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Weak solutions to the homogeneous Boltzmann equation with increasing
energy have been constructed by Lu and Wennberg. We consider an under-
lying microscopic stochastic model with binary collisions (Kac’s model) and
show that these solutions are atypical. More precisely, we prove that the prob-
ability of observing these paths is exponentially small in the number of par-
ticles and compute the exponential rate. This result is obtained by improving
the established large deviation estimates in the canonical setting. Key ingre-
dients are the extension of Sanov’s theorem to the microcanonical ensemble
and large deviations for the Kac’s model in the microcanonical setting.

1. Introduction. The derivation of the Boltzmann equation from an underlying micro-
scopic dynamics of N interacting particles is a paradigmatic problem in nonequilibrium sta-
tistical mechanics. It is based on the validity of the Stosszahlansatz with probability one in
the limit N → +∞. At a more refined level, it is possible to analyze the corresponding large
deviations, whose derivation is related to the validity of the Stosszahlansatz with probability
super-exponentially close to one for N large.

In this perspective, the most challenging case of Newtonian dynamics of hard spheres
in the Boltzmann–Grad limit has been recently discussed in [3]. Nevertheless, the case of
stochastic dynamics presents interesting features. The first result in this setting has been ob-
tained in [13], where a large deviation upper bound is derived in the space homogeneous
case. A complete large deviation principle has been obtained in [20] for a space inhomoge-
neous model with a finite set of velocities. In [1] a large deviation upper bound is achieved
for a homogeneous model which conserves momentum but not energy, while the matching
lower bound is obtained for a restricted class of paths. A similar result, in the case of energy
and momentum conservation, has been proven in [9]. In this case the upper and lower bound
match for a subset of paths for which energy is conserved.

For energy preserving microscopic dynamics with unbounded velocities, a main obstacle
to a complete proof of large deviations is the occurrence of macroscopic paths with finite
rate function that violate the conservation of the energy. In particular, as discussed in [9],
a class of such paths is given by the solutions to the homogeneous Boltzmann equations
constructed by Lu and Wennberg in [15], for which the energy is increasing. Another example
of large deviation asymptotic for nonconserving energy path has been constructed in [2], for
a Kac-like microscopic dynamics with discrete energies. More precisely, as proven in [9],
the upper bound rate function derived in [13] vanishes on Lu and Wennberg solutions, while
their asymptotic probability is e−cN , which implies the upper bound rate function in [13] is
not optimal.

The homogeneous Boltzmann equation with hard sphere cross-section reads as

(1.1) ∂tft (v) = 1

2

∫
Rd

dv∗
∫
Sd−1

dω
∣∣(v − v∗) · ω∣∣(ft

(
v′)ft

(
v′∗

) − ft (v)ft (v∗)
)
,
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where Sd−1 is the sphere in R
d and dω is the Haar measure on Sd−1. The associate Cauchy

problem has a unique solution in the class of functions with constant energy [17]. Let us
discuss how the Lu and Wennberg solutions, with increasing energy, can be constructed in
the special case in which the energy has a unique jump at time zero. Consider a sequence
of initial densities f n

0 such that f n
0 converges weakly to f0 but e := limn

∫
f n

0 (v)|v|2 dv >∫
f0(v)|v|2 dv, namely a fraction of energy evaporates at infinity. Denoting by f n

t the unique
energy conserving solution of the homogeneous Boltzmann equation with initial datum f n

0 ,
we then have that f n

t , t ≥ 0, converges to a solution to the homogeneous Boltzmann equation,
with initial datum f0, but the energy has a positive jump at time 0. Observe that this construc-
tion does not yield a jump in the energy if the total cross section is bounded, in fact in this
case there is uniqueness of the solution without the requirement of energy conservation. A
model with this feature has been analyzed in [8].

A main result of this paper is the proposal of a rate function that improves the one in [13],
being strictly positive on Lu and Wennberg solutions. In particular we consider a Kac walk
with the hard sphere cross section, and prove the large deviation upper bound with such rate
function. The matching large deviation lower bound is achieved for both Lu and Wennberg
solutions and the same restricted class of path as in [1, 9].

As it is clear from the previous construction, Lu and Wennberg solutions can be produced
from a microscopic model only if there exists a fluctuation of the initial energy and then
following the typical behavior. To introduce the improved rate function we consider first the
case in which the initial velocities are sampled from the microcanonical ensembles, namely
the total energy and momentum are not random, and given by (eN,uN). After [1, 2, 9], we
consider as empirical observable the pair (πN,QN) where πN is the empirical distribution of
velocities, while the empirical flux QN records the collision times together with the incoming
and outgoing velocities. The microcanonical rate function reads

(1.2) Ie,u(π,Q) = He,u(π0) + Je,u(π,Q),

where He,u takes into account the fluctuation of the initial data, while Je,u is the dynamical
contribution, that is defined as follows. Set dQπ := 1

2 dπ ⊗ dπ B dω dt , with B = B(v −
v∗,ω) = 1

2 |(v − v∗) · ω|, and let J (π,Q) be the relative entropy of Q with respect to Qπ ,
namely

(1.3) J (π,Q) =
∫ {

dQ log
dQ

dQπ
− dQ + dQπ

}
.

Then, by the microcanonical constraint, Je,u(π,Q) is equal to J (π,Q) if the energy of π

does not exceed e and its momentum is equal to u, while Je,u(π,Q) = +∞ otherwise. The
functional He,u will be derived by extending Sanov’s theorem to the microcanonical ensem-
ble. In particular, He,u(π0) is infinite when the energy of π0 exceed e, but it can be finite
when the energy is below e. Namely, loss of energy at time 0 occurs with exponentially small
probability. According to (1.2), the asymptotic probability of Lu and Wennberg solutions is
then exp(−NHe,u(π0)).

We then analyze the case in which the initial velocities are sampled from the canonical
ensemble, namely are i.i.d. m-distributed random variables. The canonical rate function can
then be obtained from (1.2) as follows

(1.4) I (π,Q) = inf
e,u

(
A(e,u) + Ie,u(π,Q)

)
,

where A is the rate function for the energy and momentum of the sum of i.i.d. m-distributed
random variables, given by Cramér’s theorem. The rate function introduced in [13] and fur-
ther analyzed in [9] is given by

I(π,Q) = Ent(π0|m) + J (π,Q),
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where Ent(π0|m) is the relative entropy. In particular, I vanishes on Lu and Wennberg so-
lutions. We show that I defined in (1.4) is larger than I and vanishes only on the unique
energy conserving solution to (1.1). Moreover, we compute explicitly its value on the Lu and
Wennberg solutions, which is given by c�E , where c is a strictly positive constant depend-
ing on the tail of initial distribution m and �E is the total gain of the energy. Hence, the
asymptotic probability of Lu and Wennberg solutions is e−cN�E .

The present work is organized as follows. In Section 2 we consider the static case, by ana-
lyzing the large deviations of the empirical measure when the velocities are sampled from the
microcanonical ensemble. As discussed before, we show that the large deviation functional
is finite on probability measures with energy evaporation. In Section 3 we state the large de-
viation principle for the Kac model with hard sphere cross section and microcanonical initial
data. The corresponding proof is carried out in Sections 4, 5. In Section 6 we derive the large
deviation asymptotic for the Kac model with canonical initial distribution. Section 7 is finally
devoted to the asymptotic probability of Lu and Wennberg solutions.

2. Sanov theorem for microcanonical ensemble. Sanov’s theorem, that describes the
asymptotic behavior of the empirical measures associated to a sequence of N i.i.d. random
variables, is a basic result in the theory of large deviations. A natural question is to replace the
independence assumption by some dependency structure. For instance, the case of the empir-
ical measure associated to Markov chains is the content of the classical Donsker–Varadhan
theorem. We here analyze the case in which the underlying sequence of random variables is
sampled according to a microcanonical ensemble, that can be realized by conditioning i.i.d.
random variables to the sum of their squares, that is, to the total kinetic energy in the physical
interpretation. A particular case of this situation has been previously discussed in [11]; there
it is in fact analyzed the case where N real random variables are sampled according to the
uniform measure on the sphere of radius

√
N on R

N and corresponds to the microcanonical
ensemble associated to i.i.d. Gaussians. A peculiar feature of this setting is the possibility of
observing—at the large deviations level—probabilities that violate the microcanonical con-
straint. More precisely, while for each N the law of the empirical measure is supported by
the probabilities with fixed second moment, the large deviations rate function is finite also
for probabilities with second moment strictly smaller than the prescribed value. In view of
the application to homogeneous Boltzmann equations, we shall next consider microcanon-
ical ensembles that are obtained by conditioning both to the total energy and to the total
momentum.

Fix hereafter d ≥ 2 and denote by P(Rd) the set of probability measures on R
d equipped

with the topology induced by the weak convergence and the associated Borel σ -algebra. Let
ζ : Rd 	→ [0,+∞)×R

d be the map given by ζ = (ζ0, ζ )(v) = (|v|2/2, v). For γ = (γ0, γ ) ∈
R×R

d let γ · ζ be the function on R
d given by γ0ζ0 + γ · ζ . We shall consider probabilities

m ∈ P(Rd) satisfying the following conditions.

ASSUMPTION 2.1. There exists γ ∗
0 ∈ (0,+∞] such that:

(i) m is absolutely continuous with respect to the Lebesgue measure and m is strictly
positive on open sets;

(ii) m(eγ0ζ0) < +∞ for any γ0 ∈ (−∞, γ ∗
0 ), and limγ0↑γ ∗

0
m(eγ0ζ0) = +∞;

(iii) for each γ = (γ0, γ ) ∈ (−∞, γ ∗
0 ) × R

d the Fourier transform of dm
dv

eγ ·ζ belongs to
L1(Rd);

(iv) there exists c > 0 such that dm
dv

≥ 1
c

exp{−c|v|2}.
Condition (iv) is mainly technical, and will be used only to derive the lower bound for the

dynamical rate function.
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We observe that, as follows from Hölder inequality, the map (−∞, γ ∗
0 ) × R

d �
γ 	→ logm(eγ ·ζ ) is strictly convex. Set Z = {(e, u) ∈ (0,+∞) × R

d : e > |u|2/2}, then
∇ logm(eγ ·ζ ) is a bijection from (−∞, γ ∗

0 ) × R
d to Z. We denote by (e, u) 	→ γ (e, u) the

inverse map and by me,u the probability on R
d defined by

(2.1) me,u(dv) := eγ (e,u)·ζ (v)

m(eγ (e,u)·ζ )
m(dv).

In words, me,u is the exponential tilt of m such that me,u(ζ ) = (e, u). Namely, u and e are the
average values of velocity and total energy, respectively. Note that me,u satisfies the condi-
tions in Assumption 2.1 with γ ∗

0 replaced by γ ∗
0 − γ0(e, u) > 0. We denote by U the internal

energy defined by the relation e = U + |u|2/2, so that U is the expected value of |v − u|2/2.
Let 	N := (Rd)N be the configuration space for N velocities in R

d . Given (e, u) ∈ Z, we
denote by

(2.2) 	N
e,u :=

{
v ∈ (

R
d)N : 1

N

N∑
i=1

ζ (vi) = (e, u)

}

the set of configurations with total momentum Nu and total energy Ne.
Let μN be the probability on 	N given by m⊗N , interpreted as the canonical ensemble. Let

also (e, u) 	→ νN
e,u be a regular version of the probability μN conditioned to 1

N

∑N
i=1 ζ (vi).

In particular, νN
e,u, interpreted as the microcanonical ensemble, is the probability supported

by 	N
e,u informally given by νN

e,u = μN( · |	N
e,u). As N → ∞ the one-marginal of {νN

e,u}
converge to me,u (equivalence of ensembles in the thermodynamic limit) [5, 6, 18]. Our aim
is to describe the corresponding large deviations asymptotic. In order to apply this result to
Kac’s walk with a canonical initial distribution of the velocities, the large deviation principle
will be proven uniformly for (e, u) in compact subsets of Z.

We define the empirical measure as the map πN : 	N → P(Rd) given by

(2.3) πN(v) = 1

N

N∑
i=1

δvi
.

Given two probabilities m1, m2, recall that the relative entropy Ent(m2|m1) is defined as
Ent(m2|m1) = ∫

dm1ρ logρ, where dm2 = ρ dm1, understanding that Ent(m2|m1) = +∞ if
m2 is not absolutely continuous with respect to m1.

Given (e, u) ∈ Z set

(2.4) Ce,u := {
π ∈ P

(
R

d) : π(ζ ) = u, π(ζ0) ≤ e
}

that is, a compact and convex subset of P(Rd). Note that Ce,u is the closure in P(Rd) of the
set of probabilities π satisfying the microcanonical constraint π(ζ ) = (e, u).

THEOREM 2.2. Fix (e, u) ∈ Z and a sequence (eN,uN) → (e, u). If m satisfies item (i)–
(iii) in Assumption 2.1 then the family of probabilities {νN

eN ,uN
◦ (πN)−1}N on P(Rd) satisfies

a large deviation principle with speed N and good convex rate function He,u : P(Rd) →
[0,+∞] given by

(2.5) He,u(π) =
{

Ent(π |me,u) + [
γ ∗

0 − γ0(e, u)
] [

e − π(ζ0)
]

if π ∈ Ce,u,

+∞ otherwise.

The rate function He,u can be seen as the canonical rate function Ent( · |me,u) with an extra
penalization for violations of the energy constraint. When m is the standard Gaussian on R
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and the momentum constraint is dropped, this result reduces to the one obtained in [11]. If
γ ∗

0 = +∞ we understand that He,u(π) = +∞ when π(ζ0) < e. In particular, when the tails
of m are sub-Gaussian, then the energy constraint holds also at the large deviation level. In
the terminology of the calculus of variations, as shown in Lemma 7.4 below, the functional
He,u can be obtained by taking the lower semicontinuous envelope of the functional given by
Ent(·|me,u) when π(ζ0) = e and infinite otherwise.

While the arguments in [11] rely on the representation of the uniform measure on the
spheres in terms of i.i.d. Gaussian, the proof of the above theorem will be achieved by ap-
plying the Gärtner–Ellis theorem, which provides the large deviation rate function as the
Legendre transform of the log-moment generating function. To this end, for φ ∈ Cb(R

d) set

(2.6) dmφ
e,u := dme,ueφ

me,u(eφ)
,

and

(2.7) �e,u(φ) := −γ · (e, u) + logme,u

(
eφ+γ ·ζ )

,

where γ = γ (φ) is chosen so that

(2.8)
m

φ
e,u(exp{γ · ζ } ζ )

m
φ
e,u(exp{γ · ζ }) = (e, u),

namely, it is chosen in order that the exponential tilt of mφ has average energy and momentum
(e, u).

LEMMA 2.3. For each φ ∈ Cb(R
d),

(2.9) lim
N→∞

1

N
logνN

eN ,uN

(
eNπN(φ)) = �e,u(φ).

PROOF. As simple to check,∣∣∣∣ 1

N
logνN

eN ,uN

(
eNπN(φ2)

) − 1

N
logνN

eN ,uN

(
eNπN(φ1)

)∣∣∣∣ ≤ sup
v∈Rd

∣∣φ2(v) − φ1(v)
∣∣.

By a density argument, it is therefore enough to prove the statement for smooth φ.
Observing that m⊗N(·|	N

e,u) = m⊗N
e,u (·|	N

e,u), for γ ∈ (−∞, γ ∗
0 ) ×R

d we write

1

N
logνN

eN ,uN

(
eNπN(φ)) = −γ · (eN,uN) + 1

N
logm⊗N

eN ,uN

(
eNπN(φ+γ ·ζ )|	N

eN,uN

)
.

By a direct computation (cf. Lemma 3.5 in [1]) for any ψ ∈ Cb(R
d)

m⊗N
eN ,uN

(
eNπN(ψ)|	N

eN,uN

) = (
meN,uN

(
eψ ))N f

ψ
N (eN,uN)

fN(eN,uN)
,

where f
ψ
N , fN are the densities of the random vector 1

N

∑N
i=1 ζ (vi), in which {vi} are i.i.d.

with law m
ψ
eN,uN , meN,uN

respectively. Observe that, as we assumed that m is strictly positive
on open sets, the law of 1

N

∑
i ζ(vi) is absolutely continuous for N > 2. Choosing ψ = φ +

γ · ζ , with γ = γ N(φ) such that (2.8) holds with (e, u) replaced by (eN,uN), by the local
central limit theorem (see, e.g., [19]) we deduce

lim
N→∞

1

N
log

f
φ+γ ·ζ
N (eN,uN)

fN(eN,uN)
= 0.

Note indeed that the local central limit holds in view of Assumption 2.1 and the smoothness
of φ. Gathering the above computations, the statement follows. �
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LEMMA 2.4. Let �∗
e,u(π) := supφ{π(φ) − �e,u(φ)} be the Legendre transform of �e,u.

Then �∗
e,u = He,u.

PROOF. Let {φn} be a sequence of bounded functions monotonically convergent to εζ0,
for some ε ∈ (0, γ ∗

0 − γ0(e, u)). In view of Assumption 2.1, item (ii), limn �e,u(φn) < +∞.
Therefore �∗

e,u(π) < +∞ implies π(ζ0) < +∞. It thus suffices to prove �∗
e,u(π) = He,u(π)

for π with bounded energy.
Observe now that if γ (φ) is such that (2.8) holds then, by the strict convexity of γ 	→

logme,u(eφ+γ ·ζ ),

γ (φ) · (e, u) − logme,u

(
eφ+γ (φ)·ζ ) = sup

γ :γ0<γ ∗
0 −γ0(e,u)

{
γ · (e, u) − logme,u

(
eφ+γ ·ζ )}

.

For π with bounded energy we thus have

�∗
e,u(π) = sup

φ

{
π(φ) + γ (φ) · (e, u) − logme,u

(
eφ+γ (φ)·ζ )}

= sup
γ :γ0<γ ∗

0 −γ0(e,u)

sup
φ

{
π(φ) + γ · (e, u) − logme,u

(
eφ+γ ·ζ )}

= sup
γ :γ0<γ ∗

0 −γ0(e,u)

sup
φ

{
π(φ + γ · ζ ) + γ · (

e − π(ζ0), u − π(ζ )
) − logme,u

(
eφ+γ ·ζ )}

= Ent(π |me,u) + sup
γ :γ0<γ ∗

0 −γ0(e,u)

{
γ · (

e − π(ζ0), u − π(ζ )
)} = He,u(π)

where we used the variational representation of the relative entropy. �

PROOF OF THEOREM 2.2. For δ > 0 let Cδ
e,u be the compact subset of P(Rd) given by

Cδ
e,u := {π ∈ P(Rd) : π(ζ0) ≤ e + δ, |π(ζ ) − u| ≤ δ}. By the very definition of νN

e,u, even-
tually in N we have νN

eN ,uN
(πN ∈ Cδ

e,u) = 1, which implies the exponential tightness of the
sequence νN

eN ,uN
◦ (πN)−1.

In view of Lemmata 2.3 and 2.4, to conclude the proof it is enough to apply the abstract
Gärtner–Ellis theorem as stated in [7], Thm. 4.5.20. In order to verify its hypotheses, we
note that the strict convexity of the map π 	→ He,u(π) implies, in the terminology of convex
analysis used in [7], that every π ∈ Ce,u is an exposed point of He,u. �

Large deviations from total probability formula. We next show how the Sanov’s theorem
for i.i.d. random variables can be recovered from Theorem 2.2. While this route is over-
complicated in the present context, it will be crucial to deduce the large deviations for Kac’s
walks with canonical initial distribution of the velocities.

We first state a general argument to deduce the large deviation principle from the total
probability formula. Let X be a Hausdorff topological space and {μn} be a sequence of prob-
abilities on X. Let also Y be a locally compact Polish space, Y be a Y-valued random variable
on X and denote by {pn} the corresponding laws. Fix n and let y 	→ νn

y be a regular version
of the conditional probability of μn given Y . We have the disintegration

(2.10) μn =
∫

pn(dy) νn
y .

We will deduce the large deviation of {μn} from the large deviations of {pn} and the large
deviations on {νn

y }, that will be assumed to hold uniformly for y in compact subsets of Y.
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PROPOSITION 2.5. Assume:

(i) the family {pn} is exponentially tight and satisfies a large deviation principle with
good rate function A : Y→ [0,+∞];

(ii) for each compact K ⊂⊂ Y there exists a sequence of compacts H� ⊂⊂ X such that
supy∈K νn

y (H c
� ) ≤ e−n�;

(iii) for each y ∈ Y and each sequence yn → y the family {νn
yn

} satisfies a large deviation
principle with good rate function Fy : X → [0,+∞].
Then the family {μn} is exponentially tight and satisfies a large deviation principle with good
rate function I : X → [0,+∞] given by

(2.11) I (x) = inf
y∈Y

{
A(y) + Fy(x)

}
.

PROOF. Step 1. Exponential tightness. As follows from (2.10), for each compact K ⊂⊂ Y

and each compact H ⊂⊂ X

μn(
H c) ≤ sup

y∈K

νn
y

(
H c) + pn

(
Kc)

.

The assumptions on {pn} and {νn
y } thus yield the exponential tightness of {μn}.

Step 2. Lower semicontinuity of the rate function. Since A is lower semicontinuous, the
lower semicontinuity of I in (2.11) is implied by the (joint) lower semicontinuity of the map
X×Y � (x, y) 	→ Fy(x) that we next deduce. Since Y is Polish, the joint lower semicontinuity
of F is in fact equivalent to the following statement. For each (x, y) ∈ X× Y, each sequence
yk → y, and each δ > 0 there exists an open neighborhood N � x such that

(2.12) lim
k

inf
x′∈N Fyk

(
x′) ≥ Fy(x) − δ.

Fix (x, y) ∈ X× Y, a sequence yk → y, and δ > 0. By the lower semicontinuity of X � x 	→
Fy(x), there exists an open neighborhood N ′ � x such that

(2.13) inf
x′∈N ′ Fy

(
x′) ≥ Fy(x) − δ.

Denoting by an over-line the closure, let now N be a open neighborhood such that x ∈ N ⊂
N ⊂ N ′. We then claim that the bound (2.12) holds. In order to show it, by passing to a not
relabeled subsequence, we may assume that limk infx′∈N Fyk

(x′) = limk infx′∈N Fyk
(x′). For

k fixed, by the lower bound for the sequence {νn
yk

},

lim
n

1

n
logνn

yk
(N ) ≥ − inf

x′∈N Fyk

(
x′)

which, by taking the inferior limit in k, implies

lim
k

lim
n

1

n
logνn

yk
(N ) ≥ − lim

k
inf

x′∈N Fyk

(
x′).

By a diagonal argument, there exists a sequence nk ↑ +∞ such that

lim
k

lim
n

1

n
logνn

yk
(N ) = lim

k

1

nk

logνnk
yk

(N ) ≤ lim
k

1

nk

logνnk
yk

(N )

≤ − inf
x′∈N

Fy

(
x′) ≤ − inf

x′∈N ′ Fy

(
x′) ≤ −[

Fy(x) − δ
]
,

where we used the large deviations upper bound for the sequence {νnk
yk } and (2.13) in the last

step. Comparing the two last displayed equations the bound (2.12) follows.
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Step 3. Lower bound. It is enough to show that for each x ∈X and each open neighborhood
N � x

(2.14) lim
n

1

n
logμn(N ) ≥ −I (x).

Fix a metric inducing the topology of Y and, given y ∈ Y and δ > 0, let Bδ(y) the corre-
sponding open ball of radius δ centered in y. In order to show (2.14), fix y ∈ Y. By the large
deviations lower bound of the sequence {pn}, for each δ > 0 we then have

lim
n

1

n
logpn

(
Bδ(y)

) ≥ −A(y).

Therefore, by a diagonal argument, there exists a sequence δn ↓ 0 such that

lim
n

1

n
logpn

(
Bδn(y)

) ≥ −A(y).

From the disintegration (2.10) we then obtain

μn(N ) ≥
∫
Bδn(y)

pn

(
dy′)νn

y′(N ) ≥ pn

(
Bδn(y)

)
inf

y′∈Bδn(y)
νn
y′(N ).

Whence, for a suitable sequence y′
n → y,

lim
n

1

n
logμn(N ) ≥ lim

n

1

n
logpn

(
Bδn(y)

) + lim
n

1

n
logνn

y′
n
(N ) ≥ −[

A(y) + Fy(x)
]
,

where we used the large deviations lower bound for the family {νn
y′
n
}. By optimizing over

y ∈ Y and recalling (2.11) we then deduce (2.14).
Step 4. Upper bound for compacts. Fix a compact set H ⊂⊂ X, � > 0, ε > 0, and

observe that, by the joint lower semicontinuity of F proven in Step 2 above, the map
Y � y 	→ infx∈H Fy(x) is lower semicontinuous. By the exponential tightness of {pn}, there
exists a compact K� ⊂⊂ Y such that pn(K

c
�) ≤ e−n�. For each y ∈ K�, by the lower semicon-

tinuity of A and the previous observation, there exists δ > 0 such that A(y′) ≥ A(y) − ε/2
and infx∈H Fy′(x) ≥ infx∈H Fy(x)− ε/2 for any y′ ∈ B2δ(y). By the local compactness of Y,
possibly by decreasing δ, we can assume that B2δ(y) is relatively compact. Furthermore, by
the compactness of K�, there exists a finite family {Bδi

(yi)}i=1,...,r such that K� ⊂ ⋃
i Bδi

(yi).
In view of (2.10),

μn(H) ≤
r∑

i=1

∫
Bδi

(yi)
pn

(
dy′)νn

y′(H) + pn

(
Kc

�

)

≤
r∑

i=1

pn

(
Bδi

(yi)
)

sup
y′∈Bδi

(yi)

νn
y′(H) + e−n�.

(2.15)

Since the sets Bδi
(yi) are relatively compact, by passing if necessary to a not relabeled sub-

sequence, for each i = 1, . . . , r there exist ȳi ∈ Bδi
(yi) and a sequence yn

i → ȳi such that

lim
n

sup
y′∈Bδi

(yi )

1

n
logνn

y′(H) = lim
n

1

n
logνn

yn
i
(H).
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Letting a ∨ b := max{a, b} and using the large deviation upper bound both for {pn} and {νn
yn
i
}

in (2.15) we thus get

lim
n

1

n
logμn(H) ≤ max

i=1,...,r

{
− inf

y′∈Bδi
(yi)

A
(
y′) − inf

x∈H
Fȳi

(x)
}

∨ (−�)

≤ − min
i=1,...,r

{
A(yi) + inf

x∈H
Fyi

(x) − ε
}

∨ (−�)

≤ − inf
x∈H

inf
y∈Y

{
A(y) + Fy(x) − ε

} ∨ (−�).

Recalling (2.11), we conclude by taking the limits ε ↓ 0 and � ↑ +∞. �

Let v ∈ 	N be sampled according to the product probability μN = m⊗N and denote by
pN the law of 1

N

∑
i ζ (vi). We then have the disintegration

μN =
∫

pN

(
d(e, u)

)
νN
e,u.

Moreover the sequence {pN } satisfies a large deviations principle with rate function
A : (0,+∞) ×R

d → [0,+∞] given by

(2.16) A(e,u) = sup
γ

{
γ · (e, u) − logm

(
eγ ·ζ )}

.

This follows from the multidimensional Cramér’s theorem in [7], Thm. 2.3.6. Indeed, in the
terminology of convex analysis used in [7], the function γ 	→ logm(eγ ·ζ ) is steep. Namely
|∇ logm(eγ ·ζ )| diverges when γ0 → γ ∗

0 . This follows from item (ii) in Assumption 2.1.
In view of Proposition 2.5 and the following remark, Sanov’s theorem for i.i.d. random

variables can be deduced from Theorem 2.2.

REMARK 2.6. We have

Ent(π |m) = inf
(e,u)

{
A(e,u) + He,u(π)

}
.

In fact, by a direct computation, the infimum is achieved for (e, u) = π(ζ ).

3. Large deviations for Kac model with microcanonical initial data.

The model. Recall that 	N = (Rd)N . We consider the Kac walk given by the Markov
process on the configuration space 	N , whose generator acts on bounded continuous func-
tions f : 	N →R as

LNf (v) = 1

N

∑
{i,j}

Li,jf (v),

where the sum is carried over the unordered pairs {i, j} ⊂ {1, . . . ,N}, i �= j , and

Li,jf (v) =
∫
Sd−1

dωB(vi − vj ,ω)
[
f

(
T ω

i,jv
) − f (v)

]
.

Here Sd−1 is the sphere in R
d , dω is the Haar measure on Sd−1, and

(3.1)
(
T ω

i,jv
)
k =

⎧⎪⎪⎨
⎪⎪⎩

vi + (
ω · (vj − vi)

)
ω if k = i,

vj − (
ω · (vj − vi)

)
ω if k = j,

vk otherwise,
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and the collision kernel B is given by

(3.2) B(v − v∗,ω) = 1

2

∣∣(v − v∗) · ω∣∣.
Observe that the dynamics preserves energy and momentum, that is, can be restricted to the
set 	N

e,u as defined in (2.2). We denote by (v(t))t≥0 the Markov process generated by LN .
Fix hereafter T > 0. Given a probability ν on 	N we denote by P

N
ν the law of this pro-

cess on the time interval [0, T ]. Observe that PN
ν is a probability on the Skorokhod space

D([0, T ];	N). As usual if ν = δv for some v ∈ 	N , the corresponding law is simply de-
noted by P

N
v .

Empirical observables. Recall that P(Rd) is the set of probability measures π on R
d

equipped with the weak topology and the corresponding Borel σ -algebra. Let D([0, T ];
P(Rd)) the set of P(Rd)-valued cádlág paths endowed with the Skorokhod topology and
the corresponding Borel σ -algebra. Recalling the empirical measure πN defined in (2.3),
with a slight abuse of notation we denote also by πN the map from D([0, T ];	N) to
D([0, T ];P(Rd)) defined by πN

t (v) := πN(v(t)), t ∈ [0, T ].
We denote by M the subset of the finite measures Q on [0, T ] × R

2d × R
2d that satisfy

Q(dt; dv, dv∗, dv′, dv′∗) = Q(dt; dv∗, dv, dv′, dv′∗) = Q(dt; dv, dv∗, dv′∗, dv′). We con-
sider M endowed with the weak topology and the corresponding Borel σ -algebra. By defini-
tion, the weak topology is the weakest topology such that the map Q 	→ Q(F) is continuous
for each F in Cb([0, T ] ×R

2d ×R
2d).

For paths v(·) sampled according to P
N
v , the empirical flow is the map QN taking values

on M defined by

(3.3) QN(v)(F ) := 1

N

∑
{i,j}

∑
k≥1

F
(
τ

i,j
k ;vi

(
τ

i,j
k −)

, vj

(
τ

i,j
k −)

, vi

(
τ

i,j
k

)
, vj

(
τ

i,j
k

))
,

where F : [0, T ] × R
2d × R

2d → R is a continuous and bounded function that satisfies
F(t;v, v∗, v′, v′∗) = F(t;v∗, v, v′, v′∗) = F(t;v, v∗, v′∗, v′), while (τ

i,j
k )k≥1 are the jump

times of the pair (vi, vj ). Here, vi(t−) = lims↑t vi(s). In view of the conservation of the
energy and momentum, the measure QN(dt; ·) is supported on {ζ (v) + ζ (v∗) = ζ (v′) +
ζ (v∗)} ⊂R

2d ×R
2d .

Let S be the subset of D([0, T ];P(Rd)) × M given by elements (π,Q) that satisfies the
balance equation

πT (φT ) − π0(φ0) −
∫ T

0
dt πt (∂tφt )

+
∫

Q
(

dt; dv, dv∗, dv′, dv′∗
)[

φt(v) + φt (v∗) − φt

(
v′) − φt

(
v′∗

)] = 0

(3.4)

for each φ ∈ Cb([0, T ] × R
d) continuously differentiable in t , with bounded derivative. For

each v ∈ 	N , with P
N
v probability one, the pair (πN,QN) belongs to S.

The rate function. Given (e, u) ∈ Z, recall Ce,u := {μ ∈ P(Rd) : μ(ζ0) ≤ e, μ(ζ ) = u},
and set

(3.5) Ce,u := {
π ∈ C

([0, T ],P(
R

d))
πt ∈ Ce,u, t ∈ [0, T ]},

that is a closed subset of C([0, T ],P(Rd).
For notation convenience, let r(v, v∗, ·) be the measure on R

2d supported on {ζ (v) +
ζ (v∗) = ζ (v′) + ζ (v′∗)} such that

r
(
v, v∗, dv′, dv′∗

) = dωB(v − v∗,ω),
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where v′ and v′∗ are related to ω by the collision rules, as in (3.1). For π ∈ D([0, T ];P(Rd))

let Qπ be the measure defined by

(3.6) Qπ (
dt; dv, dv∗, dv′, dv′∗

) := 1

2
dt πt (dv)πt (dv∗) r

(
v, v∗; dv′, dv′∗

)
and observe that Qπ(dt, ·) is supported on {ζ (v) + ζ (v∗) = ζ (v′) + ζ (v∗)} ⊂R

2d ×R
2d .

DEFINITION 3.1. Let Sac
e,u be the subset of S given by the elements (π,Q) that satisfy

the following conditions:

(i) πt ∈ Ce,u for each t ∈ [0, T ];
(ii) Q � Qπ .

Observe that if (π,Q) ∈ Sac
e,u then Qπ is a finite measure. Moreover, from the balance

equation (3.4), as Q � Qπ we deduce that π ∈ C([0, T ];P(Rd)) so that π ∈ Ce,u.
The dynamical rate function Je,u : S → [0,+∞] is defined by

(3.7) Je,u(π,Q) :=
⎧⎪⎨
⎪⎩

∫
dQπ

[
dQ

dQπ
log

dQ

dQπ
−

(
dQ

dQπ
− 1

)]
if (π,Q) ∈ Sac

e,u,

+∞ otherwise.

By the remark following Definition 3.1, Je,u(π,Q) < +∞ implies π ∈ Ce,u.
Recalling He,u has been defined in (2.5), the microcanonical rate function is

(3.8) Ie,u(π,Q) := He,u(π0) + Je,u(π,Q).

Let also Ŝ be the subset of S given by the pairs (π,Q) such that∫
[0,T ]×R4d

dQ
[
ζ0(v) + ζ0(v∗) + ζ0

(
v′) + ζ0

(
v′∗

)]
< +∞.

If (π,Q) ∈ Ŝ, by a standard truncation procedure, we can test the balance equation (3.4)
against φ(t, v) = a(t)ζ0(v) with a ∈ C1(0, T ) ∩ C[0, T ] deducing that πt(ζ0) = π0(ζ0) for
every t ∈ [0, T ].

THEOREM 3.2. Assume m satisfies conditions (i)–(iii) in Assumption 2.1. Fix (e, u) ∈
Z, a sequence (eN,uN) → (e, u), and let νN

eN ,uN
be the microcanonical probabilities as in

Section 2. The family P
N
νN
eN ,uN

◦ (πN,QN)−1 satisfies a large deviation upper bound with

good rate function Ie,u : S → [0,+∞], namely Ie,u has compact level sets and for each
closed C ⊂ S

(3.9) lim
N→+∞

1

N
logPN

νN
eN ,uN

((
πN,QN ) ∈ C

) ≤ − inf
C

Ie,u.

Moreover, if m satisfies also condition (iv) in Assumption 2.1, then for each open O ⊂ S

(3.10) lim
N→+∞

1

N
logPN

νN
eN ,uN

((
πN,QN ) ∈ O

) ≥ − inf
O∩Ŝ

Ie,u.

4. Proof of the upper bound. The proof follows the same strategy as in [1] and in [9].
For the reader’s convenience we here provide the details. The upper bound is achieved by an
established pattern in large deviation theory. We first prove the exponential tightness, which
allows us to reduce to compacts. By an exponential tilting of the measure, we prove an upper
bound for open balls and finally we use a mini-max argument to conclude.
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The basic observation is the following. Let F : [0, T ]×R
4d →R be bounded, measurable

and such that F(t;v, v∗, v′, v′∗) = F(t;v∗, v, v′, v′∗) = F(t;v, v∗, v′∗, v′). Set

(4.1) λF (t;v, v∗) =
∫

r
(
v, v∗,dv′,dv′∗

)
eF(t;v,v∗,v′,v′∗).

If F = 0 we drop it from the notation. Denoting by QN[0,t] the restriction of the measure QN

on [0, t], t ∈ (0, T ], and using that λ(v, v) = λF (t, v, v) = 0 the process

M
F
t = exp

{
N

(
QN[0,t](F ) − 1

2

∫ t

0
ds πN

s ⊗ πN
s

(
λF − λ

))}
(4.2)

is a P
N
v positive martingale for each v ∈ 	N , see for example, [12], App. 1, Prop. 2.6.

For any δ > 0 we define the compact set Cδ
e,u := {μ ∈ P(Rd) : μ(ζ0) ≤ e+ δ, |μ(ζ )−u| ≤

δ}. By the conservation of the energy and the momentum

(4.3) P
N
νN
eN ,uN

(
πN

t ∈ Cδ
e,u, t ∈ [0, T ]) = 1,

eventually in N . To prove the exponential tightness of the empirical measure it is therefore
enough to obtain an estimate on the continuity modulus of the map t 	→ πt(φ) which is stated
in the next lemma.

LEMMA 4.1. For each ε > 0 and φ ∈ Cb(R
d)

(4.4) lim
η↓0

lim
N→+∞

1

N
logPN

νN
eN ,uN

(
sup

t,s ∈[0,T ] :|t−s|<η

∣∣πN
t (φ) − πN

s (φ)
∣∣ > ε

)
= −∞.

Set

(4.5) F̄
(
v, v∗, v′, v′∗

) := log
(
e + ζ0(v) + ζ0(v∗) + ζ0

(
v′) + ζ0

(
v′∗

))
.

Since F̄ ≥ 1 and F̄ has compact level sets, the Chebyshev inequality and the Prohorov the-
orem [4], Thm.8.6.2, imply that, given � > 0, the set {Q ∈ M : Q(F̄ ) ≤ �} is compact. The
exponential tightness of the empirical flow thus follows from the next lemma.

LEMMA 4.2.

(4.6) lim
�→+∞ lim

N→+∞
1

N
logPN

νN
eN ,uN

(
QN(F̄ ) > �

) = −∞.

It is convenient to prove Lemmata 4.1 and 4.2 in the reverse order.

PROOF OF LEMMA 4.2. Observe that by the conservation of the energy, there exists a

constant c > 0, depending on e, such that for any N the bound QπN
(e

1
2 F̄ ) ≤ c holds with

P
N
νN
eN ,uN

probability one.

Let MT be the exponential martingale in (4.2) with F = 1
2 F̄ . Then, for each � > 0,

P
N
νN
eN ,uN

(
QN(F̄ ) > �

) = E
N
νN
eN ,uN

(
MT (MT )−11QN(F̄ )>�

) ≤ exp{−N�/2 + cN}. �

PROOF OF LEMMA 4.1. In view of the balance equation (3.4) it is enough to show that
there exists a function c : (0,1) →R+ with c(η) ↑ +∞ as η ↓ 0 such that, for any ε > 0

P
N
νN
eN ,uN

(
sup

t∈[0,T −η]
QN[t,t+η](1) > ε

)
≤ e−Nc(η).



LDP ASSOCIATED TO THE HOMOGENEOUS BOLTZMANN EQUATION 4007

By a straightforward inclusion of events, the previous bound follows from

1

η
sup

t∈[0,T −η]
P

N
νN
eN ,uN

(
QN[t,t+η](1) > ε

) ≤ e−Nc(η).

Consider the super-martingale (4.2) with F = γ 1[t,t+η], γ > 0. Using the same argument of
the previous lemma we deduce

P
N
νN
eN ,uN

(
QN[t,t+η](1) > ε

) ≤ exp
{−N

[
γ ε − η

(
eγ − 1

)
C(1 + e)

]}
.

The proof is concluded by choosing γ = log(1/η). �

Upper bound on compacts. Recalling the set Cδ
e,u defined above (4.3), let Cδ

e,u be the
closed subset of C([0, T ];P(Rd)) defined as

(4.7) Cδ
e,u := ⋂

t∈[0,T ]

{
π : πt ∈ Cδ

e,u

}
.

By Urysohn’s lemma, for each η > 0 there exists ψ
δ,η
e,u : C([0, T ];P(Rd)) → [0,1] continu-

ous such that

ψδ,η
e,u (π) =

{
0 if π ∈ Cδ

e,u,

1 if dist
(
π,Cδ

e,u

) ≥ η,

where dist is the uniform distance. Moreover, for π ∈ D([0, T ],P(Rd)), we extend it to a
function defined on R by setting πt = π0 if t < 0, πt = πT if t > T . Let ıε be the a smooth
approximation of the δ function, and denote by ıε ∗ π the time convolution of π .

LEMMA 4.3. Fix a measurable subset B ⊂ S. For any (φ,F ) ∈ Cb(R
d) × Cb(R

+ ×
(Rd)

2 ×(Rd)
2
) such that and F(t;v, v∗, v′, v′∗) = F(t;v∗, v, v′, v′∗) = F(t;v, v∗, v′∗, v′), and

any δ, η, ε,α > 0,

(4.8) lim
N→∞

1

N
logPN

νN

((
πN,QN ) ∈ B

) ≤ − inf
(π,Q)∈B

{
Iφ,F (π,Q) + αψδ,η

e,u (ıε ∗ π)
}
,

where

(4.9) Iφ,F (π,Q) := π0(φ) − �e,u(φ) + Q(F) − 1

2

∫ T

0
dt πt ⊗ πt

(
λF − λ

)
.

PROOF. Let ν̃N
eN ,uN

be the probability on 	N defined by

dν̃N
eN ,uN

= dνN
eN ,uN

exp
{
NπN(φ) − logνN

eN ,uN

(
eNπN(φ))}

,

where πN : 	N → P(Rd) is the map defined in (2.3).
Let now πN : D([0, T ];	N) → D([0, T ];P(Rd)) be the map introduced before equa-

tion (3.3). Recalling (4.3) and the definition of the martingale M
F
t in (4.2), we write

P
N
νN
eN ,uN

((
πN,QN ) ∈ B

)

=
∫

νN
eN ,uN

(dv)EN
v

(
e−Nαψ

δ,η
e,u (ıε∗πN)1B

(
πN,QN ))

=
∫

dν̃N
eN ,uN

dνN
eN ,uN

dν̃N
eN ,uN

E
N
v

(
e−Nαψ

δ,η
e,u (ıε∗πN)

M
F
T

(
M

F
T

)−11B

(
πN,QN ))

.
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We get

P
N
νN
eN ,uN

((
πN,QN ) ∈ B

)

≤ sup
(π,Q)∈B

exp
{
−N

[
π0(φ) − 1

N
logνN

eN ,uN

(
eNπN(φ)) + αψδ,η

e,u (ıε ∗ π)

+ Q(F) − 1

2

∫ T

0
dt πt ⊗ πt

(
λF − λ

)]}
,

where we used that EN
ν̃N
eN ,uN

(MF
T ) = 1. The statement follows from Lemma 2.3. �

LEMMA 4.4 (Variational characterization of the dynamical rate functional). For any (π,

Q) ∈ S such that π ∈ C([0, T ];P(Rd))

(4.10) Je,u(π,Q) = sup
F,α,δ,η,ε

{
Q(F) − 1

2

∫ T

0
dt πt ⊗ πt

(
λF − λ

) + αψδ,η
e,u (ıε ∗ π)

}
,

where the supremum is carried out over all continuous and bounded F : [0, T ] × (Rd)2 ×
(Rd)2 →R such that F(t;v, v∗, v′, v′∗) = F(t;v∗, v, v′, v′∗) = F(t;v, v∗, v′∗, v′), and α, δ, η,

ε > 0.

PROOF. By monotonicity

sup
α,δ,η,ε

αψδ,η
e,u (ıε ∗ π) = sup

ε
lim

α↑+∞ lim
δ↓0

lim
η↓0

αψδ,η
e,u (ıε ∗ π) =

{
0 if π ∈ Ce,u,

+∞ otherwise,

where we have used that if (ıε ∗ π)t ∈ Ce,u, for any t ∈ [0, T ] and ε > 0, then πt ∈ Ce,u for
any t ∈ [0, T ]. To complete the proof, it remains to show that for π ∈ Ce,u

(4.11) Je,u(π,Q) = sup
F

{
Q(F) − 1

2

∫ T

0
dt πt ⊗ πt

(
λF − λ

)}
.

Recall the definition of Qπ in (3.6) and observe that

1

2

∫ T

0
dt πt ⊗ πt

(
λF − λ

) = Qπ (
eF − 1

)
.

This implies that if supF [Q(F) − 1
2

∫ T
0 dt πt ⊗ πt(λ

F − λ)] is finite, then Q is absolutely
continuous with respect to Qπ . The proof is now completed by a direct computation. �

PROOF OF THEOREM 3.2, UPPER BOUND. In view of (4.3), Lemma 4.2 and Lemma 4.1
imply the exponential tightness of the family {PN

νN
eN ,uN

◦ (πN,QN)−1}. Therefore it is enough

to show the statement for compacts. In view of Lemma 4.3 and the mini-max argument in
[12], App.2, Lemma 3.2, the statement follows from Lemmata 2.4 and 4.4. �

5. Proof of the lower bound. We premise a general lemma concerning the large devia-
tions lower bound which is proven in [10], Prop. 4.1, see also [16].

LEMMA 5.1. Let {Pn} be a sequence of probability measures on a Polish space X . As-
sume that for each x ∈ X there exists a sequence of probability measures {P̃ x

n } weakly con-
vergent to δx and such that

(5.1) lim
n→∞

1

n
Ent

(
P̃ x

n |Pn

) ≤ J(x)
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for some J : X → [0,+∞]. Then the sequence {Pn} satisfies the large deviation lower bound
with rate function given by sc−J, the lower semi-continuous envelope of J, that is,(

sc−J
)
(x) := sup

U∈Nx

inf
y∈U

J(y),

where Nx denotes the collection of the open neighborhoods of x.

We shall first prove the entropy bound (5.1) when (π,Q) belongs to a “nice” set, under-
standing that the functional J is infinite otherwise. This will be achieved by adapting the
strategy introduced in [1], see also [9]. By a density argument we then identify the lower-
semicontinuous envelope sc−J with the rate function Ie,u on the set Ŝ. In particular, as in [1]
and [9], the large deviations upper and lower bound are here proven to match only when Q

has bounded second moment. On the other hand, we do not require, as in [9], that B ≥ c > 0.

Perturbed Kac walks. We start by the following law of large numbers for a class of per-
turbed Kac’s walks. Consider perturbed time dependent collision kernels B̃ that are continu-
ous and satisfy

(5.2) sup
t,v,v∗

λ̃t (v, v∗) = sup
t,v,v∗

∫
B̃t (v, v∗,ω)dω ≤ C,

for some C < +∞. Fix (e, u) ∈ Z, a sequence (eN,uN) → (e, u), and let νN
eN ,uN

be the

family of probabilities on 	N as in Section 2, and denote by P̃
N
νN
eN ,uN

the law of the perturbed

Kac walk with initial datum νN
eN ,uN

.

LEMMA 5.2. As N → +∞, the pair (πN,QN) converges, in P̃
N
νN
eN ,uN

probabil-

ity, to (f dv , q dt dv dv∗ dω), where qt (v, v∗,ω) = 1
2ft (v)ft (v∗)B̃t (v, v∗,ω) and f ∈

C([0, T ];L1(Rd)) is the unique solution to the perturbed Kac’s equation

(5.3)

⎧⎪⎨
⎪⎩

∂tft (v) =
∫∫

dv∗ dω
[
B̃t

(
v′, v′∗,ω

)
ft

(
v′)ft

(
v′∗

) − B̃t (v, v∗,ω)ft (v)ft (v∗)
]
,

f0(·) = dme,u

dv
.

Here we understand that (5.3) holds by integrating against continuous, bounded test functions
which are continuous differentiable in time.

The proof follows from the fact the large deviation upper bound holds also for the per-
turbed Kac’s walk, and from the uniqueness of the solution to (5.3). The latter holds in view
of the condition (5.2), see the proof of Lemma 4.1 in [1] for the details.

The following specifies the collection of “nice” (π,Q). Recall Sac
e,u in Definition 3.1.

DEFINITION 5.3. Let S̃e,u be the collection of elements (π,Q) ∈ Sac
e,u whose densities

(f, q) are continuous and such that

(5.4) sup
t,v,v∗,ω

qt (v, v∗,ω)

ft (v)ft (v∗)
< +∞,

and

(5.5) sup
t,v,v∗,ω

qt (v, v∗,ω)

ft (v)ft (v∗)B(v, v∗,ω)
< +∞.
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Given (π,Q) ∈ S̃e,u, denote by B̃t the time dependent perturbed kernel defined by

(5.6) B̃t (v, v∗,ω) = 2
qt (v, v∗,ω)

ft (v)ft (v∗)
,

that meets (5.2).
The next statement provides the large deviation lower bound for neighborhood of elements

in S̃e,u.

PROPOSITION 5.4. Let (π,Q) ∈ S̃e,u. Assume that m satisfies items (i)–(iii) in Assump-
tion 2.1, and suppose π0(dv) = eφm(dv)/m(eφ) for some φ continuous and bounded. Fix
a sequence (eN,uN) → (e, u), and denote by ν̃N

eN ,uN
the regular version of the probability

π⊗N
0 conditioned to ( 1

N

∑N
i=1

1
2 |vi |2, 1

N

∑N
i=1 vi) evaluated at (eN,uN). Then

lim
N→∞

1

N
Ent

(
P̃

N
ν̃N
eN ,uN

|PN
νN
eN ,uN

) ≤ Ie,u(π,Q).

We premise the following Lemma.

LEMMA 5.5. If F ∈ Cb([0, T ] ×R
d ×R

d × Sd−1), then

lim sup
N→∞

Ẽ
N
ν̃N
eN ,uN

(
QN(F)2)

< +∞.

PROOF. Set

M̃N
t := QN[0,t](F ) − 1

N2

∑
{i,j}

∫ t

0
ds

∫
dω B̃s(vi, vj ,ω)Fs(vi, vj ,ω),

and note that it is a P̃ν̃N
eN ,uN

martingale with predictable quadratic variation

〈
M̃N 〉

t = 1

N2

∑
{i,j}

∫ t

0
ds

∫
dω B̃s(vi, vj ,ω)Fs(vi, vj ,ω)2.

In view of (5.2), the random variable 〈M̃N 〉T is uniformly bounded in N , which implies the
statement. �

PROOF OF PROPOSITION 5.4. By using Theorem 2.2, it is enough to show that

(5.7) lim
N→∞

1

N
Ent

(
P̃

N
ν̃N
eN ,uN

|PN
ν̃N
eN ,uN

) ≤ Je,u(π,Q).

In view of the assumptions on B̃ , the value at time T of the martingale defined in (4.2) with
Ft = log(B̃/B) is the Radon–Nykodim derivative of P̃N

ν̃N
eN ,uN

with respect to P
N
ν̃N
eN ,uN

. Since

λF
t = λ̃t ,

1

N
Ent

(
P̃

N
ν̃N
eN ,uN

|PN
ν̃N
eN ,uN

)

= Ẽν̃N
eN ,uN

(
QN[0,T ](F ) − 1

2

∫ T

0
ds πN

s ⊗ πN
s (λ̃s − λ)

)
.

Now observe that, by Lemma 5.2, (πN,QN) converges to (π,Q) in P̃
N
ν̃N
eN ,uN

probability. By

the definition of S̃e,u, F satisfies the assumption of Lemma 5.5, then the sequence QN[0,T ](F )

is uniformly summable with respect to P̃
N
ν̃N
eN ,uN

. By (5.2), πN
s ⊗ πN

s (λ̃s) converges to πs ⊗
πs(λ̃s) for almost all s ∈ [0, T ]. Moreover, by energy conservation, λ is uniformly summable
with respect to ds πN

s ⊗ πN
s . Therefore (5.7) follows. �
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Approximating paths. Recall that the set Ŝ has been defined above in Theorem 3.2.

THEOREM 5.6. Assume that m satisfies items (i)–(iv) in Assumption 2.1. For each
(π,Q) ∈ Ŝ such that Ie,u(π,Q) < +∞ there exists a sequence {(πn,Qn)} ⊂ S̃e,u ∩ Ŝ sat-
isfying (πn,Qn) → (π,Q) and Ie,u(πn,Qn) → I (π,Q).

This result, together with Proposition 5.4 and Lemma 5.1, concludes the proof of the large
deviations lower bound as stated in (3.10).

PROOF. The proof is achieved by combining the following three steps and a standard
diagonal argument. In particular, in Step 1 we construct positive regular approximating prob-
ability paths, in Step 2 we regularize in time, in Step 3 we perform a truncation argument as
in [1], adapted to the hard-sphere kernel.

Step 1. Velocity convolution. Since Ie,u(π,Q) < +∞ and (π,Q) ∈ Ŝ, πt(ζ ) = u, πt(ζ0) =
π0(ζ0) = U + |u|2/2 ∈ (0, e], where U = 1

2

∫
πt(dv)|v − u|2 is the internal energy.

Let (f, q) be the densities of (π,Q). Given 0 < δ < 1, let gδ be the Gaussian kernel on R
d

with variance δ and define

f δ
t (v) = α(gδ ∗ ft )

(
α(v − u) + u

)
,

qδ
t (v, v∗,ω) = α2(gδ ⊗ gδ ⊗ id∗q)

(
α(v − u) + u,α(v∗ − u) + u,ω

)
,

(5.8)

where id is the identity function and α = α(δ) > 0 is chosen such that
∫

dvf δ
t (v)|v −u|2/2 =

U . Observe that for any α > 0,
∫

dvf δ
t (v)v = u.

Let (πδ,Qδ) be the pair with densities (f δ
t , qδ

t ), which satisfies the balance equation. In
order to prove the convergence of the rate function, we first observe that, by item (ii) in
Assumption 2.1, we can write

Ent
(
πδ

0 |me,u

) =
∫

f δ
0 logf δ

0 +
∫

f δ
0 log

1

me,u

.

Since α(δ) → 1 as δ → 0, by Jensen’s inequality and item (ii) in Assumption 2.1,

lim
δ→0

Ent
(
πδ

0 |me,u

) ≤ Ent(π0|me,u).

By the choice of α, f δ
0 has the same energy as f0. Therefore

lim
δ→0

He,u

(
πδ

0
) ≤ He,u(π0).

We will conclude the proof showing that limJe,u(f
δ, qδ) ≤ Je,u(f, q). We first observe

that by a straightforward approximation argument we can choose F = log 1/B in (4.11), and
deduce

(5.9) Q

(
log

1

B

)
≤ Je,u(f, q) + 1

2

∫ T

0
dt

∫
dv dv∗ dωff∗B

(
1

B
− 1

)
< ∞.

We prove in the Appendix that Qδ(log 1/B) is bounded and converges to Q(log 1/B) as
δ → 0. Therefore

Je,u

(
πδ,Qδ) =

∫ T

0
dt

∫
dv dv∗ dωqδ log

2qδ

f δf δ∗
+ Qδ

(
log

1

B

)
− Qδ(1) + Qπδ

(1).

Since the map [0,+∞)2 � (a, b) 	→ a log(a/b) is one-homogeneous and convex, by (5.8) and
Jensen’s inequality the first term on the r.h.s. is bounded by Q(log 2q

ff∗ ). Moreover, Qδ(1) =
Q(1), while, since B = 1

2 |(v − v∗) · ω|, Qπδ
(1) = 1

α
Qπ(1).
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Step 2. Time convolution. Consider (π,Q) ∈ Ŝ such that Ie,u(π,Q) < +∞, and denote
with (f, q) their densities. Assume that f and q are smooth in the velocities, and f > 0.
Observe that the approximating path constructed in Step 1 meets these requirements.

Extend [0, T ] � t 	→ (ft , qt ) to a function defined on (−∞, T ] by setting (ft , qt ) = (f0,0)

if t < 0. Let ıε be the a smooth approximation of the δ function, with support in (−ε,0), and
denote by (πε,Qε) the path with densities (f ε, qε) = ıε ∗ (f, q); here we understand the
convolution in time. The pair (πε,Qε) converges to (π,Q) and satisfies the balance equation
(3.4). Observe that f ε

0 = f0 and, since (π,Q) ∈ Ŝ, πt(ζ ) = π0(ζ ) for any t ∈ [0, T ], so that
πε

t (ζ ) = π0(ζ ) for any t ∈ [0, T ],
We claim that limε→0 Ie,u(π

ε,Qε) = Ie,u(π,Q). To this end, as He,u(π
ε
0 ) = He,u(π0), by

lower semi-continuity it is enough to show that limε→0 Je,u(π
ε,Qε) ≤ Je,u(π,Q).

Let g1 be the standard Gaussian density on R
d . We observe that, by a standard approxi-

mation argument, we can choose F = logg1/f in the variational formula (4.11), and deduce
that

∫
q log 1

f
< +∞ is finite. Since Je,u(π,Q) is bounded, using (5.9), we then deduce that∫

q logq < +∞.
By Jensen’s inequality

∫
qε logqε ≤ ∫

q logq < +∞. On the other hand, by convexity, the
maps q 	→ ∫

q logq is lower semi-continuous, therefore we conclude that

lim
ε→0

∫
qε logqε =

∫
q logq.

We write

Je,u

(
πε,Qε) = −

∫
qε log 2qε +

∫
qε log

2qε

f ε
+

∫
qε log

2qε

f ε∗

+
∫

qε

(
log

1

B
− 1

)
+

∫
f εf ε∗ B.

As already stated, the first term on the right-hand-side converges. By Jensen’s inequality
the second term is bounded by

∫
q log(2q/f ) and the third by

∫
q log(2q/f∗). Moreover,

the fourth does not depend on ε. The convergence of the last term follows from the fact that,
since the energy is uniformly bounded and π ∈ C([0, T ],P(Rd)), the map [0, T ]2 � (s, s′) 	→∫

dv dv∗ dωfs(v)fs(v∗)B(v − v∗,ω) is continuous.
Step 3. Truncation. Consider (π,Q) ∈ Ŝ with Ie,u(π,Q) < +∞, with densities (f, q). We

denote by q
(i)
t , i = 1, . . . ,4 the marginal of qt respectively on v, v∗, v′, v′∗. Then q

(1)
t = q

(2)
t ,

q
(3)
t = q

(4)
t , and the balance equation is the weak version of the identity

∂tft = 2
(
q

(3)
t − q

(1)
t

)
.

In the sequel we assume (f, q) smooth, f strictly positive, and q
(3)
t ∈ L2([0, T ] ×R

d). Ob-
serve that the approximating path defined by applying sequentially Step 1 and 2 meets the
above conditions. Indeed, the last condition above follows by Young’s inequality for convo-
lutions.

Given � > 0, let χ�(v, v∗,ω) ∈ [0,1] be a continuous function such that

χ�(v, v∗,ω) =
{

1 if |v|2 + |v|2∗ < � and
∣∣(v − v∗) · ω∣∣ > 1/�,

0 if |v|2 + |v|2∗ ≥ (� + 1) or
∣∣(v − v∗) · ω∣∣ ≤ 1/(� + 1).

We define (f̃ �, q̃�) by

(5.10)

q̃�(v, v∗,ω) = q(v, v∗,ω)χ�(v, v∗,ω),

f̃ �
t = f0 + 2

∫ t

0
ds

(
q̃�,(3)
s − q̃�,(1)

s

) + 2
∫ T

0
ds

(
q(3)
s − q̃�,(3)

s

)
.
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Observe that q̃�
t ≤ qt . Moreover f̃ �

t ≥ ft , since

(5.11)

∫ t

0
ds

(
q̃�,(3)
s − q̃�,(1)

s

) +
∫ T

0
ds

(
q(3)
s − q̃�,(3)

s

)

=
∫ t

0
ds

(
q(3)
s − q̃�,(1)

s

) +
∫ T

t
ds

(
q(3)
s − q̃�,(3)

s

)
.

Set

c−1
� = 1 + 2

∫ T

0
ds

∫
dv

(
q(3)
s − q̃�,(3)

s

)
,

and denote by (e�, u�) the energy and momentum of the probability c�f̃
�
t dv. Note that

(e�, u�) does not depend on t since (π,Q) ∈ Ŝ. We define (f �, q�) by:

f �(v) = αc�f̃
�(

α(v − u) + u�

)
,

q�(v, v∗,ω) = α2c�q̃
�(

α(v − u) + u�,α(v − u) + u�

)
,

where α = α� > 0 is chosen such that
∫

dvf �
0 (v)ζ (v) = ∫

dvf0(v)ζ (v). Observe that the pair
(f �, q�) satisfies the balance equation. As � → +∞, c� → 1, u� → u, α� → 1, therefore
(f �, q�) converges to (f, q).

We claim that

lim
�→+∞ Ie,u

(
π�,Q�) ≤ Ie,u(π,Q).

We start by proving that

(5.12) lim
�→+∞He,u

(
π�

0
) ≤ He,u(π0).

Let m� be the probability measure satisfying∫
m�(dv)ϕ(v) =

∫
me,u(dv)αϕ

(
α(v − u) + u�

)
,

for any ϕ ∈ Cb(R
d), and let ρ� be its density. By a change of variable

(5.13) Ent
(
π�

0 |me,u

) = Ent
(
c�f̃

�
0 dv|m�)

.

By (5.10),

c�f̃
�
0 = c�f0 + (1 − c�)h̄

�,

where h� = 2
∫ T

0 ds(q
(3)
s − q̃

�,(3)
s ) and h̄� = h�/

∫
h�. By convexity

Ent
(
c�f̃

�
0 dv|m�) ≤ c� Ent

(
π0|m�) + (1 − c�)Ent

(
h̄� dv|m�)

.

Since c� → 1, α� → 1, u� → u, in view of item (iv) in Assumption 2.1, by dominated con-
vergence the first term on the right-hand-side of (5.13) converges to Ent(π0|m).

We now show that the second term vanishes. Observe that

(1 − c�)Ent
(
h̄� dv|m�) = c�

∫
h� logh� + (1 − c�) log

c�

1 − c�

− c�

∫
h� logρ�.

Since, by assumption on q(3), h� ∈ L2 and it converges to zero pointwise, the first term
vanishes. The second term vanishes since c� → 1. Finally, using item (iv) of Assumption 2.1,
the last term vanishes by dominated convergence. Since π�

0 (ζ ) = π0(ζ ), (5.12) follows.
We conclude the proof by showing that

lim
�→+∞Je,u

(
π�,Q�) = Je,u(π,Q).
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By a change of variables,

Je,u

(
π�,Q�) = c�

∫
q̃� log

2q̃�

c�f̃ �f̃ �∗ B
+ c� logα

∫
q̃� − c�

∫
q̃� + c2

�

α

∫
f̃ �f̃ �∗ B.

Since q̃� ≤ q , f̃ � ≥ f , and c� → 1, by dominated convergence the first term on the right-
hand-side converges to

∫
q log(2q/ff∗B). Since

∫
q� → ∫

q and α → 1, the second term
tends to 0, and the third converges to Q(1). Finally, since

∫
q(3)ζ0 < +∞, B is uniformly

summable with respect to f̃ �f̃ �∗ , therefore the last term converges to Qπ(1). �

6. Large deviations for Kac model with canonical initial data. In this section we
consider the Kac model with canonical initial data, namely when the initial velocities are
i.i.d. sampled from a given probability m. In view of the abstract Proposition 2.5, the large
deviation principle for the pair empirical measure and flow can be deduced from the large
deviation principle of the Kac model with microcanonical initial data.

The canonical rate function is given by

(6.1) I (π,Q) = inf
(e,u)∈Z

(
A(e,u) + Ie,u(π,Q)

)
,

where A, as defined in (2.16), is the rate function relative to the sum of i.i.d. random variables
given by Cramér’s theorem.

In order to compare this rate function with the one in [9, 13], consider the dynamical
function as in (3.7), but without the microcanonical constraint, namely

(6.2) J (π,Q) :=
∫

dQπ

[
dQ

dQπ
log

dQ

dQπ
−

(
dQ

dQπ
− 1

)]
.

Then functional in [9, 13] reads

I(π,Q) = Ent(π0|m) + J (π,Q).

By Remark 2.6, for any (π,Q) ∈ S we have I(π,Q) ≤ I (π,Q). For some path (π,Q) this
inequality is strict because, as discussed in detail in the next section, I vanishes on Lu and
Wennberg solutions, while I is strictly positive.

THEOREM 6.1. Let m by a probability measure in R
d and set μN = m⊗N . If m satisfies

item (i)–(iii) in Assumption 2.1 then the family P
N
μN ◦ (πN,QN)−1 satisfies a large deviation

upper bound with good rate function I : S → [0,+∞], namely I has compact level sets and
for each closed C ⊂ S

(6.3) lim
N→+∞

1

N
logPN

μN

((
πN,QN ) ∈ C

) ≤ − inf
C

I.

Moreover, if m satisfies also condition (iv) in Assumption 2.1, then for each open O ⊂ S

(6.4) lim
N→+∞

1

N
logPN

μN

((
πN,QN ) ∈ O

) ≥ − inf
O∩Ŝ

I.

PROOF. By the definition of the microcanonical ensemble νN
e,u given below equation

(2.2), we have

P
N
μN =

∫
pN

(
d(e, u)

)
P

N
νN
e,u

,

where pN is the law of 1
N

∑
i ζ (vi) with v sampled according to μN . By Cramér’s theorem,

as discussed before in Remark 2.6, pN satisfies a large deviation principle with rate func-
tion A. The proof is thus essentially achieved by combining Theorem 3.2 with the abstract
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Proposition 2.5. However, since in the large deviation result with microcanonical initial data
the upper and lower bound rate function may differ, we need a replacement for Step 2 in the
the proof of Proposition 2.5.

Upper bound. The argument in Step 4 in the proof of Proposition 2.5 applies, provided we
show that the map Z × S � (e, u,π,Q) 	→ Ie,u(π,Q) is lower semicontinuous.

Recall the set Ce,u defined in (3.5), and let C be the subset of Z × S defined by

C := {
(e, u,π,Q) : π ∈ Ce,u

}
.

By the lower semicontinuity of the map π 	→ π(ζ0), and the continuity of the map π 	→ π(ζ )

when the energy of π is uniformly bounded, we deduce that C is closed. By the variational
representation (4.11), this implies the joint lower semicontinuity of Je,u(π,Q).

By Theorem 2.2 and Step 2 in the proof of Proposition 2.5, we also deduce the joint lower
semicontinuity of He,u(π0), that conclude the proof.

Lower bound. Fix (π,Q) ∈ Ŝ. By Step 3 in the proof of proposition 2.5, we deduce that
for any open neighborhood N of (π,Q) we have

lim
N→+∞

1

N
logPN

μN

((
πN,QN ) ∈N

) ≥ −I (π,Q),

that implies the statement. �

7. Asymptotic probability of Lu and Wennberg solutions. We start by observing that
the balance equation (3.4) for a pair (π,Q) with Q = Qπ is equivalent to the statement that
π is a weak solution (1.1). Recalling that the functional J , as defined in (6.2), vanishes if
and only if Q = Qπ , then we deduce that the zero level set of J are the weak solutions to
the homogeneous Boltzmann equation (1.1). As we next state, the zero level set of both the
functional Ie,u and I respectively defined in (3.8), (6.1) is a singleton. As a consequence the
large deviation upper bound stated in Theorems (3.2) and (6.1) implies the convergence of
the empirical measure to the unique energy solution to the homogeneous Boltzmann equation
(1.1) with an exponential bound on the error.

THEOREM 7.1.

(i) Ie,u(π,Q) = 0 if and only if π = f dv, Q = Qπ and f is the unique energy conserving

solution to the Cauchy problem associated to (1.1) with initial datum dme,u

dv
as defined in (2.1).

(ii) I (π,Q) = 0 if and only if π = f dv, Q = Qπ and f is the unique energy conserving
solution to the Cauchy problem associated to (1.1) with initial datum dm

dv
.

PROOF. We prove only the first statement. By the definition of Ie,u if f is an energy
conserving solution to the Cauchy problem associated to (1.1) with initial datum dme,u

dv
, then

π = f dv and Q = Qπ belong to the zero level set of Ie,u. To prove the converse, we observe
that, by the very definition (3.7), Je,u(π,Q) = 0 implies that Q = Qπ and πt(ζ0) ≤ e for
any t ∈ [0, T ]. Since He,u(π0) = 0 implies that π0 = me,u we deduce πt = ft dv where f

is a weak solution to the Cauchy problem associated to (1.1) with initial datum dme,u

dv
and

nonincreasing energy. Since for any weak solution to (1.1) the energy can not decrease in
time (see [14, 17]), ft is the unique energy conserving solution. �

Fix a nondecreasing piecewise constant, left-continuous profile E : [0, T ] → R+, with fi-
nite, nonzero, number of jumps.
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DEFINITION 7.2. A Lu and Wennberg solution to the Cauchy problem associated to the
homogeneous Boltzmann equation with initial datum f0 and energy profile E is a measurable
function f : [0, T ] ×R

d → [0,+∞) such that:

(i) the map t 	→ ft (v)dv =: πt in C([0, T ];P(Rd));
(ii) f is a weak solution to the homogeneous Boltzmann equation;

(iii) πt(ζ0) = E(t), t ∈ [0, T ].
Observe that for any e ≥ E(T ), for π = f dv, with f a Lu and Wennberg solution,

Je,u(π,Qπ) = 0. Hence

Ie,u

(
π,Qπ ) = Ent(π0|me,u) + [

γ ∗
0 − γ0

][
e − E(0)

]
,

namely the Lu and Wennberg solutions contribute to the rate function only at time zero. We
remark that these pairs (π,Qπ) do not belong to the set Ŝ for which the upper and lower
bound in Theorem 3.2 is proven to match. In the next theorem we will show they actually
match also for a suitable class of Lu and Wennberg solutions.

THEOREM 7.3. Fix (e, u) ∈ Z and a sequence (eN,uN) → (e, u). For each energy pro-
file E with E(T ) < e and each f0 with energy E(0), there exists a Lu and Wennberg solution
f with energy profile E such that for every open neighborhood A of (π,Qπ), π = f dv,

(7.1) lim
N→+∞

1

N
logPN

νN
eN ,uN

((
πN,QN ) ∈ A

) ≥ −Ie,u

(
π,Qπ )

.

Observe that, by the upper bound in Theorem 3.2

lim
N→+∞

1

N
logPN

νN
eN ,uN

((
πN,QN ) ∈ Ā

) ≤ − inf
Ā

Ie,u,

which, together with (7.1), identifies the asymptotic probability of Lu and Wennberg solu-
tions.

As in [15], the Lu and Wennberg solutions will be constructed as a limit of a suitable
sequence. In particular we will consider a sequence f n which conserve the energy and such
that t 	→ f n

t (v)dv ∈ P(Rd) is continuous. We start with the static result.

LEMMA 7.4. Consider ρ ∈ P(Rd) such that He,u(ρ) is finite and e0 := ρ(ζ0) < e. Given
e1 ∈ (e0, e] and n ∈N, let gn = mn(e1−e0)+e0,u be the exponential tilt of m with energy n(e1 −
e0) + e0 and momentum u. Set ρn = (1 − 1

n
)ρ + 1

n
gn, so that ρn(ζ0) = e1, then

(7.2) lim
n→∞He,u(ρn) = He,u(ρ).

PROOF. By the lower semicontinuity of He,u, it is enough to show that limHe,u(ρn) ≤
He,u(ρ). By the convexity of He,u and Jensen’s inequality

He,u(ρn) ≤
(

1 − 1

n

)
He,u(ρ) + 1

n
He,u(gn).

Let λn such that

gn(dv) = eλn·ζm(dv)

m(eλn·ζ )
= e(λn−γ (e,u))·ζ

me,u(e(λn−γ (e,u))·ζ )
me,u(dv),

where we used (2.1). Observe that λn
0 ↑ γ ∗

0 as n → +∞. Since gn has energy n(e1 − e0)+ e0
we get

lim
n→+∞

1

n
Ent(gn|me,u) ≤ lim

n→+∞
(
λn

0 − γ0(e, u)
)
(e1 − e0) = (

γ ∗
0 − γ0(e, u)

)
(e1 − e0),

which concludes the proof. �
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For any probability density h with finite energy let Ut (h), t ≥ 0, be the unique energy
conserving solution to the Cauchy problem associated to the homogeneous Boltzmann equa-
tion with initial datum h. In the following statement we collect the result on the moments
estimates in [17, 21].

LEMMA 7.5. Let h be a probability density on R
d with finite energy and entropy. Then:

(i) For each p > 2 and t > 0 there exists a real C > 0 depending only on p, t and the
initial energy, such that ∫

dvUt (h)(v)|v|p ≤ C.

(ii) For each p > 2, if
∫

dv h(v)|v|p < +∞, then

sup
t∈[0,T ]

∫
dv Ut (h)(v)|v|p < +∞.

Fix an energy profile E : [0, T ] → R+ and denote by 0 ≤ t1 < · · · < tk < T the disconti-
nuity set of E . Given f0 with finite entropy and energy E(0), let hn

0 be a sequence weakly
convergent to f0 satisfying the following requirements. The energy of hn

0 is independent on
n and equal to E(0), its entropy converges the entropy of f0, and it has finite (n-dependent)
p-moment for some p ≥ 3. For n ≥ 1 and i = 1, . . . , k, set en,i = nk[E(t+i ) − E(ti)] + E(0)

and define gn
i as the density of the tilted probability men,i ,u. Define

(7.3) f n
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 1

n

)
Ut

(
hn

0
) + 1

nk

k∑
i=1

gn
i t ∈ [0, t1],

(
1 − k − 1

nk

)
Ut−t1

(
hn

1
) + 1

nk

k∑
i=2

gn
i t ∈ (t1, t2],

· · · · · · ,(
1 − 1

nk

)
Ut−tk−1

(
hn

k−1
) + 1

nk
gn

k t ∈ (tk−1, tk],
Ut−tk

(
hn

k

)
t ∈ (tk, T ],

where hn
i are recursively defined so that t 	→ f n

t (v)dv is continuous, namely

hn
i = 1

1 − k−i
nk

[
f n

ti
− 1

nk

k∑
j=i+1

gn
j

]
.

Let also qn
t (v, v∗,ω) be such that, for t ∈ (ti , ti+1],

qn
t (v, v∗,ω) =

(
1 − k − i

nk

)
Ut−ti

(
hn

i

)
(v)Ut−ti

(
hn

i

)
(v∗)B(v, v∗,ω).

Here i = 0, . . . , k, with t0 = 0 and tk+1 = T . Observe that, by construction, the pair (πn,Qn)

with densities (f n, qn) satisfies the balance equation (3.4). Furthermore, by definition of hn
0

and item (ii) in Lemma 7.5, for each n the pair (πn,Qn) ∈ Ŝ.

LEMMA 7.6. The sequence {(πn,Qn)} is relatively compact in S. Any cluster point
(π,Q) is such that Q = Qπ , π = f dv, where f is a Lu and Wennberg solution with ini-
tial datum f0 and energy profile E . Moreover

(7.4) lim
n→∞ Ie,u

(
πn,Qn) = He,u(f0 dv).
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PROOF. We start by proving (7.4). Observe that
∫

dv hn
i ζ0 = E(t+i ), for i = 1, . . . , k.

Then by Lemma 7.4 and Jensen’s inequality,

lim
n→∞He,u

(
πn

0
) = Ent(f0 dv|me,u) + (

γ ∗
0 − γ (e,u)

)[
e − E(T ) +

k∑
i=1

(
E

(
t+i

) − E(ti)
)]

= He,u(f0 dv).

We now show that

(7.5) lim
n→∞Je,u

(
πn,Qn) = 0.

By definition, for t ∈ (ti, ti+1], i = 0, . . . , n, we have

f n
t ≥

(
1 − k − i

n

)
Ut−ti

(
hn

i

)
.

Hence the the contribution to Je,u(π
n,Qn) in the time window (ti , ti+1] is bounded by∫ ti+1

ti

dt

∫
dv dv∗ dω

{
qn
t (v, v∗,ω) log

(
1 − k − i

n

)−1

− qn
t (v, v∗,ω) + f n

t (v)f n
t (v∗)B(v, v∗,ω)

}
.

Since the energy of f n
t is E(T ), the mass of qn is bounded uniformly in n, therefore the first

term vanishes as n → ∞. The same bound, together with the fact that the energy of 1
n
gn

i is
bounded uniformly in n and B ≤ C(1+|v|+ |v∗|), implies that the second line also vanishes.
Hence (7.5) follows.

Equation (7.4) and the goodness of Ie,u imply that the sequence (πn,Qn) is relatively
compact. Let (π,Q) be a cluster point. By the lower semicontinuity of Je,u and (7.5) we
deduce that Je,u(π,Q) = 0, hence Q = Qπ , π = f dv, where f is a solution to the Cauchy
problem associated to (1.1) and initial datum f0. It remains to show that f has energy profile
E . For any i = 0, . . . , k, the energy of hn

i is uniformly bounded. Fix i and t ∈ (ti, ti+1]. By
item (i) in 7.5, the p-moment of Ut−ti (h

n
i ), p > 2, is bounded uniformly in n, therefore ζ0 is

uniformly summable with respect to Ut−ti (h
n
i ), then

∫
dv ftζ0 = lim

n→+∞

∫
dvUt−ti

(
hn

i

)
ζ0 = E(T ) −

k∑
j=i+1

(
E

(
t+j

) − E(tj )
) = E(t).

�

THEOREM 7.7. Let m be a probability measure satisfying Assumption 2.1, and set μN :=
m⊗N . For each energy profile E with E(0) = m(ζ0) there exists a Lu and Wennberg solution
f with f0 = m and energy profile E such that for every open neighborhood A of (π,Qπ),
π = f dv,

(7.6) lim
N→+∞

1

N
logPN

μN

((
πN,QN ) ∈ A

) ≥ −I
(
π,Qπ ) = γ ∗

0
(
E(T ) − E(0)

)
.

PROOF. The proof of the inequality in (7.6) follows the same arguments of the proof
of Theorem 7.3. We here discuss the equality. Since π = f dv is a weak solution to (1.1),
Je,u(π,Q) = 0 if e ≥ E(T ), otherwise is infinity. Then, by definition (6.1) and Theorem 2.2
we have that

I (π,Q) = inf
e≥E(T )

(A(e,u) + Ent(m|me,u) + (γ ∗
0 − γ0(e, u)

(
e − E(0)

)
,
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where u = m(ζ). The supremum in the definition (2.16) of Ae,u is achieved in γ = γ (e, u).
By definition of the relative entropy

Ent(m|me,u) = −γ (e, u) · m(ζ ) + logm
(
eγ (e,u)·ζ )

.

Then, by direct computation, I (π,Q) = infe≥E(T ) γ
∗
0 (e − E(0)) = γ ∗

0 (E(T ) − E(0)). �

APPENDIX

It is sufficient to prove that Qδ([log 1/B]+) converges to Q([log 1/B]+) as δ → 0, since
the result for the negative part easily follows from the fact that |[log 1/B]−| is sublinear in
|v − v∗|, and (π,Q) ∈ Ŝ. We indicate with g1

δ the Gaussian kernel in one dimension, and note
that

(gδ ⊗ gδ ⊗ id) ∗
[
log

1

2B

]+
(v, v∗,ω) =

∫
R

g1
δ (w · ω − y)

[
log

1

|y|
]+

dy,

where w = (v − v∗)/
√

2. We now prove that there exist some constants c1, c2 > 0 such that∫
R

g1
δ (x − y)

[
log

1

|y|
]+

dy ≤ c1

[
log

1

|x|
]+

+ c2,

which implies that

(gδ ⊗ gδ ⊗ id) ∗
[
log

1

B

]+
(v, v∗,ω) ≤ c1

[
log

1

B

]+
(v, v∗,ω) + c2.

Using this fact and that Q([log 1/B]+) < +∞, we achieve the convergence result by using
the Fubini–Tonelli theorem and dominate convergence.

We denote by z a standard Gaussian stochastic variable and note that∫
R

g1
δ (x − y)

[
log

1

|y|
]+

dy = E

([
log

1

|x − δz|
]+)

≤ log
1

δ
+E

([
log

1

|x/δ − z|
]+)

.

Since [log 1/|y|]+ is summable, by Young’s inequality the second term is uniformly bounded,
so that, if |x| ≤ √

δ we have

E

([
log

1

|x − δz|
]+)

≤ 2 log
1

|x| + c.

To handle the case |x| ≥ √
δ, we use the Jensen inequality:

E

([
log

1

|x − δz|
]+)

= 2 log eE([log 1/
√|x−δz|]+) ≤ 2 logE

(
1√|x − δz| ∧ 1

)
.

We estimate

E

(
1√|x − δz| ∧ 1

)
=

∫
R

g1
δ (y)

1√|x − y| ∧ 1
dy

by noticing that in the region |y| < |x|/2 or |y| > 2|x| we have 1/
√|x − y| ∧ 1 ≤√

2/
√|x| ∧ 1. Therefore

E

(
1√|x − δz| ∧ 1

)
≤ c

1√|x| ∧ 1
+ g1

δ

(|x|/2
) ∫ 2|x|

|x|/2

1√|x − y| ∧ 1
dy.

We conclude the proof observing that the last term is estimated by ce−1/8δ(1 + 1/δ), which
is uniformly bounded in δ.
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