Calculus-Unit 1 Applied Computer Science for AI

Blank examination

Esercizio Punteggio

1
2
3
4
Risp. Mult.
Totale

Voto finale

Postazione:		
Cognome:		
Nome:		
Matricola:		
Canale:		

Es. 1 [1+2+1 Points] Let $a_n = \frac{n^2+2}{2n^2+1}$ for $n \in \mathbb{N}$

- 1. Prove that the sequence is bounded by giving an upper bound and a lower for the sequence. (Justify your answer)
- 2. Find $\lim_{n\to+\infty} a_n$
- 3. Prove that the sequence is monotone.

Es 2 [3 Points] Prove using induction that for any $n \in \mathbb{N}$ and any $x \in \mathbb{R}$

$$(\sum_{k=0}^{n} x^{k})(1-x) = (1-x^{n+1})$$

Es 3 [4 points] Compute the following limit (justify your answer)

$$\lim_{x \to 0^+} \frac{\ln(1 + \sqrt[3]{x^2})}{\sqrt{2x} \cdot \sin x}$$

Es 4 [1+2+1+2+1 points] Given the function $f(x) = \frac{x^2}{x-3}$. Determine: a) Domain

- b) Asymptotes
- c) Derivative
- d) Interval of monotonicity
- e) Graph

Es 5 [2 o -1 points] The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = e^{-x^2}$ (A) Has a minimum and a maximum (B) Has a maximum but no minimum (C) Has a minimum but no maximum (D) Its minimum is at infinity Es 6 [2 o -1 punti] The derivative of $f(x) = \sin x e^{\cos x}$ is: (B) $\cos x e^{-\sin x}$ (C) $-\sin^2 x e^{\cos x}$ (A) $\cos x e^{\cos x}$ (D) $e^{\cos x}(\cos^2 x + \cos x - 1)$ (E) None of the previous answers is correct Es 7 Let $f:[1,2]\to\mathbb{R}$ differentiable such that $f(1)=1, f(2)=\pi$. Then (B)[1/2] $\exists x_o \in (1,2)$ such that $f'(x_o) = \pi \left[\mathbf{T} \right] \left[\mathbf{F} \right]$ (A)[1/2] f is increasing (1,2) \mathbf{T} (C)[1/2] f has a maximum and a minimum $\boxed{\mathbf{T}} \boxed{\mathbf{F}}$ (D)[1/2] $\exists x_o \in (1,2)$ su that $f(x_o) = 2 \boxed{\mathbf{T}} \boxed{\mathbf{F}}$ **Es 8** [2 o -1 punti] $(1+i)^3$ equals: (B) 2 - 2i(A) 2 + 2i(C) -2i(E) 2(D) -2 + 2iEs 9 [3 o -1 punti] The $\lim_{n\to+\infty}\frac{-n^3+2n+\ln n^5}{(-1)^nn+2n^3+\sqrt{n}}$ equals (B) $\frac{-1}{2}$ (A) 1 $(D) -\infty$ (E) The limit does not exist (F) None of the previous answers is correct

Es 10The function $f:[a,b]\to\mathbb{R}$ is continuous. Say which of the following holds true

(A)[1/2] If
$$f(a) = f(b)$$
 then the maximum of f is in (a,b)
(B)[1/2] If $f(\frac{a+b}{2}) = \frac{f(a)+f(b)}{2}$ then f is constant

 $\boxed{\mathbf{T}}$ $\boxed{\mathbf{F}}$

(C)[1/2] If
$$f(b) > f(a)$$
, then f is increasing in (a, b) .

(D)[1/2] If
$$f(x) = 2f(a) + b(x - a)$$
, then $f(a) = 0$ **T F**

(E)[1/2] There exists an
$$x$$
 such that $f(x) = \frac{f(a) + f(b)}{2}$ \mathbf{T}