Conformally Invariant Random Geometry on Manifolds of Dimensions > 2

Theo Sturm

Hausdorff Center for Mathematics Institute for Applied Mathematics

Universität Bonn

based on joint work with Lorenzo Dello Schiavo, Ronan Herry, and Eva Kopfer

Random Objects and Conformal Invariance

Basic observation: numerous beautiful, deep results on conformally invariant random objects in n = 2.

Question: does any of these have a counterpart in n > 2?

Surprising insights:

(A) Extending the groundbreaking results on

- conformally invariant Gaussian random fields,
- Liouville quantum gravity measures, and
- Polyakov-Liouville measure

to n > 2 relies on two properties

- (i) conformally invariant energy/operator
- (ii) logarithmic kernel for the operator

Random Objects and Conformal Invariance

Basic observation: numerous beautiful, deep results on conformally invariant random objects in n = 2.

Question: does any of these have a counterpart in n > 2?

Surprising insights:

(A) Extending the groundbreaking results on

- conformally invariant Gaussian random fields,
- Liouville quantum gravity measures, and
- Polyakov-Liouville measure

to n > 2 relies on two properties

- (i) conformally invariant energy/operator
- (ii) logarithmic kernel for the operator
- (B) Both properties appear to be closely related. Indeed, (i) \Rightarrow (ii).
- (C) Also for n > 2, conformal invariance is a meaningful and powerful property which rules out all but one random objects.

Conformally Invariant Random Fields

Goal

Associate to each (M,g) a probability measure $\nu_{M,g}$ on "fields" (continuous functions, distributions) on M such that

• $h \stackrel{(d)}{=} h' \circ \Phi$ if $\Phi : M \to M'$ is an isometry and h and h' are distributed according to $\nu_{M,g}$ and $\nu_{M',g'}$, resp.

•
$$\boldsymbol{\nu}_{M,g'} = \boldsymbol{\nu}_{M,g}$$
 if $g' = e^{2\varphi}g$ for some $\varphi \in \mathcal{C}(M)$

Assume that u_g is Gaussian, informally given as

$$d
u_g(h) = rac{1}{Z_g} \exp\left(-rac{1}{2}\mathfrak{e}_g(h,h)
ight) dh$$

with bilinear form $\mathfrak{e}_g(u, v) = (u, Av)_{L^2}$.

Conformal Invariance Requirement

$$\mathfrak{e}_g(u, u) = \mathfrak{e}_{e^{2\varphi}g}(u, u) \qquad \forall \varphi, \forall u.$$

In case n = 2, celebrated property of the Dirichlet energy

$$\mathfrak{e}_{g}(u,u) := \int_{M} \left| \nabla_{g} u \right|^{2} d \operatorname{vol}_{g}.$$

Conformally Invariant Random Fields

Gaussian measure $d\nu_g(h) = \frac{1}{Z_g} \exp\left(-\frac{1}{2}\mathfrak{e}_g(h,h)\right) dh$ with conformally invariant energy

 $\mathfrak{e}_g(u, u) = \mathfrak{e}_{e^{2\varphi}g}(u, u) \qquad \forall \varphi, \forall u.$

In $n \neq 2$, Dirichlet energy no longer conformally invariant:

$$\mathfrak{e}_{e^{2\varphi}g}(u,u) = \int_M \left| \nabla_g u \right|^2 e^{(n-2)\varphi} d \operatorname{vol}_g.$$

In n = 4, more promising: bi-Laplacian energy

$$\widetilde{\mathfrak{e}}_{g}(u,u):=\int_{M}\left(\Delta_{g}u
ight)^{2}d\operatorname{vol}_{g}.$$

Still not conformally invariant but close to:

$$\tilde{\mathfrak{e}}_{e^{2\varphi}g}(u,u):=\int_{M}\left(\Delta_{g}u+2\nabla_{g}\varphi\,\nabla_{g}u\right)^{2}d\operatorname{vol}_{g}=\tilde{\mathfrak{e}}_{g}(u,u)+\text{ low order terms}.$$

Paneitz:

$$\mathfrak{e}_g(u,u) = \int_M \left[(\Delta_g u)^2 - 2\operatorname{Ric}_g(\nabla_g u, \nabla_g u) + \frac{2}{3}\operatorname{scal}_g \cdot |\nabla_g u|^2 \right] d\operatorname{vol}_g$$

is conformally invariant.

Energy, Operator, Kernel

Co-Polyharmonic Energy on n-Manifolds

Assume from now on that (M, g) is *n*-dimensional smooth, compact, connected Riemannian manifold without boundary, *n* even.

Integrable functions (or distributions) u on M will be called grounded if $\langle u\rangle_g:=\tfrac{1}{\operatorname{vol}_g(M)}\int_M u\,d\operatorname{vol}_g=0$

Grounded Sobolev spaces $\mathring{H}^{s}(M,g) = (-\Delta_{g})^{-s/2} \mathring{L}^{2}(M, \operatorname{vol}_{g})$ for $s \in \mathbb{R}$, usual Sobolev spaces $H^{s}(M,g) = (1-\Delta)^{-s/2} L^{2}(M, \operatorname{vol}_{g}) = \mathring{H}^{s}(M,g) \oplus \mathbb{R} \cdot \mathbf{1}$ Laplacian $-\Delta : H^{s} \to \mathring{H}^{s-2}$; grounded Green operator $\mathring{G}_{g} : \mathring{H}^{s} \to \mathring{H}^{s+2}$.

Graham/Jenne/Mason/Sparling.

The co-polyharmonic energy

$$\mathfrak{e}_g(u,v) = c \int_M (-\Delta_g)^{n/4} u \cdot (-\Delta_g)^{n/4} v \ d \operatorname{vol}_g + \operatorname{low} \operatorname{order} \operatorname{terms} v$$

is conformally invariant.

We choose $c = a_n := \frac{2}{\Gamma(n/2) (4\pi)^{n/2}}$.

 $\mathfrak{e}_g(u,v) = \int_M p_g u \cdot v \, d \operatorname{vol}_g$ with co-polyharmonic operator

$$p_g u := c (-\Delta)^{n/2} u +$$
 low order terms

Definition

The *n*-manifold (M, g) is called admissible if $\mathfrak{e}_g > 0$ on $\mathring{H}^{n/2}(M)$.

Large classes of *n*-manifolds are admissible. For instance in n = 4:

- \blacksquare all compact Einstein 4-manifolds with ${\rm Ric} \geq 0$ are admissible.
- all compact hyperbolic 4-manifolds with spectral gap $\lambda_1 > 2$ are admissible.

For the sequel, we always assume that (M,g) is admissible.

Two Key Properties of the Co-Polyharmonic Green Kernel

Define co-polyharmonic Green operator

$$\mathsf{k}_g := \mathsf{p}_g^{-1} : H^{-n}(M) \to \mathring{L}^2(M)$$

and associated bilinear form with domain $H^{-n/2}(M)$ by

$$\mathcal{K}_g(u, v) := \langle u, \mathsf{k}_g v \rangle_{L^2}.$$

Theorem

 ${\sf k}_g$ is an integral operator with an integral kernel ${\sf k}_g$ which is grounded, symmetric, and satisfies

$$\left|k_g(x,y) - \log rac{1}{d_g(x,y)}
ight| \leq C_0.$$

Theorem

Assume that $g' := e^{2\varphi}g$ for some $\varphi \in C^{\infty}(M)$. Then the co-polyharmonic Green kernel $k_{g'}$ for the metric g' is given by

$$k_{g'}(x,y) = k_g(x,y) - \bar{\phi}(x) - \bar{\phi}(y) + c$$

with $\phi(x) := \langle k_g(x,.) \rangle_{g'}$ and $c := \langle \phi \rangle_{g'}$

Gaussian Fields

Co-Polyharmonic Gaussian Field – Definition, Construction

Definition

A co-polyharmonic Gaussian field on (M,g) is a centered Gaussian random variable on $\mathring{H}^{-\epsilon}(M)$ for some $\epsilon > 0$ with covariance

$$\mathsf{E}\big[\langle h, u\rangle \langle h, v\rangle\big] = \mathcal{K}_{g}(u, v) \qquad \forall u, v \in \mathring{H}^{\epsilon}(M).$$

Existence and uniqueness follows from theory of abstract Wiener spaces.

Interpretation: $\mathbf{E}[h(x)] = 0$, $\mathbf{E}[h(x)h(y)] = k_g(x, y)$ ($\forall x, y$)

Definition

A co-polyharmonic Gaussian field on (M,g) is a centered Gaussian random variable on $\mathring{H}^{-\epsilon}(M)$ for some $\epsilon > 0$ with covariance

$$\mathsf{E}\big[\langle h, u\rangle \langle h, v\rangle\big] = \mathcal{K}_{g}(u, v) \qquad \forall u, v \in \mathring{H}^{\epsilon}(M).$$

Existence and uniqueness follows from theory of abstract Wiener spaces.

Interpretation: $\mathbf{E}[h(x)] = 0$, $\mathbf{E}[h(x)h(y)] = k_g(x, y)$ $(\forall x, y)$

Let a probability space $(\Omega, \mathfrak{F}, \mathbf{P})$ be given and an i.i.d. sequence $(\xi_j)_{j \in \mathbb{N}}$ of $\mathcal{N}(0, 1)$ random variables. Furthermore, let $(\psi_j)_{j \in \mathbb{N}_0}$ and $(\nu_j)_{j \in \mathbb{N}_0}$ denote the sequences of eigenfunctions and eigenvalues for p_g (counted with multiplicities).

Theorem

A co-polyharmonic field is given by

$$h:=\sum_{j\in\mathbb{N}}\nu_j^{-1/2}\,\xi_j\,\psi_j.$$

Co-Polyharmonic Gaussian Field – Smooth Approximation

Theorem

A co-polyharmonic field is given by

$$h := \sum_{j \in \mathbb{N}} \xi_j \cdot \sqrt{\mathsf{k}}_g \, \psi_j = \sum_{j \in \mathbb{N}} \nu_j^{-1/2} \, \xi_j \, \psi_j.$$

More precisely,

1 For each $\ell \in \mathbb{N}$, a centered Gaussian random variable h_ℓ with values in $\mathcal{C}^{\infty}(M)$ is given by

$$h_\ell := \sum_{j=1}^\ell
u_j^{-1/2} \, \xi_j \, \psi_j.$$

2 The convergence $h_{\ell} \rightarrow h$ holds in $L^2(\mathbf{P}) \times H^{-\epsilon}(M)$ for every $\epsilon > 0$. In particular, for a.e. ω and every $\epsilon > 0$,

$$h^{\omega} \in H^{-\epsilon}(M),$$

3 For every $u \in H^{-n/2}(M)$, the family $(\langle u, h_\ell \rangle)_{\ell \in \mathbb{N}}$ is a centered $L^2(\mathbf{P})$ -bounded martingale and

 $\langle u, h_{\ell} \rangle \rightarrow \langle u, h \rangle$ in $L^2(\mathbf{P})$ as $\ell \rightarrow \infty$.

The Ungrounded Co-Polyharmonic Gaussian Field

The law ν_g of the **ungrounded** co-polyharmonic Gaussian field is defined as

 $d \nu_g :=$ image of $d \mathring{\nu}_g(h) \otimes d \mathcal{L}^1(t)$ under the map $(h, t) \mapsto h + t$

where $\dot{\nu}_g$ = denotes the law of the ("grounded") co-polyharmonic Gaussian field as defined before.

Theorem

The ungrounded co-polyharmonic Gaussian field is conformally invariant:

• If
$$g' = e^{2\varphi}g$$
 on M then $h' \stackrel{(d)}{=} h$.

If
$$\Phi : (M,g) \to (M',g')$$
 is an isometry then $h' \circ \Phi \stackrel{(d)}{=} h$.

The ("grounded") co-polyharmonic Gaussian field is conformally invariant modulo re-grounding:

If
$$g' = e^{2\varphi}g$$
 on M then $h' \stackrel{(d)}{=} h - \left\langle h \right\rangle_{\operatorname{vol}_{g'}}$

Co-Polyharmonic Gaussian Field – Discrete Approximation

Let *M* be the continuous torus $\mathbb{T}^n \cong [0, 1)^n$ and consider its discrete approximations $\mathbb{T}_L^n \cong \{0, \frac{1}{L}, \dots, \frac{L-1}{L}\}^n$ for $L \in \mathbb{N}$.

Co-polyharmonic Gaussian Field on the discrete torus \mathbb{T}_{L}^{n}

Centered Gaussian field $(h_L(v))_{v \in \mathbb{T}_l^n}$ with covariance function

$$k_{L}(u,v) = \frac{1}{a_{n}} \mathring{G}_{L}^{n/2}(u,v) = \frac{1}{a_{n}} \sum_{z \in \mathbb{Z}_{l}^{n} \setminus \{0\}} \frac{1}{\lambda_{L,z}^{n/2}} \cdot \cos\left(2\pi z \cdot (v-u)\right)$$

where $\lambda_{L,z} = 4L^2 \sum_{k=1}^n \sin^2\left(\pi z_k/L\right)$ and $\mathbb{Z}_L^n = \{z \in \mathbb{Z}^n : 0 < \|z\|_{\infty} < L/2\}.$

Note that $\lambda_{L,z}$ are eigenvalues of the discrete Laplacian whereas $\lambda_z := 4\pi^2 |z|^2$ are the corresponding eigenvalues of the continuous Laplacian. Also note that $\sum_{z \in \mathbb{Z}^n \setminus \{0\}} \frac{1}{\lambda_z^{n/2}} = c \sum_{z \in \mathbb{Z}^n \setminus \{0\}} \frac{1}{|z|^n} = \infty$.

Given iid standard normals $(\xi_z)_{z \in \mathbb{Z}_L^n}$ and Fourier basis functions $\varphi_z(x) = \frac{1}{\sqrt{2}} \cos(2\pi xz)$ and $\varphi_{-z}(x) = \frac{1}{\sqrt{2}} \sin(2\pi xz)$, a co-polyharmonic Gaussian field is given as

$$h_L = \frac{1}{\sqrt{a_n}} \sum_{z \in \mathbb{Z}_L^n \setminus \{0\}} \frac{1}{\lambda_{L,z}^{n/4}} \cdot \xi_z \varphi_z.$$

The law of the ungrounded polyharmonic Gaussian field is given explicitly as

$$c_n \exp\left(-\frac{a_n}{2N}\left\|\left(-\Delta_L\right)^{n/4}h\right\|^2\right) d\mathcal{L}^N(h)$$

on $\mathbb{R}^N \cong \mathbb{R}^{\mathbb{T}_L^n}$ where $N = L^n$.

Theorem

- Convergence of fields $h_L \to h$ as $L \to \infty$: tested against $f \in \bigcup_{s>n/2} H^s(\mathbb{T}^n)$
- Convergence of Fourier extension of h_L to h: in each $H^{-\epsilon}(\mathbb{T}^n)$ and also tested against $f \in H^{-n/2}(\mathbb{T}^n)$

Liouville Geometry

Liouville Quantum Gravity Measure

Let *M* as before be a closed manifold of even dimension and *h* the (grounded) co-polyharmonic Gaussian field. For $\ell \in \mathbb{N}$ define a random measure

$$d\mu^{\gamma h_\ell}(x) := \exp\left(\gamma h_\ell(x) - rac{\gamma^2}{2}k_\ell(x,x)
ight) d\operatorname{vol}_g(x)$$

on *M* where $h_{\ell}(x) := \langle q_{\ell}(x, .), h \rangle$ for suitable family of kernels $q_{\ell}(x, y)$ and $k_{\ell}(x, y) := \mathbf{E}[h_{\ell}(x)h_{\ell}(y)] = \iint k(x', y')q_{\ell}(x, x')q_{\ell}(y, y')dx'dy'$. Based on Kahane 1986, Shamov 2016, Berestycki 2017,

Theorem

If $|\gamma| < \sqrt{2n}$, then there exists a random measure $\mu^{\gamma h}$ on M with $\mu^{\gamma h_{\ell}} \to \mu^{\gamma h}$. More precisely, for every $u \in C(M)$,

$$\int_{M} u \, d\mu^{\gamma h_{\ell}} \longrightarrow \int_{M} u \, d\mu^{\gamma h} \quad \text{in } L^{1}(\mathbf{P}) \text{ and } \mathbf{P}\text{-a.s. as } \ell \to \infty$$

The random measure $\mu^{\gamma h} := \lim_{\ell \to \infty} \mu^{\gamma h_\ell}$ is called *plain Liouville Quantum Gravity measure*.

Theorem

The previous convergence $\mu^{\gamma h_\ell} \to \mu^{\gamma h}$ also holds true if we put $h_\ell := \sum_{j=1}^\ell \nu_j^{-1/2} \, \xi_j \, \psi_j.$

Liouville Quantum Gravity Measure

We define the plain LQG measure for the ungrounded Gaussian field $h = h_0 + t$ with $(h_0, t) \sim \mathring{\nu}_g \otimes \mathcal{L}^1$ by $\mu^{\gamma h} := e^{\gamma t} \mu^{\gamma h_0}.$

The adjusted LQG measure is given by

$$\bar{\mu}^{\gamma h} := e^{\frac{\gamma^2}{2} r_g} \mu^{\gamma h}$$

with

$$r_g(x) := \limsup_{y \to x} \left[k_g(x, y) - \log \frac{1}{d_g(x, y)} \right].$$

Equivalently, $\bar{\mu}^{\gamma h}=\mu^{\gamma \tilde{h}}$ where the 'refined' field \tilde{h} is associated with the covariance kernel

$$ilde{k}_{g}(x,y) := k_{g}(x,y) - rac{1}{2}r_{g}(x) - rac{1}{2}r_{g}(y) + c$$

where $c = \langle r_g \rangle + \frac{1}{4} \mathfrak{p}_g(r_g, r_g)$.

A key property of the adjusted Liouville Quantum Gravity measure is its quasi-invariance under conformal transformations.

Theorem

Assume that $h\sim \nu_g$ and $h'\sim \nu_{g'}$ where $g'=e^{2\varphi}g$, then

$$\bar{\mu}_{g'}^{\gamma h'} \stackrel{(d)}{=} e^{(n + \frac{\gamma^2}{2})\varphi} \bar{\mu}_{g}^{\gamma h}$$

 $\bar{\mu}_{l}^{\gamma h'} \stackrel{(d)}{\equiv} \bar{\mu}_{\sigma}^{\gamma T(h)}$

or, in other words,

with the shift
$$T: h \mapsto h + \left(rac{n}{\gamma} + rac{\gamma}{2}\right) arphi.$$

If $\gamma<2$ then a.s. the LQG measure $\mu^{\gamma h}$ does not charge sets of vanishing $H^1\text{-}\mathsf{capacity}$

- \longrightarrow Dirichlet form $\int_{M} |\nabla u|^2 d \operatorname{vol}_g$ on $L^2(M, \mu^{\gamma h})$
- \rightarrow Liouville Brownian motion (random time change of BM)

If $\gamma < \sqrt{2n}$ then a.s. the LQG measure $\mu^{\gamma h}$ does not charge sets of vanishing $H^{n/2}\text{-}\mathsf{capacity}$

 \longrightarrow energy form $\int u((-\Delta)^{n/2} + l.o.t.)u \, d \operatorname{vol}_g$ on $L^2(M, \mu)$ \longrightarrow random Paneitz operators, conformally invariant

LQG Measure – Discrete Approximation

- Let M be the continuous torus $\mathbb{T}^n \cong [0,1)^n$
- Consider its discrete approximations $\mathbb{T}_{L}^{n} \cong \{0, \frac{1}{L}, \dots, \frac{L-1}{L}\}^{n}$ for $L \in \mathbb{N}$.
- Recall the co-polyharmonic Gaussian field on the discrete torus Tⁿ_L

$$h_L = \frac{1}{\sqrt{a_n}} \sum_{z \in \mathbb{Z}_L^n \setminus \{0\}} \frac{1}{\lambda_{L,z}^{n/4}} \cdot \xi_z \varphi_z.$$

For the "spectrally reduced field" replace here the discrete eigenvalues $\lambda_{L,z}$ by the corresponding continuous ones λ_z (which are larger).

For given $\gamma \in \mathbb{R}$, the discrete LQG measure μ_L is the random measure on \mathbb{T}_L^n defined by

$$d\mu_L(v) = \exp\left(\gamma h_L(v) - \frac{\gamma^2}{2}k_L(v,v)\right) dm_L(v),$$

where m_L denotes the normalized counting measure $\frac{1}{L^n} \sum_{u \in \mathbb{T}_I^n} \delta_u$.

In accordance to the approximation of the Co-polyharmonic fields, we have convergence of μ_L to the LQG measure μ on \mathbb{T}^n .

Theorem

(i) For
$$\gamma < \sqrt{n}$$
 and $L = a^{\ell}$, $a \in \mathbb{N}_{\geq 2}$,

$$\mu_{a^\ell} o \mu$$
 in law in $L^1(\mathbf{P})$ as $\ell \to \infty$.

(ii) An analogous convergence result holds for the LQG measure associated to the Fourier extension of the spectrally reduced field in the range $\gamma < \sqrt{2n}$.

The range of γ in (i) differs from the Gaussian multiplicative chaos construction since this construction uses the eigenvalues of the discrete Laplacian instead of the Laplacian.

In 20016-2019 Rhodes–Vargas with David, Garban, and Kupiainen provided a rigorous definition to the Polyakov–Liouville measure π_g , informally given as

$$d\pi_g(h) = \exp\left(-S_g(h)
ight) dh$$

with (non-existing) uniform distribution *dh* on the set of fields Classical Liouville theory is a two-dimensional conformal field theory.

For n=2: The Liouville action functional is defined as

$$S_g(h) := \int_M \left(rac{1}{4\pi} \left|
abla h \right|^2 + rac{\Theta}{2} R_g h + m e^{\gamma h}
ight) d \operatorname{vol}_g,$$

where $m, \Theta, \gamma > 0$ are parameters and R_g denotes the Gauss curvature.

With appropriate choice of constants,

minimizers h of the action functional satisfy the Liouville equation

$$R_{e^{\gamma h_g}} = -\frac{1}{2}m\gamma^2$$

which produces metrics with constant negative curvature.

■ semiclassical limit (γ → 0): Polyakov–Liouville measure concentrates on surfaces of constant curvature (Lacoin/Rhodes/Vargas 2019+).

Arbitrary even $n \ge 2$: Ansatz for Polyakov–Liouville action

$$S_g(h) := \int_M \left(rac{1}{2} \left| \sqrt{\mathsf{p}_g} h \right|^2 + \Theta \, Q_g h + m e^{\gamma h}
ight) d \operatorname{vol}_g.$$

Here

- p_g is the co-polyharmonic operator,
- *Q_g* denotes Branson's *Q*-curvature,

• m, Θ, γ are parameters.

In the case

$$n = 2, \ Q_g = \frac{1}{2}R_g,$$

$$n = 4, \ Q_g = -\frac{1}{6}\Delta_g \operatorname{scal}_g - \frac{1}{2}|\operatorname{Ric}_g|^2 + \frac{1}{6}\operatorname{scal}_g^2.$$

In general, total Q-curvature is conformally invariant, and if $g'=e^{2arphi}g$ then

$$e^{narphi} Q_{g'} = Q_g + rac{1}{a_n} \, \mathsf{p}_g arphi$$

Minimizers of S_g satisfy

$$\mathsf{p}_g h + \Theta Q_g + m\gamma e^{\gamma h} = 0.$$

Choose
$$\Theta = \frac{na_n}{\gamma}$$
, $m = -\frac{na_n}{\gamma^2}\bar{Q}$ for some $\bar{Q} \in \mathbb{R}$ and put $\varphi = \frac{\gamma}{n}h$.
Then this reads as
 $\frac{1}{a_n} p_g \varphi + Q_g = e^{n\varphi} \bar{Q}$.
In other words, $g' = e^{2\varphi}g$ is a metric of constant Branson curvature $Q_{g'} = \bar{Q}$.

Informal ansatz

$$d\pi_{g}(h) = \exp\left(-\int_{M}\left(\frac{1}{2}\left|\sqrt{\mathsf{p}_{g}}\,h\right|^{2} + \Theta\,Q_{g}\,h + me^{\gamma h}\right)d\operatorname{vol}_{g}\right)dh$$

Rigorous

$$egin{aligned} doldsymbol{
u}_g^*(h) &:= \expigg(- \Theta\langle h, Q_g
angle - m \, ar{\mu}_g^{\gamma h}(M) igg) \, doldsymbol{
u}_g(h) \ doldsymbol{\pi}_g(h) &:= \sqrt{rac{ extsf{vol}_g(M)}{ extsf{det}'(rac{1}{2\pi} extsf{p}_g)}} \cdot doldsymbol{
u}_g^*(h) \end{aligned}$$

where

- ν_g is the law of ungrounded co-polyharmonic Gaussian field on (M, g),
- $\bar{\mu}_{g}^{\gamma h}$ is the adjusted LQG measure
- det'(...) denotes the regularized determinant.

In case $M = \mathbb{S}^n$, cf. Levy–Oz (2018), Cerclé (2019).

Recall

$$doldsymbol{
u}_g^*(h) := \exp\left(-\Theta\langle h, Q_g
angle - mar{\mu}_g^{\gamma h}(M)
ight) doldsymbol{
u}_g(h)$$

Theorem

Assume that $0 < \gamma < \sqrt{2n}$ and $\Theta Q(M) < 0$. Then ν_g^* is a finite measure.

Theorem

If $\Theta = a_n \left(\frac{n}{\gamma} + \frac{\gamma}{2}\right)$, then ν_g^* is conformally quasi-invariant under the shift $T: h \mapsto h - \Theta \varphi$ with A-type conformal anomaly

$$\frac{d\boldsymbol{\nu}_{g'}^*}{dT_*\boldsymbol{\nu}_g^*} = \exp\left(\left(\frac{n}{\gamma} + \frac{\gamma}{2}\right)^2 \left[\frac{1}{2}\mathfrak{p}_g(\varphi, \varphi) + a_n \int \varphi \ Q_g \ d \operatorname{vol}_g\right]\right).$$

Now consider

$$d\pi_g(h) := \sqrt{\frac{\operatorname{vol}_g(M)}{\det'(\frac{1}{2\pi}p_g)}} \cdot \exp\left(-\Theta\langle h, Q_g\rangle - m\,\bar{\mu}_g^{\gamma h}(M)\right) d\nu_g(h),$$

in with $\Theta = a_n \left(\frac{n}{\gamma} + \frac{\gamma}{2}\right).$

Theorem

aga

Assume n = 2. Then π_g is conformally quasi-invariant under the shift T : $h \mapsto h - \Theta \varphi$ with conformal anomaly

$$\frac{d\pi_{g'}}{dT_*\pi_g} = \exp\left(\left[\frac{1}{6} + \left(\frac{2}{\gamma} + \frac{\gamma}{2}\right)^2\right] \left[\frac{1}{2}\mathfrak{p}_g(\varphi, \varphi) + a_n \int \varphi \ Q_g \ d \operatorname{vol}_g\right]\right).$$

David–Kupiainen–Rhodes–Vargas '16, David–Rhodes–Vargas '16, Huang–Rhodes–Vargas '18, Guillarmou–Rhodes–Vargas '19.

Now consider

$$d\pi_{g}(h) := \sqrt{\frac{\operatorname{vol}_{g}(M)}{\det'(\frac{1}{2\pi}p_{g})}} \cdot \exp\left(-\Theta\langle h, Q_{g}\rangle - m\,\bar{\mu}_{g}^{\gamma h}(M)\right) d\nu_{g}(h),$$
again with $\Theta = a_{n}\left(\frac{n}{\gamma} + \frac{\gamma}{2}\right).$

Theorem

Assume n = **4** and for simplicity that (M,g) is conformally flat, i.e. it is conformally equivalent to a flat manifold.

Then π_g is conformally quasi-invariant under the shift $T: h \mapsto h - \Theta \varphi$ with conformal anomaly

$$\frac{d\pi_{g'}}{dT_*\pi_g} = \exp\left(\left[\frac{7}{45} + \left(\frac{4}{\gamma} + \frac{\gamma}{2}\right)^2\right] \cdot \left[\frac{1}{2}\mathfrak{p}_g(\varphi, \varphi) + a_n \int \varphi \, Q_g \, d \, \operatorname{vol}_g\right]\right)$$
$$\cdot \exp\left(\frac{1}{45\pi^2} \left[-\int \operatorname{scal}_{g'}^2 \, d \, \operatorname{vol}_{g'} + \int \operatorname{scal}_g^2 \, d \, \operatorname{vol}_g\right]\right).$$