General exercises on funtions

1. Consider the following functions, and determine wether the image of the function is bounded above or below:
$\left\{\begin{array}{l}f: \mathbb{R} \rightarrow \mathbb{R} \\ f(x)=\frac{x^{2}}{x^{2}+1}\end{array} \quad\left\{\begin{array}{l}f: \mathbb{R} \rightarrow \mathbb{R} \\ f(x)=\cos x+\sin x\end{array}\right.\right.$
$\left\{\begin{array}{l}f:[-2,2] \rightarrow \mathbb{R} \\ f(x)=\sqrt{x^{2}-4}\end{array} \quad\left\{\begin{array}{l}f: \mathbb{R} \rightarrow \mathbb{R} \\ f(x)=\sqrt{x^{2}+4}\end{array}\right.\right.$
2. Let f be a function with the following characteristics: $f: A \rightarrow \mathbb{R}$, with $-1 \in A$ and $0 \in A$,

- it is even $(f(-x)=f(x))$,
- it is bounded (its image set is bounded),
- $f(0)=1$ and $f(1)=-1$.

Answer to the following requests, without determine explicitly

- Determine a possible set A and draw two possible graphs of f
- Draw a possible graph of f which is never zero
- Considering that the first graph of f that you have drawn is the correct one, draw the graph of $y=|f(x)|$, the graph of the functions $g(x)=$ $f(x+1), h(x)=f(x)+1$

3. Let $f(x)=\sqrt{x}$ and $h(x): A \rightarrow \mathbb{R}$ defined by $h(x)=\tan (x)$. Determine a set A such that it is possible to define $f \circ h$.
4. For the following functions, determine the largest domain of definition:

$$
f(x)=\sqrt{x^{2}+3 x-1}, g(x)=\frac{x^{2}-3}{\log \left(x^{2}-1\right)}, h(x)=\sqrt{\frac{x+2}{3-x}}
$$

