About some notions of irregularity with application to the enhanced dissipation of rough shear flows

Marco Romito

Università di Pisa

Stochastic equations and particle systems April 9, 2025

Leonardo Tolomeo (Edinburgh)

Leonardo Roveri (Pisa)

Summary

1 Introduction

2 Small balls notion of irregularity

3 An example: uniqueness of a 1D continuity equation

4 Total enhanced dissipation for very rough shear flows

Introduction

Noiseless regularization by noise

Consider the equation

$$\begin{cases} \dot{x}_t = b(x_t) + \dot{\omega}_t, & \rightsquigarrow \\ x_0 = x. & \theta_t = x + \int_0^t b(\theta_s + \omega_s) \, ds, \end{cases}$$

with the position $\theta_t = x_t - \omega_t$. Use the averaging operator

$$T_{st}^{\omega}b(x) = \int_{s}^{t} b(x + \omega_{r}) dr = b \star \mu_{0t}^{\omega}(x)$$

where μ_{0t}^{ω} is the occupation measure

$$\mu_{st}^{\omega} = \int_{s}^{t} \delta_{\omega_{r}} \, \mathrm{d}r$$

Davie: if b is bounded and ω is Bm, then

$$x \mapsto T_{0t}^{\omega} b$$

is (almost) Lipschitz.

[Geman, Horowitz, 1980] [Davie, 2007] [Flandoli, 2015] [Catellier, Gubinelli, 2016] [Galeati, Gubinelli, 2020]

[Galeati, Gubinelli, 2022]

(ρ, γ) -irregularity

A path $\omega:[0,T]\to \mathbb{R}^d$ is $(\rho,\gamma)\text{-}irregular$ if

$$\|\mu^{\varpi}\|_{\rho,\gamma,\mathsf{T}} \coloneqq \sup_{a \in \mathbb{R}^d} \sup_{s < t} (1 + |a|^{\rho}) \frac{|\widehat{\mu^{\varpi}_{st}}|}{|t - s|^{\gamma}}$$

For instance, for the fractional Brownian motion of index H, and $2H\rho<1,$

$$\|\mathsf{T}^{\omega}_{st}\|_{\mathcal{L}(\mathscr{F}\mathsf{L}^{\boldsymbol{\alpha},1},\mathscr{F}\mathsf{L}^{\boldsymbol{\alpha}+\boldsymbol{\rho},1})}\lesssim |t-s|^{\boldsymbol{\gamma}}$$

on the Fourier-Lebesgue spaces

$$\mathscr{F}L^{\alpha,p} = \left\{f: \int |\widehat{f}(\xi)|^p (1+|\xi|)^{\alpha p}\right\}$$

[Catellier, Gubinelli, 2016]

From the averaging operator to equations

Heuristic idea:

$$\int_0^t b(\theta_s + \omega_s) \, ds \approx \sum_{i=0}^{n-1} \mathsf{T}^{\omega}_{s_i s_{i+1}} b(\theta_{s_i}) \approx \int_0^t \mathsf{T}^{\omega}_{ds}(\theta_s).$$

Theorem (sewing lemma)

Let $\chi : [0, T]^2 \to \mathbb{R}$ be such that

$$|\xi_{st} - \xi_{su} - \xi_{ut}| \lesssim |t-s|^{1+\epsilon}$$
,

for $s \leqslant u \leqslant t,$ then the following limit exits

$$\lim \sum_{i=0}^{n-1} \xi_{s_i s_{i+1}}.$$

For instance, for Hölder functions f, g, set $\xi_{st} = f(s)(g(t) - g(s))$,

 $\xi_{st}-\xi_{su}-\xi_{ut}=(f(s)-f(u))(g(t)-g(u))\lesssim |s-u|^{\alpha}|t-u|^{\beta}\lesssim |t-s|^{\alpha+\beta}$

[Gubinelli, 2004]

Small balls notion of irregularity

Irregularity through small balls estimates

For a measure μ , define

$$F_{\mu}(r,y) = \mu(\{x: |x-y| \leqslant r\})$$

and for a function f, $\tau_y f(x) = f(x - y)$.

Definition For $\alpha > 0$, $1 \leq p, q \leq \infty$, and a compactly supported measure μ , $\|\mu\|_{S_{B}E_{q}^{\alpha,p}} := \|r^{-\alpha-d}\Delta_{k}F_{\mu}(r,y)\|_{L_{y}^{q}L_{r}^{p}(dy\otimes \frac{dr}{r})}$

Here Δ_k are multiscale differences,

$$\begin{cases} \Delta_0 f(r) = f(r) - f(r/2), \\ \Delta_{k+1} f(r) = \Delta_k f(r) - 2^{k+1} \Delta_k f(r/2) \end{cases}$$

SBE and Besov spaces

Theorem We have that

$\|\mu\|_{B^{\,\alpha}_{\,q,\infty}} \lesssim \|\mu\|_{\text{SBE}^{\,\alpha,p}_{\,q}} \lesssim \|\mu\|_{B^{\,\alpha}_{\,q,1}}$

Moreover, for occupation measures of paths,

- stability by reparametrisation with bi-Lipschitz maps,
- stability by r-variation perturbation of the path (for suitable r),
- if the occupation measure is γ -Hölder with values in SBE $_q^{\alpha,p}$, then ω is (α, γ) -irregular.

Examples

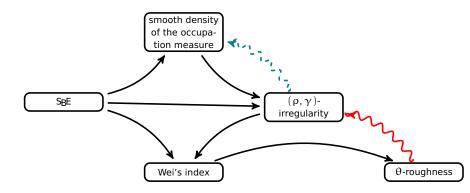
- if ω is a real Gaussian process with $Co\nu(\omega_{t\,s})\gtrsim |t-s|^{2H}$, then $\mu^\omega\in S\!B\!E.$
- more generally, if ω is Gaussian and locally non deterministic,
- solution of

$$dx_t = b(t, x_t) dt + \sigma(t, x_t) dB_t,$$

- fractional Brownian motion of index H
- equation driven by fractional Brownian motion,

[Berman, 1983]

Notions of irregularity



- teal dashed arrow: conjecture.
- wiggled red line: the implication does not hold.

Implied arrows are not drawn.

An example: uniqueness of a 1D continuity equation

A one-dimensional continuity equation

Consider

$$\begin{cases} \partial_t u + \left[b(\omega_t, x) + \dot{\omega}_t \right] u(t, x) \right]_x = 0, \\ u(0, \cdot) = u_0 \end{cases} \qquad x \in \mathbb{R}, t \ge 0, \end{cases}$$

with (heavy technical) assumptions on ω , on its occupation measure, and on $b \in C^{\beta}(\mathbb{R}, B^{\alpha}_{p,q})$.

Theorem

The problem

$$x_t = x_0 - \omega_t + \int_0^t b(\omega_s, x_s) \, ds$$

generates a flow φ of diffeomorphisms. For every $u_0\in L^1\cap L^{p'}_{\text{loc}}$, there is a unique solution of the continuity equation with initial condition u_0 , given by

$$\mathfrak{u}_0(\varphi_t^{-1}(x))\mathsf{D}_x\varphi_t^{-1}(x).$$

Characteristics

The key point is to solve the equation for characteristics $\theta_t = x_t + \omega_t$,

$$\theta_{t} = x_{0} + \int_{0}^{t} b(\omega_{s}, \theta_{s} - \omega_{s}) ds$$

which in turns amounts to understand

$$\int_0^t f(s, \theta_s - \omega_s) \, \mathrm{d}s$$

for a generic f. This is done through a suitable sewing lemma,

$$\chi_{st} = \int_{s}^{t} f(s, \theta_{s} - \omega_{r}) dr = f(s, \cdot) \star \mu_{st}^{\omega}(\theta_{s}),$$

where μ_{st}^{ω} is the occupation measure of ω on [s, t].

Total enhanced dissipation for very rough shear flows

The passive scalar

Consider the following advection-diffusion equation on the 2D torus of a **passive scalar**

$$\begin{cases} \partial_{t} f + u \cdot \nabla f = \nu \Delta f, \\ f(0, \cdot) = f_{0}, \end{cases}$$

driven by a transport velocity \boldsymbol{u} with

 $\operatorname{div} \mathfrak{u} = 0.$

Dissipation: multiply by f and integrate by parts

$$\frac{d}{dt} \|f\|_{L^2}^2 + \nu \|\nabla f\|_{L^2}^2 = 0,$$

thus

$$\|f\|_{L^2}^2 \lesssim \|f\|_{L^2}^2 \, e^{-c\nu t}$$

Enhanced dissipation

Enhanced dissipation with rate r,

$$\|f_t\|_{L^2}^2 \lesssim \|f_0\|_{L^2}^2 e^{-cr(\nu)t}.$$

[Constantin et al] relaxation enhancing flows.

In particular for shear flows $u = \begin{pmatrix} u(y) \\ 0 \end{pmatrix}$

 \blacksquare [Bedrossian et al] $r(\nu) \sim \nu^{\frac{n}{n+2}}$ for $u \in C^{n+1}$

• [Wei] there are Weierstrass-type functions such that $r(v) = v^{\frac{\alpha}{\alpha+2}}$

- [Colombo et al] for $\alpha \in (0, 1)$, there is $u \in C^{\alpha}$ such that enhanced dissipation holds with $r(v) = \frac{\alpha}{\alpha+2}$.
- [Coti Zelati et al] The above rates are sharp.
- $$\label{eq:generic_shear} \begin{split} & \hbox{ [Gubinelli et al] For generic shear flows } u \in B^{\alpha}_{1,\infty} \text{, enhanced} \\ & \hbox{ dissipation holds with } r(\nu) \approx \nu^{\frac{\alpha}{\alpha+2}}. \end{split}$$

[Constantin, Kiselev, Ryzhik, Zlatoš, 2008] [Bedrossian, Coti Zelati, 2017] [Wei, 2021]

[Colombo, Coti Zelati, Widmayer 2021] [Coti Zelati, Drivas, 2022] [Galeati, Gubinelli, 2023]

Very rough shear flows

Theorem (MR, L. Roveri) Let $\alpha \in (-\frac{1}{2}, 0)$, $u \in B_{1,\infty}^{\alpha}$ with $\Lambda(\alpha, 0, 2, u) > 0$ (almost), then $\|f\|_{L^2}^2 \lesssim \|f\|_{L^2}^2 e^{-cr(\nu)t}$, with

$$u^{rac{lpha}{lpha+2}}\lesssim r(
u)\lesssim
u^{-rac{1/2-lpha}{5/2-lpha}}.$$

In particular,

- about $\alpha > -\frac{1}{2}$,
- unmatched lower and upper bound,
- instantaneous total enhanced dissipation,
- triviality of the advected (inviscid) passive scalar,

Wei's irregularity index

For $p \in [1, \infty)$, $\alpha \in \mathbb{R}$, $k \in \mathbb{N}$, $f \in L^p(0, 1)$.

$$\Lambda(\alpha, k, p, f) = \inf_{|J| \leqslant 1, P \in \mathcal{P}_k} |J|^{-\alpha} \|f - P\|_{L^p, norm}$$

Some properties.

- $\blacksquare \ \Lambda(\alpha,k,p,f) = 0 \text{ if } f \in B^{\alpha}_{p,q} \text{, } q < \infty \text{, or } f \in B^{\alpha'}_{p,\infty} \text{, } \alpha' > \alpha \text{,}$
- $\blacksquare \ \Lambda(\alpha',k,p,f) = 0 \text{ for } \alpha' > \alpha \text{, for generic } f \in B^{\alpha}_{1,\infty}\text{,}$
- $\quad \blacksquare \ \Lambda(\alpha,k,p,f+\phi) \sim \Lambda(\alpha,k,f) \ \text{for} \ \phi \ \text{``smooth''}.$
- If $\Lambda(\alpha, k, p, f) > 0$, then f is α -Hölder rough,
- If f is ρ , γ -irregular, then $\Lambda(\alpha, 0, p, f) > 0$,

Conjectures:

$$\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll} \Lambda(\alpha,k,p,f) \sim \Lambda(\alpha-1,k-1,p,f_x) & (\lesssim \mbox{holds}) \end{tabular}$$

Sketch of the proof

Upper bound (on the L^2 **-norm)**: spectral estimates on a suitable primitive $\partial_u U$ of u, where

$$\left\{ - \partial_y^2 \mathfrak{U} = \mathfrak{u} - ar{\mathfrak{u}},
ight.
ight.$$
 $\left. \left(\mathfrak{U} ext{ periodic and mean zero,}
ight.
ight.$

with
$$\Lambda(\alpha + 1, 1, 2, \partial_y U) > 0$$
.

Lower bound (on the $L^2\mbox{-norm}$) A Feynman-Kac formula depending on

$$\int_0^t \mathfrak{u}(\mathbf{y} + \sqrt{2\nu}\mathbf{B}_s) \, \mathrm{d}s$$

estimated via Ito's formula (Ito's trick).