
Numerical aspects for stochastic PDEs of 
Fluctuating Hydrodynamics.*

Federico Cornalba

Stochastic equations and particle systems, 7-9 April 2025

*based on joint works with J. Fischer (IST Austria), J. Ingmanns (IST Austria), C. Raithel (TU Wien)



Particle systems are often (exact) solutions to (singular) SPDEs



Particle systems are often (exact) solutions to (singular) SPDEs



Particle systems are often (exact) solutions to (singular) SPDEs



Particle systems are often (exact) solutions to (singular) SPDEs



Particle empirical density 

μ

Continuous density 

ρ

Particle systems are often (exact) solutions to (singular) SPDEs



Particle fluctuations 

μ − μ

Continuous fluctuations 

ρ − ρ

Particle systems are often (exact) solutions to (singular) SPDEs



Particle fluctuations 

μ − μ

Continuous fluctuations 

ρ − ρ

Particle systems are often (exact) solutions to (singular) SPDEs



Particle fluctuations 

μ − μ

Continuous fluctuations 

ρ − ρ
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Theory of Fluctuating Hydrodynamics



SPDE 
Mean-field limit PDE


( )
N → ∞ particlesN

ρ ρμ
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Computational efficiency for large particle systems ( ).N ≫ 1

Why moving from particles to SPDEs?



In this talk: 

Part A: a specific setting  
Part B: aspects of interest



For Part A of talk: consider one self-interacting species

dXi = − N−1
N

∑
j=1

∇V(Xi − Xj)dt + dWi



Goal: study empirical density  of  weakly 
interacting particles in 

μ(t) := N−1 ∑N
i=1 δXi(t) N

𝕋d

∂tρ = 1
2 Δρ + ∇ ⋅ (ρ∇V * ρ) + N−1/2∇ ⋅ ( ρξ)

dXi = − N−1
N

∑
j=1

∇V(Xi − Xj)dt + dWi



 is precisely the only solution to (DK) eqn. ( )

[T. Lehmann, V. Konarovskyi, M.-K. von Renesse, ’19]

μ(t) = N−1 ∑N
i=1 δXi(t) μ ≡ ρ



Numerical 
regularisations

Analytical 
regularisations‘Unregularised’ SPDEs of FH



• [Konarovskyi, Lehmann, von Renesse] 
• [Dirr, Zimmer, Stamatakis] 
• [Fehrman, Gess] 
• [von Renesse, Sturm] 
• [Marx] 
• [Ayala, Zimmer] 
• [Dello Schiavo] 
• …………………..

‘Unregularised’ SPDEs of FH



• [Fehrman, Gess] 
• [Gess, Gvalani, Konarovskyi] 
• [Fehrman, Gess, Gvalani] 
• [Djurdjevac, Kremp, Perkowski] 
• [C., Shardlow, Zimmer] 
• [Fehrman, Clini] 
• [Martini, Mayorcas] 
• [Grün] 
• [Popat] 
• [Gess, Zhang, Wu] 
• …………….

Analytical 
regularisations‘Unregularised’ SPDEs of FH



• [Baňas, Gess, Vieth]: finite elements (for weak formulation of regularised DK equation)

• [L. Helfmann et al.], [C. Kim et al.]: finite elements for reaction/diffusion equations

• [A. Russo et al.] [A. Donev, E. Vanden-Eijnden, A. Garcia, and J. Bell.] Finite volume schemes for 

stochastic gradient flow equations

• [X. Li, N. Dirr, P. Embacher, J. Zimmer, C. Reina]: full reconstruction of dissipative operators

• [C., Shardlow] discontinuous Galerkin + modelling for inertial DK systems
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• [Djdurdjevac, Almgren, Bell], [Djdurdjevac, Le Bris, Süli] Hybrid models (SPDE / particles), 
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Numerical 
regularisations ‘Unregularised’ SPDEs of FH



Goal: study empirical density  of  weakly 
interacting particles in 

μ(t) := N−1 ∑N
i=1 δXi(t) N

𝕋d

∂tρ = 1
2 Δρ + ∇ ⋅ (ρ∇V * ρ) + N−1/2∇ ⋅ ( ρξ)

dXi = − N−1
N

∑
j=1

∇V(Xi − Xj)dt + dWi



Q: how to describe microscopic fluctuation  of  particles in  
in terms of fluctuations  for a discretised version of DK? 

μ − μ N 𝕋d

ρh − ρh

h



h
ξh(x, t) = ∑

y∈Gh

ey(x)βy(t)

∂tρh = 1
2 Δhρh + ∇h ⋅ (ρh ∇hVh * ρh)h

+ N−1/2∇h ⋅ ( ρ+
h ξh)

with  finite-difference operatorsΔh, ∇h

Gh



𝔼[ψ(N1/2(μ − μ, ϕ))] ≈ 𝔼[ψ(N1/2(ρh − ρh, ϕh)h)]

Expressing fluctuations in particle system:

ϕ
• ? statistical properties of 

fluctuations (e.g., moments)
ψ

• ? identify regions of interest.ϕ

• ? scales fluctuations to N1/2 O(1)
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Computing fluctuations in particle system using DK model:

ϕ
• ? statistical properties of 

fluctuations (e.g., moments)
ψ

• ? identify regions of interest.ϕ

• ? scales fluctuations to N1/2 O(1)



𝔼[ψ(N1/2(μ − μ, ϕ))] ≈ 𝔼[ψ(N1/2(ρh − ρh, ϕh)h)]

Computing fluctuations in particle system using DK model:

Natural (negative Sobolev-type) metric:

d−j(μ − μ, ρh − ρh)

:= sup
ϕ, ψ ∈ Hj

w

𝔼[ψ(N1/2(μ − μ, ϕ))] − 𝔼[ψ(N1/2(ρh − ρh, ϕh)h)]



We want ,


A.  (i.e., small bias)

B.  (i.e., small variance)

MSE := 𝔼[ |Ph − 𝔼[P] |2 ] ≲ ε2

|𝔼[Ph − E[P]] |2 ≲ ε2

Var[Ph] ≲ ε2

𝔼[ψ(N1/2(μ − μ, ϕ))
=:P

] ≈ 𝔼[ψ(N1/2(ρh − ρh, ϕh)h)
=:Ph

]

Computing fluctuations in particle system using DK model:



Small bias?



Theorem [F.C., J. Fischer, J. Ingmanns, C. Raithel, AoP 2025+] For  
and , there exists a finite-difference discretisation of  on  such 
that:


A. Solution  is non-negative up to stopping time , with





B. For test functions being differentiable  times, up to stopping time , 
fluctuations bounded by





h > 0
p ∈ ℕ (DK) [0,T]

ρh τ

ℙ(τ < T) ≲ exp{−Nδ}, for some δ > 0, subject to 

j τ

d−j(μ − μ, ρh − ρh) ≲ hp+1
⏟
Errnum

+ N−j/2
⏟
Errfluct

Nhd ≫ 1
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Main idea
Goal: estimate  

M(ψ, ϕ) := 𝔼[ψ(N1/2(μ − μ, ϕ))] − 𝔼[ψ(N1/2(ρh − ρh, ϕh)h)]

A. More terms of same kind  (iteration!!!)

B. Residuals, including numerical error (NO iteration!!!)

N−1/2M(ψ̃, ϕ̃)

Method: Itô calculus for  leads to: M(ψ, ϕ)



Ito formula for M(ψ, ϕ)

Cross-variation of DK noise is linear in the density!

d(𝔼[ψ(N1/2(μ − μ, ϕ))] − 𝔼[ψ(N1/2(ρh − ρh, ϕh)h)])
∝ N−1/2 ⋅ {𝔼[ψ̃(N1/2(ρh − ρh, ϕh)h)N1/2(ρh − ρh, |∇hϕh |2 )h]

−𝔼[ψ̃(N1/2(μ − μ, ϕ))N1/2(μ − μ, |∇ϕ1 |2 )]}dt
+[nonlinear convolution terms]dt
+[residuals]dt



h {

We have  up to , with , if
ρh ≥ 0 τ ℙ(τ < T) ≈ exp{−Nδ} Nhd ≫ 1

: SPDE cheaper when # particles # grid points N ≫ h−dNhd ≫ 1



Linearising convolutional terms

(ρh − ρh)∇hV * (ρh − ρh)
= {∇hV(x − y) = ∑

m,n
Fm,neim⋅xein⋅y}

= ∑
m,n

Fm,n (ρh(x) − ρh(x), eim⋅x)h ⋅ (ρh(y) − ρh(y), ein⋅y)h

Idea: linearise using Fourier expansion (separation of variables) 



M(ψ, ϕ) ∝ N−1/2 ⋅ M(ψ̃, ϕ̃) + hp+1
⏟
Errnum

+ exp(−Nδ)
Errnegativity

Iterate!

Fluctuations 
error “scaling 
gain” for each 
iteration step



Theorem [F.C., J. Fischer, J. Ingmanns, C. Raithel, AoP 2025+] For  
and , there exists a finite-difference discretisation of  on  such 
that:


A. Solution  is non-negative up to stopping time , with





B. For test functions being differentiable  times, up to stopping time , 
fluctuations bounded by





h > 0
p ∈ ℕ (DK) [0,T]

ρh τ

ℙ(τ < T) ≲ exp{−Nδ}, for some δ > 0, subject to 

j τ

d−j(μ − μ, ρh − ρh) ≲ hp+1
⏟
Errnum

+ N−j/2
⏟
Errfluct

Nhd ≫ 1



Small variance?



Theorem [FC, J. Fischer, SIAM J. Numer. Anal., 25+] For fixed , and in 
the particle high-density regime, we can set up Multilevel MC method reducing 
cost of standard MC method by 





ε > 0

Fcost red ∝ {ϵ−2,  for noise coupling on Fourier modes,
ϵ−1,  for noise coupling on neighbouring points,

hℓ

hℓ−1
Need to produce coupled 
SPDE estimators Pℓ, Pℓ−1



 
Var[Pℓ − Pℓ−1] ≲ (Nhd
ℓ)−1 + h2

ℓ

(inverse of) average particle density 

= “size of SPDE noise”

Numerical 
error

Key ingredient for variance reduction



 for ‘small’ ρh h



High-density:  Nh2
min ≳ h−2

min



Although DK SPDE is singular, numerical discretisations work well in 
high-density regime Nhd ≫ 1



In this talk: 

Part B: aspects of interest 
Part B: aspects of interest
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Thanks for listening!


