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Random Objects and Conformal Invariance

Basic observation: numerous beautiful, deep results on conformally invariant
random objects in n = 2.

Question: does any of these have a counterpart in n > 2?

Surprising insights:

(A) Extending the groundbreaking results on

- conformally invariant Gaussian random fields,
- Liouville quantum gravity measures, and
- Polyakov-Liouville measure

to n > 2 relies on two properties

(i) conformally invariant energy/operator
(ii) logarithmic kernel for the operator

(B) Both properties appear to be closely related. Indeed, (i) ⇒ (ii).

(C) Also for n > 2, conformal invariance is a meaningful and powerful
property which rules out all but one random objects.
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Conformally Invariant Random Fields

Goal

Associate to each (M, g) a probability measure νM,g on “fields” (continuous
functions, distributions) on M such that

h
(d)
= h′ ◦ Φ if Φ : M → M ′ is an isometry and h and h′ are distributed

according to νM,g and νM′,g′ , resp.

νM,g′ = νM,g if g ′ = e2φg for some φ ∈ C(M)

Assume that νg is Gaussian, informally given as

dνg (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh

with bilinear form eg (u, v) = (u,Av)L2 .

Conformal Invariance Requirement

eg (u, u) = ee2φg (u, u) ∀φ, ∀u.

In case n = 2, celebrated property of the Dirichlet energy

eg (u, u) :=

∫
M

∣∣∇gu
∣∣2 d volg .



Conformally Invariant Random Fields

Gaussian measure dνg (h) =
1
Zg

exp
(
− 1

2
eg (h, h)

)
dh with conformally invariant

energy
eg (u, u) = ee2φg (u, u) ∀φ, ∀u.

In n ̸= 2, Dirichlet energy no longer conformally invariant:

ee2φg (u, u) =

∫
M

∣∣∇gu
∣∣2 e(n−2)φd volg .

In n = 4, more promising: bi-Laplacian energy

ẽg (u, u) :=

∫
M

(
∆gu

)2
d volg .

Still not conformally invariant but close to:

ẽe2φg (u, u) :=

∫
M

(
∆gu + 2∇gφ∇gu

)2
d volg = ẽg (u, u) + low order terms.

Paneitz:

eg (u, u) =

∫
M

[
(∆gu)

2 − 2Ricg (∇gu,∇gu) +
2

3
scalg ·|∇gu|2

]
d volg

is conformally invariant.



Energy, Operator, Kernel



Co-Polyharmonic Energy on n-Manifolds

Assume from now on that (M, g) is n-dimensional smooth, compact, connected
Riemannian manifold without boundary, n even.

Integrable functions (or distributions) u on M will be called grounded if
⟨u⟩g := 1

volg (M)

∫
M
u d volg = 0

Grounded Sobolev spaces H̊s(M, g) = (−∆g )
−s/2L̊2(M, volg ) for s ∈ R,

usual Sobolev spaces Hs(M, g) = (1−∆)−s/2L2(M, volg ) = H̊s(M, g)⊕ R · 1
Laplacian −∆ : Hs → H̊s−2; grounded Green operator G̊g : H̊s → H̊s+2.

Graham/Jenne/Mason/Sparling.

The co-polyharmonic energy

eg (u, v) = c

∫
M

(
−∆g

)n/4
u ·

(
−∆g

)n/4
v d volg + low order terms

is conformally invariant. We choose c = an := 2

Γ(n/2) (4π)n/2
.

eg (u, v) =
∫
M
pgu · v d volg with co-polyharmonic operator

pgu := c (−∆)n/2u + low order terms



Co-Polyharmonic Energy on n-Manifolds

Definition

The n-manifold (M, g) is called admissible if eg > 0 on H̊n/2(M).

Large classes of n-manifolds are admissible. For instance in n = 4:

all compact Einstein 4-manifolds with Ric ≥ 0 are admissible.

all compact hyperbolic 4-manifolds with spectral gap λ1 > 2 are
admissible.

For the sequel, we always assume that (M, g) is admissible.



Two Key Properties of the Co-Polyharmonic Green Kernel

Define co-polyharmonic Green operator

kg := p−1
g : H−n(M) → L̊2(M)

and associated bilinear form with domain H−n/2(M) by

Kg (u, v) := ⟨u, kgv⟩L2 .

Theorem

kg is an integral operator with an integral kernel kg which is grounded, symmetric,
and satisfies ∣∣∣kg (x , y)− log

1

dg (x , y)

∣∣∣ ≤ C0.

Theorem

Assume that g ′ := e2φg for some φ ∈ C∞(M). Then the co-polyharmonic Green
kernel kg′ for the metric g ′ is given by

kg′(x , y) = kg (x , y)− ϕ̄(x)− ϕ̄(y) + c

with ϕ(x) := ⟨kg (x , .)⟩g′ and c := ⟨ϕ⟩g′



Gaussian Fields



Co-Polyharmonic Gaussian Field – Definition, Construction

Definition

A co-polyharmonic Gaussian field on (M, g) is a centered Gaussian random vari-
able on H̊−ϵ(M) for some ϵ > 0 with covariance

E
[
⟨h, u⟩ ⟨h, v⟩

]
= Kg (u, v) ∀u, v ∈ H̊ϵ(M).

Existence and uniqueness follows from theory of abstract Wiener spaces.

Interpretation: E
[
h(x)

]
= 0, E

[
h(x) h(y)

]
= kg (x , y) (∀x , y)

Let a probability space (Ω,F,P) be given and an i.i.d. sequence (ξj)j∈N of
N (0, 1) random variables. Furthermore, let (ψj)j∈N0 and (νj)j∈N0 denote the
sequences of eigenfunctions and eigenvalues for pg (counted with multiplicities).

Theorem

A co-polyharmonic field is given by

h :=
∑
j∈N

ν
−1/2
j ξj ψj .
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Co-Polyharmonic Gaussian Field – Smooth Approximation

Theorem

A co-polyharmonic field is given by

h :=
∑
j∈N

ξj ·
√
kg ψj =

∑
j∈N

ν
−1/2
j ξj ψj .

More precisely,

1 For each ℓ ∈ N, a centered Gaussian random variable hℓ with values in
C∞(M) is given by

hℓ :=
ℓ∑

j=1

ν
−1/2
j ξj ψj .

2 The convergence hℓ → h holds in L2(P) × H−ϵ(M) for every ϵ > 0. In
particular, for a.e. ω and every ϵ > 0,

hω ∈ H−ϵ(M),

3 For every u ∈ H−n/2(M), the family (⟨u, hℓ⟩)ℓ∈N is a centered L2(P)-
bounded martingale and

⟨u, hℓ⟩ → ⟨u, h⟩ in L2(P) as ℓ→ ∞.



The Ungrounded Co-Polyharmonic Gaussian Field

The law νg of the ungrounded co-polyharmonic Gaussian field is defined as

dνg := image of d ν̊g (h)⊗ dL1(t) under the map (h, t) 7→ h + t

where ν̊g = denotes the law of the (“grounded”) co-polyharmonic Gaussian
field as defined before.

Theorem

The ungrounded co-polyharmonic Gaussian field is conformally invariant:

If g ′ = e2φg on M then h′ (d)
= h.

If Φ : (M, g) → (M ′, g ′) is an isometry then h′ ◦ Φ (d)
= h.

The (“grounded”) co-polyharmonic Gaussian field is conformally invariant mod-
ulo re-grounding:

If g ′ = e2φg on M then h′ (d)
= h −

〈
h
〉
volg′

.



Co-Polyharmonic Gaussian Field – Discrete Approximation

Let M be the continuous torus Tn ∼= [0, 1)n and consider its discrete
approximations Tn

L
∼= {0, 1

L
, . . . , L−1

L
}n for L ∈ N.

Co-polyharmonic Gaussian Field on the discrete torus Tn
L

Centered Gaussian field (hL(v))v∈Tn
L
with covariance function

kL(u, v) =
1

an
G̊

n/2
L (u, v) =

1

an

∑
z∈Zn

L
\{0}

1

λ
n/2
L,z

· cos
(
2π z · (v − u)

)
where λL,z = 4L2 ∑n

k=1 sin
2
(
πzk/L

)
and Zn

L = {z ∈ Zn : 0 < ∥z∥∞ < L/2}.

Note that λL,z are eigenvalues of the discrete Laplacian whereas λz := 4π2|z |2
are the corresponding eigenvalues of the continuous Laplacian.
Also note that

∑
z∈Zn\{0}

1

λ
n/2
z

= c
∑

z∈Zn\{0}
1

|z|n = ∞.

Given iid standard normals (ξz)z∈Zn
L

and Fourier basis functions φz(x) =
1√
2
cos(2πxz) and φ−z(x) = 1√

2
sin(2πxz), a co-polyharmonic Gaussian field

is given as

hL =
1√
an

∑
z∈Zn

L
\{0}

1

λ
n/4
L,z

· ξz φz .



Co-Polyharmonic Gaussian Field – Discrete Approximation

The law of the ungrounded polyharmonic Gaussian field is given explicitly as

cn exp

(
− an
2N

∥∥∥(−∆L)
n/4h

∥∥∥2
)
dLN(h)

on RN ∼= RTn
L where N = Ln.

Theorem

Convergence of fields hL → h as L → ∞: tested against f ∈
⋃

s>n/2

Hs(Tn)

Convergence of Fourier extension of hL to h: in each H−ϵ(Tn) and also
tested against f ∈ H−n/2(Tn)



Liouville Geometry



Liouville Quantum Gravity Measure

Let M as before be a closed manifold of even dimension and h the (grounded)
co-polyharmonic Gaussian field. For ℓ ∈ N define a random measure

dµγhℓ(x) := exp
(
γhℓ(x)−

γ2

2
kℓ(x , x)

)
d volg (x)

on M where hℓ(x) := ⟨qℓ(x , .), h⟩ for suitable family of kernels qℓ(x , y) and
kℓ(x , y) := E

[
hℓ(x)hℓ(y)

]
=

∫∫
k(x ′, y ′)qℓ(x , x

′)qℓ(y , y
′)dx ′dy ′. Based on

Kahane 1986, Shamov 2016, Berestycki 2017,

Theorem

If |γ| <
√
2n, then there exists a random measure µγh on M with µγhℓ → µγh.

More precisely, for every u ∈ C(M),∫
M

u dµγhℓ −→
∫
M

u dµγh in L1(P) and P-a.s. as ℓ→ ∞.

The random measure µγh := lim
ℓ→∞

µγhℓ is called plain Liouville Quantum

Gravity measure.

Theorem

The previous convergence µγhℓ → µγh also holds true if we put hℓ :=∑ℓ
j=1 ν

−1/2
j ξj ψj .



Liouville Quantum Gravity Measure

We define the plain LQG measure for the ungrounded Gaussian field h = h0 + t
with (h0, t) ∼ ν̊g ⊗ L1 by

µγh := eγt µγh0 .

The adjusted LQG measure is given by

µ̄γh := e
γ2

2
rgµγh

with

rg (x) := lim sup
y→x

[
kg (x , y)− log

1

dg (x , y)

]
.

Equivalently, µ̄γh = µγh̃ where the ‘refined’ field h̃ is associated with the
covariance kernel

k̃g (x , y) := kg (x , y)−
1

2
rg (x)−

1

2
rg (y) + c

where c = ⟨rg ⟩+ 1
4
pg (rg , rg ).



Liouville Quantum Gravity Measure

A key property of the adjusted Liouville Quantum Gravity measure is its
quasi-invariance under conformal transformations.

Theorem

Assume that h ∼ νg and h′ ∼ νg′ where g ′ = e2φg, then

µ̄γh′

g′
(d)
= e(n+

γ2

2
)φµ̄γh

g

or, in other words,

µ̄γh′

g′
(d)
= µ̄γ T (h)

g

with the shift T : h 7→ h +
(

n
γ
+ γ

2

)
φ.



Liouville Brownian Motion, Random Paneitz Operator

If γ < 2 then a.s. the LQG measure µγh does not charge sets of vanishing
H1-capacity

−→ Dirichlet form
∫
M
|∇u|2d volg on L2(M, µγh)

−→ Liouville Brownian motion (random time change of BM)

If γ <
√
2n then a.s. the LQG measure µγh does not charge sets of vanishing

Hn/2-capacity

−→ energy form
∫
u((−∆)n/2 + l .o.t.)u d volg on L2(M, µ)

−→ random Paneitz operators, conformally invariant



LQG Measure – Discrete Approximation

Let M be the continuous torus Tn ∼= [0, 1)n

Consider its discrete approximations Tn
L
∼= {0, 1

L
, . . . , L−1

L
}n for L ∈ N.

Recall the co-polyharmonic Gaussian field on the discrete torus Tn
L

hL =
1√
an

∑
z∈Zn

L
\{0}

1

λ
n/4
L,z

· ξz φz .

For the “spectrally reduced field” replace here the discrete eigenvalues
λL,z by the corresponding continuous ones λz (which are larger).

For given γ ∈ R, the discrete LQG measure µL is the random measure on Tn
L

defined by

dµL(v) = exp

(
γhL(v)−

γ2

2
kL(v , v)

)
dmL(v),

where mL denotes the normalized counting measure 1
Ln

∑
u∈Tn

L
δu.

In accordance to the approximation of the Co-polyharmonic fields, we have
convergence of µL to the LQG measure µ on Tn.



LQG Measure – Discrete Approximation

Theorem

(i) For γ <
√
n and L = aℓ, a ∈ N≥2,

µaℓ → µ in law in L1(P) as ℓ→ ∞.

(ii) An analogous convergence result holds for the LQG measure associated to
the Fourier extension of the spectrally reduced field in the range γ <

√
2n.

The range of γ in (i) differs from the Gaussian multiplicative chaos
construction since this construction uses the eigenvalues of the discrete
Laplacian instead of the Laplacian.



Polyakov-Liouville Measure



Polyakov-Liouville Measure

In 20016-2019 Rhodes–Vargas with David, Garban, and Kupiainen provided a
rigorous definition to the Polyakov–Liouville measure πg , informally given as

dπg (h) = exp
(
− Sg (h)

)
dh

with (non-existing) uniform distribution dh on the set of fields
Classical Liouville theory is a two-dimensional conformal field theory.

For n=2: The Liouville action functional is defined as

Sg (h) :=

∫
M

( 1

4π

∣∣∇h
∣∣2 + Θ

2
Rgh +meγh

)
d volg ,

where m,Θ, γ > 0 are parameters and Rg denotes the Gauss curvature.

With appropriate choice of constants,

minimizers h of the action functional satisfy the Liouville equation

Reγhg = −1

2
mγ2

which produces metrics with constant negative curvature.

semiclassical limit (γ → 0): Polyakov–Liouville measure concentrates on
surfaces of constant curvature (Lacoin/Rhodes/Vargas 2019+).



Polyakov-Liouville Measure, n = 2

Arbitrary even n ≥ 2: Ansatz for Polyakov–Liouville action

Sg (h) :=

∫
M

(1
2

∣∣√pg h
∣∣2 +ΘQgh +meγh

)
d volg .

Here

pg is the co-polyharmonic operator,

Qg denotes Branson’s Q-curvature,

m,Θ, γ are parameters.

In the case

n = 2, Qg = 1
2
Rg ,

n = 4, Qg = − 1
6
∆g scalg − 1

2
|Ricg |2 + 1

6
scal2g .

In general, total Q-curvature is conformally invariant, and if g ′ = e2φg then

enφQg′ = Qg +
1

an
pgφ.



Polyakov-Liouville Measure, n ≥ 2

Minimizers of Sg satisfy

pgh +ΘQg +mγeγh = 0.

Choose Θ = nan
γ
, m = − nan

γ2 Q̄ for some Q̄ ∈ R and put φ = γ
n
h.

Then this reads as
1

an
pgφ+ Qg = enφQ̄.

In other words, g ′ = e2φg is a metric of constant Branson curvature Qg′ = Q̄.



Polyakov-Liouville Measure

Informal ansatz

dπg (h) = exp

(
−

∫
M

(1
2

∣∣√pg h
∣∣2 +ΘQgh +meγh

)
d volg

)
dh

Rigorous

dν∗
g (h) := exp

(
−Θ⟨h,Qg ⟩ −m µ̄γh

g (M)
)
dνg (h)

dπg (h) :=

√
volg (M)

det′( 1
2π
pg )

· dν∗
g (h)

where

νg is the law of ungrounded co-polyharmonic Gaussian field on (M, g),

µ̄γh
g is the adjusted LQG measure

det′(. . .) denotes the regularized determinant.

In case M = Sn, cf. Levy–Oz (2018), Cerclé (2019).



Polyakov-Liouville Measure

Recall
dν∗

g (h) := exp
(
−Θ⟨h,Qg ⟩ −m µ̄γh

g (M)
)
dνg (h)

Theorem

Assume that 0 < γ <
√
2n and ΘQ(M) < 0. Then ν∗

g is a finite measure.

Theorem

If Θ = an
(

n
γ
+ γ

2

)
, then ν∗

g is conformally quasi-invariant under the shift

T : h 7→ h −Θφ with A-type conformal anomaly

dν∗
g′

dT∗ν∗
g
= exp

((n

γ
+
γ

2

)2
[
1

2
pg (φ,φ) + an

∫
φQg d volg

])
.



Polyakov-Liouville Measure

Now consider

dπg (h) :=

√
volg (M)

det′( 1
2π
pg )

· exp
(
−Θ⟨h,Qg ⟩ −m µ̄γh

g (M)
)
dνg (h),

again with Θ = an
(

n
γ
+ γ

2

)
.

Theorem

Assume n = 2. Then πg is conformally quasi-invariant under the shift T : h 7→
h −Θφ with conformal anomaly

dπg′

dT∗πg
= exp

([
1

6
+

( 2

γ
+
γ

2

)2
] [

1

2
pg (φ,φ) + an

∫
φQg d volg

])
.

David–Kupiainen–Rhodes–Vargas ’16, David–Rhodes–Vargas ’16,
Huang–Rhodes–Vargas ’18, Guillarmou–Rhodes–Vargas ’19.



Polyakov-Liouville Measure

Now consider

dπg (h) :=

√
volg (M)

det′( 1
2π
pg )

· exp
(
−Θ⟨h,Qg ⟩ −m µ̄γh

g (M)
)
dνg (h),

again with Θ = an
(

n
γ
+ γ

2

)
.

Theorem

Assume n = 4 and for simplicity that (M, g) is conformally flat, i.e. it is
conformally equivalent to a flat manifold.
Then πg is conformally quasi-invariant under the shift T : h 7→ h − Θφ with
conformal anomaly

dπg′

dT∗πg
= exp

([
7

45
+

( 4

γ
+
γ

2

)2
]
·
[
1

2
pg (φ,φ) + an

∫
φQg d volg

])
· exp

(
1

45π2

[
−
∫

scal2g′ d volg′ +

∫
scal2g d volg

])
.


