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Introduction



Noiseless regularization by noise

Consider the equation{
ẋt = b(xt) + ω̇t,
x0 = x.

⇝
θt = x+

∫t
0
b(θs +ωs)ds,

with the position θt = xt −ωt. Use the averaging operator

Tω
stb(x) =

∫t
s

b(x+ωr)dr = b ⋆ µω
0t(x)

where µω
0t is the occupation measure

µω
st =

∫t
s

δωr dr

Davie: if b is bounded and ω is Bm, then

x 7→ Tω
0tb

is (almost) Lipschitz.

[Geman, Horowitz, 1980] [Davie, 2007] [Flandoli, 2015] [Catellier, Gubinelli, 2016] [Galeati, Gubinelli, 2020]

[Galeati, Gubinelli, 2022]
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(ρ,γ)-irregularity

A path ω : [0, T ] → Rd is (ρ,γ)-irregular if

∥µω∥ρ,γ,T := sup
a∈Rd

sup
s<t

(1 + |a|ρ)
|µ̂ω

st|

|t− s|γ

For instance, for the fractional Brownian motion of index H, and

2Hρ < 1,

∥Tω
st∥L(FLα,1,FLα+ρ,1) ≲ |t− s|γ

on the Fourier-Lebesgue spaces

FLα,p =
{
f :

∫
|f̂(ξ)|p(1 + |ξ|)αp

}

[Catellier, Gubinelli, 2016]
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From the averaging operator to equations

Heuristic idea:∫t
0
b(θs +ωs)ds ≈

n−1∑
i=0

Tω
sisi+1

b(θsi) ≈
∫t
0
Tω
ds(θs).

Theorem (sewing lemma)

Let χ : [0, T ]2 → R be such that

|ξst − ξsu − ξut| ≲ |t− s|1+ϵ,

for s ⩽ u ⩽ t, then the following limit exits

lim
n−1∑
i=0

ξsisi+1 .

For instance, for Hölder functions f, g, set ξst = f(s)(g(t) − g(s)),

ξst−ξsu−ξut = (f(s)−f(u))(g(t)−g(u)) ≲ |s−u|α|t−u|β ≲ |t−s|α+β

[Gubinelli, 2004]
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Small balls notion of irregularity



Irregularity through small balls estimates

For a measure µ, define

Fµ(r,y) = µ({x : |x− y| ⩽ r})

and for a function f, τyf(x) = f(x− y).

Definition

For α > 0, 1 ⩽ p,q ⩽∞, and a compactly supported measure µ,

∥µ∥SBEα,p
q

:= ∥r−α−d∆kFµ(r,y)∥Lq
yL

p
r (dy⊗dr

r )

Here ∆k are multiscale differences,{
∆0f(r) = f(r) − f(r/2),
∆k+1f(r) = ∆kf(r) − 2k+1∆kf(r/2)
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SBE and Besov spaces

Theorem

We have that

∥µ∥Bα
q,∞ ≲ ∥µ∥SBEα,p

q
≲ ∥µ∥Bα

q,1

Moreover, for occupation measures of paths,

stability by reparametrisation with bi-Lipschitz maps,

stability by r-variation perturbation of the path (for suitable r),

if the occupation measure is γ-Hölder with values in SBEα,p
q , then

ω is (α,γ)-irregular.
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Examples

if ω is a real Gaussian process with Cov(ωts) ≳ |t− s|2H, then
µω ∈ SBE.

more generally, if ω is Gaussian and locally non deterministic,

solution of
dxt = b(t, xt)dt+ σ(t, xt)dBt,

fractional Brownian motion of index H

equation driven by fractional Brownian motion,

[Berman, 1983]
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Notions of irregularity

smooth density
of the occupa-
tion measure

(ρ,γ)-
irregularity

SBE

Wei’s index θ-roughness

teal dashed arrow: conjecture.

wiggled red line: the implication does not hold.

Implied arrows are not drawn.
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An example: uniqueness of a 1D continuity

equation



A one-dimensional continuity equation

Consider{
∂tu+

[
b(ωt, x) + ω̇t)u(t, x)

]
x
= 0,

u(0, ·) = u0
x ∈ R, t ⩾ 0,

with (heavy technical) assumptions on ω, on its occupation

measure, and on b ∈ Cβ(R,Bα
p,q).

Theorem

The problem

xt = x0 −ωt +

∫t
0
b(ωs, xs)ds

generates a flow ϕ of diffeomorphisms.

For every u0 ∈ L1 ∩ L
p ′

loc, there is a unique solution of the

continuity equation with initial condition u0, given by

u0(ϕ
−1
t (x))Dxϕ

−1
t (x).
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Characteristics

The key point is to solve the equation for characteristics

θt = xt +ωt,

θt = x0 +

∫t
0
b(ωs, θs −ωs)ds

which in turns amounts to understand∫t
0
f(s, θs −ωs)ds

for a generic f. This is done through a suitable sewing lemma,

χst =

∫t
s

f(s, θs −ωr)dr = f(s, ·) ⋆ µω
st(θs),

where µω
st is the occupation measure of ω on [s, t].
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Total enhanced dissipation for very rough

shear flows



The passive scalar

Consider the following advection-diffusion equation on the 2D

torus of a passive scalar{
∂tf+ u · ∇f = ν∆f,
f(0, ·) = f0,

driven by a transport velocity u with

divu = 0.

Dissipation: multiply by f and integrate by parts

d

dt
∥f∥2

L2 + ν∥∇f∥2
L2 = 0,

thus

∥f∥2
L2 ≲ ∥f∥2

L2 e−cνt
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Enhanced dissipation

Enhanced dissipation with rate r,

∥ft∥2
L2 ≲ ∥f0∥2

L2e
−cr(ν)t.

[Constantin et al] relaxation enhancing flows.

In particular for shear flows u =

(
u(y)

0

)
[Bedrossian et al] r(ν) ∼ ν

n
n+2 for u ∈ Cn+1

[Wei] there are Weierstrass-type functions such that r(ν) = ν
α

α+2

[Colombo et al] for α ∈ (0, 1), there is u ∈ Cα such that
enhanced dissipation holds with r(ν) = α

α+2 .

[Coti Zelati et al] The above rates are sharp.

[Gubinelli et al] For generic shear flows u ∈ Bα
1,∞, enhanced

dissipation holds with r(ν) ≈ ν
α

α+2 .

[Constantin, Kiselev, Ryzhik, Zlatoš, 2008] [Bedrossian, Coti Zelati, 2017] [Wei, 2021]

[Colombo, Coti Zelati, Widmayer 2021] [Coti Zelati, Drivas, 2022] [Galeati, Gubinelli, 2023]
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Very rough shear flows

Theorem (MR, L. Roveri)

Let α ∈ (−1
2 , 0), u ∈ Bα

1,∞ with Λ(α, 0, 2,u) > 0 (almost), then

∥f∥2
L2 ≲ ∥f∥2

L2e−cr(ν)t,

with

ν
α

α+2 ≲ r(ν) ≲ ν
−

1/2−α
5/2−α .

In particular,

about α > − 1
2 ,

unmatched lower and upper bound,

instantaneous total enhanced dissipation,

triviality of the advected (inviscid) passive scalar,
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Wei’s irregularity index

For p ∈ [1,∞), α ∈ R, k ∈ N, f ∈ Lp(0, 1).

Λ(α,k,p, f) = inf
|J|⩽1,P∈Pk

|J|−α∥f− P∥Lp,norm

Some properties.

Λ(α,k,p, f) = 0 if f ∈ Bα
p,q, q < ∞, or f ∈ Bα′

p,∞, α ′ > α,

Λ(α ′,k,p, f) = 0 for α ′ > α, for generic f ∈ Bα
1,∞,

Λ(α,k,p, f+φ) ∼ Λ(α,k, f) for φ “smooth”.

if Λ(α,k,p, f) > 0, then f is α-Hölder rough,

if f is ρ,γ-irregular, then Λ(α, 0,p, f) > 0,

Conjectures:

Λ(α,k, 1, f) ∼ Λ(α,k,p, f) (≲ holds),

Λ(α,k,p, f) ∼ Λ(α− 1,k− 1,p, fx) (≲ holds)
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Sketch of the proof

Upper bound (on the L2-norm): spectral estimates on a

suitable primitive ∂yU of u, where{
−∂2

yU = u− ū,
U periodic and mean zero,

with Λ(α+ 1, 1, 2,∂yU) > 0.

Lower bound (on the L2-norm) A Feynman-Kac formula

depending on ∫t
0
u(y+

√
2νBs)ds

estimated via Itō’s formula (Itō’s trick).
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