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Institut de Physique Théorique Saclay (France)

Rome, La Sapienza, April 8th 2025

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



Outline

Introduction

1. Current and Tracer fluctuations in SEP: a microscopic approach

2. Fluctuating hydrodynamics: The Macroscopic Fluctuation Theory

3. Solving the MFT by Inverse Scattering

Conclusion

KM, H. Moriya and T. Sasamoto, Phys. Rev. Lett. 129, 040601 (2022)

KM, H. Moriya and T. Sasamoto, J. Stat. Mech., 074001 (2024).

A. Grabsch, H. Moriya, KM, T. Sasamoto and O. Bénichou, Phys. Rev. Lett., 133,
117102 (2024).

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



Single-file diffusion

Single-file diffusion is an important phenomena soft-condensed matter
(for example, transport through cell membranes).
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Experimental observations

(C. Bechinger’s group in Stuttgart)
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The exclusion process

A pristine model for single-file diffusion is the Symmetric Exclusion
Process, in which particles perform continuous-time random walks with
hard-core (classical) exclusion interaction

1 1 1 1 1

0
x

This minimal model appears as a building block in many realistic studies
of 1d transport and studied extensively in biophysics, condensed matter,
polymer reptation, combinatorics, probability and even traffic flow.

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



The Symmetric Exclusion Process (SEP) on Z.

Consider the Symmetric Exclusion Process, (p = q = 1) on Z with a
uniform finite density ρ of particles.

Suppose that we tag and observe a particle that was initially located at
site 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), each
particle would diffuse normally 〈X 2

t 〉 = Dt .

• Because of the exclusion condition, a particle displays an anomalous
diffusive behaviour: when t →∞, we have

〈X 2
t 〉 ' 2

1− ρ
ρ

√
Dt

π
(Arratia, 1983)

The exact probability distribution of Xt remained unknown for almost 40
years.
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Microscopic Approach
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The Exclusion process is an integrable model

One of the reasons that makes the exclusion process (and some variants)
so attractive and popular is that it is integrable. It conceals hidden
symmetries (combinatorial structures) that allows us to carry precise
analysis and derive exact formulas and solutions.

A key observation was made Shlomo Alexander and, independently, by
Deepak Dhar in the eighties. The Markov matrix of the exclusion process
is identical to the Heisenberg Spin chain Hamiltonian:

M =
L∑

l=1

(
S+

l S−l+1 + qS−l S+
l+1 +

1 + q

4
Sz

l Sz
l+1 −

1 + q

4

)
where S = (Sx ,Sy ,Sz ) are the Pauli matrices (and q represents the
asymmetry of the jumps; q = 1 for symmetric walks).

Thus, the exclusion process can be solved using (quantum) integrability
methods (Bethe Ansatz).

The microscopic analysis of this interacting, non-equilibrium, N-body
process, can be carried out to extreme precision (B. Derrida, M. Evans,
J. Lebowitz, V. Hakim, D. Mukamel, G. Schütz, E. Speer, H. Spohn...).

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



Current fluctuations in the SEP

Consider the Symmetric Exclusion Process on Z with two-sided Bernoulli
initial conditions ρ− on the left, ρ+ on the right at t = 0.

Time integrated current QT = total number of particles that have
jumped from 0 to 1 minus the total number of particles that have
jumped from 1 to 0 during the time interval (0,T ).

O

××× QT

An exact microscopic combinatorial solution of the problem is possible: it
yields the distribution of current and that of a tagged particle at any
position and at any finite time. This involves the technology of Integrable
Probabilities.

A macroscopic hydrodynamic picture, based on the MFT, is also exactly
solvable and its results are totally consistent with the microscopic
solution.
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Mapping to an interface model

We represent the exclusion process by an interface model

0 1

N(0,t)

N(0, t) represents the total current Qt through (0, 1) in the duration t.

N(x , t) = N(0, t) +


∑x

y=1 ηy (t) , x > 0

0, x = 0

−
∑0

y=x+1 ηy (t) , x < 0

Note that N(x , t) is related to the KPZ height via h(x , t) = N(x , t)− x
2
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A Tagged Particle in the SEP with step profile

Consider SEP with a step-like Bernoulli initial condition with density ρ−
(resp. ρ+) to the left (resp. right). The tagged particle (or tracer) is
initially located at 0. Let the system evolve: Xt denotes the position of
the tracer at time t.

X
0

1 1 1 1 1

0 0

ρ

ρ
+

_

x x

What is the statistics of the position of the tracer Xt and its asymptotics
in the long time limit?

Because of the non-crossing condition, the statistics of the current and
that of a tagged particle are ’simply’ related.
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Tracer’s position versus the height N(x,t)

Because the tracer is continuously moving, it is useful to relate its
position Xt to the local observable N(x , t), which is fixed at position x .

Using particle number conservation, one can show

Prob (Xt > x) = Prob (N(x , t) > 0)

Or, equivalently,

Prob (Xt ≤ x) = Prob (N(x , t) ≤ 0)

This relates the statistical properties of Xt and those of the height
N(x , t). In particular, one can deduce the large deviation function and
the cumulants of Xt from the corresponding quantities for N(x , t).

It is thus enough to focus on N(x , t).
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Exact expression of the generating function

It is possible to derive a formula for the characteristic function of the
height N(x , t), exact at any finite-time, in terms of a Fredholm
determinant:

〈eλN(x,t)〉 = det(1 + ωKt,x )W0(λ)

where

ω(λ) = ρ+(eλ − 1) + ρ−(e−λ − 1) + ρ+ρ−(eλ − 1)(e−λ − 1)

Kt,x (ξ1, ξ2) =
ξ
|x|
1 eε(ξ1)t

ξ1ξ2 + 1− 2ξ2
with ε(ξ) = ξ + ξ−1 − 2

W0(λ) =
(
1 + ρ±(e±λ − 1)

)|x|
with ± = sgn(x)

From this result, information about the tracer can be deduced.
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Long time asymptotics

In the long time limit, the asymptotics analysis of this Fredholm
determinant, shows that the characteristic function behaves as

〈eλN(x,t)〉 ∼ e−
√

tµ(ξ,λ)

where ξ = − x√
4t

. The function µ(ξ, λ) is the cumulant generating

function of N(x , t):

µ(ξ, λ) =
∞∑

n=1

(−ω)n

n3/2
A(
√
n ξ) + ξ log

1 + ρ+(eλ − 1)

1 + ρ−(e−λ − 1)

with A(u) = ξ +
∫∞
ξ

erfc (u)du and

ω(λ) = ρ+(eλ − 1) + ρ−(e−λ − 1) + ρ+ρ−(eλ − 1)(e−λ − 1)
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Integrability: Schutz-Tracy-Widom Integral formulas

Inspired by the fact that ASEP is integrable by “Bethe Ansatz”, the
τ -correlation functions can be expressed as multiple contour integrals in
the complex plane:

〈τ
∑

i
N(xi ,t)〉 = τ

∑
i

i−
xi
2

n∏
i=1

(
1−

r−

τ i r+

)∫
· · ·
∫ ∏

i<j

zi − zj

zi − τzj

n∏
i=1

e
Λxi ,t

(zi )

(1− zi
τθ+

)(zi − θ−)
dzi

with r± = ρ±(1− ρ∓), θ± = ρ±/(1− ρ±) and eΛx,t (z) =
(

1+z
1+z/τ

)x
e
− q(1−τ)2z

(1+z)(τ+z)
t

T. Imamura, K.M, T. Sasamoto, Phys. Rev. Lett. 118, 160601 (2017)
T. Imamura, K.M, T. Sasamoto, CMP 384:1409, (2021).
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From micro to Macro

• Exact solutions at the microscopic level require high-brow technology.
However, at the level of large deviations, the cumulant generating
function, µ(ξ, λ), is given by a rather simple expression.

• We obtain the distribution of the height, current, tagged particle
position in the long time limit. However, we have gained no knowledge
on how large deviations (i.e. rare fluctuations) are dynamically generated.

• Time-dependent aspects seem to be out of reach of Bethe Ansatz (i.e.
Integrable Probability) methods.

• A more physical picture, that would bypass combinatorics and
asymptotics, and based on a more intuitive and direct approach, would
be welcome.
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Macroscopic Fluctuation Theory
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The General Large Deviations Problem

R1 R2

J

The Probability to observe an atypical local current j(x , t) and density
profile ρ(x , t) during 0 ≤ s ≤ L2 T (i.e. diffusive scaling, L is the size of
the system) assumes a Large Deviation behaviour

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Knowing I(j , ρ), one could deduce the large deviations of the current and
of the density profile. For instance, Φ(j) = minρ{I(j , ρ)}.

Is there a Principle which gives this large deviation functional for
driven diffusive systems out of equilibrium?
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The MFT action

For a weakly-driven diffusive system, the large deviation form of the
probability to observe a current j(x , t) and a density profile ρ(x , t) during
a time T , is given by

Pr{j(x , t), ρ(x , t)} ∼ e− SMFT (j,ρ) ,

with

SMFT (j , ρ) =

∫ T

0

dt

∫ +∞

−∞

(j + D(ρ)∇ρ)2 dx

2σ(ρ)

under the constraint ∂tρ = −∇.j
(L. Bertini, D. Gabrielli, A. De Sole, G. Jona-Lasinio and C. Landim).

For a given problem, only the dominant paths will dominate the
probability measure. They can be obtained by optimizing this action
under constraints.

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



The Equations of Macroscopic Fluctuation Theory

The optimization of the action is a variational problem that leads to
Euler-Lagrange equations. By a Legendre transform, a Hamiltonian
structure is obtained by using a pair variables (ρ,H), conjugate to (ρ, j).
Here, ρ(x , t) is the density-field and H(x , t) is a conjugate (momentum)
field. The dynamics is given by

∂tρ = ∂x [D(ρ)∂xρ]− ∂x [σ(ρ)∂xH]

∂tH = −D(ρ)∂xxH − 1
2σ
′(ρ)(∂xH)2

with Hamiltonian H = σ(ρ)(∂xH)2/2− D(ρ)∂xρ∂xH.

The information of the microscopic dynamics relevant at macroscopic
scale is embodied in the transport coefficients D and σ other details are
‘blurred’ in this continuous hydrodynamic limit.
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Height fluctuations at macroscopic scale

O

××× QT

In the continuous limit:
N(X ,T ) =

∫∞
0

[ρ(x ,T )− ρ(x , 0)]dx +
∫ X

0
[ρ(x ,T )]dx . And for large T ,

we have (LDP):

〈eλN(X ,T )〉 ' e
√

Tµ(ξ,λ)

What are the profile ρ and the conditioning momentum field H required
to generate a given large fluctuation of the local height N(X ,T )?

We want to extract the cumulant generating function (CGF) µ macroscopically.

We must average eλN(X ,T ) under the MFT measure.
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MFT equations for height fluctuations

Thus, we must solve the PDE’s (for SEP, D = 1, σ = 2ρ(1− ρ)) :

∂tρ = ∂x [∂xρ− 2ρ(1− ρ)∂xH]

∂tH = −∂xxH − (1− 2ρ)(∂xH)2

With non-local boundary conditions:

H(x ,T )= λθ(x − X )

H(x , 0)= λθ(x) + log
ρ(x , 0)(1− ρ̄(x))

ρ̄(x)(1− ρ(x , 0))

where ρ̄(x) = ρ−θ(−x) + ρ+θ(x) is the mean-initial step profile. The
condition at t = 0 expresses the fact that the initial profile fluctuates
with two-sided Bernoulli measure.

Knowing the optimal profile ρ∗ solving this system, the CGF will be
obtained from

√
T
dµ

dλ
= N(X ,T ) =

∫ ∞
X

ρ∗(x ,T )−
∫ ∞

0

ρ∗(x , 0)dx

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



• The MFT equations describe the non-equilibrium behaviour of many
diffusive interacting particle systems (dynamical transitions, shocks...).

• Mathematical/Numerical difficulties : well-posedness; non-local
boundary conditions.

• Time-dependent equations were solved only in noninteracting case and
for years no analytic time-dependent solutions of these coupled PDE’s
were known.

• Recently, several exact results for closely related problems of optimal
fluctuation paths have appeared: Krajenbrink and Le Doussal (weak-noise
KPZ); Bettelheim, Smith and Meerson (KMP); Grabsch, Poncet,
Rizkallah, Illien and Bénichou (Single Files) and Moriya-M-Sasamoto
(SEP).
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SOLVING THE MFT BY

INVERSE SCATTERING

The key observation is that the MFT equations for SEP are a classically
integrable Hamiltonian system, in the sense of Liouville (i.e. they have a
Lax pair in modern setting).

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



Reflecting Brownian Motions: Cole-Hopf mapping

In the limiting case of very low density, the simple exclusion process
reduces to a system of Brownian Motions with specular reflection (RBM)
and the MFT equations read:

∂tρ = ∂x [∂xρ− 2ρ∂xH]

∂tH = −∂xxH − (∂xH)2

These equations are solved by mapping them to two decoupled heat
equations thanks to the Cole-Hopf transformation:

u(x , t) = ρe−H

v(x , t) = eH

In these new variables, the above equations become

∂tu = ∂xxu

∂tv = −∂xxv

The particles are in fact non-interacting: this is a “free” model.
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SOLVING MFT: A chart of models

K. Mallick An Exact Solution of the Macroscopic Fluctuation Theory for SEP



A generalization of the Cole-Hopf mapping

The following novel non-local transformation

u(x , t) =

(
∂ρ

∂x
− ρ(1− ρ)

∂H

∂x

)
exp

[
−
∫ x

−∞
dy(1− 2ρ)∂yH

]
,

v(x , t) = −∂H
∂x

exp

[∫ x

−∞
dy(1− 2ρ)∂yH

]
maps the MFT to the Ablowitz-Kaup-Newell-Segur (AKNS) system:

∂tu(x , t) = ∂xxu(x , t)− 2u(x , t)2v(x , t)
∂tv(x , t) = −∂xxv(x , t) + 2u(x , t)v(x , t)2

The boundary conditions transform also well (still non-local in time):

u(x , 0) = ωδ(x) and v(x ,T ) = δ(x)

with ω = (eλ − 1)ρ−(1− ρ+) + (e−λ − 1)ρ+(1− ρ−)
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Classical Integrability

The AKNS equations can be viewed as an ‘imaginary time’ analog to the
Non-Linear Schrödinger (NLS) equation (t → it, ψ → u and ψ∗ → v).

i∂tψ = −∂xxψ + 2|ψ|2ψ

It is known that NLS is an integrable PDE.

The AKNS equations have an infinite number of conserved quantities in
involution. They are classically integrable in the sense of Liouville.

The AKNS equations can be solved by using the Inverse
Scattering Theory.
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Classical Integrability I: Lax Pair

Consider the following auxiliary linear problem:{
∂
∂x Ψ(x , t) = U(x , t; k)Ψ(x , t)
∂
∂t Ψ(x , t) = V (x , t; k)Ψ(x , t)

with ΨT (x , t) = (ψ1(x , t), ψ2(x , t)); U(x , t) and V (x , t) are the
matrices:

U=

(
−ik v(x , t)

u(x , t) ik

)
and V =

(
2k2 + uv 2ik v − ∂xv

2ik u + ∂xu −2k2 − uv

)
The compatibility of these equations, ∂t∂x Ψ = ∂x∂tΨ, is ensured by the
zero curvature condition:

∂U

∂t
− ∂V

∂x
+ [U,V ] = 0

This condition is ensured if the functions u and v satisfy the AKNS
system.
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Classical Integrability II: Scattering

The first equation of the pair reads, in components:{
∂
∂xψ1(x , t) = −ikψ1 + v(x , t)ψ2

∂
∂xψ2(x , t) = u(x , t)ψ1 + ikψ2

This is a linear scattering problem on R, for any given value of the time
t, in which u(x , t) and v(x , t) that solve AKNS appear as potentials.

Because these potentials vanish at infinity, asymptotic states are
well-defined: ψ1 and ψ2 behave as plane waves at x = ±∞.

Therefore, incoming/outgoing plane waves from x → −∞

φ(x ; k) ∼
(
e−ikx

0

)
and φ̄(x ; k) ∼ −

(
0

e ikx

)
will scatter at x → +∞ as follows

φ(x ; k) ∼
(
a(k, t)e−ikx

b(k , t)e ikx

)
and φ̄(x ; k) ∼

(
b̄(k, t)e−ikx

−ā(k, t)e ikx

)
The functions a, ā, b, b̄ are the scattering amplitudes associated to this
(Dirac) scattering process.
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Classical Integrability III: Diagonalization

Using the second equation of the Lax pair, which describes the time
dynamics of Ψ and the asymptotic plane-wave expressions, the time
evolution of the scattering amplitudes is obtained explicitly:

a(k , t)= a(k , 0), b(k , t) = b(k , 0)e−4k2t

ā(k, t)= ā(k , 0), b̄(k , t) = b̄(k , 0)e4k2t

Key feature: The dynamics drastically simplifies in terms of the
scattering amplitudes. (The scattering amplitudes are the action-angle
variables of the dynamics.)

If we know the scattering amplitudes at initial time, they are determined
at all times. Then, the potentials u(x , t) and v(x , t) can be
reconstructed at any time by the inverse-scattering procedure
(Gelfand-Levitan-Marchenko).
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ISM as a non-linear Fourier Transform

The Inverse Scattering Method can be viewed as a Non-Linear
Fourier Transform that diagonalizes the evolution of integrable
non-linear equations.

We shall explain in the following that the MFT equations for SEP can be
analyzed by the ISM scheme.
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Solving MFT by Inverse Scattering

We wish to apply ISM to Simple Exclusion (MFT). However, we have
non-local boundary conditions (not Cauchy initial conditions):

u(x , 0) = ωδ(x) but v(x , 0) is unknown

v(x ,T ) = δ(x) but u(x ,T ) is unknown

1. Calculate implicitly the scattering amplitudes both at t = 0 and t = T
in terms of the unknown potentials v(x , 0) and u(x ,T ), knowing that the
other potential is a Dirac function.

2. Match the scattering data at initial and final times using the ’trivial’
action-angle dynamics (integrability).

u(x , 0) = ωδ(x),v(x , 0) a(k , 0), ā(k , 0), b(k, 0), b̄(k, 0)

a(k , t), ā(k , t), b(k, t), b̄(k, t)u(x , t), v(x , t) = δ(x)

Direct scattering

Time evolution

Direct scattering
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The scattering amplitudes

The Dirac scattering problem at initial time with u(x , 0) = ωδ(x) and
v(x , 0) unspecified is elementary to solve. One finds (in terms of the half
Fourier-transforms of v):

a(k , 0)= 1 + ωv̂+(k), b(k , 0) = ω

ā(k , 0)= 1 + ωv̂−(k), b̄(k , 0) = − [v̂(k) + ωv̂+(k)v̂−(k)]

Similarly, the Dirac scattering problem at final time with u(x ,T )
unknown and with v(x ,T ) = δ(x) gives

a(k,T )= 1 + û+(k), b(k ,T ) = (û(k) + û+(k)û−(k))e−2ikX

ā(k,T )= 1 + û−(k), b̄(k ,T ) = −e−2ikX

From the simple evolution of the scattering data, we deduce that
û± = ωv̂± and

û(k) + û+(k)û−(k) = ωe−4k2T +2ikX
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Equation for the density profile

Hence, we have shown that the half Fourier transform of the final profile

û±(k) =

∫
R∓

u(x + X ,T )e−2ikxdx

satisfies a scalar Riemann–Hilbert factorization problem:

(û+(k) + 1) (û−(k) + 1) = 1 + ωe−4k2T +2ikX

where 1 + û± is analytic on the upper (respectively lower) complex plane,
with a given product along R.

This Riemann–Hilbert problem is solved by using the Cauchy Formula
(after taking logarithms) and we obtain:

û±(k) + 1 = exp

[
−1

2

∞∑
n=1

(−ωe−4k2T +2ikX )n

n
erfc(∓i

√
4nT (k − iX

4T
)

]
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Cumulant Generating Function of the current

Calculating the height N(X ,T ) from the optimal profiles at t = 0 and
t = T yields its Cumulant Generating Function (CGF).

In the long time limit, 〈eλN(X ,T )〉 ' e
√

Tµ(ξ,λ), with

µ(ξ, λ) =
∞∑

n=1

(−ω)n

n3/2
A(
√
n ξ) + ξ log

1 + ρ+(eλ − 1)

1 + ρ−(e−λ − 1)

with A(u) = ξ +

∫ ∞
ξ

erfc (u)du and ω = (eλ − 1)ρ−(1− ρ+) + (e−λ − 1)ρ+(1− ρ−)

This is the same formula that was obtained by previously using Integrable
Probabilities, it is now derived directly at the macroscopic level.

Optimal profiles describing the dynamical evolution that generates a
given fluctuation (rare event) that were out of reach by the microscopic
techniques are now found by solving the MFT at hydrodynamic scale.
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Optimal Profiles and Control Fields

Gathering all the pieces and going back to the variables of the original
MFT equations, explicit formulas for the optimal fields (ρ∗,H∗) are
obtained.

ρ(x,0)

ρ(x,T)

ρ-

ρ+

-4 -2 0 2 4
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x

ρ

H(x,0)
H(x,T)

-4 -2 0 2 4
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

H
Optimal profiles for the total current at X = 0 of ρ (left) and H (right)
at t = 0 and at t = T , with ρ+ = 1/3, ρ− = 2/3, λ = 1 and T = 1.
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Conclusions

A major challenge in non-equilibrium physics is to determine the large
deviations, considered to be the relevant generalizations of the
thermodynamic potentials (Free Energy) far from equilibrium.

Interacting particle processes (such as the exclusion process) are ideal
toy-models to investigate these questions with a large variety of methods:

• Microscopic scale: Combinatorics, Matrix representation, Bethe Ansatz,
Integrable Probabilities...

• Coarse-grained level: hydrodynamic limits, fluctuating hydrodynamics
(SPDE), Macroscopic Fluctuation Theory for optimal paths (PDE)...

Finding explicit time-dependent solutions of the MFT has been a
challenge since this theory was proposed (2001). Very recently, several
exact results appeared: Krajenbrink-Le Doussal (weak-noise KPZ);
Bettelheim-Smith-Meerson (KMP); Grabsch et al. and MMS (SEP).

These exact results are based on the Inverse Scattering Method,
originally developed to study non-linear dispersive hydrodynamics.

Applications of the ISM to non-equilibrium statistical mechanics seems
very promising. The relation between microscopic and macroscopic
integrability is very intriguing.
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