Exercises on functions

1. Given two sequences a_n, b_n , consider the following function $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \begin{cases} e^{\frac{-x}{n}} & \text{if } x \in [2n, 2n+1) \,\forall n \in \mathbb{N} \\ a_n x + b_n & \text{if } x \in [2n+1, 2n+2) \,\forall n \in \mathbb{N} \\ 0 & \text{if } x < 1 \end{cases}$$

- (a) For $a_n = 1$ and $b_n = 0$, for any $n \in \mathbb{N}$, draw the graph of f for $x \in [1, 5]$.
- (b) Find two sequences a_n and b_n such that f is continuous in \mathbb{R} .
- (c) For the sequences found in (b), is f differentiable in \mathbb{R} .
- (d) Find the limit at infinity of the sequences in (b)
- 2. Given three sequences a_n, b_n, c_n consider the following function $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \begin{cases} e^{\frac{-x}{n}} & \text{if } x \in [2n, 2n+1) \,\forall n \in \mathbb{N} \\ c_n x^2 + a_n x + b_n & \text{if } x \in [2n+1, 2n+2) \,\forall n \in \mathbb{N} \\ 0 & \text{if } x < 1 \end{cases}$$

- (a) For $a_n = 1$ and $b_n = 0$, $c_n = 1$ for any $n \in \mathbb{N}$, draw the graph of f for $x \in [1, 5]$.
- (b) Find three sequences a_n , b_n and c_n such that f is continuous in \mathbb{R} .
- (c) Is it possible to find three sequences a_n , b_n and c_n such that is f differentiable in \mathbb{R} ?
- 4. Let $f(x) = |\sin x|$. Determine the points of discontinuities and the points of non differentiability of f.
- 5. Given $f(x) = x^3$, find the equations of the tangent lines to f that are parallel to the bisector y = x.
- 6. Using Newton's method, find a sequence of rational numbers converging to $\sqrt{3}$.