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Noise

▶ White noise – De-correlation in space and in time– is a
standard assumption.

▶ Yet, time series data indicates other wise; common
random source also indicates spatial correlations.

▶ Mollified white noise are typically spatial de-correlation
for any two points with distance greater or equal to a
given number.

▶ Take the scenario of a finite grid. Why would we expect
the noise at one corner pf the grid being totally
de-correlated from that sitting on the opposite corner? As
the grid size increased, it make more sense to assume the
decay of correlation in proportion to the distance.

▶ For this reason and for mathematical curiosity, we study
long range correlated noise.



Long Range Dependence in Time

In the statistical mechanics word, LRD has already been take
noticed by e.g. Sinai.
▶ According to J. Jona-Lasino, ‘the critical point of a

second order phase transitions so far represents in physics
the most important instance where the central limit
theorem breaks down’. By this he refers to the
convergence of the rescaled sum of an infinite number of
mean zero random variables 1

n−α

∑n
i=1Xi to a Gaussian

random variable.
▶ This breaks down precisely when there is a strong

correlation of the said random variables.
▶ According to Rosenblatt, Yk is a mean zero Gaussian

sequence with covariance E(Y0Yn) ∼ n−a, a ∈ (0, 1
2
),

then

na−
n∑

i=1

H2(Yi) → non -Gaussian.



Functional Limit Theorem

In fact even when the limits are Gausssian distributed,
Donsker’s invariance principle may fail:

lim
n→∞

1

nα

[nt]∑
i=1

Xi

may not be a Brownian motion.

The scale α would actually yield the self-similarity exponent of
the process in the domain of attraction. In today’s language
the domain of attraction = Universality class.
One of these processes are fractional Brownian motions, the
others are Hermit processes ZH,m.



Self-similarity

▶ Lamberti 62: if X(t) is continuous at 0 with
non-degenerate laws, 1

h(λ)
Y (λt) → X(t), then

X(ta) = aHX(t).

▶ Consider a mean zero stationary increments process, with
self-similarity (Y (0) = 0, and σ2 = E(Y (1)2) <∞).
Then

E(Y (t)Y (s)) =
1

2
σ2(t2H + s2H − |t− s|2H)2,

where H ∈ (0, 1). Lamperti, Embrechts and Maejima.

▶ A Gaussian process with the above properties is a fBM.



Correlated noise

The ‘derivative’ of a fractional Brownian motion is the
simplest noise with correlation. A fBM is a Gaussian process
with stationary increment and E(Bt+s −Bs)

2 = t2H .
For t large, H ̸= 1

2
:

E(Bt+s+1 −Bt+s)(Bs+1 −Bs) ∼ t2H−2.

▶ The dynamics of an equation driven by a long range
fractional Brownian motion (H > 1

2
) is quite different

from that of a Brownian motion. Very little is know of its
invariant measure (except the fractional
Ornstein-Uhlenbeck equation and its generalizations) .
Even little is know of its densities and tails.



The Nile

Each summer, the river Nile overflows and floods the
surrounding areas, leaving behind rich fertile silt for agriculture.
If the inundation was inadequate, only a small area would be
covered with the life-giving silt, famine follows.

During the Pharaonic Period, forecast for the water flow was
used to compute taxes.



Time series data

Records on the height of the annual flow has been kept for 3
millennia, with numerous Nilometers.

In 1906, Harold Hurst started to work in the Survey
Department of Egypt in October 1906, which was responsible
for collecting data throughout the Nile basin.



Harold Hurst

Hurst worked in Egypt from 1906-1968, studying the annual
Nile overflow series data he discovered a heavier flood year is
followed by a heavier than average flood year and a draught
year flow is followed by a lighter than average river flow.

The Hurst phenomenon is modelled by
Mandelbrot and van Ness with frac-
tional BM (1968).



Mandelbrot studied fractals to capture
the roughness persistent at all levels.

Bt =

∫ t

0

(t− u)H− 1
2 dWu+∫ 0

−∞
[(t− u)H− 1

2 − (−u)H− 1
2 ] dWu.

Self-similar: Bat = aHBt.



Multi-scale

A dynamical system such as from engineering, science,
economics, and ecology consists of many different variables
interacting with each other. Given an object of study, the
interacting elements are classified as into two categories:
influential or negligible, the negligible is either neglected or
included in the model through the CLT theorem and modelled
by randomness.
Some influential interacting variables evolve at the same time
scale as our objects, some evolves at a slower scale (so can be
treated to be constant in time), others at faster scales. If we
model the evolution of the slow variables by a random
differential equations, the fast variable entered into the
expression for the vector fields.
On the time scale of the object of interest, the precise
positions of fast variables are not tractable but often not
needed. Instead, one focuses on the persistent effects of the
fast variables.



Two time scale stochastic equations

Stochastic equations with slow and fast variables already
separated:

ẋεt = F0(x
ε
t , y

ε
t ) + F (xεt , y

ε
t )ξ̇t

where yεt = y t
ε
for a suitable process y or

ẏεt =
1

ε
σ0(x

ε
t , yt) + ε−ασ(xεt , yt)η̇t

As the time separation parameter ε→ 0, the position of yεt is
not tractable and irrelevant. The aim is to track down its
persistent effect and deduce an autonomous equation for the
variable of interests.
Examples of such fast motions are for example periodic
functions or ergodic (stationary) Markovian process.



Functional LLN and Averaging Principle

ẋεt = F0(x
ε
t , yt/ε) + F (xεt , yt/ε)ξ̇t

▶ yt is said to satisfy a Functional LLN if for any f
regular ∣∣∣∣ε∫ t

0

f(yr/ε)dr − tf̄

∣∣∣∣ = o(ε)

▶ Let Ys be an independent stationary ergodic Markov
process with generator L which one assumes nice.
Functional LLN implies that∫ t

0

f(Ys/ε)dWs → Ŵt

a Wiener process with covariance (f ⊗ f)
1
2 .

dxεt = f(xεt , Ys/ε)dWs



Diffusion Creation /Homogenesation

The functional CLT for the Markov process
If f̄ = 0 and regular

1√
ε

∫ t

0

f(Ys/ε)ds→ (fL−1f)
1
2 Wt.

Diffusion creation problem:

ẋεt =
√
ε f(xεt , y t

ε
).



Integration and enhanced processes

∫ t

0

f(Bs)dBs ∼
∑∫ v

u

f(Bu) + f ′(Bu)δBur + . . . )dBr

∼

Auv︷ ︸︸ ︷∑
f(Bu)δBuv + f ′(Bu)

∫ v

u

δBurdBr + . . . .

For H > 1
2
, this is Riemann-Stieljes, for H ∈ (1

3
, 1
2
), we need

the second order term, the iterated integrals of B.
Enhanced process (B,B) where

Buv =

∫ v

u

(Bu −Br)dBr.

For H ∈ (1
4
, 1
3
), need to Taylor expand to order 3.

To define
∫
f(xs)dBs we assume that xs is controlled by B: it

is similar to B plus smooth order terms.



Rough functional limit theorem

Ys is a fractional Ornstein-Uhlenbeck process,
H∗(m) = m(H − 1) + 1, G function with Hermite rank m.
▶

1√
ε

∫ t

0

G(Ys/ε)ds→ cWt, if H∗(m) <
1

2
,

▶

1
√
ε
√

| ln ε|

∫ t

0

G(Ys/ε)ds→ cWt, if H∗(m) =
1

2
,

▶

εH
∗(m)−1

∫ t

0

G(ys/ε)ds→ cZ̄
H∗(m),m
t , if H∗(m) >

1

2
, .

Essentially known: weak convergence.
Theorem (Gehringer-L.) Functional limit theorem holds in
rough path topology, so limit of ẋεt = f(xεt)G(y t

ε
) converge.



Fractional Averaging

dxεt = f(xεt , y
ε
t ) dBt + g(xεt , y

ε
t ) dt ,

Proposition. Let H > 1
2
and yt is a uniformly elliptic Markov

process on a compact manifold. Then xεt → x̄t in probability

dx̄t = f̄(x̄t) dBt + ḡ(x̄t) dt .

For any β < H, there exists κ > 0 such that

lim
ε→0

P
(∣∣∣∫ t

s

f(y r
ε
)dBr − f̄(Bt −Bs)

∣∣∣
β
> εκ

)
= 0 .

Notes
Annealed limit. xεt → x̄ in probability.
Technical difficulty: Tightness
Quenched Problem. If we fix a path h = B(ω), does the
convergence hold for each fixed fBM path?
Feedback model.



Ingredients for the proof

Let H > 1
2
. Let fn, f̄ : R+ × Rd → L(Rm,Rd) be in Cζ,2.

▶ Lemma 1 [Hairer-L’20] xn0 = x0

dxnt = fn(t, x
n
t ) dBt,+f0(t, x

n
t )dt, dxt = f̄(xt) dBt + f̄0(xt)dt ,

Suppose that κ, γ ≥ 0,

lim
n→∞

|fn − f̄ |−κ,γ = 0 .

Then, xn → x in probability in Cα, for α ∈ (1
2
, H − κ),

ζ + α > 1 and H − κ+ γα > 1.

▶ Lemma 2. If y is strong mixing with rate δ,
F : Rd × Y → R bounded measurable, uniformly
Lipschitz continuous in the first variable ( Y compact),
then ∥F (x, y·/ε)− F̄∥−κ,γ → 0.
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Unusual Limit Theorems

Ys stationary ergodic Markov process with all nice properties
and generator L.
Lemma (Hairer+Li 21)

▶ If H > 1
2
, the following converges in probability∫ t

0

f(Ys/ε)dBs → f̄Bt.

▶ If H ∈ (1
3
, 1
2
) (and f̄ = 0 incase H > 1

2
)

ε
1
2
−H

∫ t

0

f(Ys/ε)dBs → ΣWt.

Σ =
1

2
Γ(2H + 1)F ⊗ L1−2HF .



Spatial Dependence



SPDEs with spatial long range dependent noise

Now consider a Gaussian family ξ, white in time, spatially
correlated noise. Keep space-time homogeneity. Formally

E[ξ(t, x)ξ(s, y)] = δ(t− s)R(x− y).

Not concerned with the well-poseness problem, we consider a
regular SPDE, assuming that R is smooth.

▶
∂th = 1

2
∆h+ 1

2
|∇h|2 + βξ .

▶

∂tu(t, x) =
1
2
∆u(t, x) + βu(t, x)ξ(t, x) ,

u(0, ·) = 1 ,



Collaborators

Martin Hairer
Luca Gerolla



Shape at infinity

|R(x)| ≤ cR
1 + |x|κ

, κ ∈ (2, d), d ≥ 3.

Shape of noise at infinity:

lim
ε→0

ε−κR(
x

ε
) = x−κ.

▶ For every ε, there is a function valued solution ut to the
SHE and and a solution ht to the KPZ. Take u0 ≡ 1 for
simplicity.

▶ As t→ ∞, the solutions converge to stationary random
fields. To see this, we note that for any s, ut−s equals in
law to the pull back solution u(s)(t, x), which solves the
SHE with u(s)(s, ·) ≡ 1.



Large time behaviour

Set s′ < s < 0,

u
(s)
t (x) = 1 + β

∫ t

s

∫
Rd

Pt−r(x− y)u(s)r (y)ξ(dr, dy).

By heat kernel estimates, decay condition on R,

∥u(s′)(t, x)− u(s)(t, x)∥p
≤ Mp (1 + t− s)

2−κ
4 + c(β0)(1 + t− s)

2−κ
4

Mp : = sup
x∈Rd

sup
t>s

(t− s+ 1)
κ−2
4 ∥u(s′)(t, x)− u(s)(t, x)∥p .

sup
x∈Rd

∥us′(t, x)− us(t, x)∥p ≲Mpβ(1 + t+ (−s) ∧ (−s′))
2−κ
4 .



Theorem: large time

Interpolate with

∥u(K)(t, x1)− u(K)(t, x2)∥p ≲ |x1 − x2|δ ,

Theorem [GLH] Let p ≥ 1, there exists a space-time

stationary random field Z⃗ such that, for β ≤ β1(p, d, R), any
t ∈ R,

lim
s→−∞

E sup
x∈K

|u(s)(t, x)− Z⃗(t, x)|p → 0.

▶ E[u(t, x)] = 1, by

ut(x) = 1 + β

∫ t

0

∫
Rd

Pt−s(x− y)σ(us(y))ξ(ds, dy).

If β ∼ 0 is small, u ∼ Ptu(0, ·) = 1.
▶ We study the large scale fluctuations: uε(t, x) = u( t

ε2
, x
ε
).



Good coupling

uε(t, x) = u(
t

ε2
,
x

ε
), ξε = εκ/2−1ξ(t/ε2, x/ε)

E[ξε(t, x)ξε(s, y)] = δ(t− s)ε−κR(x−y
ε
) .

ξε → ξ0 in law, as ε→ 0, where

E[ξ0(t, x)ξ0(s, y)] = δ(t− s)|x− y|−κ .

▶ can choose a good coupling such that for every

ψ ∈ C∞
c (Rd+1), there exists ξ0(ψ) with ξε(ψ)

(P )⇒ ξ0(ψ).
▶ Example. ξ(t, x) =

∫
Rd φ(x− y)η(t, y) dy, η white noise.

We have a natural good coupling:

ξε(t, x) = ε−(d+κ)/2

∫
Rd

φ((x− y)/ε)η(t, y) dy .

Further choose φ(x) ∼ |x|− d+κ
2 .



Role played by nonlinear interaction

▶ vε = ε1−
κ
2 (uε − 1) solves:

∂tvε(t, x) =
1

2
∆vε(t, x) + βσ(ε

κ
2
−1vε(t, x) + 1)ξε(t, x).

▶ We expect the solution of the equation below to v:

lim
ε→0

ε1−
κ
2

∫
Rd

(uε(t, x)− 1)g(x)dx

∂tv =
1

2
∆v + σ(1)Ẇ κ.

The guess for this limiting variance is actually wrong.



Homogenization lemma

∂tws,y(t, x) =
1
2
∆ws,y(t, x) + βws,y(t, x)ξ(t, x) ,

ws,y(s, ·) = δy ,

Z⃗(t, x) = 1 + β

∫ t

−∞

∫
Rd

Pt−r(x− z)Z⃗(r, z) ξ(dr, dz);

⃗Z(s, y) = 1 + β

∫ ∞

s

∫
Rd

Pr−s(y − z) ⃗Z(r, z) ξ(dr, dz).

Lemma:∥∥∥ ws,y(t, x)

Pt−s(y − x)
− Z⃗(t, x) ⃗Z(s, y)

∥∥∥
p

≲ (1 + t− s)−
1
2
+ 1

κ (1 + (1 + t− s)−
1
2 |x− y|) .



Fluctuation Theorem for SHE

Xε,g
t = ε1−

κ
2

∫
Rd

(
uε(t, x)− Euε(t, x)

)
g(x)dx.

Theorem. [ GHL] Let ν2eff = |E[σ(Z⃗(0, x))]|2, d ≥ 3. For
β < β0.

(Xε,g1
t1 , . . . , Xε,gn

tn ) ⇒
(∫

Rd

U(t1, x)g1(x) dx, . . . ,
∫
Rd

U(tn, x)gn(x) dx
)

∂tU(t, x) =
1

2
∆U(t, x) + β ν2effẆ

κ(t, x), U(0, x) = 0,

E[ Ẇ κ(t, x)Ẇ κ(s, y) ] = δ(t− s)|x− y|−κ.

Unlike, for the compactly supported correlation case, where

ν̄2 =

∫
R(x)EB

(
e

1
2
β2

∫∞
0 R(x+Bs)ds

)
dx.



Compare to compactly supported case

∂tu(t, x) =
1

2
∆u(t, x) + βu(t, x)η ∗ φ(x)

Limit solves Edwards-Wilkinsons Equation.

∂tU(t, x) =
1

2
∆U(t, x) + βν̄ η(t, x),

ν̄2 =

∫
R(x)EB

(
e

1
2
β2

∫∞
0 R(x+Bs)ds

)
dx.

J. Magnen, J. Unterberger (2008), C. Mukherjee, Shamov,
Zeitouni (2016)
Yu Gu, L. Ryzhik, O. Zeitouni, (2018)- C. Cosco, S. Nakajim,
M. Najashima 2020– D. Lygkonis, N. Zygouras (2022)– A.
Dunlap, Y. Gu, L. Ryzhik, O. Zeitouni (2020).



KPZ

hε(t, x) := ε1−
κ
2 h(

t

ε2
,
x

ε
)− t

2
β2R(0)ε−1−κ

2 ,

Allow a slowly varying initial condition:

∂thε =
1
2
∆hε +

1
2
ε

κ
2
−1|∇hε|2 − 1

2
β2R(0)ε−1−κ

2 + βξε

∂tU0 =
1

2
∆U0 + βξ0 , U0(0, ·) = h(0) .

Theorem (GHL)
Let p ≥ 1, α < 1− κ

2
, and σ < −1− κ

2
. For β small,

(hε(t, x)− ε1−
κ
2 c, ξε) ⇒ (U , ξ0)

in probability in Lp([T0, T ],C
α(E)).



▶ Fast variable non-Markovian, driven by fBM. Time
homogenisation problem (multiple scaling constants, the
effect dynamics is much richer than that given by the
Markovian dynamics), Johann Gehringer +L.

▶ Slow variable driven by fBM. The analysis is a puzzle.
Hairer+L.

▶ Fractional averaging with fast fractional dynamics,
Sieber+L.

▶ non-product form for Volterra kernels, Gehringer
+L+Sieber
- for SPDE

dXε
t = AXε

t dt+ f
(
Xε

t , Y t
ε

)
dt+ g

(
Xε

t , Y t
ε

)
dBt.

L.+Sieber
▶ L. + Planloup+Sieber: smooth dependence of invariant

measures for SDEs driven by fBMs depending on a
parameter.


