ISTITUZIONI DI MATEMATICA II, BIRINDELLI

Cognome Nome Crediti

REGOLE D'ESAME i) IL COMPITO DEVE ESSERE SVOLTO SU QUESTI FOGLI, CHE SONO GLI UNICI AD ESSERE CONSEGNATI AL DOCENTE PER LA CORREZIONE

Esercizio 1 Sia l'equazione differenziale (eq1) $y'(x) = 2xy - x^3$

a) Determinare se la funzione $y(x) = \frac{x}{2}$ è soluzione di (eq1)

b) Determinare l'insieme delle soluzioni di y'(x) = 2xy

c) Determinare l'insieme delle soluzioni di (eq1) e l'insieme di esistenza delle soluzioni

d) Determinare se esiste una soluzione che verifica y(0) = 1

e)Determinare se esiste una soluzione di (eq1) che sia limitata

f) Determinare se tutte le soluzioni di (eq1) soddisfano: y(1) = 2 e y'(1) = 3.

Esercizio 2 Sia l'equazione differenziale (eq2) $y'(x) = (x-1)\frac{(y^2-9)}{2y}$.

a) Determinare se esistono soluzioni costanti.

b) Determinare l'insieme delle soluzioni di (eq2)

c) Determinare la soluzione che verifica y(1) = 1 e determinare l'intervallo di esistenza della soluzione.

d) Determinare se nell'intervallo (0, 3) esistono delle soluzioni limitate

e) Determinare se nell'intervallo $(4, +\infty)$ esistono delle soluzioni limitate.

Esercizio 3 Sia l'equazione differenziale (eq3) y'' + y' - 6y = f(x)

a) Determinare se $y(x) \equiv 2$ è soluzione di (eq3) per $f(x) \equiv -12$

b)Determinare l'insieme delle soluzioni per $f(x) \equiv 0$

c) Determinare l'insieme delle soluzioni per $f(x) = e^{2x}$

d) Determinare la soluzione di (eq3) con $f(x) \equiv 0$ che verifica y(0) = 0 e y'(0) = -1.

e) Determinare se nell'intervallo $(0, +\infty)$ esistono delle soluzioni limitate di (eq3) con $f(x) \equiv 0$.

Esercizio 4 Sia l'equazione differenziale (eq4) y'' + 6y' + 10y = f(x)

a) Determinare se y(x) = 2x è soluzione di (eq4) per f(x) = 20x + 12

b)Determinare l'insieme delle soluzioni per $f(x) \equiv 0$

c) Determinare l'insieme delle soluzioni per f(x) = 3

d) Determinare la soluzione di (eq4) con $f(x) \equiv 0$ che verifica y(0) = 2 e y(0) = 0.

e) Determinare se nell'intervallo $(0, +\infty)$ esistono delle soluzioni limitate di (eq4) con $f(x) \equiv 0$.

Esercizio 5 Sia il campo vettoriale $F(x, y) = (3x^2y + \cos x, x^3 + e^y)$ a)Calcolare F(0, 0) e determinare l'insieme di definizione di F

b) Determinare se F è irrotazionale e se è conservativo.

c) Calcolare il lavoro di F lungo la curva $\gamma(t) = (2\cos t, 3\sin t)$ per $t \in [0, 2\pi]$.

d)Calcolare il lavoro di F lungo la curva $\gamma_1(t) = (2t^2, 3t^3)$ per $t \in [0, 1]$

e) Trovare una curva γ_2 tale che il lavoro di F lungo γ_2 sia pari a 3. f) Sia $G(x, y) = (3x^2y + \cos x + y, x^3 + e^y)$. Determinare il lavoro di G lungo γ .