Calculus-Unit 1 Applied Computer Science for AI	V	oto finale
Blank examination		
Postazione:	Esercizio	Punteggio
Cognome:	1	
-	2	
Nome:	3	
Matricola:	4	
	Risp. Mult.	
Canale:	Totale	

Es. 1 [1+2+1 Points] Given the sequence $a_n = \frac{x^2}{3n^2-2}$ for $n \in \mathbb{N}^*$ a) Compute a_1 and a_2

b) Prove that the sequence is bounded

c) Prove that the sequence is monotone decreasing

Es 2 [3 Points] Given $a \in \mathbb{R}$ and $b \in \mathbb{R}$, let $f(x) = \begin{cases} \frac{\log(1+2x)}{3x} & \text{for } x > 0\\ a(x+1)^2 + b & \text{for } x \le 0 \end{cases}$ Determine a and b such that f is differentiable in \mathbb{P} . b such that f is differentiable in \mathbb{R} .

Es 3 [4 points] Compute the following limit (justify your answer) $\lim_{x \to 1} \frac{e^{x^2-1}-1}{\tan(\frac{\pi}{4}x^3)\log(x)}$

Es 4 [1+2+1+2+1 points] Given the function $f(x) = \arctan\left(\frac{x-2}{2x+4}\right)$. Determine: a) Domain:

- b) The limits at the boundary of the domains
- c) The asymptotes
- d) The derivative
- e) The intervals of monotonicity

Es 5 [2 o -1 points] The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = |\log(x)|$

- (A) Has a minimum and a maximum
- (\mathbf{B}) Has a maximum but no minimum
- (C) Has a minimum but no maximum
- (D) Its minimum is at infinity

Es 6 [2 o -1 punti] The derivative of $f(x) = \sin(2x)e^{\cos(2x)}$ is: (A) $-4\cos(2x)\sin(2x)e^{\cos(2x)}$ (B) $2e^{\cos(2x)}(\cos(2x)-\sin^2(2x))$ (C) $e^{\cos(2x)}(2\cos(2x)+4\sin^2(2x))$ (D) $e^{\cos(2x)}(2\cos(2x)+\sin(2x))$ (E) None of the previous answers is correct

Es 7 Let $f:[0,1] \to \mathbb{R}$ a continuous function. Then

(A)[1/2] The image of f is a closed and bounded interval \mathbf{T} \mathbf{F} (B)[1/2] If f(0) = f(1) then either the maximum of the minimum are reached in the open interval (0,1) \mathbf{T} \mathbf{F} (C)[1/2] The function reaches all the values between f(0) and f(1). \mathbf{T} \mathbf{F} (D)[1/2] The function reaches only the values between f(0) and f(1). \mathbf{T} \mathbf{F} (E)[1/2] If f is convex in [0,1], then the graph is below the strait line given by the equation y = (f(1) - f(0))(x - 1) + f(1) \mathbf{T} \mathbf{F}

Es 8 Given the equation $z^6 = 1 + i$ in \mathbb{C}

- (A) It has 2 solutions in \mathbb{C} **T**
- (B) The solutions are on the circle of center 0 and radius $\sqrt{2} |\mathbf{T}| |\mathbf{F}|$
- (C) There exists a solution in $\mathbb{R} \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{F} \end{bmatrix}$
- (D) The solutions are at the vertices of an hexagon $[\mathbf{T}][\mathbf{F}]$

Es 9 [3 o -1 punti] Let a_n be a bounded sequence. Then necessarily

(A) The sequence has a limit $[\mathbf{T}][\mathbf{F}]$. (B) The sequence is monotone $[\mathbf{T}][\mathbf{F}]$

(C) There exists a converging subsequence $\mathbf{T} \mathbf{F}$ (D) All subsequences converge $\mathbf{T} \mathbf{F}$

Es 10 Let
$$z = \frac{1}{2+3i}$$
.
(A)[1/2] Then $z_o = \frac{1}{13}(2-3i)$ **T F**
(B)[1/2] Then $z_o \cdot \overline{z}_o = 13$ **T F**
(C)[1/2] $(1+i)z_o = \frac{1}{13}(5-i)$ **T F**
(D)[1/2] $(z_o)^{-1} = 2i+3$ **T F**