Exercise on limits and continuity

1. Prove using the definition of limit that:

$$
\lim _{x \rightarrow 1} 2 x^{2}-3 x=-1, \lim _{x \rightarrow 1} \log (x)=0, \lim _{x \rightarrow 0} \frac{1}{1+2 x}=1, \lim _{x \rightarrow 1} 3=3
$$

2. Prove, using the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ that $\lim _{x \rightarrow 0} \sin x=0$
3. Using Prostaferesi's formula: ($\cos a-\cos b=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$) and the limit in the previous exercise, prove that the function $f(x)=\cos x$ is continuous.
4. Using the previous exercise, prove that $f(x)=(\cos x)^{2}$ is continuous.
5. Prove that the function $f(x)=\left\{\begin{array}{ll}x^{2}+1 & \text { if } x>0 \\ -x^{2}-1 & \text { if } x \leq 0\end{array}\right.$ is not continuous at zero
6. Let $f(x)$ be the Dirichlet function i.e.

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Prove that f is not continuous in any x.

