Calculus-Unit 1					
Applied	Computer	Science	for	\mathbf{AI}	

Blank examination

Postazione:	Esercizio	Punteggio
C	1	
Cognome:	2	
Nome:	3	
Matricola:	4	
	Risp. Mult.	
Canale:	Totale	

Voto finale

Es. 1 [1+2+1 Points] Given the sequence $a_n = \frac{n^2}{3n^2-2}$ for $n \in \mathbb{N}^*$ a) Compute a_1 and a_2

 $a_1 = 1$ and $a_2 = \frac{4}{10}$

b) Prove that the sequence is bounded

Since $n \ge 1$, $3n^2 - 2 > 0$ and, of course, $n^2 > 0$. Hence $a_n > 0$ so the sequence is bounded from below.

On the other hand $\frac{n^2}{3n^2-2} \leq 1$. Indeed

$$\frac{n^2}{3n^2 - 2} \le 1 \Leftrightarrow n^2 \le 3n^2 - 2 \Leftrightarrow 0 \le 2n^2 - 2 = 2(n^2 - 1) \text{ which is true}$$

c) Prove that the sequence is monotone decreasing

We need to prove that $a_n \ge a_{n+1}$ i.e. $\frac{n^2}{3n^2-2} \ge \frac{(n+1)^2}{3(n+1)^2-2}$ This is equivalent to

$$n^{2}3(n+1)^{2} - 2 \ge (n+1)^{2}(3n^{2} - 2) \Leftrightarrow -2n^{2} \ge -2(n+1)^{2}) \Leftrightarrow (n+1)^{2} \ge n^{2}$$
 which is true

Es 2 [3 Points] Given $a \in \mathbb{R}$ and $b \in \mathbb{R}$, let $f(x) = \begin{cases} \frac{\log(1+2x)}{3x} & \text{for } x > 0\\ a(x+1)^2 + b & \text{for } x < 0 \end{cases}$ Determine a and

b such that f is differentiable in \mathbb{R} .

In order for f to be differentiable it needs to be continuous. The function is continuous if for every $x \neq 0$. In order to check that f is continuous in 0, we need to see that the limit in zero exists and that it coincides with f(0). By its definition f(0) = a + b. The limit exists in zero if both the limit at the left of zero is equal to the limit at the right of zero.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\log(1+2x)}{3x} = \lim_{x \to 0^{-}} \frac{\log(1+2x)}{2x} \frac{2}{3} = \frac{2}{3}$$

while $\lim_{x\to 0^+} f(x) = a + b$ so the condition for the continuity of f is $a + b = \frac{2}{3}$. The function is differentiable in zero if there exists $\lim_{x\to 0} \frac{f(x)-f(0)}{r-0}$

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\frac{\log(1 + 2x)}{3x} - \frac{2}{3}}{x} = \lim_{x \to 0^+} \frac{\log(1 + 2x) - 2x}{3x^2}$$

Using de l'Hopital's rule we can compute the limit of the ratio of the derivatives:

$$\lim_{x \to 0^+} \frac{\frac{2}{1+2x} - 2}{6x} = \lim_{x \to 0^+} \frac{-2x}{3x(1+2x)} = \lim_{x \to 0^+} \frac{-2}{3(1+2x)} = -\frac{2}{3}$$
$$\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{a(x+1)^2 + b - (a+b)}{x} = \lim_{x \to 0^-} \frac{ax^2 + 2ax}{x} = 2a$$

So the request is that $2a = -\frac{2}{3}$ and $a + b = \frac{2}{3}$ i.e. a $= -\frac{1}{3} ana 0$ Es 3 [4 points] Compute the following limit (justify your answer) $\lim_{x \to 1} \frac{e^{x^2-1}-1}{\tan(\frac{\pi}{4}x^3)\log(x)}$ We plan to use the special limits.

$$\lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{\tan(\frac{\pi}{4}x^3)\log(x)} = \lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{x^2 - 1} \cdot \frac{(x - 1)}{\log(x)} \cdot \frac{x + 1}{\tan(\frac{\pi}{4}x^3)} = 1 \cdot 1 \cdot \frac{2}{1} = 2$$

Here we have used

$$1 = \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{x^2 - 1}$$
$$1 = \lim_{x \to 0} \frac{\log(x+1)}{x} = \lim_{x \to 1} \frac{\log(x)}{x - 1}$$

Es 4 [1+2+1+2+1 points] Given the function $f(x) = \arctan\left(\frac{x-2}{2x+4}\right)$. Determine:

- a) Domain: $\mathbb{R} \setminus \{-2\} = (-\infty, -2) \cup (-2, +\infty)$
- b) The limits at the boundary of the domains

 $\lim_{x \to -\infty} f(x) = \arctan\left(\frac{1}{2}\right), \quad \lim_{x \to -2^-} f(x) = \arctan(+\infty) = \frac{\pi}{2}, \quad \lim_{x \to -2^+} f(x) = \arctan(-\infty) = -\frac{\pi}{2},$ $\lim_{x \to +\infty} f(x) = \arctan\left(\frac{1}{2}\right)$ c) The asymptotes At infinity the asymptotes are $y = \arctan\left(\frac{1}{2}\right)$ d) The derivative

$$f'(x) = \frac{1}{1 + \left(\frac{x-2}{2x+4}\right)^2} \cdot \left(\frac{8}{(2x+4)^2}\right) \text{ which is always positive.}$$

e) The intervals of monotonicity

The function is increasing in $(-\infty, -2)$ and in $(-2, +\infty)$.

Es 5 [2 o -1 points] The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = |\log(x)|$

- (A) Has a minimum and a maximum
- (\mathbf{B}) Has a maximum but no minimum

(**X**) Has a minimum but no maximum

```
(D) Its minimum is at infinity
```

Es 6 [2 o -1 punti] The derivative of $f(x) = \sin(2x)e^{\cos(2x)}$ is: (A) $-4\cos(2x)\sin(2x)e^{\cos(2x)}$ (**X**) $2e^{\cos(2x)}(\cos(2x)-\sin^2(2x))$ (C) $e^{\cos(2x)}(2\cos(2x)+4\sin^2(2x))$ (D) $e^{\cos(2x)}(2\cos(2x)+\sin(2x))$ (E) None of the previous answers is correct

Es 7 Let $f:[0,1] \to \mathbb{R}$ a continuous function. Then

(A)[1/2] The image of f is a closed and bounded interval **x F** (B)[1/2] If f(0) = f(1) then either the maximum of the minimum are reached in the open interval (0,1) **x F** (C)[1/2] The function reaches all the values between f(0) and f(1). **x F** (D)[1/2] The function reaches only the values between f(0) and f(1). **T x** (E)[1/2] If f is convex in [0,1], then the graph is below the strait line given by the equation y = (f(1) - f(0))(x - 1) + f(1) **x F**

Es 8 Given the equation $z^6 = 1 + i$ in \mathbb{C}

- (A) It has 2 solutions in \mathbb{C} **T**
- (B) The solutions are on the circle of center 0 and radius $\sqrt{2} \left| \mathbf{X} \right| \mathbf{F}$
- (C) There exists a solution in $\mathbb{R} \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{K} \end{bmatrix}$
- (D) The solutions are at the vertices of an hexagon $\mathbf{X} | \mathbf{F}$

Es 9 [3 o -1 punti] Let a_n be a bounded sequence. Then necessarily

(A) The sequence has a limit $[\mathbf{T}]$ $[\mathbf{K}]$. (B) The sequence is monotone $[\mathbf{T}]$ $[\mathbf{K}]$

(C) There exists a converging subsequence $\mathbf{X} = \mathbf{F}$ (D) All subsequences converge $\mathbf{T} = \mathbf{X}$

Es 10 Let
$$z = \frac{1}{2+3i}$$
.
(A)[1/2] Then $z_o = \frac{1}{13}(2-3i)$ **X** F
(B)[1/2] Then $z_o \cdot \overline{z}_o = 13$ **X** F
(C)[1/2] $(1+i)z_o = \frac{1}{13}(5-i)$ **X** F
(D)[1/2] $(z_o)^{-1} = 2i+3$ **X** F