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Planar Statistical Physics. What is the scaling limit?

A sample of a planar Loop-Erased Random Walk:

Figure: Credit to E. Peltola, A. Karrila, K. Kytola.
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Conformal maps and the Loewner equation

In general, for a non-self crossing curve γ(t) : [0,∞) → H̄ with
γ(0) = 0 and γ(∞) = ∞, we consider the simply connected domain
H \ γ([0, t]).

Using the Riemann Mapping Theorem for the simply connected
domain H \ γ([0, t]), we have a three parameter family of conformal
maps gt : H \ γ([0, t]) → H .

Loewner Equation encodes the dependence between the evolution of
the maps gt when the curve γ([0, t]) grows.
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Description of the conformal maps

For gt(z), as |z | → ∞ we use the normalization:

gt(z) = z + b0 +
b1
z

+
b2
z2

+ . . .

We take b0 = 0 .

The coefficient b1 = b1(γ([0, t])) is called the half-plane capacity of
γ(t) and is proved to be an additive, continous and increasing
function. Hence, by reparametrizing the curve γ(t) such that
b1(γ([0, t])) = 2t , we obtain

gt(z) = z +
2t

z
+ . . .

The maps satisfy the Loewner Differential Equation

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z .
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Definition of SLE

Definition

Let Bt be a standard real Brownian motion starting from 0 . The chordal
SLE(κ) is defined as the law on curves induced by the solution to the
following ordinary differential equation

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z .

SLE trace: γ(t) = limy→0+ g−1
t (

√
κBt + iy) .

[Rohde-Schramm (κ ̸= 8), Lawler-Schramm-Werner(κ = 8)]
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Simulations of the SLE traces obtained with our algorithm

Figure: A sample of SLEκ trace for κ = 8/3 obtained with our code.
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SLE phase transitions

It is proved that there are two phase transitions when κ varies
between 0 and ∞ .
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Multiple SLE model

Multiple SLE: Alberts, Ang, Bauer, Beffara, Bernard, Binder, Byun,
Cardy, Del Monaco, Dubédat, Duplantier, Hotta, Izyurov, Kang,
Karrila, Katori, Koshida, Kozdron, Kytölä, Lawler, Lenells, Makarov,
Miller, Olsiewski Healey, Peltola, Schleissinger, Sun, Viklund, Wang,
Wu, Yu, Zhan, ...

Brownian Motion → Dyson Brownian Motion(DBM), β = 8/κ.

dλi
t =

√
2√
Nβ

dB i
t +

1

N

∑
j ̸=i

dt

λj
t − λi

t

, i = 1, · · · ,N.

Multiple SLE simultaneous growth

∂tg
N
t (z) =

1

N

N∑
j=1

2

gN
t (z)− λj

t

.
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RMT and SLE

Theorem (Campbell-Luh-M, RMTA 2025.)

Let β = 1 or β = 2, and let KN
T be the multiple SLE hull with N drivers at

time T > 0. Then, for any ϵ > 0 and compact G ⊂ H \ ∪NK
N
T , for the

multiple SLE maps with N-drivers, we have that

sup
t∈[0,T ], z∈G

|gN
t (z)− g∞

t (z)| = OG ,T

(
1

N1/3−ϵ

)
,

with overwhelming probability.

E holds with o.p. if, for every p > 0,P(E ) ≥ 1− O (N−p) .

Uses modern RMT techniques such as Stieltjes transforms,
self-consistent equations, etc.
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Idea of the proof of the result
First, Del Monaco and Schleissinger:

∂

∂t
g∞
t (z) = M∞

t (gt(z)), g0(z) = z ,

where M∞
t is a solution to the complex Burgers equation{

∂M∞
t (z)
∂t = −2M∞

t (z)∂M
∞
t (z)
∂z , t > 0

M∞
0 (z) =

∫
R

2
z−x dµ0(x)

Let MN
t (•) = 1

N

∑N
j=1

2

•−λj
t

.

Let us consider the time interval [0, 1] and a uniform partition with
tk = k

n , k = 0, 1, . . . , n. Let t ∈ (t1, t2).

The proof is based on controlling
sup•∈G

∣∣M∞
t (•)−MN

t (•)
∣∣ ≤ sup•∈G

∣∣M∞
t (•)−M∞

t1 (•)
∣∣+

sup•∈G
∣∣M∞

t1 (•)−MN
t1 (•)

∣∣+ sup•∈G
∣∣MN

t1 (•)−MN
t (•)

∣∣ , for G ⊂ H.
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Idea of the proof of the result

Let β = 1. We have that MN
t (•) = −2

N tr (At − • · I )−1 , where
At =

√
tA, with A a GOE.

For M∞
t , we have M∞

t (•)− SN (z − 2tM∞
t (•)) = 0, with

SN(•) = − 2
N trQ(•), where Q(•) is a certain resolvent matrix.

By a union bound, we have that, for any ϵ > 0

P

(⋃
tk

∣∣∣M∞
tk
(•)−MN

tk
(•)
∣∣∣ = Ω

(
C

N1/3−ϵ

))

≤
n∑

k=1

P
(∣∣∣M∞

tk
(•)−MN

tk
(•)
∣∣∣ = Ω

(
C

N1/3−ϵ

))
≤ ne−CN .

Note g = Ω(f ) ↔ f = O(g).
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Summary of the toolbox between RMT and SLE

∂tgt(z) =
1

N

N∑
j=1

2

gt(z)− λj
t

.

Rewrite RHS of Multiple Loewner equation as
MN

t (•) = 1
N

∑N
j=1

2

•−λj
t

.

Recognize Stieltjes transform for a given choice of measure.

Let β = 1. We have that MN
t (•) = −2

N tr (At − • · I )−1 , where
At =

√
tA, with A a GOE

RHS of Loewner can be recovered as a Random Matrix Theory object.

The critical parameters κ = 4 and κ = 8 in the SLE theory
correspond to the ’nice’ β = 2 and β = 1 parameters in the
Random Matrix Theory.

The result presented today is a first application of this toolbox.
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Future directions

Medium term goals: Analysis and Geometry of the Multiple SLE curves;
Study of the fixed N (N=2 is nicer), asymptotic case, etc.
Approximations schemes (working on this over the summer REU/G).

Interplay between RMT/DBM (gaps, etc.) and Loewner theory.

Figure: Multiple SLE for N=3. Credits
to K. Luh

Figure: Approximation Scheme. Credits
to K. Luh
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Thank you very much for your
attention!

Vlad Margarint (UNCC) SLE and RMT Rome, April 2025 14 / 14


	Introduction to SLE

