Exercise 1: (Taylor's polinome)
Prove that the following equalities hold
(1) $\sin ^{2}(x)=x^{2}-\frac{x^{4}}{3}+o\left(x^{5}\right) \quad x \rightarrow 0$
(2) $\cos ^{2}(x)=1-x^{2}+\frac{x^{4}}{3}+0\left(x^{5}\right) \quad x \rightarrow 0$
(3) $\frac{1}{1+e^{x}}=\frac{1}{2}-\frac{x}{4}+o\left(x^{2}\right) \quad x \rightarrow 0$
(4) $\log (\cos x)=-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+0\left(x^{4}\right) \quad x \rightarrow 0$
(5) $e^{\sin (x)}=1+x+\frac{x^{2}}{2}-\frac{1}{8} x^{4}+0\left(x^{4}\right) \quad x \rightarrow 0$

Exercise 2: Study and draw the graph of the following functions: (domain of definition, value of the limits at infinity, asymptotes, derivative, interval of monotonicity, second derivative interval of convexities)
(1) $f(x)=(x-1)^{3}(2-x)$
(2) $f(x)=\frac{x^{2}}{\log |x|-1}$

No second derivatives
(3) $f(x)=\log (x)-\operatorname{arctg}(x-1)$

No second derivatives
(4) $f(x)=e^{\frac{x-2}{x}}$
(5) $f(x)=e^{-|x|} \sqrt{x^{2}-5 x+6}$ No second derivatives

