Exercises on functions

1. Given two sequences a_{n}, b_{n}, consider the following function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=\left\{\begin{array}{lc}
e^{\frac{-x}{n}} & \text { if } x \in[2 n, 2 n+1) \forall n \in \mathbb{N} * \\
a_{n} x+b_{n} & \text { if } x \in[2 n+1,2 n+2) \forall n \in \mathbb{N} \\
0 & \text { if } x<1
\end{array}\right.
$$

(a) For $a_{n}=1$ and $b_{n}=0$, for any $n \in \mathbb{N}$, draw the graph of f for $x \in[1,5]$.
(b) Find two sequences a_{n} and b_{n} such that f is continuous in \mathbb{R}.
(c) For the sequences found in (b), is f differentiable in \mathbb{R}.
(d) Find the limit at infinity of the sequences in (b)
2. Given three sequences a_{n}, b_{n}, c_{n} consider the following function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=\left\{\begin{array}{lc}
e^{\frac{-x}{n}} & \text { if } x \in[2 n, 2 n+1) \forall n \in \mathbb{N} * \\
c_{n} x^{2}+a_{n} x+b_{n} & \text { if } x \in[2 n+1,2 n+2) \forall n \in \mathbb{N} \\
0 & \text { if } x<1
\end{array}\right.
$$

(a) For $a_{n}=1$ and $b_{n}=0, c_{n}=1$ for any $n \in \mathbb{N}$, draw the graph of f for $x \in[1,5]$.
(b) Find three sequences a_{n}, b_{n} and c_{n} such that f is continuous in \mathbb{R}.
(c) Is it possible to find three sequences a_{n}, b_{n} and c_{n} such that is f differentiable in \mathbb{R} ?
3. Define a function, different from the one in exercise 1, which is continuous in \mathbb{R} but has and infinite number of points where it is not differentiable.
4. Let $f(x)=|\sin x|$. Determine the points of discontinuities and the points of non differentiability of f.
5. Given $f(x)=x^{3}$, find the equations of the tangent lines to f that are parallel to the bisector $y=x$.
6. Using Newton's method, find a sequence of rational numbers converging to $\sqrt{3}$.

