Exercises on continuous functions and limits Calculus Unit 1, Birindelli

1. Find the point of discontinuity of the functions defined by

$$
\begin{gathered}
f(x)=\left[x^{2}\right] \\
g(x)=x[x-1]
\end{gathered}
$$

2. Without looking for the result, prove that there exists a solution of

$$
e^{x}=2 x
$$

and find an interval of size $1 / 4$ that contains the solution.
3. Prove that the polinome $P(x)=x^{4}+7 x^{3}-9$ has at least two zeroes in \mathbb{R}.
4. Prove the following fact: If f is a functions continuous, strictly montone increasing in $[a, b]$ then the inverse function is continuous and strictly monotone increasing.
5. Let $f(x)$ and $g(x)$ be two continuous in (a, b) prove that

$$
h(x)=\max \{f(x), g(x)\} \text { and } k(x)=\min \{f(x), g(x)\}
$$

are continuous functions
6. Consider $f:[0,3] \rightarrow \mathbb{R}$ continuous in $[0,3]$ such that $\operatorname{Im} f=f([0,3])=[0,4]$ Prove that there exists an $x \in[0,3]$ such that $f(x)=\frac{4}{3} x$
7. For $x_{o}>0$ and for $x_{1} \in \mathbb{R}$ determine the following limits, using the special limits:
a) $\lim _{x \rightarrow x_{o}} \frac{\log (x)-\log \left(x_{o}\right)}{x-x_{o}}$,
b) $\lim _{x \rightarrow x_{1}} \frac{e^{x}-e^{x_{1}}}{x-x_{1}}$,
c) $\lim _{x \rightarrow x_{1}} \frac{x^{2}-x_{1}^{2}}{x-x_{1}}$
d) $\lim _{x \rightarrow x_{1}} \frac{x^{\alpha}-x_{1}^{\alpha}}{x-x_{1}}$,
e) $\lim _{x \rightarrow x_{1}} \frac{\sin x-\sin x_{1}}{x-x_{1}}$
(For the point limti "e" use the fact that $\sin (a-b)=2 \cos \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$)

