1 Teorema di Poincaré Bendixson

Traccia degli appunti della lezione del 1 giugno 2012.

Consideriamo il sistema autonomo X' = F(X), con F un campo vettoriale C^1 in \mathbb{R}^N . Sia $\Phi^t(x)$ il flusso associato a F. Supponiamo che esiste per ogni t > 0 allora definiamo ω -limite

Definition 1.1 il sottoinsieme di \mathbb{R}^N

$$L_{\omega}(x) = \{ y \in \mathbb{R}^N; \exists t_k, t_k \to +\infty, \lim \Phi^{t_k}(x) = y \}.$$

Analogamente se esiste t per ogni t < 0,

Definition 1.2 chiamiamo α limite, il sottoinsieme di \mathbb{R}^N

$$L_{\alpha}(x) = \{ y \in \mathbb{R}^N ; \exists t_k, t_k \to +\infty, \lim \Phi^{-t_k}(x) = y \}.$$

Osservazione se $F(x_o) = 0$, $L_{\omega}(x_o) = L_{\alpha}(x_o) = \{x_o\}$. Se $\phi^t(x)$ è un orbita periodica di periodo [0, T] allora $L_{\omega}(x) = \{y = \phi^t(x), t \in [0, T]\}$.

Theorem 1.3 (Poincaré-Bendixson) Sia Ω un sottoinsieme di \mathbb{R}^2 . Supponiamo che esista $K \subset \Omega$, compatto tale che

$$\phi^t(K) \subset K$$
.

Sia $x \in K$ tale che $L_{\omega}(x)$ non contiene punti critici allora $L_{\omega}(x)$ è un orbita periodica del sistema.

Questo teorema si basa sul fondamentale teorema sul curve chiuse di Jordan.

Theorem 1.4 (Jordan) Sia C una curva chiusa e semplice di \mathbb{R}^2 (curva di Jordan). allora $\mathbb{R}^2 \setminus C$ è composta da due componenti connesse A_1 e A_2 . Se $P_i \in A_i$ una qualsiasi curva che connette P_1 e P_2 ha intersezione non nulla con C.

Sketch della dimostrazione del Teorema di Poincarè-Bendixson.

Passo 0, $L_{\omega}(x)$ è non vuoto e $y \in L_{\omega}(x)$ implica $\Phi^{t}(y) \in L_{\omega}(x)$.

Per l'ipotesi su K, $y_k = \Phi^{t_k}(x) \in K$ per ogni k, essendo K compatto esiste una sotto successione convergente a un elemento y di K e dunque $y_{k_n} \to y \in L_{\omega}(x)$.

Sia $y_n = \phi^{t_n}(x) \to y$, per la proprietà di semigruppo,

$$\Phi^{t+t_n}(x) = \Phi^t(\Phi^{t_n}(x)) \to \Phi^t(y) \in L_{\omega}.$$

Definizione: diremo che Γ è una curva trasversa a F se il vettore tangente a Γ e F sono linearmente indipendenti per ogni punto di Γ cioè se la curva è parametrizzata da $\gamma(s)$ con $s \in I$,

$$\gamma'(t) \cdot F(\gamma(s) \neq 0 \text{ per ogni } s \in I.$$

Diremo che i punti $P_1 = \gamma(s_1),...,P_n = \gamma(s_n)$ sono ordinati in Γ se lo è la successione degli s_i .

Passo 1 Sia $y_o \in \Phi_o^t(x)$, tale che $F(y_o) \neq 0$. Questo implica che esiste Γ trasversa a F in un intorno di y_o , sia y_n la successione (possibilmente finita) di punti tali che

$$y_n = \Phi^{t_n}(x) \in \Gamma \text{ i.e.} y_n = \gamma(s_n).$$

Se i t_n sono ordinati allora lo sono anche gli s_n .

Se $\Gamma \cap \Phi^t(x) = \{y_o\}$ allora non c'è nulla da dimostrare. Altrimenti consideriamo C la curva di Jordan che congiunge y_o con $y_1 = \Phi^{t_1}(x)$ nel seguente modo: $C = \{\Phi^t(x), t \in (t_o, t_i)\} \cup \Gamma_{x_1, x_0}$. Dove con Γ_{x_1, x_0} intendiamo la parte di Γ che congiunge x_1 con x_o . (Dimostrare che C è semplice). Per il Teorema di Jordan, si ha $\mathbb{R}^2 \setminus C = A_1 \cup A_2$.

Osserviamo che lungo Γ_{x_1,x_0} , dato che la curva è trasversa, $F(\gamma(s))$ punta o sempre verso l'interno di C (chiamiamolo A_1) o sempre verso l'esterno di C (chiamiamolo A_2).

Supponiamo per esempio che punta verso A_1 , questo implica che $F(y_1)$ punta verso A_1 e che $\Phi^t(y_1) \in A_1$ per ogni t > 0. Per t in un intorno di 0 questo è ovvio. Supponiamo per assurdo che esiste $\tau > 0$ tale che $\Phi^{\tau}_{o}(y_1) \in A_2$. Ma allora $\Phi^s(y_1)$ per $s \in (\epsilon, \tau)$ è una curva che congiunge un punti di A_1 con un punto di A_2 . Quindi esiste s_o tale che $\Phi^{s_o}(y_1) \in C$.

Tuttavia $\Phi^{s_o}(y_1) = \Phi^{t_1+s_o}(x)$ non appartiene alla parte di C che è data dal flusso perch se cos fosse $\Phi^t(x)$ sarebbe un orbita periodica (e allora l'intersezione con Γ sarebbe solo x_o).

Allora deve essere che $\Phi^{s_o}(y_1) \in \Gamma_{x_o,x_1}$, ma allora $\Phi^s(y_1) \in A_1$ per $s < s_o$ e $\Phi^{s_o}(y_1) \in \Gamma$ che significa che F punta verso l'esterno e abbiamo ottenuto una contraddizione.

Abbiamo ottenuto che $\Phi^t(y_1) \in A_1$ per ogni t > 0 e questo conclude la dimostrazione del Passo 1.

Passo 2: Se $y \in L_{\omega}(x) \cap \Gamma$ (una curva trasversa) allora esiste una successione $y_n \in \Gamma \cap \Phi(x)$ tale che $y_n \to y$.

Supponiamo che in un intorno di y, $\Gamma = \{x \in \mathbb{R}^2, u(x) = 0\}$. Inoltre $\nabla u(x) \cdot F(x) \neq 0$ in Γ e quindi per continuità in un intorno di Γ . Consideriamo $g(t,x) = u(\Phi^t(x))$. Si ha chiaramente che g(0,y) = 0, inoltre

$$\partial_t q(t,x) = \nabla u(\Phi^t(x)) \cdot F((\Phi^t(x)) \neq 0$$

in un intorno di (0, y). Per il **Teorema delle funzioni implicite** esiste $\tau(x)$ da $U_y \to \mathbb{R}$ tale che $u(\Phi^{\tau(x)}(x)) = 0$ (i.e. $\Phi^{\tau(x)}(x) \in \Gamma$) e $\tau(y) = 0$.

Sia $y_k = \Phi^{t_k}(x)$ tale che $y_k \to y$. Per k abbastanza grande, $y_k \in U_y$ e quindi esiste $\tau_k = \tau_k(y_k)$ tale che $\Phi^{(t_k + \tau_k(x))} \in \Gamma$. La successione $\tilde{y}_k = \Phi^{(t_k + \tau_k(x))}$ ha le proprietà richieste.

Passo 3: Se Γ è una curva trasversa contiene al più un punto di $L_{\omega}(x)$. Se contenesse due punti y_1 e y_2 supponiamo che

$$x_n = \Phi^{t_n}(x) \to y_1, \ y_n = \Phi^{s_n}(x) \to y_2.$$

Sia τ_n una successione monotona crescente tale che τ_n prende alternativamente valori di t_n e valori di s_n allora $\Phi^{\tau_n}(x)$ per il passo 1 è una successione "monotona" su Γ e quindi $y_1 = y_2$

Passo 4: Se $L_{\omega}(x) \cap \Phi(x) \neq \emptyset$ allora $\Phi(x)$ è un orbita periodica.

Supponiamo che $y = \Phi^{\tau}(x) \in L_{\omega}(x)$, prendiamo una curva Γ trasversa ad F per y. Per il passo 2, esiste una successione $y_n = \Phi^{t_n}(x) \in \Gamma$, per il passo 1, per ogni $t_n > \tau$, gli $y_n = y$ quindi Φ^t è periodica.

Conclusione Sia $y \in L_{\omega}(x)$. Sia $z \in L_{\omega}(y)$, per il passo $0, L_{\omega}(y) \subset L_{\omega}(x)$ e per ipotesi $F(z) \neq 0$. Quindi esiste Γ trasverso a F tale che

$$z_n \in \Phi^{t_n}(y) \cap \Gamma \subset L_{\omega}(x) \cap \Gamma, \ z_n \to z.$$

Ma per il passo 3, $L_{\omega}(x) \cap \Gamma = \{z\}$, quindi $z_n = z$ e $L_{\omega}(x)$ ed è un orbita periodica.