Calculus-Unit 1 Applied Computer Science for AI		Voto finale
Blank examination		
Postazione:	Esercizio	Punteggio
Cognome:	$\frac{1}{2}$	
Nome:	3	
Matricola	4	
	Risp. Mult	
Canale:	Totale	

Es. 1 [1+2+1 Points] Given the sequence a_n defined in the following way

$$\begin{cases} a_0 = 1\\ a_{n+1} = \sqrt{a_n + 1} \end{cases}$$

a) Prove by induction that $a_n \leq \frac{1+\sqrt{5}}{2}$ b) Prove that, if the limit exists, it is equal to $\frac{1+\sqrt{5}}{2}$ c) Prove that the sequence is monotone increasing

Es 2 [3 Points] Determine the points of discontinuity and of non differentiability of the function $f(x) = |\sin(2x)|$ (justify your answer).

Es 3 [4 points] Compute the following limit (justify your answer) $\lim_{x\to 0^+} \frac{1-\cos(2\sqrt{x})}{\log(1+\sin(3x))}$

Es 4 [1+2+1+2+1 points] Given the function $f(x) = e^{\frac{x}{x^2-1}}$. Determine:

- a) Domain:
- b) The limit at the boundary of the domains
- c) The asymptotes
- d) The derivative
- e) The interval of monotonicity

Es 5 [2 o -1 points] The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = |e^{-x^2} - \frac{1}{2}|$

(A) Has a minimum and a maximum

(**B**) Has a maximum but no minimum (\mathbf{B})

(C) Has a minimum but no maximum

(D) Its minimum is at infinity

Es 6 [2 o -1 punti] The derivative of $f(x) = \arctan(\frac{2x}{x-2})$ is: (A) $\frac{1}{1+x^2} \cdot \frac{-4}{(x-2)^2}$ (B) $\frac{1}{1+(\frac{2x}{x-2})^2}$ (C) $\frac{-4}{(x-2)^2}$ (D) $\frac{-4}{5x^2-4x+4}$ (E) None of the previous answers is correct

Es 7 Let $f: [0,2] \to \mathbb{R}$ continuous such that the image of f is [0,2]. Then (A)[1/2] The function g(x) = f(x) - x has at least a zero in [0,2] **T F** (B)[1/2] The function is tangent to the bisector **T F** (C)[1/2] f has a maximum and a minimum **T F** (D)[1/2] $\exists x_o \in (0,1)$ and $x_1 \in (1,2)$ such that $f(x_o) = f(x_1)$ **T F**

Es 8 Given the equation $(z + i)^4 = 1$ in \mathbb{C} (A) It has 2 solutions **T F**

Es 9 [3 o -1 punti] The $\lim_{n \to +\infty} \frac{-e^{2n} + 2n^4 + \ln(n^2 - 1)}{n \sin n + 2e^{2n} + \sqrt{3}}$ equals (A) 1 (B) $\frac{1}{2}$ (C) $+\infty$ (D) $-\infty$ (E) The limit does not exist (F) None of the previous answers is correct

Es 10The function $f : [a, b] \to \mathbb{R}$ is differentiable. Say which of the following holds true (A)[1/2] If f(a) = f(b) then the maximum of f is 0 **T F** (B)[1/2] If f is convexe then the deirvative of f is increasing **T F** (C)[1/2] If f(b) > f(a), then f is increasing in (a, b). **T F** (D)[1/2] If f(x) = 2f(a) + b(x - a), then f(a) = 0 **T F** (E)[1/2] There exists an $x \in (a, b)$ such that $f'(x) = \frac{f(a) - f(b)}{a - b}$ **T F**