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An Unassuming Laminar Flow

Shear flow past an obstacle at Re= 0.16
(aluminum dust in water, An Album of Fluid Motion, van Dyke 1982).
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Turbulence emerges: Chaos ensues

Turbulence past an obstacle at Re= 2000
(air bubbles in water, An Album of Fluid Motion, van Dyke 1982).
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Upcoming

A linear, stochastic PDE model for turbulence.

Anomalous Regularization.

Some integral asymptotics.
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Advection of Passive Scalars
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Features of (Nonlinear, 3D) Turbulence

Kolmogorov-Obukhov predictions on structure functions and energy
cascades in isotropic turbulence:

E
[
|u(x + r)− u(x)|2

]
∼ ε2/3r2/3 r → 0,

E [E (k)] = E

[∣∣∣∣∣
∫
|k|=k

|û(k)|2dk

∣∣∣∣∣
]
∼ ε2/3k−5/3 (inertial range)

(ε the energy dissipation rate, assumed scale-independent)
Anomalous dissipation of energy:

lim
ν→0

ν

∫ T

0
∥∇uνt ∥

2
L2 dt > 0

These phenomena should be reproduced by sol. of 3D Navier-Stokes eqs.{
∂tu + (u · ∇)u = ν∆u +∇p

∇ · u = 0

with ν ≪ 1, however simpler phenomenological models are sufficient.
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Advection of Passive Scalars

Advection of a scalar field ρ by a (decoupled) random vector field
u : Rd → Rd (and possibly small viscosity ν),

∂tρ+ u · ∇ρ = ν∆ρ,

is able to replicate many features of turbulence.
(first proposals by Obukhov, Corrsin, Batchelor, see Sreenivasan ’18 for a survey).

Kraichnan considered the case where u is a isotropic Gaussian field,
delta-correlated in time, with power-law covariance spectrum.
(Kraichnan Phys. Fluids ’68, ’70, J. Fluid Mech. ’74, ’76, ’76, PRL ’89)

The model allows explicit (although sometimes only formal) computations
and can replicate the energy cascade, anomalous dissipation, spontaneous
stochasticity.
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Kraichnan’s Model

Consider u = ∂
∂tW (t, x) as a sample of a divergence-free, isotropic

Gaussian random velocity field Gaussian velocity field, study the
Stratonovich transport SPDE

dρ+ ◦dW · ∇ρ = 0, ρ : [0,∞)× Rd , d ≥ 2.

We choose covariance with power law spectrum,

E [W (t, x)⊗W (s, y)] = (t ∧ s)Q(x − y), Q̂(ξ) =
cd

(1 + |ξ|2)d/2+α
P⊥
ξ ,

that is

Q(0)− Q(x) = |x |2α
(
I − 2α

d − 1
P⊥
x

)
+ o

(
|x |2α

)
, |x | → 0.
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Regular Kraichnan’s Model

When α > 1,W (t, x) is continuously differentiable in x , and

there exists a C 1-regular, measure preserving stochastic flow Xt(x) for
the underlying SDE dXt = W (◦dt,Xt);

ρt(x) = ρ0
(
X−1
t (x)

)
and

∥ρt∥L2 = ∥ρ0∥L2 ∀t ≥ 0, P-a.s.

Initial data δx evolve as δXt(x).

Explicitly computable Lyapunov exponents, strictly positive top
Lyapunov λ = limt→∞

1
t log |DXt(x)|.

cf. Le Jan ’85, Baxendale-Harris ’86

On compact manifolds: exponential mixing of passive scalars.
cf. Dolgopyat-Kaloshin-Koralov ’04, Gess-Yaroslavtsev ’21.
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Rough Kraichnan’s Model

When α ∈ (0, 1),W is Hölder continuous and the SPDE is well-posed, and
(strong existence, pathwise uniqueness for ρ0 ∈ L1, cf. Le Jan-Raimond ’02, Maurelli ’11, Galeati-Luo ’23)

Spontaneous stochasticity: particle trajectories Xt ,Yt starting at the
same position x depart istantaneously.

SDE dynamics not described by a map x 7→ Xt(x) but a flow of
Markovian kernels.

Initial data δx of the SPDE become L1-densities at t > 0.

Solutions to SPDE are limit of vanishing viscosity/smooth
approximations.

Anomalous dissipation: ∥ρt∥L2 < ∥ρ0∥L2 with positive probability.
(related to spontaneous stochasticity, cf. Drivas-Eyink ’17)
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Evolution of Multiscale Norms

Negative Sobolev norms

∥f ∥2
Ḣ−s =

∫
Rd

|ξ|−2s |f̂ (ξ)|2 dξ

allow to gauge mixing behaviour and cascade mechanisms.
Previous results include:

α > 1 : [Gess, Yaroslavtsev ’21] show pathwise exponential decay of
negative Sobolev norms (uniform-in-diffusivity estimates):

∥ρt∥Ḣ−s ≤ De−γt ∥ρ0∥Ḣs ∀t ≥ 0, E [|D|p] < ∞.

α = 1, statistically self-similar case: [Coti Zelati, Gvalani, Drivas ’24]

E
[
∥ρt∥2Ḣ−s

]
= e−λd,s t ∥ρ0∥2Ḣ−s , λd ,s ∼ 2s(d − 2s)

α < 1, on Td [Rowan ’23] proves exponential decay of energy:

E
[
∥ρt∥2L2

]
≤ e−Ct ∥ρ0∥2L2 , ∀t ≥ τ(α)
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Regularization
in Rough Kraichnan’s Model
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Anomalous Regularization for α < 1

For α > 1, ρt(x) = ρ0
(
X−1
t (x)

)
, reversible dynamics and no regularization.

Theorem (Galeati-G.-Maurelli)

Let d ≥ 2, α ∈ (0, 1), s ∈ (0, d/2). There exist positive constants
C1,C2 > 0 such that

d

dt
E
[
∥ρt∥2Ḣ−s

]
+ C1E

[
∥ρt∥2Ḣ1−α−s

]
≤ C2E

[
∥ρt∥2Ḣ−s

]
∀t > 0.

In particular, for T > 0

sup
t∈[0,T ]

E
[
∥ρt∥2H−s

]
+ C1E

[∫ T

0
∥ρt∥2H1−α−s dt

]
≤ e2C2TE

[
∥ρ0∥2H−s

]
.

As a consequence, the solution map extends uniquely to any initial data
ρ ∈ Ḣ−s with s ∈ (0, d/2) and solutions become istantaneously L2-regular.
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About Regularization

Result motivated by [Coghi, Maurelli ’23] who obtained the result for
d = 2, s = 1 and applied it to regularization by Kraichnan noise for
2D Euler.

Solutions become regular: P-a.s. ρ ∈ L2tH
1−α−.

Optimality of threshold s < d/2, up to equality: white-noise (which is
supported on H−d/2− ) is formally invariant.

Constant C1 dictated by the local Hölder behaviour of W , while
constant C2 by how much W deviates from self-similarity. In the
(extremely formal!) statistically self-similar case, the balance becomes

d

dt
E
[
∥ρt∥2Ḣ−s

]
+ C1E

[
∥ρt∥2Ḣ1−α−s

]
= 0
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Heuristics

Given a smoothing kernel G , ρ solution as above,

d

dt
E [⟨G ∗ ρt , ρt⟩] + 2νE [⟨G ∗ ∇ρt ,∇ρt⟩]

= E

[∫
Rd×Rd

Tr
(
(Q(0)− Q(x − y))D2G (x − y)

)
ρt(x)ρt(y)dx dy

]
=: E [⟨H ∗ ρt , ρt⟩] .

Consider the (ill-defined) self-similar case Q̂(ξ) = cd |ξ|−d−2αP⊥
ξ . Take

Rs(z) = |z |d−2s , so that ⟨Rs ∗ ρt , ρt⟩ ∼ ∥ρt∥2H−s . By an explicit
computation:

H(z) = 2(2s−d)(s+α−1)|z |2(s+α−1)−d = −2(d−2s)(s+α−1)Rs+α−1(z)

(consistent with α = 1 examined in Coti Zelati-Gvalani-Drivas ’24)
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Flux Functions

Lemma

Let d ≥ 2, α ∈ (0, 1); let ρ0 ∈ L1 ∩ L2 ∩ Ḣ−s , ρ associated solution. Then

d

dt
E
[
∥ρt∥2Ḣ−s

]
=

∫
Rd

F (ξ)E
[
|ρ̂t(ξ)|2

]
dξ − 2νE

[
∥ρt∥2Ḣ−s

]
for the flux function F = F (α, s, d) defined by

F (ξ) :=

∫
Rd

1

(1 + |ξ − η|2)
d
2
+α

∣∣∣P⊥
ξ−ηξ

∣∣∣2( 1

|η|2s
− 1

|ξ|2s

)
dη

We are therefore reduced to study the high-frequency asymptotics of F (ξ).
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Beyond Regularization in Kraichnan’s model

Rigorous derivation of intermittency in the Kraichnan model.

Study more realistic and complicated models (e.g. W not white in
time, replaced by a solution to an SPDE).

Rigorously derivation of anomalous dissipation and anomalous
regularization in nonlinear SPDEs driven by “Kraichnan noise”.
(recent results in Coghi-Maurelli ’23, Bagnara-Galeati-Maurelli ’24)

Results in the nonlinear case are restricted to α ∈ (0, 1/2), but a
physically motivated choice would be α = 2/3.

Regularization by Kraichnan’s transport noise for vector fields, aiming
to an application to 3D Navier-Stokes.
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Kazantsev-Kraichnan

Theorem (Bagnara-G.-Maurelli)

The induction equation

∂tB + (u · ∇)B = (B · ∇)u, ∇ · B = 0,

driven by the random field u as in Kraichnan’s Model, has a unique
solution in L2t,ω(H

−s+(1−α)) if the initial datum is in H−s , for d ≥ 3, small
enough α ∈ (0, 1) and an appropriate negative s.
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Asymptotics
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A rather tough integral

The asymptotics at |ξ| → ∞ of the flux function

F (ξ) :=

∫
Rd

1

(1 + |ξ − η|2)
d
2
+α

∣∣∣P⊥
ξ−ηξ

∣∣∣2( 1

|η|2s
− 1

|ξ|2s

)
dη

can be reduced to that of

J(λ) =

∫ ∞

0
h(λt)f (t)dt,

at λ(= |ξ|) → ∞, with

f (r) = rd−1

∫ π

0

sind θdθ

|1− 2r cos θ + r2|s
, h(r) =

1

(1 + r2)d/2+α
.
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Parseval Theorem for Mellin Transforms

The Mellin transform of f is defined by

M[f , z ] =

∫ ∞

0
tz−1f (t)dt

for z ∈ C for which the integral is absolutely convergent.

J(λ) =

∫ ∞

0
h(λt)f (t)dt =

1

2πi

∫ r+i∞

r−i∞

M[h, z ]M[f , 1− z ]

λz
dz ,

if the line r + iR is entirely included in the intersection of the fundamental
strips of the involved Mellin transforms.
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Computing Coefficients

Taking the difference of Parseval formulas for two lines

J(λ) =
1

2πi

∫ r+i∞

r−i∞

M[h, z ]M[f , 1− z ]

λz
dz

=
∑

r<Re z<r ′

Res
{
−λ−zM[h, z ]M[f , 1− z ]

}
+

1

2πi

∫ r ′+i∞

r ′−i∞

M[h, z ]M[f , 1− z ]

λz
dz ,

so we can compute an asymptotic expansion by evaluating residues. The
relevant pole (producing the leading coefficient) is at z = d + 2α, and we
need the residue to be a positive real number.
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Computing Coefficients

One therefore needs to evaluate

M[h, z ] =
Γ (z/2) Γ (d/2 + α− z/2)

2Γ (d/2 + α)
,

and the crucial

M[f , 1− z ] =

∫ ∞

0
rd−1−z

∫ π

0

sind θdθ

|1− 2r cos θ + r2|s

=

√
πΓ

(
d−2s+2

2

)
Γ
(
d+1
2

)
2Γ(s)

·
Γ
(
2s−d+z

2

)
Γ
(
d−z
2

)
Γ
(
z+2
2

)
Γ
(
2d−2s+2−z

2

) .
Why the explicit computation? The relevant pole comes from M[h, z ], and
it is located outside of the analyticity region of M[f , 1− z ].
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A representation with special functions

Theorem

Let α ∈ (0, 1) and s ∈ (0, d/2). There exists a finite constant Cd ,α,s > 0
such that

|F (ξ) + Kd ,α,s |ξ|2−2α−2s | ≤ Cd ,α,s |ξ|−2s ∀ ξ ∈ Rd \ {0},

where

Kd ,α,s = −
2d/2−1(d + 1)Γ(s + α)Γ(−α)Γ

(
d−2s+2

2

)
Γ(s)Γ

(
d+2α+2

2

)
Γ
(
d−2s+2−2α

2

) > 0.
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Thank you!

(arXiv:2407.16668, arXiv:2411.09482)
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