V (p), g = √
fn. Denote by hn the solution of the equation. Let μn = αnh

2
nπn, where αn

is a normalizing constant which turns μn into a probability measure.
We claim that αn → 1 and μn → μ. By definition,

α−1
n = ∑

x /∈V (p)

hn(x)2πn(x) + ∑
j∈Sp

∑
x∈V

(p)
j

fn(x)πn(x).

By definition of hn, for x /∈ V (p),

hn(x)2πn(x) =
{∑

j∈Sp

√
ωj(n)Pn

x[HV
(p)

j

= HV (p)]
}2

πn(x)

≤ C0
∑
j∈Sp

ωj

πn(V
(p)

j )
Pn

x[HV
(p)

j

= HV (p)]2πn(x),
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where the constant C0 bounds the cardinality of V . By Lemma 7.8, this expression vanishes
as n → ∞. By definition of fn, the second term of the penultimate displayed equation is
equal to ∑

j∈Sp

∑
x∈V

(p)
j

ωj

πn(V
(p)

j )
πn(x) = 1,

which proves that αn → 1.
The previous argument shows that μn(x) = αnhn(x)2πn(x) → 0 = μ(x) if x /∈ V (p). If

x ∈ V
(p)

j , μn(x) = αnfn(x)πn(x) = αnωjπn(x)/πn(V
(p)

j ). Since αn → 1, by Corollary 6.3,

the previous expression converges to ωjπ
(p)
j (x) = μ(x).

To complete the proof of the � − lim sup, it remains to show that lim supn θ
(p)
n In(μn) ≤

I (p)(μ). By (3.10) and the definition of μn,

In(μn) = αn

〈
hn, (−Ln)hn

〉
πn

.

By Corollary A.2 and the definition of hn, the right-hand side is equal to

αnπn

(
V (p))〈√fn,

(−L (p)
n

)√
fn

〉
π

(p)
n

= −αn

∑
x,y∈V (p)

πn(x)R(p)
n (x, y)

√
fn(x)

{√
fn(y) −

√
fn(x)

}
,

where L
(p)
n stands for the generator of the trace process Y

n,p
t introduced in (2.8), and π

(p)
n

for the measure πn conditioned to V (p). Since fn is constant and equal to ωj(n) on each set

V
(p)

j , the previous expression is equal to

−αn

∑
j∈Sp

√
ωj(n)

∑
k∈Sp\{j}

{√
ωk(n) −

√
ωj (n)

} ∑
x∈V

(p)
j

πn(x)
∑

y∈V
(p)

k

R(p)
n (x, y)

= −αn

∑
j∈Sp

√
ωj(n)

∑
k∈Sp\{j}

{√
ωk(n) −

√
ωj(n)

}
πn

(
V

(p)
j

)
r(p)
n (j, k),

where r
(p)
n (j, k) is defined in (2.9). Up to this point, we proved that

θ(p)
n In(μn) = αn

2
θ(p)
n

∑
j,k∈Sp

πn

(
V

(p)
j

)
r(p)
n (j, k)

{√
ωk(n) −

√
ωj(n)

}2
,

where we used that πn(V
(p)

j )r
(p)
n (j, k) = πn(V

(p)
k )r

(p)
n (k, j), an identity which follows from

the reversibility assumption.
Recall that αn → 1. In view of the definition of ωi(n), it remains to examine the asymptotic

behavior of

(8.14) πn

(
V

(p)
j

)
θ(p)
n r(p)

n (j, k)

{√
ωk

πn(V
(p)

k )
−
√√√√ ωj

πn(V
(p)

j )

}2
.

As in the proof of Proposition 8.3, we divide the pairs (j, k) in three types. Assume
first that θ

(p)
n r

(p)
n (j, k) → 0 and θ

(p)
n r

(p)
n (k, j) → 0. By [45], Lemma 3.1, and (2.16), either

πn(V
(p)

j )/πn(V
(p)

k ) converges to a nonnegative real number or so does πn(V
(p)

k )/πn(V
(p)

j ).

Assume that πn(V
(p)

k )/πn(V
(p)

j ) → a ∈ [0,∞). In this case, by reversibility, (8.14) is equal
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to

(8.15) θ(p)
n r(p)

n (k, j)

{√
ωk −

√√√√√ωj

πn(V
(p)

k )

πn(V
(p)

j )

}2
,

which vanishes as n → ∞.
Next, suppose that θ

(p)
n r

(p)
n (j, k) → 0 and θ

(p)
n r

(p)
n (k, j) → r(p)(k, j) > 0, where

r(p)(k, j) has been introduced in (2.10). In particular, k is a transient state of the chain X
(p)
t .

By reversibility, πn(V
(p)

k )/πn(V
(p)

j ) = r
(p)
n (j, k)/r

(p)
n (k, j) → 0. Hence, (8.14), which is

equal to (8.15), converges to

r(p)(k, j)ωk.

Finally, suppose that θ
(p)
n r

(p)
n (j, k) → r(p)(j, k) > 0 and θ

(p)
n r

(p)
n (k, j) → r(p)(k, j) > 0.

This means that j and k belong to some closed irreducible class R(p)
m of the chain X

(p)
t . By

Lemma 6.2, the expression (8.14) converges to

M(p)
m (j)r(p)(k, j)

{√
ωk

M
(p)
m (k)

−
√

ωj

M
(p)
m (j)

}2
.

Combining the previous estimates yields that θ
(p)
n In(μn) converges to J (p)(μ), which

completes the proof of the � − lim sup in view of Lemma 8.2.
We turn to the � − lim inf where we use an induction argument. Fix 1 ≤ p ≤ q and assume

that the �-convergence of θ
(p−1)
n In to I (p−1) has been proved. Fix a probability measure μ

on V and a sequence μn converging to μ.
Suppose that I (p−1)(μ) > 0. In this case, since θ

(p−1)
n In �-converges to I (p−1) and

θ
(p)
n /θ

(p−1)
n → ∞,

lim inf
n→∞ θ(p)

n In(μn) = lim inf
n→∞

θ
(p)
n

θ
(p−1)
n

θ(p−1)
n In(μn) ≥ I (p−1)(μ) lim

n→∞
θ

(p)
n

θ
(p−1)
n

= ∞.

On the other hand, by (8.12), I (p−1)(μ) = ∞. This proves the � − lim inf convergence for
measures μ such that I (p−1)(μ) > 0.

Assume that I (p−1)(μ) = 0. By (8.10), there exists a probability measure ω on Sp such

that μ =∑j∈Sp
ωjπ

(p)
j . By (3.9),

In(μn) ≥ −
∫
V

Lnu

u
dμn

for all u : V → (0,∞).
Fix a function h : V (p) → (0,∞) which is constant on each V

(p)
j , j ∈ Sp: h =∑

j∈Sp
h(j)χ

V
(p)

j

. Let un : V → R be the solution of the Poisson equation (A.2) with

L = Ln, V0 = V (p) and g = h. By the representation (A.3), it is clear that un(x) ∈ (0,∞)

for all x ∈ V .
Since un is harmonic on V \V (p) and un = h on V (p), by Lemma A.1, the right-hand side

of the previous displayed equation with u = un is equal to

−
∫
V (p)

Lnun

un

dμn = −
∫
V (p)

Lnun

h
dμn = −

∫
V (p)

L
(p)
n h

h
dμn.

Here, as in the first part of the proof, L
(p)
n stands for the generator of the trace process Y

n,p
t

introduced in (2.8).
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Since h is constant on each set V
(p)

j (and equal to h(j)), the last integral is equal to

− ∑
j,k∈Sp

[h(k) − h(j)]
h(j)

∑
x∈V

(p)
j

πn(x)
μn(x)

πn(x)
R(p)

n

(
x,V

(p)
k

)
,

where R
(p)
n (x,V

(p)
k ) =∑

y∈V
(p)

k

R
(p)
n (x, y). By Proposition 3.4, πn(x)/πn(V

(p)
j ) → π

(p)
j (x)

for all x ∈ V
(p)

j . Thus, since μn → μ =∑j∈Sp
ωjπ

(p)
j ,

lim
n→∞πn

(
V

(p)
j

)μn(x)

πn(x)
= ωj for all x ∈ V

(p)
j .

Therefore, by (2.10), as n → ∞, the penultimate expression multiplied by θ
(p)
n converges to

− ∑
j∈Sp

ωj

1

h(j)

∑
k∈Sp

r(p)(j, k)
[
h(k) − h(j)

]= − ∑
j∈Sp

ωj

L(p)h
h

.

Summarising, we proved that

lim inf
n→∞ θ(p)

n In(μn) ≥ sup
h

− ∑
j∈Sp

ωj

L(p)h
h

,

where the supremum is carried over all functions h : Sp → (0,∞). By (3.13), the right-hand
side is precisely I (p)(μ), which completes the proof of the � − lim inf. �

APPENDIX: POTENTIAL THEORY

We present in this section some results on potential theory used in the article. We do
not assume reversibility. We keep the same notation of the article, removing the index n. In
particular, Xt is a V -valued, continuous-time irreducible Markov process whose jump rates
are represented by R(x, y). Denote by (Ft : t ≥ 0) the canonical filtration induced by the
chain Xt . Hence, Ft is the σ -algebra generated by the variables Xs , 0 ≤ s ≤ t .

We first recall for the reader’s convenience the definition of the trace of a process on a
subset.

Trace process. Fix a nonempty subset W of V . Denote by T W(t) the total time the
process Xt spends in W in the time-interval [0, t]:

T W(t) =
∫ t

0
χW(Xs) ds,

where, recall, χW represents the indicator function of the set W . Denote by SW(t) the gener-
alized inverse of T W(t):

SW(t) = sup
{
s ≥ 0 : T W(s) ≤ t

}
.

The trace of Xt on W , denoted by (XW
t : t ≥ 0), is defined by

(A.1) XW
t = XSW (t); t ≥ 0.

By Propositions 6.1 and 6.3 in [1], the trace process is an irreducible, W -valued continuous-
time Markov chain, obtained by turning off the clock when the process Xt visits the set Wc,
that is, by deleting all excursions to Wc. For this reason, it is called the trace process of Xt

on W .
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Denote by LW , RW , λW , pW and πW its generator, jump rates, holding times, transition
matrix and stationary state, respectively. The measure πW is obtained by conditioning π to
W : πW(x) = π(x)/π(W).

Let PW
x , x ∈ W , be the probability measure on the path space D(R+,W) induced by the

Markov chain XW
t starting from x. Expectation with respect to PW

x is represented by EW
x .

Poisson equation. Fix a nonempty proper subset V0 of V and a function g : V0 →R. Let
f be the solution of the Poisson equation

(A.2)

{
L f = 0, V \ V0,

f = g, V0.

Recall from (2.5) the definition of the hitting and return times to a subset A of V . By the
strong Markov property, the solution of the Poisson equation can be represented as

(A.3) f (x) = Ex

[
g(XHV0

)
]
, x ∈ V.

Fix V0 ⊂ W ⊂ V and denote by fW the solution of the Poisson equation

(A.4)

{
LWf = 0, W \ V0,

f = g, V0.

Mind that W may be equal to V0.
Starting from x /∈ V0, the processes Xt and XW

t hit the set V0 at the same point:
XW

HV0 (XW )
= XHV0

, Px a.s. In this formula and below, HV0(X
W), H+

V0
(XW) stand for hit-

ting and return time to V0 for the process XW . By the representation (A.3) and the previous
observation, for x ∈ W

(A.5) fW(x) = EW
x

[
g(XHV0

)
]= Ex

[
g
(
XW

HV0 (XW )

)]= Ex

[
g(XHV0

)
]= f (x).

LEMMA A.1. Fix V0 ⊂ W ⊂ V . Denote by f , fW the solutions of the Poisson equations
(A.2), (A.4), respectively. Then,

(L f )(x) = (LWfW)(x), x ∈ V0.

PROOF. Fix x ∈ V0. The left-hand side of the identity appearing in the statement of the
lemma can be written as

λ(x)
∑
y∈V

p(x, y)
[
f (y) − f (x)

]
.

Without loss of generality, assume that p(z, z) = 0 for all z ∈ V (if this is not the case, one
redefines the holding time λ(z) for the identity to hold). By (A.3), f (y) = Ey[g(XHV0

)] for
all y ∈ V , and by the strong Markov property Ex[g(XH+

V0
)] =∑y∈V p(x, y)f (y). Hence, the

previous sum can be written as

(A.6) λ(x)
{
Ex

[
g(XH+

V0
)
]− f (x)

}
.

Recall that we denote by XW
t the trace of the process Xt on W . We consider two cases.

If H+
W < H+

x then the process Xt and XW
t return to V0 at the same point XH+

V0
(to prove

this assertion, consider separately the two situations {H+
V0

< H+
x } and {H+

V0
= H+

x }). Thus, if

H+
W < H+

x we may replace in (A.6) g(XH+
V0

) by g(XW

H+
V0

(XW )
).
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If H+
W = H+

x , the process Xt returns to V0 (and also to W ) at x. In contrast, in the time
interval [0,H+

W ] the trace process on W remains at x, and XW
t may return to V0 at a point

y �= x. In particular, Xt and XW
t may return to V at different points. In this case, since

H+
V0

= H+
x , we have

Ex

[
g(XH+

V0
)χ
(
H+

x = H+
W

)]= g(x)Px

[
H+

x = H+
W

]
.

Up to this point, we proved that for x ∈ V0,

Ex

[
g(XH+

V0
)
]= Ex

[
g
(
XW

H+
V0

(XW )

)
χAc

]+ g(x)Px[A],

where A is the event {H+
x = H+

W }. Write χAc as 1 − χA. On the event A, H+
V0

(XW) = H+
V0

+
H+

V0
(XW)◦ϑH+

V0
. Hence, conditioning on FH+

V0
, since A is FH+

V0
-measurable and X(H+

V0
) = x

on the event A, by the strong Markov property,

Ex

[
g
(
XW

H+
V0

(XW )

)
χA

]= Px[A]Ex

[
g
(
XW

H+
V0

(XW )

)]
.

Therefore, for x ∈ V0,

(A.7) Ex

[
g(XH+

V0
)
]− g(x) = Px

[
H+

W < H+
x

]{
Ex

[
g
(
XW

H+
V0

(XW )

)]− g(x)
}
.

By equation (6.9) in [1], λ(x)Px[H+
W < H+

x ] = λW(x). Therefore, (A.6) is equal to

λW(x)
{
EW

x

[
g(XH+

V0
)
]− f (x)

}
.

By the strong Markov property and (A.5), this expression is equal to

λW(x)
∑
y∈W

pW(x, y)
{
EW

y

[
g(XHV0

)
]− f (x)

}
= λW(x)

∑
y∈W

pW(x, y)
{
fW(y) − fW(x)

}= (LWfW)(x),

as claimed. �

Denote by D(f ) the Dirichlet form of a function f : V →R:

D(f ) := 〈f, (−L )f
〉
π .

COROLLARY A.2. Fix V0 ⊂ W ⊂ V . Denote by f , fW the solutions of the Poisson
equations (A.2), (A.4), respectively. Then,

(A.8) D(f ) = π(W)
〈
fW , (−LW)fW

〉
πW

.

PROOF. By definition of the Dirichlet form,

D(f ) = 〈f, (−L )f
〉
π = −∑

x∈V

π(x)f (x)(L f )(x).

Since f is harmonic on V c
0 , the sum can be restricted to V0. Hence, the previous expression

is equal to

− ∑
x∈V0

π(x)f (x)(L f )(x).
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By (A.5) and Lemma A.1, this sum is equal to

− ∑
x∈V0

π(x)fW(x)(LWfW)(x).

Since fW is LW -harmonic on W \ V0, we may extend the sum to W . To complete the proof,
it remains to recall that πW(·) = π(·)/π(W). �

The same proof yields the following result.

COROLLARY A.3. Fix V0 ⊂ V , g : V0 →R, and let u be the solution of (A.2). Then,∫
V

L u

u
dμ =

∫
V0

LV0g

g
dμ

for all probability measures μ on V .

PROOF. Since u is harmonic on V \ V0, we may restrict the integral to V0. By
Lemma A.1, on V0 we may replace L u by LV0uV0 , where uV0 is the solution of (A.4) with
W = V0. However, as W = V0, the solution of (A.4) is uV0 = g. Hence, LV0uV0 = LV0g. As
u = g on V0, the proof is complete. �

We turn to an estimate of hitting times. Denote by πA, A ⊂ V , the stationary measure π

conditioned to A

πA(x) = π(x)

π(A)
, x ∈ A.

The next result is [39], Proposition 8.4. It holds for nonreversible dynamics. The assertion
in the case where A is a singleton follows from the proofs of [5], Corollary 4.2, and [39],
Proposition 8.4.

LEMMA A.4. Let A, B be two nonempty disjoint subsets of E. Then, for every probabil-
ity measure ν concentrated on the set A and � > 0

Pν[HB ≤ �]2 ≤ e2EπA

[(
ν

πA

)2]cap(A,B)

π(A)
�.

If A is a singleton, A = {x}, then for every � > 0

Px[HB ≤ �] ≤ e
cap({x},B)

π(x)
�.

This result helps in showing that the left-hand side vanishes asymptotically if [capn({x},
B)/πn(x)]�n → 0.

REMARK A.5. For two sets A, B satisfying the hypotheses of Lemma A.4, let νA,B be
the equilibrium measure on A:

νA,B(x) = 1

cap(A,B)
π(x)λ(x)Px

[
HB < H+

A

]
, x ∈ A.

By Chebychev inequality and [4], Proposition A.2,

PνA,B
[HB ≥ �] ≤ 1

�
EνA,B

[HB] = Eπ [h∗
A,B]

�cap(A,B)
,
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where h∗
A,B stands for the equilibrium potential of the time-reversed process (sometimes

called the adjoint process): h∗
A,B(y) = P∗

y[HA < HB], and P∗ stands for the distribu-
tion of the continuous-time Markov chain with jump rates R∗(x, y) given by R∗(x, y) =
π(y)R(y, x)/π(x). In many cases, EνA,B

[HB] = [1 + o(1)]π(A) so that

PνA,B
[HB ≥ �] ≤ [1 + o(1)

] π(A)

�cap(A,B)
.

This inequality demonstrates that the bound in Lemma A.4 is sharp whenever EνA,B
[HB] =

[1 + o(1)]π(A).
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CNPq Bolsa de Produtividade em Pesquisa PQ 303538/2014-7.
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