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Stochastic porous medium equation

Stochastic porous medium equation, o > 1,

0:p = Ap® + noise.
?

Rewrite the PME as a gradient flow

DH

Op = Dp® =1 =V pH(p) = —M(p)Dfp(pL

where M(p) the inverse Riemannian tensor, 74 some entropy. Choose noise so
that p(dp) = Le ") dp becomes an invariant measure, i.e.

DH

Oup = —M(p) 5 -(p) + M3 (p) o €.

Different gradient flow structures lead to different SPDEs.



Gradient flows for PME:
Brezis [ 71]: M = H™1, M(p) = —A, H(p) = [ p*T1,

Op =V - (Vp®).

Otto ['01]: M = P(T9), M(p) = —V - (pV-), H(p) = [ p* pressure,
dep =V - (pVp*1).
“Thermodynamic metric”: M = P(T9), M(p) = =V - (p*V:), H(p) = H(p)

Boltzmann entropy,
dep =V - (p™V log(p)).

Sideremark: Leads to fluctuating hydrodynamics SPDE

Bep = Dp* +V - (p*/% 5 8).



“Thermodynamic metric’? Manifold M = set of probability measures.

mally, the inverse Riemannian tensor should be
M(p) =V -p®V =V - p%(p2V)

Following [Otto; 2001], but replacing p — p%, suggests

12

T,M = {p*/2Vyp : p € C3(T9)} ~

with
8o(C1,(2) = /d p*/2V¢s - p/2VE,

T
and i
GHV (5p°VE) =0.

For-

However, this does not lead to a Riemannian metric, since we can have pg # p;
with d(po, p1) = 0 (unbounded diffusivity), or d(po,p1) = oo (degeneracy).

(>1).



“Thermodynamic metric”: Consider the non-degenerate case

9ep =V - (pV log(p)).
Then there is a rigorous meaning for

DH

0ip = Dp =~V (o) = ~M() 5 (o). (*)

Note

DH DH 1 DH 1
OH(p) = = (Brp: 5 W) = ~10uplaaiol T i) 2 =51 5l =519l
with equality iff p solves (x). ((v,w) = —%|v|]> — J|w|? iff v = —w)

Consequence:p is a gradient flow for (x) iff

Vp|? 1
Vel dxdt — > A(p)

=
ozl(p):H(PO)_H(pT)_%/O / p

where ik
A(e) = [ Vi = il 0ep-+ M (g = O

is the action of p.



Definition: p is a “thermodynamic” gradient flow of

Oep =V - (p*V log(p)).
iff

|vpa+1 |2

0= T(o) = Hin) = Hlor) = %/0 /%dxdt — S Al

Gradient flows and large deviations

Rare events are the (im-)probability to observe a fluctuation p:
PluN ~ p] = e NI N large
We say that a gradient flow structure corresponding to an energy Z is thermody-

namic, if there is a particle system pV satisfying an LDP with rate function Z.

Macroscropic Fluctuation Theory [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim;
2015].

Q: it is not (rigorously) known which, if any, of the gradient flow structures of
PME are thermodynamic.



The porous medium equation as a hydrodynamic limit

Can we obtain the PME as a limit of a (stochastic) particle system?

E.g. [Suzuki, Ushiyama; 1993], [Ekhaus, Seppaldinen; 1996], [Oelschldger; 1990], [Gongalves,
Landim, Toninelli; 2009], [Gongalves, Nahum, Simon; 2023], also fractional cases [Cardoso, de
Paula, Gongalves; 2023]

The zero range process:

e

yf\/\: /\./\
' o ®
Tl e e

Local jump rate function g(n) =n* : Ng = R, a > 1.

Translation invariant, asymmetric, zero mean transition probability

p(k, 1) = p(k — 1), ka(k ) =13
LvF(n):= Y p(xy)n*()(F(r) = F(n)).

x,y€T§,

Generator



Hydrodynamic limit Empirical density field:

e ( Z(Sk ) (xN, tN?).

[Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
() =" p(t) dx
with
Oep = AP(p)
with ® the mean local jump rate ®(p) = E,, [n*(0)].

The ® is non-degenerate: ®' > ¢ > 0. Even if g(n) = n* we do not see the
porous medium equation, that is, ®(p) # p%, a > 1.



The porous medium equation, o > 1,
Orp = AP~
Scaling invariance of PME: Let g(t, x) = xp(7t, Ax). Then
0 p=TXITEAT2AP%
Get a one parameter family of scaling invariances
XA =1.
Consider the ZRP with local jump rate function g(n) = n%, a > 1.

Rescaling particle sizes by xn

2
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Macroscopic: Barenblatt solution
Two difficulties:

u,t)

- Superlinear growth of g(n) = n%,
a > 1. Possible concentration of
mobility (nV(x))“.

- Degeneracy of g(n) = n® at n = 0.
Now becomes visible with x small.
Dirichlet form degenerates.

As a result, the classical one-block, two-
block approach to the superexponential
replacement lemma is not applicable.

Solution: New microscopic, “pathwise” entropy-dissipation inequality



Theorem (Hydrodynamic limit, G., Heydecker, 2023)

Let po € LLo(T?) with finite entropy H(po) = [ polog po — po +1 < o0,
lim sup_, oo lim suppy_y oo P(H(nY) > M) = 0 and

P(d(ng', po) > €) = 0,

where d is a metric inducing the weak-x topology of L% (T?). Assume the
scaling relation X}V/\a/z < CN=2. Then

M (t) =" p(t) dx
in probability, where p is the solution to

3tﬁ = Aﬁa



“Pathwise” entropy-dissipation inequality: Let Fy be the following functional on
discrete paths

i
Fn(n") = fggﬂ(niv) + /O Dan(nl)ds

where D, y is a lattice discretisation of Dy (p) = [, |[Vp*/?|? dx:
N . a/2 N a/2\2
Da,N(n i 2aNd 2 XZN;( ( (y)) ) &
Macroscopically

H(pr) / [ 1V < (7o)
Mesoscopically/SPDE

¢ 2|2 X C(N)
H(pT) + / / |Vp*/2|2dx < H(po) + martingale + NTIto—correction :
0 X



Explicit computation, using Xl/\a/z < CN~2 yields that

N Nia N : N
Z; =exp o H(ne') _/0 Da,n(ns )ds — Ct

is a supermartingale.
Post-process:

lim sup lim sup— log P (Fn(n) > M) = —o0.
M— o0 N

Implies L?(T?)-estimate, some 3 > «, equicontinuity. One can then conclude by
(stochastic) compactness / Aubin-Lions-Simon type theory.



Scaling relation:
. (c): x fixed, N = oo
ZRP Y Ou = AD, (uf)

(a): x = 0, N fixed

(d): x—= 0, N =00

(Diseretised PME on T4, }

Here: Assume the “scaling relation”

X,lvAa/z =N 2



Large deviations around the porous medium equation?

Rate function

T
I(p) = inf / / lg?dxds : g € L, Bep = Ap® + V- (p% g)
: i "skeleton equation"
—inf{ M, ¢ =LA+ V-(°VH) )

S
:ft’x |V H|2px

"controlled nonlinear Fokker-Planck equation"

Theorem ([Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis, Landim; 1995])
For every U, O C D([0, T], M) closed, open sets resp. we have

]P)[/J'N = U] 5 efN inf,cu 1(p)

e_N inf,co ITA(P) SP[NN = O]
where A is the set of nice fluctuations p. = p dx with p a solution to
Oep=Dp* +V-(p2g)

for some g € C.. Problem:| =147




One approach: Show well-posedness of

Oep=Dp*+V - (p2g), withgel?,.

Theorem (The skeleton equation, Fehrman, G. 2023)

Let g € L, po non-negative and [ polog(po)dx < co. There is a unique weak
solution to
Op=Ap*+V-(pzg).

L . is weak-strong continuous.

t,x’

The mapg—p, L2, — L

Theorem (LDP for zero range process, G., Heydecker, 2023)
The rescaled zero range process satisfies the full large deviations principle with
speed ;\’—z and rate function

1(p) = inf {llgli%: : 0o = Ap™ +V - (p3g)} .



Gradient flow structures for the porous medium equation

The PME as a gradient flow

dep = Ap™ =72 —V pH(p®) = —M(p) Dy (p),

The large deviations select the skeleton equation

Bep = Dp* + V - (p°2 ).
— —

N=

=:M2(p)

This suggests

Oep =V - (p°V log(p)) + V - (p*/g)

= —M(m%(p) + ME(p)g,

i.e. the “thermodynamic metric”.

Obstacle: Have to rewrite rate function in terms of energy.



If we are able to write Ap* = —V ,(H(p®) then we have the following identity

T
0 T

=[10ep — 2p°|2 19eplI? = 2(0ep, =V aH(p™)) =2 + IIAPO‘Hzp—;

1 =
H
P

T iy .
—H(por) — H(po) + 5 [ 0ol + 518071
0 P P

Define the action
Alp) = inf{lgllZe_: Op+ V- (p/2g) = O}.
=M% (p)
Informally
=
) = [ ol

In conclusion, the gradient flow picture suggests the energy identity

h
T() Hlpr) = Hi) + 3A0)+ 5 [ 120



Theorem (Entropy dissipation equality, G., Heydecker, 2023)
Let D,(p) < 0o, H(po) < 00, ug > 0. Then

1

T(0) = Haalr) = Haolpo) + 340+ 5 [ 12

If p is a solution to the PME, we have the energy equality

;
0=l (A / 10%/2()|12 .

Sketch of the proof
In equilibrium, detailed balance = (Tnl), :=n)_, has the same law as the
original process.

Contraction principle and uniqueness of rate functions:

I(Tp) = Z(p)

for all p. Analyse identity without assuming any more regularity on p than nec-
essary.



Recall
”
Tl =il {/ / |g|’dxds : g € LE, Op=Dp™ + V- (p”/zg)}
0 T
Alp) =inf{|16l[F2 : Bip+V - (p™/?0) = 0}.

Optimal g, 6 are uniquely characterised by membership in

Ay = {p*/2Vp : p € CL2([0, T] x Td)} .
Let M[p] be orthogonal projection to this space.
If Z(p) < oo, let g be optimal.Since
Bep = Dp™ + V - (0°/%g) = Vp*/? - (2Vp*/? + g)

optimal 6 is
—2M[p]Vp*/? — g.



For time reversal p, := T p we have

0e0r = Do+ V - (07*Tg)
= Ap% — V- pf (2Vpf — Tg).

So optimal g for p, is
g =2N[p]Vp*/> — Tg.

We get
0=1I(Tp) — Z(p)
= a(pr) + 3l& | ~ aH(po) ~ 2 g
= aH(pr) — aH(po) + 2(l& I + I Tsl?) ~ 5 lgl?
= aH(pr) — oH(po) + 3 (& + T&IP +llg- — T&l) — 3l

2 1 1
= aM(pr) — aM(po) + |MIVo~"2 |, +5A(0) - 5l



We get

7() = 5 (atlor) - artoo) + [1vs

: , +40)).

Since ||I'I[p]VpC“/2Hfix < %fOTDa(ps)ds, the previous argument vyields the in-
equality

J(p) < % (aH(pr) — aH(po) / Da(ps)ds + A( )) (1)

If F(p) < oo, then Vp*/2 = %paﬂVIogp € A,, so both of the inequalities are
equalities.
For the general case, use recovery sequences and use (1) again.



Remark
- The same identity as informally suggested in Dirr-Stamatakis-Peletier.
- Sandier-Serfaty (in)equality for the formal Riemannian structure.
- LDP allows us to avoid proving a ‘chain rule for entropy’ (Erbar, '16).
- Same argument: equality in the H-Theorem for (PME):

H(ue) + /Ot oDy (us)ds = H(uo).

A new look at properties of the skeleton equation

Orp = Ap® + V- (p*VH) = Ap® + V- (p*/?g)
- Construction of g shows how antidissipative effects can arise, since

Bepr = —Ap} +V - (07/*Teg)
=30 p == VeprEry

- Hence why LP estimates had to be false: trajectories with po & L2,
p1 € C° give reversal pg € C° but pr & LP.
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