Calculus-Unit 1
 Applied Computer Science for AI

 Blank examination

 Blank examination}

Postazione:

Cognome:

Nome:

Matricola:
Canale:

Esercizio	Punteggio
1	
2	
3	
4	
Risp. Mult.	
Totale	

Es. $1[1+2+1$ Points $]$ Let $a_{n}=\frac{n^{2}+2}{2 n^{2}+1}$ for $n \in \mathbb{N}$

1. Prove that the sequence is bounded by giving an upper bound and a lower for the sequence. (Justify your answer)
Observe that $n^{2}+2=\frac{1}{2}\left(2 n^{2}+1\right)+\frac{3}{2}$ so that $\frac{n^{2}+2}{2 n^{2}+1}=\frac{1}{2}+\frac{3}{2\left(2 n^{2}+1\right)} \geq \frac{1}{2}$. So that $\frac{1}{2}$ is a lower bound and

$$
\frac{n^{2}+2}{2 n^{2}+1} \leq \frac{2 n^{2}+2}{2 n^{2}+1} \leq \frac{2 n^{2}+2}{n^{2}+1}=2
$$

so that 2 is an upper bound.
2. Find $\lim _{n \rightarrow+\infty} a_{n}=\lim _{n \rightarrow+\infty} \frac{1+\frac{2}{n^{2}}}{2+\frac{1}{n^{2}}}=\frac{1}{2}$
3. Prove that the sequence is monotone.

Since $2\left(2 n^{2}+1\right) \leq 2\left(2(n+1)^{2}+1\right)$ then

$$
a_{n}=\frac{n^{2}+2}{2 n^{2}+1}=\frac{1}{2}+\frac{3}{2\left(2 n^{2}+1\right)} \geq \frac{1}{2}+\frac{3}{2\left(2(n+1)^{2}+1\right)}=a_{n+1}
$$

And the sequence is monotone decreasing.

Es 2 [3 Points] Prove using induction that for any $n \in \mathbb{N}$ and any $x \in \mathbb{R}$

$$
\left(\sum_{k=0}^{n} x^{k}\right)(1-x)=\left(1-x^{n+1}\right)
$$

For $n=1$, the equality becomes $(1+x)(1-x)=1-x^{2}$ which is true.
Suppose that it is true for n, let's prove it for $n+1$.
$\left(\sum_{k=0}^{n+1} x^{k}\right)(1-x)=\left(\sum_{k=0}^{n} x^{k}\right)(1-x)+x^{n+1}(1-x)=\left(1-x^{n+1}\right)+x^{n+1}(1-x)=1-x^{n+1}+x^{n+1}-x^{n+2}=\left(1-x^{n+2}\right)$

Es 3 [4 points] Compute the following limit (justify your answer)
$\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+\sqrt[3]{x^{2}}\right)}{\sqrt{2 x} \cdot \sin x}$ We want to use the special limits

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+\sqrt[3]{x^{2}}\right)}{\sqrt{2 x} \cdot \sin x}=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+\sqrt[3]{x^{2}}\right)}{\sqrt[3]{x^{2}}} \cdot \frac{\sqrt[3]{x^{2}}}{\sqrt{2 x} \cdot \sin x}=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+\sqrt[3]{x^{2}}\right)}{\sqrt[3]{x^{2}}} \cdot \frac{x^{\frac{2}{3}}}{x^{\frac{3}{2}} \sqrt{2}} \frac{x}{\sin x}=+\infty
$$

Es $4[1+2+1+2+1$ points $]$ Given the function $f(x)=\frac{x^{2}}{x-3}$. Determine:
a) Domain: The function exists if $x-3 \neq 0$ su the domain is $D=\mathbb{R} \backslash\{3\}=(-\infty, 3) \cup(3,+\infty)$
b) Asymptotes.

We need to compute the limits at the boundaries of the domain: $\lim _{x \rightarrow 3^{+}} \frac{x^{2}}{x-3}=+\infty, \lim _{x \rightarrow 3^{-}} \frac{x^{2}}{x-3}=$ $-\infty$,
$\lim _{x \rightarrow+\infty} \frac{x^{2}}{x-3}=+\infty$ and $\lim _{x \rightarrow-\infty} \frac{x^{2}}{x-3}=-\infty$. So $x=3$ is vertical asymptote. While at infinity we look for non horizontal asymptotes. Observe that $f(x)=\frac{x^{2}}{x-3}=\frac{x^{2}-9+9}{x-3}=x+3+\frac{9}{x-3}$ Hence

$$
\lim _{x \rightarrow+\infty} f(x)-(x+3)=\lim _{x \rightarrow \pm \infty} \frac{9}{x-3}=0
$$

and $y=x+3$ is an asymptote both at $+\infty$ and at $-\infty$:
c) Derivative: Using $f(x)=x+3+\frac{9}{x-3}$, we get that $f^{\prime}(x)=1-\frac{9}{(x-3)^{2}}$
d) Interval of monotonicity In order to determine the interval of monotonicity, we just need to determine the sign of f^{\prime} in $\mathbb{R} \backslash\{3\} 1-\frac{9}{(x-3)^{2}}=0$ for $x-3= \pm 3$ i.e. $x=6$ and $x=0$. So that f is increasing in $(-\infty, 0)$
f is decreasing in $(0,3)$
f is decreasing in $(3,6)$
f is increasing in $(6, \infty)$
e) Graph

Es 5 [2 o-1 points] The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=e^{-x^{2}}$
(A) Has a minimum and a maximum
(XB) Has a maximum but no minimum
(C) Has a minimum but no maximum
(D) Its minimum is at infinity

Es 6 [2 o-1 punti] The derivative of $f(x)=\sin x e^{\cos x}$ is:
(A) $\cos x e^{\cos x}$
(B) $\cos x e^{-\sin x}$
(C) $-\sin ^{2} x e^{\cos x}$
(XD) $e^{\cos x}\left(\cos ^{2} x+\cos x-1\right)$
(E) None of the previous answers is correct

Es 7 Let $f:[1,2] \rightarrow \mathbb{R}$ differentiable such that $f(1)=1, f(2)=\pi$. Then
(A) $[1 / 2] f$ is increasing $(1,2) \mathbf{T} \mathbf{X F}$
(B) $[1 / 2] \exists x_{o} \in(1,2)$ such that $f^{\prime}\left(x_{o}\right)=\pi \mathbf{T}$ XF
(C) $[1 / 2] f$ has a maximum and a minimum XT \mathbf{F} (D) $[1 / 2] \exists x_{o} \in(1,2)$ su that $f\left(x_{o}\right)=2$ XT F

Es 8 [2 o - 1 punti] $(1+i)^{3}$ equals:
(A) $2+2 i$
(B) $2-2 i$
(C) $-2 i$
(XD) $-2+2 i$
(E) 2

Es 9 [3 o - 1 punti] The $\lim _{n \rightarrow+\infty} \frac{-n^{3}+2 n+\ln n^{5}}{(-1)^{n} n+2 n^{3}+\sqrt{n}}$ equals
(A) 1
(XB) $\frac{-1}{2}$
(C) $+\infty$
(D) $-\infty$
(E) The limit does not exist
(F) None of the previous answers is correct

Es 10The function $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Say which of the following holds true
(A) [1/2] If $f(a)=f(b)$ then the maximum of f is in (a, b)

T XF
(B) $[1 / 2]$ If $f\left(\frac{a+b}{2}\right)=\frac{f(a)+f(b)}{2}$ then f is constant
(C) [1/2] If $f(b)>f(a)$, then f is increasing in (a, b).
(D) [1/2] If $f(x)=2 f(a)+b(x-a)$, then $f(a)=0$
(E) $[1 / 2]$ There exists an x such that $f(x)=\frac{f(a)+f(b)}{2}$

