A bridge between Schramm-Loewner Evolutions and Random Matrix Theory

Vlad Margarint

joint work with A. Campbell and K.Luh

University of North Carolina at Charlotte

STOCHASTIC EQUATIONS AND PARTICLE SYSTEMS

Rome, April 2025

Planar Statistical Physics. What is the scaling limit?

• A sample of a planar Loop-Erased Random Walk:

Figure: Credit to E. Peltola, A. Karrila, K. Kytola.

Vlad	Margarint	
	Barne	(0.100)

Conformal maps and the Loewner equation

• In general, for a non-self crossing curve $\gamma(t) : [0, \infty) \to \overline{\mathbb{H}}$ with $\gamma(0) = 0$ and $\gamma(\infty) = \infty$, we consider the simply connected domain $\mathbb{H} \setminus \gamma([0, t])$.

- Using the Riemann Mapping Theorem for the simply connected domain $\mathbb{H} \setminus \gamma([0, t])$, we have a three parameter family of conformal maps $g_t : \mathbb{H} \setminus \gamma([0, t]) \to \mathbb{H}$.
- Loewner Equation encodes the dependence between the evolution of the maps g_t when the curve γ([0, t]) grows.

Description of the conformal maps

• For $g_t(z)$, as $|z| o \infty$ we use the normalization:

$$g_t(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \dots$$

- We take $b_0 = 0$.
- The coefficient $b_1 = b_1(\gamma([0, t]))$ is called the *half-plane capacity* of $\gamma(t)$ and is proved to be an additive, continous and increasing function. Hence, by reparametrizing the curve $\gamma(t)$ such that $b_1(\gamma([0, t])) = 2t$, we obtain

$$g_t(z)=z+\frac{2t}{z}+\ldots$$

• The maps satisfy the Loewner Differential Equation

$$\partial_t g_t(z) = rac{2}{g_t(z) - U_t}, \quad g_0(z) = z.$$

Definition of SLE

Definition

Let B_t be a standard real Brownian motion starting from 0. The chordal SLE(κ) is defined as the law on curves induced by the solution to the following ordinary differential equation

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \quad g_0(z) = z.$$

• SLE trace: $\gamma(t) = \lim_{y \to 0+} g_t^{-1} (\sqrt{\kappa}B_t + iy)$. [Rohde-Schramm ($\kappa \neq 8$), Lawler-Schramm-Werner($\kappa = 8$)]

Simulations of the SLE traces obtained with our algorithm

Figure: A sample of SLE_{κ} trace for $\kappa = 8/3$ obtained with our code.

SLE phase transitions

• It is proved that there are two phase transitions when κ varies between 0 and ∞ .

Multiple SLE model

- Multiple SLE: Alberts, Ang, Bauer, Beffara, Bernard, Binder, Byun, Cardy, Del Monaco, Dubédat, Duplantier, Hotta, Izyurov, Kang, Karrila, Katori, Koshida, Kozdron, Kytölä, Lawler, Lenells, Makarov, Miller, Olsiewski Healey, Peltola, Schleissinger, Sun, Viklund, Wang, Wu, Yu, Zhan, ...
- Brownian Motion \rightarrow Dyson Brownian Motion(DBM), $\beta = 8/\kappa$.

$$d\lambda_t^i = \frac{\sqrt{2}}{\sqrt{N\beta}} dB_t^i + \frac{1}{N} \sum_{j \neq i} \frac{dt}{\lambda_t^j - \lambda_t^i}, i = 1, \cdots, N.$$

• Multiple SLE simultaneous growth

$$\partial_t g_t^N(z) = rac{1}{N} \sum_{j=1}^N rac{2}{g_t^N(z) - \lambda_t^j}.$$

RMT and SLE

Theorem (Campbell-Luh-M, RMTA 2025.)

Let $\beta = 1$ or $\beta = 2$, and let K_T^N be the multiple SLE hull with N drivers at time T > 0. Then, for any $\epsilon > 0$ and compact $G \subset \mathbb{H} \setminus \bigcup_N K_T^N$, for the multiple SLE maps with N-drivers, we have that

$$\sup_{t\in[0,T],\ z\in\mathcal{G}}|g_t^N(z)-g_t^\infty(z)|=O_{\mathcal{G},\mathcal{T}}\left(\frac{1}{N^{1/3-\epsilon}}\right),$$

with overwhelming probability.

- E holds with o.p. if, for every $p > 0, \mathbb{P}(E) \ge 1 O(N^{-p})$.
- Uses modern RMT techniques such as Stieltjes transforms, self-consistent equations, etc.

9/14

< ロ > < 同 > < 回 > < 回 > < 回 > <

Idea of the proof of the result

First, Del Monaco and Schleissinger:

$$\frac{\partial}{\partial t}g_t^{\infty}(z) = M_t^{\infty}(g_t(z)), \quad g_0(z) = z,$$

where M_t^{∞} is a solution to the complex Burgers equation

$$\begin{cases} \frac{\partial M_t^{\infty}(z)}{\partial t} = -2M_t^{\infty}(z)\frac{\partial M_t^{\infty}(z)}{\partial z}, t > 0\\ M_0^{\infty}(z) = \int_{\mathbb{R}} \frac{2}{z-x} d\mu_0(x) \end{cases}$$

- Let $M_t^N(\bullet) = \frac{1}{N} \sum_{j=1}^N \frac{2}{\bullet \lambda_t^j}$.
- Let us consider the time interval [0,1] and a uniform partition with $t_k = \frac{k}{n}, k = 0, 1, ..., n$. Let $t \in (t_1, t_2)$.
- The proof is based on controlling $\sup_{\bullet \in G} \left| M_t^{\infty}(\bullet) - M_t^N(\bullet) \right| \leq \sup_{\bullet \in G} \left| M_t^{\infty}(\bullet) - M_{t_1}^{\infty}(\bullet) \right| + \\
 \sup_{\bullet \in G} \left| M_{t_1}^{\infty}(\bullet) - M_{t_1}^N(\bullet) \right| + \sup_{\bullet \in G} \left| M_{t_1}^N(\bullet) - M_t^N(\bullet) \right|, \text{ for } G \subset \mathbb{H}.$

Idea of the proof of the result

- Let $\beta = 1$. We have that $M_t^N(\bullet) = \frac{-2}{N} \operatorname{tr} (A_t \bullet \cdot I)^{-1}$, where $A_t = \sqrt{t}A$, with A a GOE.
- For M_t^{∞} , we have $M_t^{\infty}(\bullet) S^N (z 2tM_t^{\infty}(\bullet)) = 0$, with $S^N(\bullet) = -\frac{2}{N} \operatorname{tr} Q(\bullet)$, where $Q(\bullet)$ is a certain resolvent matrix.
- By a union bound, we have that, for any $\epsilon > 0$

$$\mathbb{P}\left(\bigcup_{t_k} \left| M_{t_k}^{\infty}(\bullet) - M_{t_k}^{N}(\bullet) \right| = \Omega\left(\frac{C}{N^{1/3-\epsilon}}\right)\right)$$

$$\leq \sum_{k=1}^{n} \mathbb{P}\left(\left| M_{t_k}^{\infty}(\bullet) - M_{t_k}^{N}(\bullet) \right| = \Omega\left(\frac{C}{N^{1/3-\epsilon}}\right) \right)$$

$$\leq ne^{-CN}.$$

• Note $g = \Omega(f) \leftrightarrow f = O(g)$.

11/14

Summary of the toolbox between RMT and SLE

$$\partial_t g_t(z) = rac{1}{N} \sum_{j=1}^N rac{2}{g_t(z) - \lambda_t^j}.$$

- Rewrite RHS of Multiple Loewner equation as $M_t^N(\bullet) = \frac{1}{N} \sum_{j=1}^N \frac{2}{\bullet \lambda_t^j}.$
- Recognize Stieltjes transform for a given choice of measure.
- Let $\beta = 1$. We have that $M_t^N(\bullet) = \frac{-2}{N} \operatorname{tr} (A_t \bullet \cdot I)^{-1}$, where $A_t = \sqrt{t}A$, with A a GOE
- RHS of Loewner can be recovered as a Random Matrix Theory object.
- The critical parameters $\kappa = 4$ and $\kappa = 8$ in the SLE theory correspond to the 'nice' $\beta = 2$ and $\beta = 1$ parameters in the Random Matrix Theory.

The result presented today is a first application of this toolbox.

A IN I DOG

Future directions

Medium term goals: Analysis and Geometry of the Multiple SLE curves; Study of the fixed N (N=2 is nicer), asymptotic case, etc. Approximations schemes (working on this over the summer REU/G).

• Interplay between RMT/DBM (gaps, etc.) and Loewner theory.

Figure: Multiple SLE for N=3. Credits to K. Luh

Figure: Approximation Scheme. Credits to K. Luh

Thank you very much for your attention!

э