Calculus-Unit 1
 Applied Computer Science for AI

 Blank examination

 Blank examination}

Postazione:

Cognome:

Nome:

Matricola:

Canale:

	Voto finale
Esercizio	Punteggio
1	
2	
3	
4	
Risp. Mult.	
Totale	

Es. $\mathbf{1}[1+2+1$ Points $]$ Let $a_{n}=\frac{n^{2}+2}{2 n^{2}+1}$ for $n \in \mathbb{N}$

1. Prove that the sequence is bounded by giving an upper bound and a lower for the sequence. (Justify your answer)
2. Find $\lim _{n \rightarrow+\infty} a_{n}$
3. Prove that the sequence is monotone.

Es 2 [3 Points] Prove using induction that for any $n \in \mathbb{N}$ and any $x \in \mathbb{R}$

$$
\left(\sum_{k=0}^{n} x^{k}\right)(1-x)=\left(1-x^{n+1}\right)
$$

Es 3 [4 points] Compute the following limit (justify your answer)
$\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+\sqrt[3]{x^{2}}\right)}{\sqrt{2 x} \cdot \sin x}$

Es $4[1+2+1+2+1$ points $]$ Given the function $f(x)=\frac{x^{2}}{x-3}$. Determine:
a) Domain
b) Asymptotes
c) Derivative
d) Interval of monotonicity
e) Graph

Es 5 [2 o-1 points] The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=e^{-x^{2}}$
(A) Has a minimum and a maximum
(B) Has a maximum but no minimum
(C) Has a minimum but no maximum
(D) Its minimum is at infinity

Es 6 [2 o-1 punti] The derivative of $f(x)=\sin x e^{\cos x}$ is:
(A) $\cos x e^{\cos x}$
(B) $\cos x e^{-\sin x}$
(C) $-\sin ^{2} x e^{\cos x}$
(D) $e^{\cos x}\left(\cos ^{2} x+\cos x-1\right)$
(E) None of the previous answers is correct

Es 7 Let $f:[1,2] \rightarrow \mathbb{R}$ differentiable such that $f(1)=1, f(2)=\pi$. Then
(A) $[1 / 2] f$ is increasing $(1,2) \mathbf{T} \mathbf{F}$
(B) $[1 / 2] \exists x_{o} \in(1,2)$ such that $f^{\prime}\left(x_{o}\right)=\pi \mathbf{T} \mathbf{F}$
(C) $[1 / 2] f$ has a maximum and a minimum $\mathbf{T} \widehat{\mathbf{F}}(\mathrm{D})[1 / 2] \exists x_{o} \in(1,2)$ su that $f\left(x_{o}\right)=2 \boxed{\mathbf{T}} \mathbf{F}$

Es 8 [2 o - 1 punti] $(1+i)^{3}$ equals:
(A) $2+2 i$
(B) $2-2 i$
(C) $-2 i$
(D) $-2+2 i$
(E) 2

Es 9 [3 o -1 punti] The $\lim _{n \rightarrow+\infty} \frac{-n^{3}+2 n+\ln n^{5}}{(-1)^{n} n+2 n^{3}+\sqrt{n}}$ equals
(A) 1
(B) $\frac{-1}{2}$
(C) $+\infty$
(D) $-\infty$
(E) The limit does not exist
(F) None of the previous answers is correct

Es 10The function $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Say which of the following holds true
(A) [1/2] If $f(a)=f(b)$ then the maximum of f is in (a, b)
\mathbf{T} F
(B) $[1 / 2]$ If $f\left(\frac{a+b}{2}\right)=\frac{f(a)+f(b)}{2}$ then f is constant
(C) $[1 / 2]$ If $f(b)>f(a)$, then f is increasing in (a, b).
(D) [1/2] If $f(x)=2 f(a)+b(x-a)$, then $f(a)=0$
(E) $[1 / 2]$ There exists an x such that $f(x)=\frac{f(a)+f(b)}{2}$

T \mathbf{F}
T F
\mathbf{T}, \mathbf{F}
\mathbf{T} F

