General exercises on functions

1. Consider the following functions, and determine wether the image of the function is bounded above or below:

$\int f: \mathbb{R} \to \mathbb{R}$	$\int f: \mathbb{R} \to \mathbb{R}$
$\begin{cases} f(x) = \frac{x^2}{x^2 + 1} \end{cases}$	$\int f(x) = \cos x + \sin x$
$\int f: [-2,2] \to \mathbb{R}$	$\int f: \mathbb{R} \to \mathbb{R}$
$\int f(x) = \sqrt{x^2 - 4}$	$\int f(x) = \sqrt{x^2 + 4}$

- 2. Let f be a function with the following characteristics: $f : A \to \mathbb{R}$, with $-1 \in A$ and $0 \in A$,
 - it is even (f(-x) = f(x)),
 - it is bounded (its image set is bounded),
 - f(0) = 1 and f(1) = -1.

Answer to the following requests, without determine explicitly

- Determine a possible set A and draw two possible graphs of f
- Draw a possible graph of f which is never zero
- Considering that the first graph of f that you have drawn is the correct one, draw the graph of y = |f(x)|, the graph of the functions g(x) = f(x+1), h(x) = f(x) + 1
- 3. Let $f(x) = \sqrt{x}$ and $h(x) : A \to \mathbb{R}$ defined by $h(x) = \tan(x)$. Determine a set A such that it is possible to define $f \circ h$.
- 4. For the following functions, determine the largest domain of definition:

$$f(x) = \sqrt{x^2 + 3x - 1}, \ g(x) = \frac{x^2 - 3}{\log(x^2 - 1)}, \ h(x) = \sqrt{\frac{x + 2}{3 - x}}$$