Calculus-Unit 1
 Applied Computer Science for AI

 Blank examination

 Blank examination}

Postazione:

Cognome:

Nome:

Matricola:

Canale:

Es. $\mathbf{1}[1+2+1$ Points $]$ Given the sequence a_{n} defined in the following way

$$
\left\{\begin{array}{l}
a_{0}=1 \\
a_{n+1}=\sqrt{a_{n}+1}
\end{array}\right.
$$

a) Prove by induction that $a_{n} \leq \frac{1+\sqrt{5}}{2}$
b) Prove that, if the limit exists, it is equal to $\frac{1+\sqrt{5}}{2}$
c) Prove that the sequence is monotone increasing

Es 2 [3 Points] Determine the points of discontinuity and of non differentiability of the function $f(x)=|\sin (2 x)|$ (justify your answer).

Es 3 [4 points] Compute the following limit (justify your answer) $\lim _{x \rightarrow 0^{+}} \frac{1-\cos (2 \sqrt{x})}{\log (1+\sin (3 x))}$

Es $4\left[1+2+1+2+1\right.$ points Given the function $f(x)=e^{\frac{x}{x^{2}-1}}$. Determine:
a) Domain:
b) The limit at the boundary of the domains
c) The asymptotes
d) The derivative
e) The interval of monotonicity

Es 5 [2 o-1 points] The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\left|e^{-x^{2}}-\frac{1}{2}\right|$
(A) Has a minimum and a maximum
(B) Has a maximum but no minimum
(C) Has a minimum but no maximum
(D) Its minimum is at infinity

Es 6 [2 o - 1 punti] The derivative of $f(x)=\arctan \left(\frac{2 x}{x-2}\right)$ is:
(A) $\frac{1}{1+x^{2}} \cdot \frac{-4}{(x-2)^{2}}$
(B) $\frac{1}{1+\left(\frac{2 x}{x-2}\right)^{2}}$
(C) $\frac{-4}{(x-2)^{2}}$
(D) $\frac{-4}{5 x^{2}-4 x+4}$
(E) None of the previous answers is correct

Es 7 Let $f:[0,2] \rightarrow \mathbb{R}$ continuous such that the image of f is $[0,2]$. Then
(A) [1/2] The function $g(x)=f(x)-x$ has at least a zero in $[0,2] \mathbf{T} \mathbf{F}$
(B) [1/2] The function is tangent to the bisector $\mathbf{T} \mathbf{F}$
(C) $[1 / 2] f$ has a maximum and a minimum $\mathbf{T} \mathbf{F}$
(D) $[1 / 2] \exists x_{o} \in(0,1)$ and $x_{1} \in(1,2)$ such that $f\left(x_{o}\right)=f\left(x_{1}\right) \mathbf{T} \mathbf{F}$

Es 8 Given the equation $(z+i)^{4}=1$ in \mathbb{C}
(A) It has 2 solutions $\mathbf{T} \mathbf{F}$

Es 9 [3 o - 1 punti] The $\lim _{n \rightarrow+\infty} \frac{-e^{2 n}+2 n^{4}+\ln \left(n^{2}-1\right)}{n \sin n+2 e^{2 n}+\sqrt{3}}$ equals
(A) 1
(B) $\frac{1}{2}$
(C) $+\infty$
(D) $-\infty$
(E) The limit does not exist
(F) None of the previous answers is correct

Es 10The function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable. Say which of the following holds true
(A) $[1 / 2]$ If $f(a)=f(b)$ then the maximum of f is 0

\mathbf{T}	\mathbf{F}

(B)[1/2] If f is convexe then the deirvative of f is increasing

T \mathbf{F}
\mathbf{T} F
T \mathbf{F}
(D) [1/2] If $f(x)=2 f(a)+b(x-a)$, then $f(a)=0$
$\mathbf{T} \mathbf{F}$

