Calculus-Unit 1
 Applied Computer Science for AI

 Blank examination

 Blank examination}

Postazione:

Cognome:

Nome:

Matricola:

Canale:

Esercizio	Punteggio
1	
2	
3	
4	
Risp. Mult.	
Totale	

Es. $\mathbf{1}[1+2+1$ Points $]$ Given the sequence a_{n} defined in the following way

$$
\left\{\begin{array}{l}
a_{0}=1 \\
a_{n+1}=\sqrt{a_{n}+1}
\end{array}\right.
$$

a) Prove by induction that $a_{n} \leq \frac{1+\sqrt{5}}{2}$
b) Prove that, if the limit exists, it is equal to $\frac{1+\sqrt{5}}{2}$
c) Prove that the sequence is monotone increasing

Solutions

a)Sstep 1: $a_{0}=1=\frac{1+1}{2}<\frac{1+\sqrt{5}}{2}$

Step 2: suppose that for some $n, a_{n} \leq \frac{1+\sqrt{5}}{2}$. We want to prove the inequality for a_{n+1} :
$a_{n+1}=\sqrt{a_{n}+1} \leq \sqrt{\frac{1+\sqrt{5}}{2}+1}=\sqrt{\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{2}$, Since

$$
\left(\sqrt{\frac{3+\sqrt{5}}{2}}\right)^{2}=\frac{3+\sqrt{5}}{2} \text { and }\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+5+2 \sqrt{5}}{4}=\frac{3+\sqrt{5}}{2}
$$

This concludes the proof by induction of a)
b) If the limit exists $\lim a_{n}=l$ and $\lim a_{n+1}=l$ but also $\lim a_{n+1}=\lim \sqrt{a_{n}+1}=\sqrt{l+1}$. Bu the limit is unique, hence is needs to satisfy $l=\sqrt{l+1}$ i.e. $l^{2}-l-1=0$. This equation has two solutions

$$
l_{+}=\frac{1+\sqrt{5}}{2}>0, \text { and } l_{-}=\frac{1-\sqrt{5}}{2}<0
$$

Since the sequence is positive, if the limit exists it is $l_{+}=\frac{1+\sqrt{5}}{2}$
c) Again by induction $a_{o}=1 \leq a_{1}$ and if $a_{n} \leq a_{n+1}$ then $a_{n+2}=\sqrt{a_{n+1}+1} \geq \sqrt{a_{n}+1}=a_{n+1}$. Q.E.D:

Es 2 [3 Points] Determine the points of discontinuity and of non differentiability of the function $f(x)=|\sin (2 x)|$ (justify your answer).

Solution

The function $f(x)$ is the composition of the function $|x|$ and $\sin (2 x)$, they are both continuous and the composition of continuous functions is continuous so f is everywhere continuous.
On the other hand the modulus function $|x|$ is not differentiable when the argument is zero, while $\sin (2 x)$ is always differentiable. Hence the function f will be non differentiable in the points where $\sin (2 x)=0$ i.e. $2 x=k \pi$ for any $k \in \mathbb{Z}$ i.e. $x=\frac{k \pi}{2}$ for any $k \in \mathbb{Z}$ are the points of non differentiability of f

Es 3 [4 points] Compute the following limit (justify your answer) $\lim _{x \rightarrow 0^{+}} \frac{1-\cos (2 \sqrt{x})}{\log (1+\sin (3 x))}$

Solution

$$
\begin{array}{r}
\lim _{x \rightarrow 0^{+}} \frac{1-\cos (2 \sqrt{x})}{\log (1+\sin (3 x))}=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (2 \sqrt{x})}{(2 \sqrt{x})^{2}} \cdot \frac{4 x}{\log (1+\sin (3 x))}= \\
\lim _{x \rightarrow 0^{+}} \frac{1-\cos (2 \sqrt{x})}{(2 \sqrt{x})^{2}} \cdot \frac{\sin (3 x)}{\log (1+\sin (3 x))} \cdot \frac{3 x}{\sin (3 x)} \cdot \frac{4}{3}=\frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{4}{3}=\frac{2}{3}
\end{array}
$$

We have used that

$$
\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{x^{2}}=\frac{1}{2}, \lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1 \text { and } \lim _{x \rightarrow 0^{+}} \frac{\log (1+x)}{x}=1
$$

Es $4\left[1+2+1+2+1\right.$ points Given the function $f(x)=e^{\frac{x}{x^{2}-1}}$. Determine:
a) Domain:

Solution

Condition $x^{2}-1 \neq 0$ i.e. $\operatorname{Def} f=\mathbb{R} \backslash\{1,-1\}$
b) The limit at the boundary of the domains

Solution $\lim _{x \rightarrow-\infty} e^{\frac{x}{x^{2}-1}}=e^{0}=1, \lim _{x \rightarrow+\infty} e^{\frac{x}{x^{2}-1}}=e^{0}=1, \lim _{x \rightarrow-1^{-}} e^{\frac{x}{x^{2}-1}}=e^{-\infty}=0, \lim _{x \rightarrow-1^{+}} e^{\frac{x}{x^{2}-1}}=e^{\infty}=$ $\infty, \lim _{x \rightarrow 1^{-}} e^{\frac{x}{x^{2}-1}}=e^{-\infty}=0, \lim _{x \rightarrow 1^{+}} e^{\frac{x}{x^{2}-1}}=e^{\infty}=\infty$
c) The asymptotes:

Solution $y=0$ at ∞ and $-\infty, x=-1$ and $x=1$.
d) The derivative

Solution $f^{\prime}(x)=\frac{-\left(1+x^{2}\right)}{\left(x^{2}-1\right)^{2}}{ }^{\frac{x}{x^{2}-1}}$
e) The intervals of monotonicity

Solution The derivative is always non positive (≤ 0) so in each interval of existence the solution is montone decreasing i.e. it is decreasing in $(-\infty,-1)$, in $(-1,1)$ and it is decreasing in $(1,+\infty)$.

Es 5 [2 o-1 points] The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\left|e^{-x^{2}}-\frac{1}{2}\right|$
(X) Has a minimum and a maximum
(B) Has a maximum but no minimum
(C) Has a minimum but no maximum
(D) Its minimum is at infinity

Es 6 [2 o - 1 punti] The derivative of $f(x)=\arctan \left(\frac{2 x}{x-2}\right)$ is:
(A) $\frac{1}{1+x^{2}} \cdot \frac{-4}{(x-2)^{2}}$
(B) $\frac{1}{1+\left(\frac{2 x}{x-2}\right)^{2}}$
(C) $\frac{-4}{(x-2)^{2}}$
(X) $\frac{-4}{5 \mathrm{x}^{2}-4 \mathrm{x}+4}$
(E) None of the previous answers is correct

Es 7 Let $f:[0,2] \rightarrow \mathbb{R}$ continuous such that the image of f is $[0,2]$. Then
(A)[1/2] The function $g(x)=f(x)-x$ has at least a zero in $[0,2] \mathbf{X} \mathbf{F}$
(B) $[1 / 2]$ The function is tangent to the bisector $\mathbf{T} \mathbf{X}$
(C) $[1 / 2] f$ has a maximum and a minimum $\mathbf{X} \mathbf{F}$
(D) $[1 / 2] \exists x_{o} \in(0,1)$ and $x_{1} \in(1,2)$ such that $f\left(x_{o}\right)=f\left(x_{1}\right) \mathbf{T} \mathbf{X}$

Es 8 Given the equation $(z+i)^{4}=1$ in \mathbb{C}
(A) It has 2 solutions \mathbf{T}

Es 9 [3 o-1 punti] The $\lim _{n \rightarrow+\infty} \frac{-e^{2 n}+2 n^{4}+\ln \left(n^{2}-1\right)}{n \sin n+2 e^{2 n}+\sqrt{3}}$ equals
(A) 1
(B) $\frac{1}{2}$
(C) $+\infty$
(D) $-\infty$
(E) The limit does not exist
(\mathbf{X} None of the previous answers is correct

Es 10The function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable. Say which of the following holds true
(A) $[1 / 2]$ If $f(a)=f(b)$ then the maximum of f is 0
(B)[1/2] If f is convexe then the deirvative of f is increasing
(C) [1/2] If $f(b)>f(a)$, then f is increasing in (a, b).
(D) [1/2] If $f(x)=2 f(a)+b(x-a)$, then $f(a)=0$
(E) [1/2] There exists an $x \in(a, b)$ such that $f^{\prime}(x)=\frac{f(a)-f(b)}{a-b}$

T]
X F
T \mathbf{X}
X \boldsymbol{F}

X F

