Calculus-Unit 1 Applied Computer Science for AI		Voto finale
Blank examination		
Postazione:	Esercizio	Punteggio
Cognome:	1	
	2	
Nome:	3	
Matricola:	4	
	Risp. Mult.	
Canale:	Totale	

Es. 1 [1+2+1 Points] Given the sequence a_n defined in the following way

$$\begin{cases} a_0 = 1\\ a_{n+1} = \sqrt{a_n + 1} \end{cases}$$

- a) Prove by induction that $a_n \leq \frac{1+\sqrt{5}}{2}$
- b) Prove that, if the limit exists, it is equal to $\frac{1+\sqrt{5}}{2}$
- c) Prove that the sequence is monotone increasing

Solutions

a) S
step 1: $a_0 = 1 = \frac{1+1}{2} < \frac{1+\sqrt{5}}{2}$ Step 2: suppose that for some $n, a_n \leq \frac{1+\sqrt{5}}{2}$. We want to prove the inequality for a_{n+1} : $a_{n+1} = \sqrt{a_n + 1} \le \sqrt{\frac{1 + \sqrt{5}}{2} + 1} = \sqrt{\frac{3 + \sqrt{5}}{2}} = \frac{1 + \sqrt{5}}{2}$, Since $\left(\sqrt{\frac{3+\sqrt{5}}{2}}\right)^2 = \frac{3+\sqrt{5}}{2}$ and $\left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+5+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$

This concludes the proof by induction of a)

b) If the limit exists $\lim a_n = l$ and $\lim a_{n+1} = l$ but also $\lim a_{n+1} = \lim \sqrt{a_n + 1} = \sqrt{l+1}$. Bu the limit is unique, hence is needs to satisfy $l = \sqrt{l+1}$ i.e. $l^2 - l - 1 = 0$. This equation has two solutions

$$l_{+} = \frac{1 + \sqrt{5}}{2} > 0$$
, and $l_{-} = \frac{1 - \sqrt{5}}{2} < 0$

Since the sequence is positive, if the limit exists it is $l_{+} = \frac{1+\sqrt{5}}{2}$ c) Again by induction $a_o = 1 \le a_1$ and if $a_n \le a_{n+1}$ then $a_{n+2} = \sqrt{a_{n+1}+1} \ge \sqrt{a_n+1} = a_{n+1}$. Q.E.D:

Es 2 [3 Points] Determine the points of discontinuity and of non differentiability of the function $f(x) = |\sin(2x)|$ (justify your answer).

Solution

The function f(x) is the composition of the function |x| and $\sin(2x)$, they are both continuous and the composition of continuous functions is continuous so f is everywhere continuous.

On the other hand the modulus function |x| is not differentiable when the argument is zero, while $\sin(2x)$ is always differentiable. Hence the function f will be non differentiable in the points where $\sin(2x) = 0$ i.e. $2x = k\pi$ for any $k \in \mathbb{Z}$ i.e. $x = \frac{k\pi}{2}$ for any $k \in \mathbb{Z}$ are the points of non differentiability of f

Es 3 [4 points] Compute the following limit (justify your answer) $\lim_{x\to 0^+} \frac{1-\cos(2\sqrt{x})}{\log(1+\sin(3x))}$

Solution

$$\lim_{x \to 0^+} \frac{1 - \cos(2\sqrt{x})}{\log(1 + \sin(3x))} = \lim_{x \to 0^+} \frac{1 - \cos(2\sqrt{x})}{(2\sqrt{x})^2} \cdot \frac{4x}{\log(1 + \sin(3x))} =$$
$$\lim_{x \to 0^+} \frac{1 - \cos(2\sqrt{x})}{(2\sqrt{x})^2} \cdot \frac{\sin(3x)}{\log(1 + \sin(3x))} \cdot \frac{3x}{\sin(3x)} \cdot \frac{4}{3} = \frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{4}{3} = \frac{2}{3}$$

We have used that

$$\lim_{x \to 0^+} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}, \ \lim_{x \to 0^+} \frac{\sin(x)}{x} = 1 \text{ and } \lim_{x \to 0^+} \frac{\log(1 + x)}{x} = 1.$$

Es 4 [1+2+1+2+1 points] Given the function $f(x) = e^{\frac{x}{x^2-1}}$. Determine: a) Domain: Solution Condition $x^2 - 1 \neq 0$ i.e. $\text{Def} f = \mathbb{R} \setminus \{1, -1\}$

b) The limit at the boundary of the domains **Solution** $\lim_{x \to -\infty} e^{\frac{x}{x^2-1}} = e^0 = 1, \lim_{x \to +\infty} e^{\frac{x}{x^2-1}} = e^0 = 1, \lim_{x \to -1^-} e^{\frac{x}{x^2-1}} = e^{-\infty} = 0, \lim_{x \to -1^+} e^{\frac{x}{x^2-1}} = e^{\infty} = \infty$ $\infty, \lim_{x \to 1^-} e^{\frac{x}{x^2-1}} = e^{-\infty} = 0, \lim_{x \to 1^+} e^{\frac{x}{x^2-1}} = e^{\infty} = \infty$ c) The asymptotes:

Solution y = 0 at ∞ and $-\infty$, x = -1 and x = 1.

d) The derivative Solution $f'(x) = \frac{-(1+x^2)}{(x^2-1)^2}e^{\frac{x}{x^2-1}}$

e) The intervals of monotonicity

Solution The derivative is always non positive (≤ 0) so in each interval of existence the solution is montone decreasing i.e. it is decreasing in $(-\infty, -1)$, in (-1, 1) and it is decreasing in $(1, +\infty)$.

Es 5 [2 o -1 points] The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = |e^{-x^2} - \frac{1}{2}|$

(X) Has a minimum and a maximum

 (\mathbf{B}) Has a maximum but no minimum

(C) Has a minimum but no maximum

(D) Its minimum is at infinity

Es 6 [2 o -1 punti] The derivative of $f(x) = \arctan(\frac{2x}{x-2})$ is: (A) $\frac{1}{1+x^2} \cdot \frac{-4}{(x-2)^2}$ (B) $\frac{1}{1+(\frac{2x}{x-2})^2}$ (C) $\frac{-4}{(x-2)^2}$ (\mathfrak{P}) $\frac{-4}{5x^2-4x+4}$ (E) None of the previous answers is correct

Es 7 Let $f: [0,2] \to \mathbb{R}$ continuous such that the image of f is [0,2]. Then (A)[1/2] The function g(x) = f(x) - x has at least a zero in [0,2] **X F** (B)[1/2] The function is tangent to the bisector **T X** (C)[1/2] f has a maximum and a minimum **X F** (D)[1/2] $\exists x_o \in (0,1)$ and $x_1 \in (1,2)$ such that $f(x_o) = f(x_1)$ **T X**

Es 8 Given the equation $(z + i)^4 = 1$ in \mathbb{C} (A) It has 2 solutions **T**

Es 9 [3 o -1 punti] The
$$\lim_{n \to +\infty} \frac{-e^{2n} + 2n^4 + \ln(n^2 - 1)}{n \sin n + 2e^{2n} + \sqrt{3}}$$
 equals
(A) 1 (B) $\frac{1}{2}$ (C) $+\infty$
(D) $-\infty$ (E) The limit does not exist ($\mathbf{\tilde{N}}$ None of the previous answers is correct

Es 10The function $f : [a, b] \to \mathbb{R}$ is differentiable. Say which of the following holds true

