Calculus-Unit 1
 Applied Computer Science for AI
 Blank examination

Postazione:

Cognome:

Nome:

Matricola:
Canale:

Esercizio	Punteggio
1	
2	
3	
4	
Risp. Mult.	
Totale	

Es. $\mathbf{1}[1+2+1$ Points $]$ Given the sequence $a_{n}=\frac{n^{2}}{3 n^{2}-2}$ for $n \in \mathbb{N}^{*}$
a) Compute a_{1} and a_{2}
$a_{1}=1$ and $a_{2}=\frac{4}{10}$
b) Prove that the sequence is bounded

Since $n \geq 1,3 n^{2}-2>0$ and, of course, $n^{2}>0$. Hence $a_{n}>0$ so the sequence is bounded from below.
On the other hand $\frac{n^{2}}{3 n^{2}-2} \leq 1$. Indeed

$$
\frac{n^{2}}{3 n^{2}-2} \leq 1 \Leftrightarrow n^{2} \leq 3 n^{2}-2 \Leftrightarrow 0 \leq 2 n^{2}-2=2\left(n^{2}-1\right) \text { which is true }
$$

c) Prove that the sequence is monotone decreasing

We need to prove that $a_{n} \geq a_{n+1}$ i.e. $\frac{n^{2}}{3 n^{2}-2} \geq \frac{(n+1)^{2}}{3(n+1)^{2}-2}$ This is equivalent to

$$
\left.n^{2} 3(n+1)^{2}-2 \geq(n+1)^{2}\left(3 n^{2}-2\right) \Leftrightarrow-2 n^{2} \geq-2(n+1)^{2}\right) \Leftrightarrow(n+1)^{2} \geq n^{2} \text { which is true }
$$

Es 2 [3 Points] Given $a \in \mathbb{R}$ and $b \in \mathbb{R}$, let $f(x)=\left\{\begin{array}{ll}\frac{\log (1+2 x)}{3 x} & \text { for } x>0 \\ a(x+1)^{2}+b & \text { for } x \leq 0\end{array}\right.$ Determine a and b such that f is differentiable in \mathbb{R}.
In order for f to be differentiable it needs to be continuous. The function is continuous if for every $x \neq 0$. In order to check that f is continuous in 0 , we need to see that the limit in zero exists and that it coincides with $f(0)$. By its definition $f(0)=a+b$. The limit exists in zero if both the limit at the left of zero is equal to the limit at the right of zero.

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\log (1+2 x)}{3 x}=\lim _{x \rightarrow 0^{-}} \frac{\log (1+2 x)}{2 x} \frac{2}{3}=\frac{2}{3}
$$

while $\lim _{x \rightarrow 0^{+}} f(x)=a+b$ so the condition for the continuity of f is $a+b=\frac{2}{3}$. The function is differentiable in zero if there exists $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\log (1+2 x)}{3 x}-\frac{2}{3}}{x}=\lim _{x \rightarrow 0^{+}} \frac{\log (1+2 x)-2 x}{3 x^{2}}
$$

Using de l'Hopital's rule we can compute the limit of the ratio of the derivatives:

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{\frac{2}{1+2 x}-2}{6 x}=\lim _{x \rightarrow 0^{+}} \frac{-2 x}{3 x(1+2 x)}=\lim _{x \rightarrow 0^{+}} \frac{-2}{3(1+2 x)}=-\frac{2}{3} \\
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{a(x+1)^{2}+b-(a+b)}{x}=\lim _{x \rightarrow 0^{-}} \frac{a x^{2}+2 a x}{x}=2 a
\end{gathered}
$$

So the request is that $2 a=-\frac{2}{3}$ and $a+b=\frac{2}{3}$ i.e. $a=-\frac{1}{3}$ and $b=1$.

Es 3 [4 points] Compute the following limit (justify your answer) $\lim _{x \rightarrow 1} \frac{e^{x^{2}-1}-1}{\tan \left(\frac{\pi}{4} x^{3}\right) \log (x)}$ We plan to use the special limits.

$$
\lim _{x \rightarrow 1} \frac{e^{x^{2}-1}-1}{\tan \left(\frac{\pi}{4} x^{3}\right) \log (x)}=\lim _{x \rightarrow 1} \frac{e^{x^{2}-1}-1}{x^{2}-1} \cdot \frac{(x-1)}{\log (x)} \cdot \frac{x+1}{\tan \left(\frac{\pi}{4} x^{3}\right)}=1 \cdot 1 \cdot \frac{2}{1}=2
$$

Here we have used

$$
\begin{aligned}
& 1=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 1} \frac{e^{x^{2}-1}-1}{x^{2}-1} \\
& 1=\lim _{x \rightarrow 0} \frac{\log (x+1)}{x}=\lim _{x \rightarrow 1} \frac{\log (x)}{x-1}
\end{aligned}
$$

Es $4\left[1+2+1+2+1\right.$ points Given the function $f(x)=\arctan \left(\frac{x-2}{2 x+4}\right)$. Determine:
a) Domain: $\mathbb{R} \backslash\{-2\}=(-\infty,-2) \cup(-2,+\infty)$
b) The limits at the boundary of the domains
$\lim _{x \rightarrow-\infty} f(x)=\arctan \left(\frac{1}{2}\right), \lim _{x \rightarrow-2^{-}} f(x)=\arctan (+\infty)=\frac{\pi}{2}, \lim _{x \rightarrow-2^{+}} f(x)=\arctan (-\infty)=-\frac{\pi}{2}$,
$\lim _{x \rightarrow+\infty} f(x)=\arctan \left(\frac{1}{2}\right)$
c) The asymptotes

At infinity the asymptotes are $y=\arctan \left(\frac{1}{2}\right)$
d) The derivative
$f^{\prime}(x)=\frac{1}{1+\left(\frac{x-2}{2 x+4}\right)^{2}} \cdot\left(\frac{8}{(2 x+4)^{2}}\right)$ which is always positive.
e) The intervals of monotonicity

The function is increasing in $(-\infty,-2)$ and in $(-2,+\infty)$.

Es $\mathbf{5}$ [2 o-1 points] The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=|\log (x)|$
(A) Has a minimum and a maximum
(B) Has a maximum but no minimum
(\mathbf{X}) Has a minimum but no maximum
(D) Its minimum is at infinity

Es 6 [2 o-1 punti] The derivative of $f(x)=\sin (2 x) e^{\cos (2 x)}$ is:
(A) $-4 \cos (2 x) \sin (2 x) e^{\cos (2 x)}$
(X) $2 e^{\cos (2 x)}\left(\cos (2 x)-\sin ^{2}(2 x)\right)$
(C) $e^{\cos (2 x)}\left(2 \cos (2 x)+4 \sin ^{2}(2 x)\right)$
(D) $e^{\cos (2 x)}(2 \cos (2 x)+\sin (2 x))$
(E) None of the previous answers is correct

Es 7 Let $f:[0,1] \rightarrow \mathbb{R}$ a continuous function. Then
(A) $[1 / 2]$ The image of f is a closed and bounded interval \mathbf{X}
(B) $[1 / 2]$ If $f(0)=f(1)$ then either the maximum of the minimum are reached in the open interval $(0,1) \mathbf{X} \mathbf{F}$
(C) $[1 / 2]$ The function reaches all the values between $f(0)$ and $f(1)$. $\mathbf{X} \mathbf{F}$
(D) $[1 / 2]$ The function reaches only the values between $f(0)$ and $f(1)$. $\mathbf{T} \mathbf{X}$
(E) $[1 / 2]$ If f is convex in $[0,1]$, then the graph is below the strait line given by the equation $y=(f(1)-f(0))(x-1)+f(1) \mathbf{X} \mathbf{F}$

Es 8 Given the equation $z^{6}=1+i$ in \mathbb{C}
(A) It has 2 solutions in $\mathbb{C} \mathbf{T}$
(B) The solutions are on the circle of center 0 and radius $\sqrt{2} \boldsymbol{X} \mid \mathbf{F}$
(C) There exists a solution in $\mathbb{R} \mathbf{T}$
(D) The solutions are at the vertices of an hexagon \mathbf{X}

Es 9 [3o-1 punti] Let a_{n} be a bounded sequence. Then necessarily
(A) The sequence has a limit $\mathbf{T} \mathbf{X}$. (B) The sequence is monotone $\mathbf{T} \mathbf{X}$

Es 10 Let $z=\frac{1}{2+3 i}$.
(A) $[1 / 2]$ Then $z_{o}=\frac{1}{13}(2-3 i)$

(C) $[1 / 2](1+i) z_{o}=\frac{1}{13}(5-i)$
\mathbf{X} F

