Exercises on continuous functions and limits Calculus Unit 1, Birindelli

1. Find the point of discontinuity of the functions defined by

$$f(x) = [x^2]$$
$$g(x) = x[x-1]$$

2. Without looking for the result, prove that there exists a solution of

$$e^x = 2x$$

and find an interval of size 1/4 that contains the solution.

- 3. Prove that the polynome $P(x) = x^4 + 7x^3 9$ has at least two zeroes in \mathbb{R} .
- 4. Prove the following fact: If f is a functions continuous, strictly montone increasing in [a, b] then the inverse function is continuous and strictly monotone increasing.
- 5. Let f(x) and g(x) be two continuous in (a, b) prove that

$$h(x)=\max\{f(x),g(x)\}$$
 and $k(x)=\min\{f(x),g(x)\}$

are continuous functions

- 6. Consider $f : [0,3] \to \mathbb{R}$ continuous in [0,3] such that $\operatorname{Im} f = f([0,3]) = [0,4]$ Prove that there exists an $x \in [0,3]$ such that $f(x) = \frac{4}{3}x$
- 7. For $x_o > 0$ and for $x_1 \in \mathbb{R}$ determine the following limits, using the special limits:

a)
$$\lim_{x \to x_o} \frac{\log(x) - \log(x_o)}{x - x_o}$$
, b) $\lim_{x \to x_1} \frac{e^x - e^{x_1}}{x - x_1}$, c) $\lim_{x \to x_1} \frac{x^2 - x_1^2}{x - x_1}$
d) $\lim_{x \to x_1} \frac{x^\alpha - x_1^\alpha}{x - x_1}$, e) $\lim_{x \to x_1} \frac{\sin x - \sin x_1}{x - x_1}$

(For the point limit "e" use the fact that $\sin(a-b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$)