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Provisional Program

Sunday May 28

16.00 – 20.00 Registration

Monday May 29

08.30 — Departure by bus to Latina (“Università Pontina”)

10.00 — Opening session

10.30 — Bonisoli

11.30 — Buratti

13.00 — Touristic tour (Terracina and Sperlonga) and packet lunch

19.00 — Arrival to Hotel Serapo

20.00 Dinner
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Tuesday May 30

09.00 – 09.45 — Piper

10.00 – 10.45 — Cameron

10.45 Coffee break

11.15 – 12.00 — Ball

13.00 Lunch

A B C

15.30 – 15.50 —

15.55 – 16.15 —

16.20 – 16.40 —

16.45 – 17.05 —

Ebert

Biliotti

King

Thomsen

Ando

Balconi

Funk

Haemers

Alinovi

Blunk

Zizioli

Zanella

17.05 Coffe break

A B C

17.30 – 17.50 —

17.55 – 18.15 —

18.20 – 18.40 —

18.45 – 19.05 —

Delera

Pasini

Huybrechts

Sebille

Maenhaut

Marcote

Pelayo

Okamura

Elia

Sarmiento

Schoerner

Simonis

20.00 Dinner
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Wednesday May 31

09.00 – 09.45 — Lauri

10.00 – 10.45 — Colbourn

10.45 Coffee break

11.15 – 12.00 — Havlicek

13.00 Lunch

A B C

15.30 – 15.50 —

15.55 – 16.15 —

16.20 – 16.40 —

16.45 – 17.05 —

Cara

Gewurz

Merola

Musumeci

Bernasconi

Chouikha

Cieslik

Hotje

Vaccaro

Milazzo

Gionfriddo

Mammana

17.05 Coffe break

A B C

17.30 – 17.50 —

17.55 – 18.15 —

18.20 – 18.40 —

18.45 – 19.05 —

19.10 – 19.30 —

Maks

Tallini

Vincenti

Betten

Bernardi

Bisztriczky

Falcone

Khelladi

Tsuchiya

Watanabe

Zagaglia

Pianta

Labbate

20.00 Dinner; at the end:

Concert
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Thursday June 1

09.00 – 09.45 — Hachenberger

10.00 – 10.45 — Pott

10.45 Coffee break

11.15 – 12.00 — Crapo

13.00 Lunch

A B C

15.30 – 15.50 —

15.55 – 16.15 —

16.20 – 16.40 —

16.45 – 17.05 —

Hering

Lindner

Rosa

Schulz

Pentilla

Delanote

Kuijken

Ferrara Dentice

Batten

Brown

Dover

Iden

17.05 Coffe break

A B C

17.30 – 17.50 —

17.55 – 18.15 —

18.20 – 18.40 —

18.45 – 19.05 —

19.10 – 19.30 —

Mavron

Street

Tonchev

Webb

Zuanni

De Vito

Larato

Siciliano

Sonnino

Polverino

Donati

Francot

Aguglia

Pfeiffer

Schmidt

20.00 Dinner
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Friday June 2

09.00 – 09.45 — Wefelscheid

10.00 – 10.45 — De Clerk

10.45 Coffee break

11.15 – 12.00 — Buekenhout

13.00 Lunch

A B C

15.30 – 15.50 —

15.55 – 16.15 —

16.20 – 16.40 —

16.45 – 17.05 —

Rinaldi

Bean

Bluskov

Kiechle

Giulietti

Hirschfeld

Korchmaros

Pambianco

Kiss

Storme

Szonyi

Weiner

17.05 Coffe break

A B C

17.30 – 17.50 —

17.55 – 18.15 —

18.20 – 18.40 —

18.45 – 19.05 —

Riesinger

Pralle

Gropp

Sziklai

Cossidente

Cherowitzo

Bader

De Resmini

Culbert

Govaerts

Mellinger

Shaw

20.00 Gala Dinner In honour of Maria Tallini Scafati

(in occasion of her 70th birthday)
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Transitive Parabolic Unitals in Translation Planes
V. Abatangelo, B. Larato*

Politecnico di Bari
e-mail: larato@pascal.dm.uniba.it

We survey some recent results on transitive parabolic unitals in translation planes. Let
π be an affine translation plane and π̄ the projective plane arising from π. A unital U of
π̄ is parabolic if it has only one point at infinity. A parabolic unital U is transitive, if the
collineation group G fixing U fixes the point at infinity of U and acts transitively on the
affine points of U . A general result on transitive parabolic unital was stated in [1].

theorem. Let π be a translation plane of odd order containing a transitive
parabolic unital U . Assume that the collineation group G of π fixing U contains an
affine homology. Then π is a semifield plane, and

(i) G has a normal subgroup K that acts on the affine points of U as a sharply transitive
permutation group.
Also, if K is commutative, then

(ii) π is a commutative semifield plane.

It has been conjectured that if a transitive parabolic unital U consists of the ab-
solute points of a unitary polarity in a commutative semifield plane, then the sharply
transitive normal subgroup K of G is not commutative. So far, this has been proved for
commutative twisted field planes of odd square order, see [2], [3], and very recently for
commutative Dickson planes.
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[2] V. Abatangelo, G. Korchmáros and B. Larato: Transitive parabolic uni-
tals in translation planes of odd order , Discrete Math. to appear.

[3] V. Abatangelo, M.R. Enea, G. Korchmáros and B. Larato: Ovals and
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A Combinatorial Characterization
of Classical Unitals

A. Aguglia*, G. L. Ebert

Università di Napoli “Federico II”
e-mail: aguglia@math.udel.edu

A characterization of classical unitals is given in terms of a configuration pattern assumed
by the feet of a unital U embedded in PG(2, q2), q > 2.

It is showed that a necessary and sufficient condition for U to be classical is the
existence of two points p0, p1 ∈ U with tangent lines L0 and L1 respectively such that
for all points r ∈ L0 \ {p0} and s ∈ L1 \ {p1} the corresponding feet are collinear.

1991 Mathematics Subject Classification: 51E20.
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Halfordered Chain Structures
B. Alinovi*, H. Karzel

Technische Universität München - Germany
e-mail: ms9a009@math.uni-hamburg.de

Let E be a set of points, with |E| ≥ 4, and let ξ : E3′ := {(a, b, c) ∈ E3 | a �= b, c} →
{1,−1}; (a, b, c) �→ ξ(a, b, c) =: (a|b, c) be a map such that the axiom

(Z) ∀ a, b, c, d ∈ E, a �= b, c, d : (a|b, c) · (a|c, d) = (a|b, d)
is satisfied. Then the function ξ is called a halforder of E and the pair (E, ξ) a hal-
foredered set. To each halfordered set (E, ξ) we associate a separation function τξ :

E4′ := {(a, b, c, d) ∈ E4 | a, b �= c, d} → {1,−1}; (a, b, c, d) �→ τξ(a, b, c, d) =: [a, b|c, d] :=
(a|c, d) · (b|c, d) and we say that two halforders ξ1 and ξ2 of E are related, denoted by
ξ1 rel ξ2, if

(R) ∀ (a, b, c, d) ∈ E4′ : [a, b|c, d]1 = [c, d|a, b]2;
a halforder ξ of E is called selfrelated if ξ rel ξ.

Let K ⊂ E; then a function Ks : (E \K)× (E \K) → {1,−1}; (a, b) �→ Ks(a, b) =:
(Ks|a, b) is called a splitting of E by K if the following condition

(S1) ∀ a, b, c ∈ E \K : (Ks|a, b) · (Ks|b, c) = (Ks|a, c)
is satisfied.

Also the concept of halfordered chain structure (P,G1,G2,K; ξ) will be introduced
(cf. [1] sec. 3) and the connection between all these concepts will be established.
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A Forbidden Subgraph Condition
for a Graph to have a k-contractible Edge

Kiyoshi Ando*

University of Electro-Communications, Chofu - Tokyo, Japan
e-mail: ando@im.uec.ac.jp

Ken-ichi Kawarabayashi

KeiO University, Yokohama, Kangawa, Japan

We deal only simple graphs. An edge of a k-connected graph G is said to be k-contractible
if the contraction of the edge in G results a k-connected graph. Though many results on
contractible edges are known for small k, for large k there are not so many. The following
is one of most important results on general k-contractible edges.

Theorem (Thomassen [1]). Every triangle free k-connected graph has a k-con-
tractible edge.

In this note, we give the following result, which is an extension of the Thomassen’s
theorem.

Theorem. Let k,s, and t be positive integers such that k ≥ 5 and s(t−1) ≤ k and
let G be a k-connected graph. If G has neither K2 + sK1 nor K1 + tK2 as a subgraph,
then G has a k-contractible edge.
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Generalizing Flocks of Q+(3,q)
L. Bader*, G. Lunardon

Dipartimento di Matematica, Università di Napoli “Federico II”, Napoli Italia
e-mail: bader@matna2.dma.unina,it

A. Cossidente

Università degli studi della Basilicata

Let Q+(3, q) denote the hyperbolic quadric of PG(3, q), q any prime power. A flock of
Q+(3, q) is a partition of the quadric in q+1 irreducible conics. A flock is linear if all the
planes of the conics of the flock share a line. Flocks of Q+(3, q) are equivalent to trans-
lation planes (of order q2 and kernel containing GF (q)) associated with (A,B)–regular
line spreads of PG(3, q), via a construction involving both the Plücker correspondence
and the Klein quadric.

Flocks of Q+(3, q) have been classified both for q even, in which case they are nec-
essarily linear, and for q odd, in which case they are either linear, or Thas (obtained by
taking two halves of suitable linear flocks), or exceptional (which exist for q = 11, 23, 59
only).

As Q+(3, q) is the smallest Segre variety S1,1, we extend the notion of flock to the
Segre variety Sn,n as a partition of Sn,n into caps of size qn+ · · ·+q+1. Using the Grass-
mannian G1,n, we prove that any (A,B)–regular n–spread of PG(2n + 1, q) is defined
by a partition of Sn,n into Veronese varieties canonically embedded in the Segre variety
(flat flock) and conversely, so that flat flocks are equivalent to the translation planes
of order qn+1 and kernel containing GF (q) associated with (A,B)–regular n–spreads of
PG(2n+ 1, q).

We give examples of flat flocks and we also construct partitions of Sn,n not defin-
ing translation planes but still having interesting geometric properties, paying special
attention to the case n = 2.
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Partitioning Segre Varieties
L. Bader

Università di Napoli “Federico II”

A. Cossidente

Università degli Studi della Basilicata

M.J. de Resmini*
Università di Roma “La Sapienza”

e-mail: resmini@mat.uniroma1.it

Any Segre variety, which is the tensor product of two projective spaces, admits two
“natural” partitions, namely those provided by its reguli.

We show that a Segre variety of suitable indices admits a more interesting partition,
in the sense that it can be partitioned into Segre varieties of smaller indices. Such a
process can be iterated and yields a “nested partition”, i.e. a partition of a Segre variety
into Segre varieties each of which can turn be partitioned into smaller Segre varieties,
and so on.

For some choices of the indices, a partition of a Segre variety into Segre varieties
may be constructed in different ways: via projectivities, via coordinates, and via the
action of a suitable group, namely a Singer cycle.

The above mentioned results hold for Segre varieties over any field, even if special
attention is paid to finite fields in which case other types of partitions are considered too.
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Cyclotomy and Three-Dimensional
Flag-Transitive Planes

R.D. Baker, G.L. Ebert*, K.H. Leung, Q. Xiang

Dept. of Math. Sci. - University of Delaware - Newark, DE 19716 - USA
e-mail: ebert@math.udel.edu

Using a connection with perfect Baer subplane partitions of PG(2, q2), the classification
of odd order three-dimensional flag-transitive affine planes admitting a cyclic regular
action on the line at infinity was reduced to verifying a certain cyclotomic conjecture.
Here we prove this conjecture is true, thereby showing that all such flag-transitive planes
are known. If the order is q3, so that the kernel is GF(q), the number of isomorphism
classes is at least (q− 1)/2e, where q = pe. If q is prime, the number is exactly (q− 1)/2.
It should be noted that the above mentioned action on the line at infinity is one of only
two known possibilitiies for flag-transitive affine planes.
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A Class of Dense Self-clique Graphs
G. Balconi

Dipartimento di Matematica “F. Casorati”
Università di Pavia - Pavia - Italy

e-mail: marpaolo@dimat.unipv.it

A self-clique graph G is a graph G isomorphic to its clique-graph C(G). Very often
a self-clique graph has a cliques-vertices polarity π: let π(G) be the polarity graph of
π, that is the graph with V (π(G)) = V (G), uv ∈ E(π(G)) iff u ∈ π(v). We study

the graph equation π(G) = G, where G is the complementary graph of G and π is
a polarity without absolute vertices. We characterize the solutions of this equation: a
separated neighborhood indipendence graph (S.N.I. graph) is a graph whose only maximal
independent sets are the neighborhoods of vertices and distinct vertices have distinct
neighborhoods. S.N.I. graphs are the solutions of the studied graph equation.

We also construct an infinite family of S.N.I. graphs.
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Arcs, Multi-arcs, Polynomials and Ovoids
S. Ball

London, UK
e-mail: mbrown@cage.rug.ac.be

1. (k, r)-arcs
A (k, r)-arc in a projective plane πq of order q = ph is a set K of k points in πq

with at most r points on a line. A complimentary definition is that of a t-fold blocking
set B that is; B is a set that meets every line in at least t points. Various bounds have
been obtained for size of a (k, r)-arc in PG(2, q). The upper bounds generally coming
from the “polynomial method”; associating the points of AG(2, q) with the elements of
GF (q2) and using the collinearity condition that the points x, y and z are collinear if
and only if

(x− y)q−1 = (x− z)q−1.

The bounds are dependent on the nature of r and q. For example if r = pe for some e
then the trivial upper bound k ≤ rq − q + r is obtainable for p = 2 yet not for p > 2
and not when r �= pe. In more recent developments Hill, Landjev and Ward considered
(k, r)-multi-arcs K where they allow the set of points K to be a multi-set. When r < q+1
this is of no benefit and in fact the upper bound reduces drastically in the case when
K does contain multi-points. The complimentary problem for t-fold blocking sets also
changes when we allow multi-points however in this case it becomes trivial since we can
then obtain the trivial lower bound of t(q + 1). However when r > q + 1 not only is
it necessary to allow multi-points the problem becomes interesting. The trivial upper
bound for a (k, q + 1 + r)-arc is

k ≤ q2 + 1 + r(q + 1)

which is always attainable by taking the set consisting of each point external to a dual
(q+ 1− r)-arc twice and each point that is on exactly one line of the dual (q+ 1− r)-arc
once. The initial case r = 1 turns out to be a special case and this has been studied by
Hill, Landjev and Ward who obtain many different constructions of (q2+q+2, q+2)-arcs,
some characterisations and the classification in the case when q is a prime and there are
more than q−1 double points. This classification comes once more from the “polynomial
method” which implies that if there are more than q−1 double points (it is easy to check
that there are no triple points, 4-fold points etc..) then every line meets K in 2 mod p
points. More generally for a (q2 + 1 + r(q + 1), q + 1 + r)-arc K with r > 1 it is easy
to see that there are always at least q − 1 double points and then it follows that every
line meets K in r+ 1 mod p points. When q is prime this is enough to classify such arcs
and when q is not prime the nature of r is once more important. Note that a maximal
(rq− q+ r, r)-arc in πq together with all the points of πq forms a (q2 +1+ r(q+1), q+1)
arc with no external points.

2. Ovoids
The generalized quadrangleW (q) is constructed from the points and totally isotropic
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lines of the symplectic polarity in PG(3, q). An ovoid in PG(3, q) is a set O of points with
the properties; no 3 points of O are collinear and the tangents to O form a plane pencil.
An ovoid in a generalised quadrangle is a set O of points with the property that each
line contains a unique point of O. An ovoid in W (q) is an ovoid in the ambient PG(3, q)
when q is even. The classification of ovoids in W (q) or PG(3, q) has not progressed since
Penttila, O’Keefe and Royle’s classification of the case q = 32 in 1994 and the elliptic
quadrics and the Tits ovoids remain the only known ovoids. The classification method
used by Penttila, O’Keefe and Royle involved the classification of ovals in planes of the
same order and a classification of ovoids by this method would require a classification
of ovals which is probably a harder problem. It seems that new methods of considering
ovoids are required. One approach is the application of the polynomial method. The
points of PG(3, q) can be associated with the (q3 +q2 +q+1)-st roots of unity of GF (q4)
and a symplectic polarity can be chosen in such a way that points x and y are orthogonal
if and only if

(x, y) := xq+1 + yq+1 + xyq
2+q+1 + yxq

2+q+1 = 0.

It then follows that the totally isotropic lines are the sets of zeros of polynomials of the
form

xq+1 + (e(q
2+q+2)/2 + e(q+1)/2)x+ e

where eq
3+q2+q+1 = 1 and we call such a totally isotropic line (line of W (q)) the line

parameterised by e. If the lines parameterised by e and s meet in the point x then dually
the points e and s are joined by the line parameterised by x2q. It is then possible to find
equivalent polarities of W (q); for example

π : x → line parameterised by x
√

2q

and find polynomials whose set of zeros form Tits ovoids and dually Lüneburg spreads.
This enables us to consider polynomial representations of the Lüneburg planes. An
alternative approach using the theory of generalized quadrangles has recently led to the
following impressive characterisations by Brown.

Theorem. Let O be an ovoid of PG(3, q), q even, and π a plane of PG(3, q) such
that π ∩ O is a conic. Then O is an elliptic quadric.

Theorem. Let O be an ovoid of PG(3, q), q even, and π a plane of PG(3, q) such
that π ∩ O is a pointed conic. Then either q = 4 and O is an elliptic quadric or q = 8
and O is a Tits ovoid.
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Partitions of Finite Projective Planes
L.M. Batten

Deakin University - Victoria 3168, Australia
e-mail: lmbatten@deakin.edu.au

We consider decompositions of finite projective planes into copies of a particular sub-
structure. We show that every projective plane of order q ≡ 1(mod 3) is decomposable
into l linear 3-sets and t non-linear 3-sets for all non-negative integers l and t such that
3(l + t) = q2 + q + 1. We also prove that the presence of a subplane leads to a decom-
position of the plane into linear d-sets for d a particular function of the order of the
subplane.
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On the Size of the Largest Critical Set
in a Latin Square

R. Bean*
Centre for Discrete Mathematics and Computing

Department of Mathematics
The University of Queensland
Queensland 4072, Australia

email: rwb@maths.uq.edu.au

E.S. Mahmoodian
Department of Mathematical Sciences

Sharif University of Technology
P.O. Box 11365–9415

Tehran, I.R. IRAN

The cardinality of the largest critical set in a Latin square of order n is denoted by
lcs(n). In 1978 Curran and van Rees proved that lcs(n) ≤ n2 − n. Here we show that
lcs(n) ≤ n2 − 3n+ 3.
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On a Problem in the Geometry
of Self-affine Fractals
M. P. Bernardi* - C. Bondioli

Dipartimento di Matematica “F. Casorati”
Università di Pavia - Pavia - Italy

e-mail: marpaolo@dimat.unipv.it

Let Γ be a “deterministic” fractal, that is, the compact set which is invariant with respect
to a finite system Φ of contraction maps in a complete metric space X.

Suppose that X = IRn, that the contraction maps of Φ are similitudes, and more-
over a condition of “minimal overlapping” is satisfied. Then Γ is said to be self-similar,
and the Hausdorff dimension of Γ coincides with the solution of a simple exponential
equation, constructed by means of the similarity ratios of Φ (cf. [2]).

Suppose now that X = IRn and the contraction maps of Φ are affinities. Then Γ is
said to be self-affine, and it is still possible to use the affinity ratios of Φ for introducing
an “affine” exponential equation, analogous to the preceding one. H. Triebel [4] called
its solution dA the affine dimension of Γ and used it extensively in the study of fractal
(pseudo)differential operators. However, it is not yet completely clear under what hy-
potheses dA describes not only a property of Φ, but an intrinsic property of Γ.

We would like to give some results regarding this problem. We will examine in
particular the so-called general Sierpiński carpets (cf. [3]), a topic closely related to the
combinatorial theory.
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Neighborhood Spaces:
Connectdness and Topological Curves

in Finite Spaces
C. Bernasconi

Università di Perugia - Italy
e-mail: matber@unipg.it

Starting from the general theory of neighborhood spaces, the guidelines for funding a
theory of connectdness and topological curves on finite spaces are outlined.

Application in the field of Image Processing is shown, and the basic role played by
graphs is enlightened.
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Unitals and Codes
D. Betten*

University of Kiel, Germany
e-mail: betten@math.uni-kiel.de

A. Betten

University of Bayreuth, Germany

V. D. Tonchev

Michigan Technological University, USA

A program is outlined for the enumeration of unital 2-(28,4,1) designs that uses tactical
decompositions defined by vectors of certain weight in the dual binary code of a design.
A class of designs with a spread that covers a codeword of weight 12 is studied in detail.
A total of 702 nonisomorphic designs are constructed that include the classical hermitian
and Ree unitals, as well as many other of the 145 previously known 2-(28,4,1) designs.

15



Caps on Classical Varieties and their Projections
J. Bierbrauer

Michigan Technological University, Houghton

A. Cossidente*
University of Basilicata, Potenza, Italy

e-mail: cossidente@unibas.it

Y. Edel

Mathematisches Institut der Universität, Heidelberg

A family of caps due to Ebert, Metsch and Szönyi arises from projection of a Veronesean
or a Grassmannian to a suitable lower-dimensional space. We improve on this construc-
tion by projecting to a space of much smaller dimension. More precisely we partition
PG(3r− 1, q) into a (2r− 1)−space, an (r− 1)−space and qr − 1 cyclic caps, each of size
(q2r − 1)(q − 1). We also decide when one of our caps can be extended by a point from
the (2r−1)−space or the (r−1)−space. The proof of the results uses several ingredients,
most notably hyperelliptic curves.

16



The Smallest Size of A Complete Cap in PG(3,7)

J. Bierbrauer

Michigan Technological University, Houghton

S. Marcugini, F. Pambianco*

Università di Perugia, Italy
e-mail: fernanda@dipmat.unipg.it

In this work the minimum order for complete caps in PG(3,7) is determined and almost
all the smallest complete caps have been classified. For the solution of this problem we
have utilized other than Groups’ theory, Graph-theoretical Ramsey theory and projective
equivalence properties, the relation between (n, 3)-arcs and the eventually existence of
opportune codes. Precisely, after having classified all the (n, 3)-arcs in PG(2,7), we have
proven the existence of [14, 4, 10] 7 codes and the non-existence of [n, 4, n − 4] 7 codes,
n = 15, 16. That led us to put restrictions in the initial hyperplane configurations for
the successive search of complete caps.
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The Non-solvable Rank 3 Affine Planes
M. Biliotti*

Univ. Lecce
e-mail: biliotti@ilenic.unile.it

N.L. Johnson

Iowa University

A finite affine plane π is said to be a rank 3 affine plane if and only if there is a collineation
group G which acts transitively on the affine points of π and for an affine point 0, the
stabilizer subgroup G0 has exactly three affine point orbits, one of which is {0}.

The plane is said to be a solvable or a non-solvable rank 3 affine plane according to
whether G is solvable or non-solvable. A well known result of Kallaher and Liebler shows
that any rank 3 affine plane is a translation plane. Furthermore,

Theorem (KallaherLet π be a rank 3 affine plane with corresponding rank 3 group G.
Then one of the following holds:
(a) G is flag-transitive on π and Gl acts as a rank 3 group on l for all lines l of π,
(b) G has exactly two orbits on l∞ and Gl operates doubly transitive on l for all lines l

of π.
In case (b) π is called a weak rank 3 affine plane.

Solvable rank 3 affine planes and the corresponding rank 3 groups have been es-
sentially determined by Foulser and Kallaher in [2] and [3]. Non-solvable flag-transitive
planes have been determined in [1], [4]. Here we determine non-solvable weak rank 3
affine planes. Our main result is as follows:

TheoremLet π be a non-solvable rank 3 affine plane. Then π is one of the following
types of planes:
(1) Desarguesian,
(2) Hall,
(3) Lüneburg-Tits,
(4) irregular nearfield plane of order 112, 292 or 592,
(5) Korchmáros of order 49,
(6) Mason-Ostrom of order 49,
(7) one of the three exceptional Walker planes of order 25.
The corresponding rank 3 groups are also given.
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Matroidally Rigid Polytopes
T. Bisztriczky

Department of Mathematics
University of Calgary, Canada

e-mail: tbisztri@math.ucalgary.ca

Let P denote a (convex)d-polytope with the face lattice L(P ) and the oriented matroid
OM(P ) of affine dependencies. Let Q and R be d-polytopes.The Q and R are combi-
natorially equivalent if their face lattices are isomorphic(denote by L(P ) = L(Q),and
geometrically equivalent if there is a bijection between vertex sets that preserves both
minimal affine dependecies and the associated bipartition of the coefficients into positive
and negative ones(denote by OM(Q) = OM(R). We say that P is matroidally rigid if
L(P ′) = L(P ) implies OM(P ′) = OM(P ) for any d-polytope P ′. Well known exam-
ples of such rigid polytopes are simplices,cyclic polytopes and Lawrence polytopes. We
present a new class of examples: d-multiplices with at most 2d vertices.
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On Absolutely Universal Embeddings
R.J. Blok, A. Pasini*
Università di Siena, Italy

e-mail: pasini@unisi.it

It is well known that, given a point-line geometry Γ and a projective embedding ε : Γ →
PG(V ), if dim(V ) equals the size of a generating set of Γ, then ε is not derived from
any other embedding. Thus, if Γ admits an absolutely universal embedding, then ε is
absolutely universal. Tn this paper, without assuming the existence of an absolutely
universal embedding, we give sufficient conditions for an embedding ε as above to be
absolutely universal.
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Generalized Chain Geometries
and a non-Classical Chain Space

A. Blunck*, H. Havlicek
Abteilung für Lineare Geometrie -Technische Universität

Wiedner Hauptstraße 8–10, A-1040 Wien, Austria
e-mail: blunck@geometrie.tuwien.ac.at

Let R be a ring with 1 and let K be a subfield of R with 1 ∈ K. The generalized chain
geometry over (K,R) is the incidence structure Σ(K,R) whose point set is the projective
line over R and whose chains are the K-sublines. If R is a K-algebra, then Σ(K,R) is
a chain geometry and satisfies the axioms of a chain space. However, Σ(K,R) can also
be a chain space if R is not a K-algebra; it suffices that the multiplicative group K∗ is
normal in R∗. We present an example of a finite generalized chain geometry, with 35
points and 56 chains, that is a chain space but is not isomorphic to any chain geometry.

Results obtained in the course of the FWF-project Chain Geometries over Skew Fields
(M529-MAT/M574-MAT).
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I. Bluskov
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Prince George, B.C., CANADA
e-mail: bluskovi@unbc.ca

Let B = [bij ] be an n× k matrix with entries in Zv. If the multiset

{bij − bis| j �= s, 1 ≤ j ≤ k, 1 ≤ s ≤ k, 1 ≤ i ≤ n}

contains every nonzero element of Zv exactly λ times, then the existence of B implies
the existence of a 2-(v, k, λ) cyclic design (cyclic BIBD). In this case, the group Zv is
a subgroup of the group of automorphisms of the BIBD. We present an optimization
algorithm for finding such matrices. Modifications of this algorithm can be applied
in the search for 2-(v, k, λ) designs having Zl, l < v, as a subgroup of the group of
automorphisms. The algorithms have been successfully applied in recent research on
BIBD’s.
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Collineation Groups of Finite Planes:
Any Progress?

A. Bonisoli
Dipartimento di Matematica - Università della Basilicata

via N.Sauro 85, 85100 Potenza (Italy)
e-mail: bonisoli@unibas.it

It has been remarked several times that the role of the classification of finite simple groups
in the study of automorphism groups of finite geometric structures is at least two–fold.
On the one hand it often gives relevant structural information on the groups as such.
On the other hand if the investigation of our favorite geometric or combinatorial object
involves some finite simple group, it is often possible to discard many candidates just by
scanning the list on the basis of little extra information. The latter approach is mostly
regarded as a “final resource” when no better ideas are available, since it requires a lot
of work. Furthermore, the results that one gets usually lack the elegance and beauty of
most classical theorems of the 50’s and 60’s, which were generally based on a fine analysis
of the geometric situation.
In this talk I want to illustrate some results that have been obtained for finite planes in
recent years, under the assumption that the collineation group fixes some “non–linear”
object like an oval, a hyperoval or a unital. The crucial role of central collineations is
emphasized.

1 Introduction

It has been remarked several times that the role of the classification of finite simple
groups in the study of automorphism groups of finite geometric structures is at
least two–fold. On the one hand it often gives relevant structural information
on the groups as such. On the other hand if the investigation of our favorite
geometric or combinatorial object involves some finite simple group, it is often
possible to discard many candidates just by scanning the list on the basis of little
extra information. The latter approach is mostly regarded as a “final resource”
when no better ideas are available, since it requires a lot of work. Furthermore, the
results that one gets might lack the elegance and beauty of most classical theorems
of the 50’s and 60’s, which were generally based on a fine analysis of the geometric
situation. This analysis often reveals the presence of additional properties that the
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finite simple group must have. It allows quite often the application of structural
results which precede the classification theorem.
In the past few years I have started studying collineation groups of planes fixing
an oval or a hyperoval. The survey [22] was devoted to the subject of ovals in
finite planes from various points of view. Section 4 of that paper was focusing
on collineation groups of arbitrary finite planes fixing an oval. Perhaps the most
satisfactory general result that is quoted there is the classification of non–abelian
simple collineation groups fixing an oval in planes of odd order, a good example for
the situation illustrated above. Theorem A in [6] shows that the only possibility
is PSL(2, q) with q odd ≥ 5. The proof of this result does not require the full
classification of finite simple groups, but only the classification given in [25] of those
finite simple groups in which the largest size of an elementary abelian 2–subgroup
is 8.
After the appearance of the survey [22] some further results have been obtained
for collineation groups fixing an oval or a hyperoval: in this paper I want to
illustrate some of the key ideas and point out in particular that the role of central
collineations is as crucial as ever.

Planes of odd order. Let π be a finite projective plane of odd order n with an
oval Ω. Let G be a collineation group of π fixing Ω. Using some basic properties
of involutory homologies and Baer involutions fixing Ω, it was proved in [4] that
an elementary abelian 2–subgroup of G must have order at most 8. I have already
remarked in the Introduction the role of this property in proving that the assump-
tion G non–abelian simple with n ≥ 5 forces G to be isomorphic to PSL(2, q) for
some odd q ≥ 5, see [6]. As a matter of fact this same property was essential in
the analysis of the case where G acts primitively on Ω: that was the main concern
of the paper [4] and the answer is that π is always desarguesian and G contains
PSL(2, n) in its natural 2–transitive permutation representation on the points of
the conic Ω, with the unique exception of n = 9, in which case G might only
contain PSL(2, 5) in its primitive permutation representation of degree 10 (which
is not 2–transitive).
Little is known in general on how PSL(2, q) can act as a collineation group of
a finite plane of order n �= q. Despite the quoted result [6], little is known even
if it is assumed that n is odd and PSL(2, q) fixes an oval. We do know that
this situation may well occur for n �= q in a desarguesian plane. We have in fact
Alt(5) ∼= PSL(2, 5) and Alt(5) is a subgroup of PSL(2, n) for infinitely many
odd prime power values of n, see [19, II§8.27]. It can also happen that Alt(5) is
transitive on the points of the conic (n = 19 is one possibility).
Examples in non–desarguesian planes do exist. The paper [7] starts from the ob-
servation that a Room oval in the Hughes plane of order q2 (see [24]) is fixed by
a collineation group isomorphic to PSL(2, q), in which all involutions are homolo-
gies. This situation is then considered for an arbitrary plane of order q2. Special
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attention is devoted to the generalized Hughes planes: those of order 25 and 49
do furnish examples.
A collineation group of a projective plane is said to be irreducible if it fixes no
point, line or triangle. The notion of an irreducible collineation group for an
arbitrary finite projective plane was highlighted by the work of Hering [18]. The
knowledge of the structure of irreducible collineation groups of finite projective
planes is sufficiently satisfactory for groups containing non–trivial perspectivities.
An important role is played by the so called Hering minimal subplane, that is the
subplane generated by the centers and axes of the non–trivial perspecticvities in
the group. In particular the induced action on this subplane is strongly irreducible,
which means it is irreducible and there is no fixed proper subplane either.
As a matter of fact, much of the work involved in the classification theorems [4]
and [6] was to reduce the problem to the case of a group acting irreducibly on a
plane. With these techniques the paper [6] yields some progress in the case of an
oval Ω in a projective plane π of order n ≡ 1 mod 4 admitting a collineation group
G acting transitively on the oval, in particular if G is “minimal” with respect to
this property.
The results on irreducible collineation groups are important also for the more
recent paper [8], which, as the title reveals, is an attempt to determine the structure
of G without any extra assumption on the action of the group on the oval. The
description of a 2–group containing non–trivial homologies is rather complete and
that knowledge allows the determination of the generalized Fitting subgroup of
G/O(G). The general lack of information on collineations of odd prime order
fixing Ω is the main reason why at the moment there seems to be no way of
controlling the structure of O(G) (the largest normal subgroup of odd order of G).
In the paper [10], on which I reported at the “Combinatorics 98” conference, the
point of view is to try to apply the theory of irreducible collineation groups “as
is” to irreducible collineation groups fixing an oval in a plane of odd order. As
usual the major difficulty is that of finding reasonable sufficient conditions for
the existence of non–trivial perspectivities, involutory homologies in this case.
Here, the condition |G| ≡ 0 mod 4 does the job. Sufficiently satisfactory is the
classification of “minimal” irreducible collineation groups fixing an oval, where
minimal means no proper subgroup is irreducible. Here again, if the group order
is assumed to be divisible by 4, we have again the groups PSL(2, q), q odd, with
the further restriction that q must be a prime, q2 �≡ 1 mod 4.
I have already remarked that if G acts primitively on the points points of Ω, then
the situation is completely determined and a lot of information is available even
if the action is only assumed to be transitive. What if we allow more than one
orbit? Especially interesting seems to be the case of precisely two orbits, one of
which shrinks to a single point and the other one is such that the induced action is
primitive or even 2–transitive. Examples for this situation occur in desarguesian
planes but also in non–desarguesian translation planes coordinatized by commu-
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tative twisted fields, see [2] and [16]. It is proved in [16] that if π is a translation
plane and Ω touches the line at infinity at one point and G acts 2–transitively on
the affine points of Ω then the plane is coordinatized by a commutative semifield
and the oval arises from an orthogonal polarity. It may appear almost superfluous
to remark that also the proof of this result relies on the existence of involutory
homologies at some stage. The question whether the given property characterizes
the known examples is quite natural.
The collineation group G acts not only on the points of the oval Ω, but also on
the set of all external points and on the set of all internal points. Both actions are
faithful and so G has two more permutation representations. In the paper [17],
starting from this observation, it is suggested to try to impose some conditions on
one or both of these actions and see if some classification result can be obtained.
While it is fairly easy to see that transitivity on external points amounts to 2–
transitivity on the points of the oval, it is somewhat surprising that a classification
is possible under the assumption of a transitive action on internal points. This
is the main result of the paper [17] and the outcome is that either the action on
Ω is 2–transitive or there is a fixed point and a primitive orbit. The action on
the primitive orbit is even 2–transitive as soon as the involutions in the group
are homologies. The description of the possibilities for the group G is also fairly
detailed.

2 Planes of even order

. A first basic observation is that a collineation group fixing an oval in a finite
projective plane of even order must also fix the nucleus of the oval. In particular,
the group is certainly not irreducible and so there is no chance of applying Hering’s
theory here.
On the other hand irreducible collineation groups fixing a hyperoval do exist in
desarguesian planes: the full collineation group of the Lunelli–Sce–Hall hyperoval
acts irreducibly on the desarguesian plane of order 16. An attempt to draw the
consequences of Hering’s classification theorem for irreducible collineation groups
with an invariant hyperoval has been carried out in [13]. Apart from the usual
problem of finding reasonable conditions which guarantee the existence of per-
spectivities (involutory elations in the case under consideration), extra difficulties
arise from the fact that n + 2 (the number of points of the hyperoval) may have
the prime factor 3 in common with n2 + n+ 1 (the total number of points of the
plane).
It was proved in [1] that the plane of order 2 and that of order 4 are the only
planes admitting a hyperoval which is fixed by a collineation group acting 2–
transitively on its points. If the action is only assumed to be transitive but we add
the assumption that the group–order be divisible by 4, then the result of [5] tells
us that further possibilities may only occur in planes of order 16 (and the Lunelli–
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Sce–Hall hyperoval is again an example in PG(2, 16)). Again Hering’s results are
relevant in the proof of these properties.
I find it somehow peculiar that in the effort of applying correctly the heavy machin-
ery of group theory to our situation, some elementary but very useful properties
of single collineations fixing a hyperoval may go undetected: the paper [23] con-
centrates on hyperovals in desarguesian projective planes, but contains a proof of
the general property that an (involutory) elation fixing a hyperoval in a projective
plane of even order n > 2 must have a secant line as axis and hence induce an
even permutation on the points of the hyperoval.
The previous discussion shows that transitive hyperovals are pretty much under
control. What about transitive ovals in even order planes? It may appear strange
that the situation here is way out of control even for a 2–transitive action.
Let π be a finite projective plane of even order n with an oval Ω. Let G be a
collineation group of π fixing Ω and acting 2–transitively on its points. Denoting
by ∆ the set of all involutory elations in G, Theorem C in [3] shows that three
possibilities arise.

(i) The group G also fixes a line � which is external to Ω, the subgroup 〈∆〉 is
the semidirect product of O(〈∆〉) by a group of order 2, |∆| = n+ 1 and G
contains no Baer involutions.

(ii) The plane π is desarguesian, Ω is a conic and 〈∆〉 = PSL(2, n).

(iii) We have n = 22r for an odd integer r ≥ 3 and 〈∆〉 is the Suzuki group Sz(2r)
acting on Ω in its natural 2–transitive permutation representation.

Apart from the trivial case n = 2, a unique example is known for case (i), namely
for n = 4. Using some features of the action of G on the plane π, namely the
existence of a G–invariant family of pairwise disjoint ovals (including Ω) with
common nucleus, it was proved in [11] that either n ∈ {2, 4} or n ≡ 0 mod 8 and
the Sylow 2–subgroups of G are generalized quaternion groups. In the paper [9] I
was pushing the analysis of G somewhat further by applying a theorem of Hering
classifying 2–transitive groups with a regular normal subgroup and such that no
involution fixes more than one point: it turns out that G must act as a subgroup
of AΓL(1, q) in its natural permutation representation.
It was proved in [20] and [21] that possibility (iii) occurs in the dual Lüneburg
plane of order 22r. The question addressed in [12] is whether occurrence (iii) char-
acterizes the dual Lüneburg plane of order 22r. The approach developed there is
based on the possibility of describing a projective plane π of even order possessing
an oval Ω by means of the one–factorizations of the complete graphs arising from
the lines of π which are tangent to Ω. This observation was stated in the language
of minimal edge colorings in [15]. Within this context the idea essentially coin-
cides with the approach of Buekenhout ovals developed in [14]. We were able to
determine all one–factors which may occur in such one–factorizations, obtaining
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in particular all one–factorizations of the complete graph on 22r vertices admitting
the one–point–stabilizer of Sz(2r) as an automorphism group and having 2r − 1
prescribed one–factors, namely those arising from the involutions in the group.
This construction has some interest from the point of view of graph theory: there
are not too many infinite families of one–factorizations of complete graphs for
which a non–trivial automorphism group is explicitely known.
In general, the problem of determining when two of the above one–factorizations
may arise from distinct lines in the same plane remains open. In the language of
Buekenhout ovals, that amounts to the problem of reconstructing exterior lines in
the so called “ambient” of the B–oval. Nevertheless, the method seems adequate
for computer calculations, which we have actually performed in the smallest case
r = 3: the dual Lüneburg plane is indeed the only plane of order 64 for which
possibility (iii) occurs.
It would perhaps be appropriate to conclude with the remark that I am aware of
no example of a plane of order n �= 22r on which Sz(2r) can act as a collineation
group, a situation differing somewhat from that of PSL(2, q).
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possono venir mutate in sé da un gruppo di collineazioni isomorfo al gruppo
semplice Sz(2r) di Suzuki, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.
Mem. (8) Mat. Appl. 15 (1979) 295–315.
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A defining set of a 2 − (v, k, λ) design (P,B) is a set B∗ of blocks with the following
property: if B∗ ⊂ B′ and (P,B′) is also a 2 − (v, k, λ) design, then B = B′. Intuitively,
this means that the blocks in B∗ determine uniquely the remaining blocks of the design.
Gray, Hamilton, and O’Keefe connected the notion of defining sets to nuclei of (q+1)-sets
in PG(2, q), and used a result of Blokhuis and Wilbrink to show that the secants and
tangents of a q-arc form a defining set. This defining set has q(q+3)/2 lines. In this talk
we show that there are defining sets with |B∗| = o(q2). Both explicit constructions and
probabilistic results will be mentioned.
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Embeddings of PG (3,q)
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We describe a two-to-one incidence preserving map from a pre-incidence system onto
PG(2, q2) and another two-to-one incidence preserving map from the same pre-incidence
system onto the regular Hughes plane of order q2 (q odd). This furnishes a represen-
tation of finite regular Hughes planes. Using this representation, we define a family
of embeddings of PG(3, q) in Hu(q4). This family includes at least two nonisomorphic
embeddings.
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A graph G is said to be H-decomposable if there exists a collection of subgraphs of G,
each isomorphic to H, which partition the edge set of G. If G is H-decomposable, we
say that H|G. In this talk we consider the question: given two graphs H1 and H2, for
which values q does there exist a graph G having q edges such that H1|G and H2|G?
The problem will be considered for the cases when H1 and H2 are both cycles and when
H1 and H2 are both complete graphs.

33



Incidence Geometry and Finite Groups
F. Buekenhout
Bruxelles - Belgium
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The talk is mainly motivated by the theory of buildings and the geometry of exceptional
objects, especially sporadic groups and groups with a sporadic behavior. Many of the
conceptual developments used here are due to Jacques Tits over the period 1956-1974.
Incidence geometry can be briefly defined as the study of multipartite graphs (or num-
bered simplicial complexes) with inspiration from classical projective and affine geometry,
from polytopes and...buildings. Every incidence geometry determines a diagram namely
a generalization of a Coxeter diagram and every diagram defines a class of incidence ge-
ometries. If an incidence geometry is provided with a group G of automorphisms which
is large enough to be transitive on the maximal cliques then the geometric structure can
be completely described in terms of G and a collection of subgroups. The process can be
reversed. Starting from a group G we can compute all of its geometries satisfying suitable
conditions and we may study them. This program has been applied in various ways by
various teams in Brussels (including M.Dehon, D.Leemans, Ph.Cara) to reasonably small
simple (and other) groups in particular the groups M11, M12, J1 and J2 with the help of
MAGMA. It has provided roughly speaking about 1000 highly regular new geometries,
gems that we believe to be of high potential interest.
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An interesting combinatorial item is the construction of 2-designs (BIBD’s) admitting
an automorphism group acting sharply transitively on its points (regular BIBD’s) and,
also, the construction of BIBD’s with an automorphism group fixing one point and acting
sharply transitively on the others (1-rotational BIBD’s).
In the literature there are difference methods providing a description of some, but not
all, regular or 1-rotational BIBD’s.
Since a 2−(v, k, λ) design may be viewed as a decomposition of λKv (the λ-multiple of the
complete graph on v vertices) into copies of Kk, one may ask, more generally, a possible
description, in terms of differences, of any regular or 1-rotational graph decomposition.
Still more generally, one may ask such a description for any regular or 1-rotational hy-
pergraph decomposition, thus, in particular, for regular or 1-rotational t−(v, k, λ) designs
with t > 2.
Here this aim is successfully achieved by means of a description that allows, concretely,
to get many new regular or 1-rotational graph and hypergraph decompositions.

1 Preliminaries

Before recalling the basic definitions concerning designs, it is convenient to speak
a little about multisets. Given a set X, a multiset on X is a list L = (x1, ..., xn)
of elements from X where repetitions are allowed. Thus, formally, a multiset L
on X may be viewed as a map µL : X −→ N (N = {0, 1, 2, ...} being the set of
natural numbers) where µL(x) is the multiplicity of x in L.

Then, since the set of maps from a set A to a set B is often denoted by BA,
we may denote the set of multisets on X by NX .

L′ is a submultiset of a multiset L ∈ NX if L′ is a sublist of L, namely, if we
have µL′(x) ≤ µL(x) for every element x ∈ X.

If L1, ..., Lt are multisets on X, then their strong union is the multiset
L1 ∪ ...∪Lt obtained by linking together the Li’s. In particular, by tL I denote
the strong union of t copies of the multiset L.
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Now, let G be a group acting on a set X and let L = (x1, ..., xn) be a multiset
on X. We say that L is G-invariant if we have (xg1, ..., x

g
n) = L for any g ∈ G.

The development of L under G is the multiset devGL = devG(x1)∪ ...∪ devG(xn)
where, for i = 1, ..., n, devG(xi) is the G-orbit of xi.

If L is G-invariant, it is obvious that we have L = devGL
′ for a suitable

submultiset L′ of L.
I will often speak of devL understanding which is the group G with respect to

the development is done.

Throughout the paper G will denote an additive group while G+ will denote
the semigroup associated with G with elements in G∪{∞},∞ being a symbol not
in G, and composition law obtained by extending that of G by the rule ∞+ g =
g +∞ =∞ ∀ g ∈ G.

Speaking of the action of G on G+, I always mean the natural action defined
by g(x) = x + g (g ∈ G, x ∈ G+). Also, speaking of the action of G on 2G

+
or

NG+
, I always mean the action of G on these sets induced by the action of G on

G+ defined above.

A t − (v, k, λ) design is a pair (V,B) where V is a set of v points and B is a
multiset of k-subsets (blocks) of V with the property that any t-subset of V is
contained in exactly λ blocks.

Such a design is said to be complete when B =
(
V
k

)
.

An incomplete 2-design is said to be a balanced incomplete block design (BIBD).
A t-wise balanced design is defined as a t design where, however, one also allows

that the blocks may have non-constant size. In this case one speaks of a t−(v,K, λ)
design where K is the set of block-sizes in the design. In particular, a pairwise
balanced design (PBD) with λ = 1 is a linear space.

A groop divisible design (GDD) of index λ is a point-block structure (V,B)
together with a partition of V into groops with the properties that each block
meets each groop in at most one point and that any two points belonging to
distinct groops lie, together, in exactly λ blocks.

In particular, by (v, n,K, λ)-GDD I mean a GDD of index λ with v points,
block-sizes belonging to K, and where each groop has size n.

It is clear that a (v,K, λ)-PBD may be viewed as a (v, 1,K, λ)-GDD.
A (v, n, k, λ)-GDD where nk = v is a transversal design and is denoted by

TDλ(k, v). In this case each block meets each groop in exactly one point.
An automorphism group of a design (V,B) is a group of bijections on V that

fixes B.
One says that a design is regular or 1-rotational when it possesses an automor-

phism group acting sharply transitively on its points or, respectively, fixing one
point and acting sharply transitively on the others.

When one speaks of a cyclic, (resp. abelian, non-abelian, ...) design one means
a regular design under a group having the respective property. Analogously, we
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may speak of a cyclic, abelian, non-abelian, ... 1-rotational design with the obvious
meaning.

There is an extensive literature concerning the construction of regular BIBD’s
by difference methods.

Undoubtely, the most known method is that concerning the construction of
regular symmetric BIBD’s (BIBD’s with as many points as blocks). The existence
of a regular symmetric (v, k, λ)-BIBD is equivalent to that of a (v, k, λ) difference
set. This is a k-subset B of a group G with the property that its list of differences
∆B = (b − c | b, c ∈ B, b �= c) covers G − {0} exactly λ times. The resultant
symmetric design is the pair (G, devB). For a good survey on difference sets see
[11].

It is an easy matter to check that no non-trivial 1-rotational symmetric design
exists.

This paper does not allow to get new informations about symmetric designs.

There are many approaches to get regular or 1-rotational BIBDs, PBDs and
GDDs by difference methods. The difference families introduced by Bose [3] allow
to describe, in terms of differences, any BIBD which is regular under a group G
acting semiregularly on its blocks. Analogously, relative difference families [4] -
that naturally generalize relative difference sets [16] - describe GDD’s that are
regular under a group G acting semiregularly on its blocks. The approaches of [5]
and [7] allow to describe, respectively, any abelian linear space and any abelian
1-rotational linear space. Some explicit constructions for non-abelian BIBD’s may
be found in [15].

Concerning the construction by difference methods of regular t-designs with
t > 2 there is very few material in the literature. I am only aware of some papers
by Beth and Kolher (see [2]). These papers essentially give a description in terms
of differences of some cyclic t-designs with t > 2.

No description by difference methods of 1-rotational t-designs with t > 2 is
known to myself.

Before speaking of graph and hypergraph decompositions I recall some termi-
nology about graphs and hypergraphs.

A hypergraph is a pair X = (V, E) where V is a set of vertices and E is a
multiset of subsets (edges) of V . It is simple when it does not have multiple edges
and each edge has size at least two. It is is a graph when all its edges have size 2.

A hypergraph B is a subhypergraph of a hypergraph X if we have V (B) ⊂ V (X)
and E(B) ⊂ E(X).

Let B be a subhypergraph of X and let v ∈ V (B). The multiset of neighbours of
v in B is the multiset NB(v) ∈ NV (B) in which the multiplicity of each w ∈ V (B)
is the multiplicity of {v, w} in E(B). Its size is the degree of v in B and is denoted
by degB(v).
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An automorphism group of a hypergraph X is a group of bijections on V (X)
preserving E(X).

Two hypergraphs X and X ′ are isomorphic when there exists a bijection (iso-
morphism) between V (X) and V (X ′) mapping E(X) into E(X ′).

A hypergraph X is sharply-vertex-transitive (1-rotational) under a group G if it
admits G as an automorphism group acting regularly on V (X) (fixing one vertex
and acting regularly on the others).

I denote by t-K(V ) the complete t-uniform hypergraph with vertex-set V , i.e.,
the hypergraph (V,

(
V
t

)
). By t-Kv I mean a hypergraph (V,

(
V
t

)
) where V is a

non-specified v-set. When t = 2 I will simply write K(V ), Kv instead of 2-K(V )
and 2-Kv.

The m-multiple of a hypergraph X is the hypergraph mX = (V (X),mE(X)).

A decomposition of a graph X into copies of graphs belonging to an assigned
set Y is a multiset D = (B1, ..., Bb) of subgraphs of X each isomorphic to some
graph of Y and such that E(B1)∪E(B2)∪ ...∪E(Bb) = E(X). One also says that
D is a (X,Y)-design.

Of course this concept may be extended to hypergraphs in the obvious way.
Thus we may speak of a (X,Y)-design as a decomposition of a hypergraph X into
copies of hypergraphs belonging to an assigned family Y.

In the case where Y = {Y } consists of a single hypergraph one simply speaks
of a (X,Y )-design.

An automorphism group of a (X,Y)-design D is a group of bijections on V (X)
fixing D.

A (X,Y )-design is regular (1-rotational) if it admits an automorphism group
acting sharply transitively on V (X) (fixing one vertex and acting sharply transi-
tively on the others).

Observe that a (v, k, λ)-BIBD is equivalent to a (λKv,Kk)-design.
Much more generally, a t − (v, k, λ) design is equivalent to a (X,Y )-design

where X = λ(t-Kv) and Y = t-Kk.
Thus, a regular (1-rotational) t − (v, k, λ) design may be viewed as a regular

(1-rotational) t-(λKv),Kk)-design.
In the literature one can find many regular or 1-rotational (λKv, Y )-designs

obtainable by difference methods (see, e.g. [17], [18]). Anyway, curiously, an
explicit systematic description of these methods seems to be lacking. The situation
is still worst for arbitrary (X,Y)-designs.

The purpose of this paper is to give a general method able to describe, in terms
of differences, any regular or 1-rotational (X,Y)-design.

In my opinion the method is promising since, in many cases, it allows to con-
struct nice designs by hand. So, I believe that a ”clever” use of this method,
possibly together with the help of a computer, may lead to lots of designs previ-
ously unknown.
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Here, I report the descriptions starting from that of a regular or 1-rotational
BIBD to arrive to that, very general, of a regular or 1-rotational (X,Y)-design
where X and Y are arbitrary.

The last description includes all the previous ones. The reason for which I
preferred to proceed by dealing, in this order, with BIBD’s, PBD’s, GDD’s, t-
designs with t > 2, graph decompositions and, finally, hypergraph decompositions,
is that I thought that an immediate presentation of the last description could
appear extremely heavy.

I will give detailed proofs in a future paper [6]. No proof will be reported here.
I only give the descriptions and, case by case, easy examples to clarify them.

2 Regular or 1-rotational BIBD’s, PBD’s and GDD’s

Given a group G, the list of differences of a k-subset B of G+ is the multiset ∆B
on G+ − {0} defined as follows:

∆B = (b− c | b, c ∈ B, b �= c �=∞)

Note that we have:

|∆B| =
{
k(k − 1) if ∞ /∈ B
(k − 1)2 if ∞ ∈ B

In order to achieve a description of any regular or 1-rotational BIBD by differ-
ence methods, it is convenient to consider a sublist of ∆B.

Let GB be the G-stabilizer of B, i.e., GB = {g ∈ G : B + g = B}. One may
easily see that the multiplicity of each non-zero element of G+ in ∆B is divisible
by |GB | so that it makes sense to speak of the list

∂B =
1
|GB |

∆B

that I call the list of partial differences of B. Equivalently, one may see that

∂B = (b− � | � ∈ LB , b ∈ B − {�})

where LB is a system of representatives for the GB-orbits that are contained in
B, i.e., LB is a system of representatives for the left cosets of GB in G that are
contained in B.

Note that we have ∂B = ∆B if and only if B has trivial stabilizer. Also, note
that:

|∂B| =




k(k − 1)
d

if ∞ /∈ B

(k − 1)2

e
if ∞ ∈ B
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where d is a divisor of gcd(k, |G|) while e is a divisor of gcd(k − 1, |G|).
Concerning the multiplicity of ∞ in ∂B, we have:

µ∂B(∞) =
{

0 if ∞ /∈ B
k−1
|GB | if ∞ ∈ B

In view of the forthcoming theorems, these simple informations about |∂B|
and µ∂B(∞) may be very useful whenever we want to construct a regular or 1-
rotational design.

More generally, given a multiset F = (B1, ..., Bn) of subsets of G+, I define the
list of partial differences of F by

∂F = ∂B1 ∪ ...∪ ∂Bn

Definition 2.1 Let G be a group, let Γ = G or G+, and let K be a set of positive
integers. A (Γ,K, λ) partial difference family (PDF) is a multiset F of subsets of
Γ with sizes from K such that ∂F = λ(Γ− {0}). If |Γ| = v we also say that F is
a (v,K, λ)-PDF in Γ.

A (Γ, k, λ)-PDF is a (Γ,K, λ)-PDF where K = {k}.

Theorem 2.2 Let G be a group and let Γ = G (Γ = G+) with |Γ| = v. Let F be a
multiset of subsets of Γ. Then (Γ, devF) is a regular (1-rotational) (v,K, λ)-PBD
under G if and only if F is a (v,K, λ)-PDF in Γ.

Now note that the block-multiset of any design admitting an automorphism
group G is obtainable as development under G of a suitable submultiset F of B.
Thus we may state:

Theorem 2.3 The existence of a regular (1-rotational) (v,K, λ)-PBD under G is
completely equivalent to the existence of a (v,K, λ)-PDF in G (G+).

In particular, we have:

Theorem 2.4 The existence of a regular (1-rotational) (v, k, λ)-BIBD under G is
completely equivalent to the existence of a (v, k, λ)-PDF in G (G+).

The term partial difference family has been also used by Abel [1]. He defines a
PDF in G as a multiset of subsets of a group whose development under G itself is
the block-multiset of a BIBD. The uniform PDF’s as defined in this section are,
a posteriori, the same PDF’s of Abel in view of Theorem 2.2. Anyway, in the
definition of Abel it does not appear clear how this term is so appropriate. Also
he does say how to check whether a given multiset of subsets of a group is a PDF.
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Concerning GDD’s, we observe that no 1-rotational GDD (that is not a BIBD)
may exist. Instead regular GDD’s exist but, as observed in [4], their groop size
is constant. In fact, identifying the point-set of a regular GDD under G with G
itself and the action of G on its points as the regular right representation of G, we
have that its groops are the right cosets of a suitable subgroup of G. The crucial
theorem concerning GDD’s may be stated as follows.

Theorem 2.5 The existence of a regular (v, n,K, λ)-GDD under G is completely
equivalent to the existence of a (v,K ∪ {n}, λ)-PDF in G of type F = λ{N}∪F ′
with N a subgroup of G of order n and all the components of F ′ with size k ∈ K.
The block-multiset of the GDD generated by such a PDF is devF ′.

Let us give some explicit constructions in order to clarify the above theorems.

Example 2.6 Consider the set F = {B1, B2, B3, B4} of 4-subsets of the group G =
Z12 defined as follows:

B1 = {0, 3, 6, 9}, B2 = {0, 4, 6, 10}, B3 = {0, 1, 3, 8}, B4 = {0, 3, 4, 5}

The first component B1 is a subgroup of G so that GB1 = B1 and hence
∂B1 = (±3, 6).

Then we have GB2 = {0, 6}; in fact B2 = L + {0, 6} where L = {0, 4}. Thus
we have ∂B2 = (b− � | � ∈ L, b ∈ B2 − {�}) = ±(4, 2, 6).

Finally, both B3 and B4 have trivial stabilizer so that

∂B3 = ∆B3 = ±(1, 3, 4, 2, 5, 5) ∂B4 = ∆B4 = ±(3, 4, 5, 1, 2, 1)

Linking together the above lists of partial differences, we see that
∂F = 3(G − {0}), i.e., F is a (12, 4, 3)-PDF in Z12. Thus (Z12, devF) is a cyclic
(12, 4, 3)-BIBD.

Example 2.7 Let G be the group with elements in the Cartesian product set Z2×Z12

and operation law defined by the rule

(x, y) + (x′, y′) =
{

(x + x′, y + y′) if x′ = 0
(x + x′, 7y + y′) if x′ = 1

Hence G is a semidirect product of Z2 and Z12.
Consider the multiset F = (B1, B2, B3, B4) of 4-subsets of G+ defined as fol-

lows:

B1 = {(0, 0), (0, 4), (0, 8),∞}, B2 = {(0, 0), (0, 6), (1, 0), (1, 6)}

B3 = {(0, 0), (1, 3), (0, 1), (1, 10)}, B4 = {(0, 0), (0, 2), (0, 5), (1, 1)}
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Note that B1 − {∞} is the subgroup of order 3 of G so that GB1 = B1 − {∞}
and hence ∂B1 = ((0, 4), (0, 8),∞).

Also, note that B2 is a subgroup of order 4 of G so that GB2 = B2 and hence
∂B2 = ((0, 6), (1, 0), (1, 6))

Then we have GB3 = {(0, 0), (1, 3)}; in fact B3 = L + {(0, 0), (1, 3)} where
L = {(0, 0), (0, 1)}. Thus we have

∂B3 = (b− � | � ∈ L, b ∈ B3 − {�}) = ((0, 1), (1, 3), (1, 10), (0, 11), (1, 2), (1, 9)).

Finally, B4 has trivial stabilizer so that

∂B4 = ∆B4 = ((0, 2), (0, 5), (1, 1), (0, 3), (1, 11), (1, 8), (0, 10), (0, 7), (1, 5),
(0, 9), (1, 7), (1, 4))

Linking together the above lists of partial differences, we see that
∂F = G+ − {0}, i.e., F is a (25, 4, 1)-PDF in G+. Thus (G+, devF) is a 1-
rotational (25, 4, 1)-BIBD.

When I constructed, by hand, the above design, I was not aware of a paper
by Kramer, Magliveras and Mathon [13] where, up to isomorphisms, all (25, 4, 1)-
BIBD’s with a non-trivial automorphism group are classified. There are exactly 16
such BIBD’s and only one of them has full automorphism group of order divisible
by 24 (its order is 504). Hence my example provides another presentation (maybe
more easy) of that design.

Recall that a partition (see [22]) of a group G is a set of subgroups of G
intersecting each other in the zero element of G and whose union is G.

Note that such a partition is a (G,K, 1)-PDF where K is the set of orders of
its components. Thus, as a particular consequence of Theorem 2.2 we refind the
following very well known result.

Theorem 2.8 Let G be a group admitting a partition F . Then (G, devF) is a linear
space.

Now, let G be a Frobenius group with kernel N and complement A. Then
the set of conjugates of A together with N form a partition of G. Thus, as a
consequence of Theorem 2.5, we refind the following result (see [10]).

Theorem 2.9 Let G be a Frobenius group of order v with kernel N and complement
A of order k. Let A be the set of conjugates of A. Then (G, devA) is a TD1(k, v).

3 Regular or 1-rotational t-design (t > 2)

In order to get a description in terms of differences of regular and 1-rotational
t-designs with t > 2, I firstly introduce the concept of list of differences of order
n.
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Given a group G, the list of differences of order n of a subset B of G+ is the
multiset ∆nB on

(
G+−{0}

n

)
defined as follows:

∆nB = (X − y |X ∈
(
B

n

)
, y ∈ B − (X ∪ {∞}))

Also here one may see that the multiplicity of each n-subset of G+ − {0} in
∆nB is divisible by |GB | so that it makes sense to speak of the list

∂nB =
1
|GB |

∆nB

that I call the list of partial differences of order n of B and that we can also express
in the form

∂nB = (X − � |X ∈
(
B

n

)
, � ∈ LB − (X ∪ {∞}))

where LB is a system of representatives for the left cosets of GB in G that are
contained in B.

More generally, given a multiset F of subsets of G+, I call list of partial differ-
ences of order n of F the list ∂nF defined by ∂nF =

⋃
B∈F

∂nB.

It is obvious that ∆1B may be identified with the list ∆B defined in the
previous section.

Definition 3.1 Let G be a group, let Γ = G or G+, and let K be a set of positive
integers. A t− (Γ,K, λ) partial difference family (PDF) is a multiset F of subsets
of Γ with sizes from K such that ∂t−1F = λ

(
Γ−{0}
t−1

)
.

If |Γ| = v we also say that F is a t− (v,K, λ)-PDF in Γ.

A t − (Γ, k, λ)-PDF is a t − (Γ,K, λ)-PDF where K = {k}. We have the
following crucial theorem.

Theorem 3.2 Let G be a group and let Γ = G (Γ = G+) with |Γ| = v. Let F be a
multiset of subsets of Γ. Then (Γ, devF) is a regular (1-rotational) t − (v,K, λ)
design under G if and only if F is a t− (v,K, λ)-PDF in Γ.

From the above theorem we get:

Theorem 3.3 The existence of a regular (1-rotational) t− (v,K, λ) design under G
is completely equivalent to the existence of a t− (v,K, λ)-PDF in G (G+).

It is obvious that the above theorems includes, as particular cases,
Theorems 2.2 and 2.3

As an easy example let us construct the unique 3− (8, 4, 1)-design (the point-
plane design of AG(3, 2)) by difference methods.
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Example 3.4 Let G = Z7 and let F = (B1, B2) where B1 and B2 are the following
4-subsets of Z+

7 :
B1 = {0, 1, 3,∞} B2 = {0, 1, 4, 6}

Both B1 and B2 have trivial G-stabilizer so that ∂2B1 = ∆2B1 and ∂2B2 =
∆2B2. We have:

∆2B1 = ({1, 3}, {1,∞}, {3,∞}, {2, 6}, {6,∞}, {2,∞}, {4, 5}, {4,∞}, {5,∞})
∆2B2 = ({1, 4}, {1, 6}, {4, 6}, {3, 6}, {5, 6}, {3, 5}, {3, 4}, {2, 3},

{2, 4}, {1, 2}, {1, 5}, {2, 5})

Linking together the above lists of differences we get ∂2F = ∆2F =
(
G+−{0}

2

)
.

It follows, by Theorem 3.2, that (G, devF) is a cyclic 1-rotational 3 − (8, 4, 1)
design.

Needless to say that, in practice, Theorem 3.2 is not so effective as Theorem
2.2. Its application appears in fact quite lengthy in general. However, if we look
for regular or 1-rotational t-designs (t > 2) with the help of a computer, it is
maybe more convenient to apply Theorem 3.2 rather than the Kramer- Mesner
method (see [14]).

4 Regular or 1-rotational graph decompositions

We firstly propose a generalization of the concept of a Cayley graph.
Recall that given a group G and a subset Ω of G − {0} for which −Ω = Ω

holds, the Cayley graph of G on Ω, denoted by Cay[G : Ω], is the simple graph
with vertex-set G and edges of the form {g, g + ω} with ω ∈ Ω.

It is well-known (see [19]) that, up to isomorphisms, the Cayley graphs are
precisely the simple sharply-vertex-transitive graphs.

Now, given a multiset Ω on G − {0} with the property that each g ∈ G has
the same multiplicity of −g in Ω, I define, more generally, the Cayley graph of G
on Ω as the graph Cay[G : Ω] with vertex-set G and edge-multiset E in which the
multiplicity of each {x, y} ∈

(
G−{0}

2

)
is exactly equal to the multiplicity of x − y

in Ω.
Reasoning as in [19] one may see that, up to isomorphisms, the class of all (also

non-simple) sharply-vertex-transitive graphs coincides with the class of Cayley
graphs defined as above.

Still more generally, given a multiset Ω on G+ − {0} containing each g ∈ G
as many times as −g, we may consider the graph Cay[G+ : Ω] obtainable from
Cay[G : Ω] by adding to it µΩ(∞) times the edge {∞, g} for any g ∈ G.

It is easy to see that a graph is 1-rotational under a group G if and only if it
is isomorphic to Cay[G+ : Ω] for a suitable Ω.

Observe that if Ω = λ(Γ−{0}) where Γ = G or G+, then Cay[G : Ω] = λK(Γ).
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As already pointed out, any (v, k, λ)-BIBD may be viewed as a decomposition
of the graph λKv into copies of Kk. A question naturally arises:

What about regular and 1-rotational (X,Y)-designs in general?

First of all, it is easy to see that a regular (X,Y)-design under G must have
X sharply-vertex-transitive with respect to G and hence, for what said above, X
must be of the form Cay[G : Ω] for a suitable Ω.

Also, a 1-rotational (X,Y)-design under G has X of the form Cay[G+ : Ω] for
a suitable multiset Ω on G+ − {0}.

Let B be a subgraph of X = Cay[G+ : Ω]. We call list of differences of B in
X the multisubset of G− {0} defined as follows:

∆B = (v − w | v ∈ V (B), w ∈ NB(v)− {∞})

As in Section 2, one may see that if GB is the G-stabilizer of B, then each
non-zero element of G appears in ∆B a multiple of |GB | times. I call list of partial
differences of B the list ∂B = 1

|GB |∆B which is also equal to

∂B = (v − � | � ∈ LB , v ∈ NB(�)− {∞})

where LB is a system of representatives for the left cosets of GB in G that are
contained in V (B).

Note that
∂B =

1
d

∑
v∈V (B)−{∞}

degB(v)

and that

µ∂B(∞) =
degB(∞)

d

where, in each case, d is a divisor of |V (B)− {∞}|.
More generally, given a multiset F of subgraphs of G+, I define the list of

partial differences of F by ∂F =
⋃
B∈F∂B.

Definition 4.1 Let X = Cay[Γ : Ω] with Γ = G or G+, and let Y be a set of graphs.
A (X,Y) partial difference family (PDF) is a multiset F of subgraphs of X each
isomorphic to some graph of Y with the property that ∂F = Ω.

A (X,Y )-PDF is a (X,Y)-PDF where Y = {Y } consists of a single graph. We
have the following theorem.

Theorem 4.2 Let X = Cay[Γ : Ω] with Γ = G (Γ = G+) and let F be a multiset of
subgraphs of X each isomorphic to some graph of an assigned set Y. Then devF is
a regular (1-rotational) (X,Y)-design under G if and only if F is a (X,Y)-PDF.
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From the above theorem we immediately get:

Theorem 4.3 The existence of a regular (1-rotational) (X,Y)-design under G is
completely equivalent to the existence of a (X,Y)-PDF in G (G+).

Applying Theorem 3.2 with Ω = λ(Γ − {0}) we get regular and 1-rotational
(λKv, Y )-designs (v being the size of Γ). Thus, in particular, applying it with Ω
as above and Y = {Kk} we refind Theorem 2.2.

As a first new application of Theorems 4.2, 4.3, we show that an example of
cube-decomposition of the complete graph K16 given by Kotzig [12] falls in a new
infinite family of hypercube decompositions of the complete graph that I am going
to describe below.

Recall that the hypercube of dimension t (or t-dimensional cube), denoted by
Qt, is the Cayley graph Cay[Zt2 : Ω] where Ω is any set of t independent vectors
of Zt2.

Let us view the complete graph K2n as the Cayley graph Cay[Zn2 : Ω] where
Ω = Zn2 − {0}. Now note that, in the case where 2n − 1 = tu with n ≥ t, it is
possible to partition Ω into t-ples Ω1, Ω2, ..., Ωu of independent vectors of Zn2 .
Each Bi = Cay[< Ωi >: Ωi] is a subgraph of K2n which is isomorphic to Qt. Also,
its list of partial differences coincides with Ωi. It follows that F = (B1, B2, ..., Bu)
is a (K2n , Qt)-PDF. Thus we have:

Theorem 4.4 Let t be a divisor of 2n−1 with t ≤ n. Then there exists a regular
(K2n , Qt)-design.

Now, I want to consider two problems concerning the decomposition of a com-
plete graph into ”small graphs” that Heinrich [9] leaves open. We show how
Theorem 4.2 allows to solve them.

The first of these problems is the construction of a (Kv,K5 − e)-design for
v ∈ {37, 55, 73, 109, 397, 415, 469, 487, 505, 541, 613, 685}.

This problem may be solved for v a prime, namely for v ∈ W where W =
{37, 73, 109, 397, 487, 541, 613} by using the following general technique:

Construction Let v be a prime ≡ 1 (mod 2|E(Y )|). Given a subgraph B of
K(Zv), let ∆+B = (x ∈ ∆B : 1 ≤ x ≤ v−1

2 ) so that ∆B = {1,−1}∆B. Also,
given h ∈ Zv − {0}, let hB be the subgraph of K(Zv) with vertex-set {hv | v ∈
V (B)} and edge-set {he | e ∈ E(B)}. If B is a subgraph of K(Zv) isomorphic to
Y and such that ∆+B is a complete system of representatives for the cyclotomic
classes of index |E(Y )| in Zv, then F = (hB |h ∈ H) is a (K(Zv), Y )-PDF.

Using this technique Wilson [21] proved the existence of a (Kv, Y )-design for
any (v, Y ) with v ≡ 1 (mod 2|E(Y )|) sufficiently large.
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This result was previously established by Wilson himself [20] in the particular
but very important case where Y = Kk, case in which the construction essentially
gives a (v, k, 1)-BIBD.

We can use the above technique for solving the mentioned problem concerning
the construction of (Kv,K5 − e)-designs with v ∈W . We have to find a subgraph
B of K(Zv) isomorphic to K5 − e such that ∆+B be a system of representatives
for the cyclotomic classes of index 9 in Zv. It suffices to take B as follows:

B =

• •

• •

•
❅
❅
❅�

�
�

✚
✚
✚
✚
✚
✚





�

�
�
�
�
�
����
�
�
�
�
��

1

a b

c

0

where {a, b, c} has to be taken as indicated in the following table.

v
{a,b,c}

37
{4,6,15}

73
{2,6,49}

109
{2,5,89}

397
{9,14,43}

487
{6,14,29}

541
{2,27,41}

613
{3,13,41}

The second problem is the construction of a (K65,K5−P3)-design, P3 being the
path with three vertices. This problem has been independently solved by Colbourn
[8] and myself.

My solution to the problem works as follows. I considered the subgroup U =
{±1,±8} of the units of Z65 acting semiregularly on Z65 − {0}. Then I looked
for two subgraphs B1 and B2 of K(Z65) isomorphic to K5 − e and such that
∆+B1 ∪∆+B2 is a complete system of representatives for the U -orbits on Z65−{0}.
I found that the following subgraphs satisfy this requirement.

B1 =

• •

• •

•
❅
❅
❅�

�
�

✚
✚
✚
✚
✚
✚







13

1 2

0

4

B2 =

• •

• •

•
❅
❅
❅�

�
�

✚
✚
✚
✚
✚
✚







60

5 23

0

43

Then F = (B1, B2, 8B1, 8B4) is a (K(Z65),K5 − e)-PDF. In fact we have ∆F =
{1, 8}(∆B1 ∪∆B2) = {±1,±8}(∆+B1 ∪∆+B2) = Z65 − {0}.

47



Now, I also give an example of application of Theorem 4.2 to get a
1-rotational (Kv, Cv)-design for any odd v, Cv being the v-cycle.

Example 4.5 Let v be an odd integer, let G = Zv−1, and let B the following v-cycle
in K(G+):

B = (∞, 0, 1,−1, 2,−2, ..., i,−i, ..., v − 3
2

,−v − 3
2

,
v − 1

2
,∞)

It is almost immediate to see that ∆B = 2(G+−{0}) and that GB = {0, v−1
2 }.

Thus we have ∂B = G+ − {0}. It follows, by Theorem 4.2, that devB is a 1-
rotational (Kv, Cv)-design under G.

The above examples are of regular or 1-rotational (X,Y )-designs where X is a
complete graph.

Concerning (X,Y )-designs where X is not complete, observe that if N is a
subgroup of order n of a group G of order v, then a regular (X,Kk)-design with
X = Cay[G : λ(G − N)] is equivalent to a regular (v, n, k, λ)-GDD under G (see
Theorem 2.5).

Another very easy example of a regular decomposition of a non-complete graph
is the following.

Example 4.6 Let Qn be the n-dimensional hypercube and let d be a divisor of n.
Take any partition of a base Ω of Zn2 into n/d subsets Ω1, ..., Ωn/d of size d. Then
(Cay[< Ω1 >: Ω1], ..., Cay[< Ωn/d >: Ωn/d]) obviously is a (K(Zn2 ), Qd)-PDF and
hence we get the existence of a regular decomposition of the n-dimensional cube
into d-dimensional cubes.

5 Regular or 1-rotational hypergraph decompositions

In order to get a description of regular or 1-rotational hypergraph decompositions
in terms of differences, it is convenient to furtherly generalize the concept of a
Cayley graph that I gave in the previous section.

Let G be a group and let Ω be a multiset of subsets of Γ − {0} (Γ = G or
Γ = G+) with the property that

µΩ(S) = µΩ[((S − g) ∪ {−g})− {0}] ∀S ∈ 2Γ−{0}, ∀ g ∈ S (1)

I call Cayley hypergraph of Γ on Ω the hypergraph Cay[Γ : Ω] with vertex-set
Γ and edge-multiset E defined by the following rule:

µE(S) = µΩ[(S − s)− {0}] ∀S ∈ 2Γ
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where s is an arbitrary element of S − {∞}. Note that this definition does not
depend on the choice of such an element s in view of (1). It is possible to prove
that:

Theorem 5.1 A hypergraph is sharply-vertex-transitive or 1-rotational under a group
G if and only if, up to isomorphisms, it is of the form Cay[Γ : Ω] for a suitable
multiset Ω on 2Γ−{0} satisfying condition (1) where Γ = G or G+ respectively.

Note, in particular, that λ(t-K(Γ)) = Cay[Γ : Ω] where Ω = λ
(
Γ−{0}
t−1

)
.

Now, let us try to describe regular or 1-rotational (X,Y)-designs where X is
an arbitrary hypergraph.

First of all, it is easy to see that a regular or 1-rotational (X,Y)-design under
G must have, up to isomorphisms, X of the form Cay[Γ : Ω] for a suitable multiset
Ω of subsets of Γ− {0} where Γ = G or G+ respectively.

Let B be a subhypergraph of X = Cay[G+ : Ω]. I call list of differences of B
in X the multiset of non-empty subsets of G defined as follows:

∆B = ((E − v)− {0} | v ∈ V (B)− {∞}, E ∈ E(B), E � v)

Once again we may see that if GB is the G-stabilizer of B, then each non-empty
subset of G appears in ∆B a multiple of |GB | times, GB being the stabilizer of B
under G. Then I define list of partial differences of B by ∂B = 1

|GB |∆B which we
can also express in the form:

∂B = ((E − v)− {0} | v ∈ LB − {∞}, E ∈ E(B), E � v)

where LB is a system of representatives for the left cosets of GB in G that are
contained in V (B).

More generally, given a multiset F of subgraphs of G+, the list of partial
differences of F is the list ∂F =

⋃
B∈F∂B.

The definition and theorems that follow may be obtained from Definition 4.1
and Theorems 4.2, 4.3 by simply replacing the word ”graph” with the word ”hy-
pergraph”. I write them explicitely for convenience of the reader.

Definition 5.2 Let X = Cay[Γ : Ω] with Γ = G or G+, and let Y be a set of hyper-
graphs. A (X,Y) partial difference family (PDF) is a multiset F of subhypergraphs
of X each isomorphic to some hypergraph of Y with the property that ∂F = Ω.

A (X,Y )-PDF is (X,Y)-PDF where Y = {Y } consists of a single hypergraph.
We have the following theorem.
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Theorem 5.3 Let X = Cay[Γ : Ω] with Γ = G (Γ = G+) and let F be a multiset of
subhypergraphs of X each isomorphic to some graph of an assigned set Y. Then
devF is a regular (1-rotational) (X,Y)-design under G if and only if F is a (X,Y)-
PDF.

From the above theorem we immediately get:

Theorem 5.4 The existence of a regular (1-rotational) (X,Y)-design under G is
completely equivalent to the existence of a (X,Y)-PDF in G (G+).

Applying the above theorems with Ω = λ
(
Γ−{0}
t−1

)
and Y = t-Kk we essentially

refind Theorems 3.2 and 3.3.

Now, as truly new examples of application of Theorem 5.3, we construct some
regular or 1-rotational decompositions of 3-Kv into copies of the Fano plane. In
the following, Y will always denote the Fano plane.

Example 5.5 Consider the following subhypergraph B of 3-K(Z8):

B =

• • •

• •
•

•

�
�
�
�
�
�
����
�
�
�
�
��✧

✧
✧
✧✧❜
❜
❜
❜❜

2 4 5

1 63

0

✫✪
✬✩

One may easily check that ∂B = ∆B =
(
Z8−{0}

2

)
so that devB is a cyclic

decomposition of 3-K8 into Fano planes.

Example 5.6 Consider the following subhypergraphs B1 and B2 of 3-K(Z+
7 ):

B1 =

• • •

• •
•

•

�
�
�
�
�
�
����
�
�
�
�
��✧

✧
✧
✧✧❜
❜
❜
❜❜

0 5 4

1 62

3

✫✪
✬✩

B2 =

• • •

• •
•

•

�
�
�
�
�
�
����
�
�
�
�
��✧

✧
✧
✧✧❜
❜
❜
❜❜

0 6 5

1 32

∞

✫✪
✬✩

50



Note that B1 is fixed by Z7 so that ∂B1 = (E − {0} |E ∈ E(B), E � 0). Thus
∂B1 = ({1, 3}, {2, 6}, {4, 5}).

Then check that B2 has trivial stabilizer and that ∆B2 covers exactly once all
the 2-subsets of Z+

7 −{0} not appearing in ∂B1. It follows that F = (B1, B2) is a
(3-K(Z+

7 ), Y )-PDF and hence that devF is a 1-rotational decomposition of 3-K8

into Fano planes.

The above two examples suggest to study the following problem.

Problem 5.7 Given a 2 − (v, 3, 1) design Y , find a cyclic decomposition and a 1-
rotational decomposition of 3-Kv+1 into copies of Y .

Example 5.8 Consider the following subhypergraph B of K(Z23):

B =

• • •

• •
•

•

�
�
�
�
�
�
����
�
�
�
�
��✧

✧
✧
✧✧❜
❜
❜
❜❜

0 5 4

1 123

2

✫✪
✬✩

Let Z�23 be the group of squares in Z23. Check that this group acts semiregularly
on the set Ω =

(
Z23−{0}

2

)
. Then check that B has trivial Z23-stabilizer and that

∆B is a complete system of representatives for the Z�23-orbits on Ω. It easily
follows that F = (mB |m ∈ Z�23) is a 3-(K(Z23), Y )-PDF so that devF is a cyclic
decomposition of 3-K(Z23) into Fano planes.
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Dimensional Dual Hyperovals,
Steiner Systems and c.L* Geometries

M. Buratti, A. Del Fra*
Università “La Sapienza”

e-mail: delfra@axrma.uniroma1.it

A d-dimensional dual hyperoval in Π = PG(n, q) is a family F of d-spaces spanning Π,
pairwise meeting in exactly one point and such that every point of Π is incident with
either 0 or 2 members of F [3]. d-dimensional dual hyperovals generalize the usual dual
hyperovals in a projective plane (correspondent to d = 1) and allow to construct geome-
tries belonging to the diagram c.L∗ [3]. Some preliminary results concerning dimensional
dual hyperovals were given in [1], [2], [3] and [4]. F is said to satisfy property (T) if, for
any triple S1, S2, S3 of distinct members of F , the d space S1 meets the 2d-space spanned
by S2 and S3 in a line (the minimum possible intersection). Property (T) implies that
the d-spaces of F can be collected in blocks of size q + 2, giving rise to a Steiner system

S(3, q + 2, q
d+1−1
q−1

+ 1), satisfying the following property:

(P) its derived Steiner systems S(2, q+1, q
d+1−1
q−1

) are all isomorphic to the point-line

system of PG(d, q).

When q = 2, such a system will be called a quasi-Boolean quadruple system. We use
this terminology since the so called Boolean quadruple system, i. e., the point-plane design
of AG(d+ 1, 2), obviously satisfies property (P). For any d, set n(d) =

(
d+2
2

)
− 1. In this

paper we prove that if a d-dimensional dual hyperoval is built in PG(n, 2), starting from
the Boolean S(3, 4, 2d+1), then n ≤ n(d). For every d, we construct two d-dimensional
dual hyperovals in PG(n(d), 2) and in PG(n(d) − 1, 2) respectively, starting from the
Boolean S(3, 4, 2d+1). The first one is possibly isomorphic to a known d-dimensional dual
hyperoval obtained by the Grassmann variety of lines of AG(n(d)+1, 2) [2]. We also give
an algebraic method to get “many” non-isomorphic quasi-Boolean quadruple systems
S(3, 4, 2d+1) for any d. They should give rise to other d-dimensional dual hyperovals, for
every d. We prove this for the lowest values of d.
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On Perfect Cayley Designs
M. Buratti, Fulvio Zuanni*
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e-mail: zuanni@ing.univaq.it

We introduce the concept of a Perfect Cayley Design (PCD) that generalizes that of a
Perfect Mendelsohn Design (PMD) as follows. Given an additive group H, a (v,H, 1)-
PCD is a pair (X,B) where X is a v-set and B is a set of injective maps from H to X with
the property that for any pair (x, y) of distinct elements of X and any h ∈ H−{0} there is
exactly one B ∈ B such that B(h′) = x,B(h′′) = y and h′−h′′ = h for suitable h′, h′′ ∈ H.
It is clear that a (v, Zk, 1)-PCD simply is a (v, k, 1)-PMD. This generalization has concrete
motivations in at least one case. In fact we observe that triplewhist tournaments may
be viewed as resolved (v, Z2

2 , 1)-PCD’s. We present four composition constructions for
regular and 1-rotational resolved PCD’s. As a consequence, we get new infinite families
of resolved PMD’s and of Z-cyclic whist tournaments.
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Codes, Matroids and Trellises

P.J. Cameron
School of Mathematical Sciences - Queen Mary and Westfield College - London E1 4NS U.K.

e-mail: p.j.cameron@qmw.ac.uk

There is a natural bijection between representable matroids and linear codes over a given
field, which is not as well known as it ought to be. An early result on this is Greene’s
theorem asserting that the weight enumerator of the code is a specialisation of the Tutte
polynomial of the matroid. This connection also throws light on the minimal trellis for
decoding a given code, and gives new results (and easier proofs of old results) on trellis
complexity.

1 Introduction

This is a survey paper on the connection between matroids and linear codes, on
trellis decoding, and of applications of the code–matroid connection to the problem
of determining the smallest trellis for a code equivalent to a given code. Proofs of
the assertions appear elsewhere. The paper is based to a large extent on the Ph.D.
thesis [8] of Constantinos Papadopoulos, to whom I express my gratitude. Others
who have contributed are R. A. Bailey, Carrie Rutherford and Fuad Shareef.

2 Codes

In this section we give brief summaries of the theories of codes and matroids.
For more details we refer to standard textbooks such as [6] for codes and [9] for
matroids. Let F be a set called the alphabet and n a positive integer. A word of
length n over F is simply an n-tuple of elements of F ; typically we write a1a2 · · · an
instead of (a1, a2, . . . , an). In the most important case here, F is a field; from now
on, this is always assumed to be the case. The code C is linear if it is a subspace
of Fn. A linear code of length n and dimension k is referred to as an [n, k] code.
Let C be a [n, k] code. A generator matrix for C is a k × n matrix whose rows
form a basis for C. The dual code C⊥ of C is the set

C⊥ = {x ∈ Fn : x · c = 0 for all c ∈ C},
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where · denotes the standard inner product on Fn. The Hamming distance d(a, b)
between words a and b is the number of coordinates where they differ:

d(a, b) = |{i : 1 ≤ i ≤ n, ai �= bi}|.

The weight wt(a) is the number of non-zero coordinates of a, that is, wt(a) =
d(a, 0), where 0 is the all-zero word. If F is finite, the weight enumerator WC(x, y)
of the code C is the homogeneous polynomial

WC(x, y) =
∑
c∈C

xn−wt(c)ywt(c) =
n∑
i=0

Aix
n−iyi,

where Ai is the number of words of weight i in C. Two codes C,C ′ of length n
over F are monomial equivalent if C ′ can be obtained from C by permuting the
coordinates and multiplying coordinates by non-zero scalars. This is the natural
equivalence relation on linear codes, and preserves dimension, weight enumerator,
and most significant properties. The ith generalised Hamming weight di(C) of a
code C, for 1 ≤ i ≤ k = dim(C), is defined to be the smallest support size of an
i-dimensional subcode of C. So d1(C) is the minimum weight of C. The sequence
(d1(C), . . . , dk(C)) is called the Hamming weight hierarchy of C. These numbers
are strictly increasing; in fact, the following is true:

Theorem 2.1 The generalized Hamming weights of a linear code over GF(q) satisfy

di+1 ≥ di +
⌈
di(q − 1)
q(qi − 1)

⌉
.

This result in the case of binary codes is due to Helleseth et al. [4].

3 Matroids

Let E be a set. A matroid M on E is a pair (E, I), where I is a non-empty family
of subsets of E (called independent sets) with the properties

(a) if I ∈ I and J ⊆ I, then J ∈ I;

(b) (the exchange property) if I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈
I2 \ I1 such that I1 ∪ {e} ∈ I.

Matroids were introduced by Whitney to axiomatise the notion of linear indepen-
dence in a vector space. Indeed, if E is a family of vectors in a vector space V , and
I is the set of linearly independent subsets of E, then (E, I) is a matroid. More
formally, a representation of a matroid (E, I) over a field F is a map χ from E to
an F -vector space with the property that a subset I of E belongs to I if and only
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if χ(I) is linearly independent. Two representations χ, χ′ of M are equivalent if
there is an invertible linear transformation of V whose composition with χ is χ′.
It follows from the second axiom that all maximal independent sets in a matroid
M have the same cardinality k, called the rank of M . These maximal independent
sets are called the bases of M . It can be shown that the set of all complements of
bases of M is the set of bases of another matroid M∗ on E, called the dual of M .
Matroids can be defined in many equivalent ways. One which will be important
to us is by means of the rank function ρ, the function from the power set of E
to the non-negative integers given by the rule that ρ(A) is the cardinality of any
maximal independent subset of A. (Again, the exchange property shows that any
two maximal independent subsets of A have the same cardinality.) It is possi-
ble to axiomatise the rank functions of matroids, but that will not be necessary
here. One feature of matroids is that they are precisely those structures where the
greedy algorithm always succeeds in choosing a base of minimum weight. More
formally:

Proposition 3.1 Suppose that M = (E, I) is a matroid, and that the elements of E
are totally ordered. Then

(a) there is a base A = {a1, . . . , ak} with a1 < · · · < ak, called the first base,
such that if X = {x1, . . . , xk} is any other base with x1 < · · · < xk, then
ai ≤ xi for i = 1, . . . , k;

(b) there is a base B = {b1, . . . , bk} with b1 < · · · < bk, called the last base, such
that if X = {x1, . . . , xk} is any other base with x1 < · · · < xk, then xi ≤ bi
for i = 1, . . . , k.

The first base A is found by the greedy algorithm: {a1} is the smallest independent
set of size 1; then a2 is the smallest element such that {a1, a2} is independent; and
so on. A dual remark applies to the last base. The first and last bases of the dual
matroid M∗ are the complements of the last and first bases of M respectively.

4 The code–matroid connection

Let A be a k × n matrix over a field F , satisfying the condition that the rows of
A are linearly independent, so that the row space of A has dimension k. There
are two different structures that can be built from A. First, the row space of
A is an [n, k] code over F , that is, a k-dimensional subspace of Fn. Now row
operations on A simply change the basis for the code, leaving the actual code
completely unaltered. Column permutations, and multiplications of columns by
non-zero scalars, replace the code by a monomial equivalent code. Second, there
is a matroid M on the set E = {1, 2, . . . , n}, in which a set I is independent if and
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only if the family of columns of A whose indices belong to I is linearly independent.
(We cannot quite say that the elements of E are the columns and independence
is linear independence, since E might have repeated columns.) Moreover, the
function χ mapping i to the ith column is a representation of M over F . Now row
operations on A don’t change M but replace the representation χ by an equivalent
representation, while column permutations and scalar multiplications replace M
by an isomorphic matroid. So, if we call two matrices A and A′ CM-equivalent if
A′ is obtained from A by a row operation and a monomial transformation of the
columns, we see that CM-equivalence classes of matroids correspond bijectively
to both monomial equivalence classes of linear codes, and equivalence classes of
representations of matroids, under the natural notions of equivalence in each case.
Thus we expect information to transfer back and forth between code and matroid.
In later sections, we will implicitly do so, by talking about (for example) the
first and last base of a code (meaning the first and last base of the corresponding
matroid). A code C is called projective if any two columns of a generator matrix for
C are linearly independent (equivalently, if the dual code C⊥ has minimum weight
at least 3). The corresponding condition for matroids is that of being a simple
matroid, that is, all subsets of size at most 2 are independent (so that there are no
loops or parallel elements in the matroid). If this holds, then the representation of
the matroid can be regarded as being in the projective space PG(k − 1, F ) rather
than in the vector space F k. Thus, representations of simple matroids provide
another framework for studying point sets in projective spaces. For example, the
zeros of a word in the dual code C⊥ are the points of a hyperplane section of
the point set, and so the weight enumerator of C⊥ gives the cardinalities of the
hyperplane sections. It is a simple exercise to show the following:

Proposition 4.1 If the matroid M corresponds to the code C, then the dual matroid
M∗ corresponds to the dual code C⊥.

5 Tutte polynomial and weight enumerator

Let M be a matroid on the set E, having rank function ρ. The Tutte polynomial
of M is most easily defined as follows:

T (M ;x, y) =
∑
A⊆E

(x− 1)ρE−ρA(y − 1)|A|−ρA.

For example, the Tutte polynomial of the uniform matroid Un,k is

T (Un,k;x, y) =
k∑
i=0

(
n

i

)
(x− 1)i +

n∑
i=k+1

(
n

i

)
(y − 1)i.

Moreover we have:
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Proposition 5.1 (a) The number of bases of M is equal to T (M ; 1, 1).

(b) The number of independent sets of M is equal to T (M ; 2, 1).

(c) The number of spanning sets of M is equal to T (M ; 1, 2).

(d) T (M ; 2, 2) = 2n.

The Tutte polynomials of a matroid and its dual are very simply related:

Proposition 5.2

T (M∗;x, y) = T (M ; y, x).

In the remainder of this section we briefly discuss a particular instance where
the connection between codes and matroids is useful. The following theorem was
proved by Greene [3].

Theorem 5.3 Let C be a code over a field with q elements, and M the corresponding
vector matroid. Then

WC(x, y) = yn−dim(C)(x− y)dim(C)T

(
M ;

x+ (q − 1)y
x− y ,

x

y

)
.

Note that, if X = (x+ (q − 1)y)/(x− y) and Y = x/y, then

(X − 1)(Y − 1) = q.

So the weight enumerator is an evaluation of the Tutte polynomial along a partic-
ular hyperbola in the ‘Tutte plane’. The proof will not be given here, but merely
indicated. There is a recursive formula for the Tutte polynomial of a matroid
in terms of Tutte polynomials of matroids with one fewer element (the so-called
“deletion–contraction rule”). Similarly, the weight enumerator of a code can be
expressed in terms of the weight enumerators of the codes obtained by shortening
and puncturing the code at some position. Then the equality of the two expres-
sions in the theorem follows by induction. (The punctured code corresponds to
the deleted matroid, and the shortened code to the contracted matroid.) From
Theorem 5.3 and Proposition 5.2, we can deduce the MacWilliams relation, which
shows that the weight enumerator of the dual code C⊥ can be calculated from
that of C.

Theorem 5.4

WC⊥(x, y) =
1
|C|WC(x+ (q − 1)y, x− y).
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Proof Since C⊥ has dimension n − dim(C) and corresponds to the dual matroid
M∗, we have

WC⊥(x, y) = ydim(C)(x− y)n−dim(C)T

(
M ;

x

y
,
x+ (q − 1)y

x− y

)
.

On the other hand, we have

1
|C|WC(x+ (q − 1)y, x− y) =

q− dim(C)(x− y)n−dim(C)(qy)dim(C)T

(
M ;

qx

qy
,
x+ (q − 1)y

x− y

)
.

The two expressions are equal.

Note that this proof is entirely combinatorial, in contrast to the usual proof which
involves characters of the additive group of Fn.

6 Trellis decoding

For a small but not quite trivial example, suppose that we are using the binary
dual Hamming code of length 7 to send information. The codewords are:

0000000
0011011
0101101
0110110
1001110
1010101
1100011
1111000

The minimum weight is 4, so we can correct one error and detect two errors.
However, in a practical communication channel, the received word is likely to be
an analog signal, sampled at seven time points, so we obtain seven real numbers.
Suppose that we receive

w = (−0.1, 0.0, 0.2, 0.9, 1.8, 0.9, 1.4) ∈ R7.

If we round each value to the nearest of zero and one, we obtain 0001111, which is
at distance 2 from the second, third and fifth codewords in the list, so we have a
decoding failure. If we make the (physically realistic) assumptions that the errors
at the sampling points are independent identically distributed Gaussian variables,
then it can be shown that the most likely codeword to have been transmitted
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is the one at smallest Euclidean distance from w in R7, which turns out to be
0101101. The method of trellis decoding provides a way to decode to the nearest
Euclidean codeword without first rounding the individual entries of w, and without
calculating the Euclidean distance of w to every codeword. Let F be an alphabet.
A trellis over F is a directed graph whose vertices come in layers V0, V1, . . . , Vn,
where V0 contains a single vertex s called the source, and Vn contains a single
vertex t called the target, and whose edges also come in layers Ei−1,i for i =
1, . . . , n, where an edge in Ei−1,i has initial vertex in Vi−1 and terminal vertex in
Ei. Moreover, each edge has a label, which is an element of the alphabet F . Now
any path from s to t in F has length n, and the labels of the edges on the path
(taken in order) form a word of length n. We say that the trellis is one-to-one
if different paths realise different words. The set C of all words represented by
paths in the trellis is the code represented by the trellis. Figure 1 shows a trellis
for the dual Hamming code. Now the trellis is used as follows. Each symbol in
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Figure 1: A trellis for the dual Hamming code

the alphabet F is represented by a real number (the signal level corresponding to
accurate transmission of that symbol). If F = GF(2), we may assume without loss
of generality that the signal levels for the elements 0, 1 ∈ F are the real numbers
0, 1. In general, we identify the set F with the corresponding set of real numbers.
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Now, when the ith component wi of the received word w is known, we assign the
length l(e) = (wi − a)2 to an edge e with label a in the layer Ei−1,i. When all
components of w have been received, then the sum of the edge lengths in any path
from s to t is equal to the squared Euclidean distance from w to the corresponding
codeword. So finding the nearest codeword to w is transformed into the problem of
finding the shortest path in a directed graph with edge lengths. Most of the work
can be done in real time. Once edge lengths l(e) are assigned to edges e ∈ Ei−1,i,
we assign to each vertex v ∈ Ei the number

f(v) = min{f(v′) + l(v′, v) : (v′, v) ∈ Ei−1,i}

(where the induction begins with f(s) = 0). Then f(v) is the length of the
shortest path from s to v. Once all components of x are known, then the length
of the shortest path from s to t is determined, and the actual path can be found
by working backwards. (This is essentially Dijkstra’s shortest path algorithm.) In
our example, the numbers work out as shown in Figure 2. We see that the shortest
path is

A→ C → G→ N → R→W → Y → Z,

and give the correct message corresponding to this path, which is 0101101.

7 The minimal trellis for a code

Every code is represented by at least one trellis. We can simply take |C| paths from
s to t which are edge-disjoint and have only the end vertices in common, and label
each path to represent one codeword. However, the discussion of decoding above
shows that a smaller trellis will give more efficient decoding. The algorithm given
involves one multiplication for each edge, and k additions and k−1 comparisons at
each vertex with in-degree k. So the number of arithmetic operations is twice the
edge count of the trellis, and the number of comparisons is equal to the cycle rank
(number of vertices minus number of edges plus one). A third obvious measure of
trellis size is the vertex count of the trellis. Muder’s theorem [7] shows that, for a
linear code, there is a trellis which is uniformly best in terms of vertex count.

Theorem 7.1 Let C be a linear code of length n. Then there is a trellis T repre-
senting C, with layers V0, . . . , Vn, such that, if another proper trellis T ′ for C has
layers V ′0 , . . . , V

′
n, then |V ′i | ≥ |Vi| for i = 0, . . . , n. Moreover, if |V ′i | = |Vi| for

i = 0, . . . , n, then T ′ is isomorphic to T . Furthermore, T also minimises the sizes
of all the edge layers and the cycle rank.

I will not prove this theorem here, but instead describe the simple construction of
the Muder trellis given in [1]. This also shows how to calculate the size of the trellis
from knowledge of the first and last bases for the matroid associated with the code
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Figure 2: A trellis with edge-lengths and distances

(see Proposition 3.1). Let C be a linear code over F , and let A = {a1, . . . , ak}
be the first base and B = {b1, . . . , bk} be the last base, where a1 < · · · < ak and
b1 < · · · < bk. For 0 ≤ i ≤ n, we define the ith past subcode of C to be

Pi = {c ∈ C : cj = 0 for all j > i},

and the ith future subcode to be

Fi = {c ∈ C : cj = 0 for all j ≤ i}.

By convention, Pn = F0 = C. If we take a generator matrix G for C in echelon
form, we see that Fi is spanned by the rows of G whose leading 1 occurs to the
right of i. Hence

dim(Fi) = |A ∩ {i+ 1, . . . , n}| = k − |A ∩ {1, . . . , i}|.

Dually,
dim(Pi) = |B ∩ {1, . . . , i}|.

Also, of course, we have
Pi ∩ Fi = {0},
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so Pi and Fi generate their direct sum. Now the following construction produces
the minimal trellis for C. The vertices in the ith layer are the elements of the
quotient space Vi = C/(Pi⊕Fi), that is, cosets of Pi⊕Fi in C. For each codeword c,
we put an edge with label ci from the coset (Pi−1 ⊕ Fi−1) + c ∈ Vi−1 to the coset
(Pi⊕Fi)+c ∈ Vi. We identify edges with the same label between the same vertices.
Note that, for example, two edges with the same initial vertex and the same label
also have the same terminal vertex. For suppose that c − d ∈ Pi−1 ⊕ Fi−1, say
c−d = p+f with p ∈ Pi−1 and f ∈ Fi−1. Suppose also that ci = di. By definition,
pi = 0, hence fi = (c − d − p)i = 0, and fi ∈ Fi. Thus, c − d = p + f ∈ Pi ⊕ Fi,
and so the terminal vertices of the corresponding edges are the same. Similar
arguments show:

Proposition 7.2 The trellis just constructed is isomorphic to the Muder minimal
trellis.

This shows that the first and last bases determine the sizes of the layers in the
Muder trellis:

Proposition 7.3 Let C be a linear code over GF(q). Then the sizes of the vertex and
edge layers in the Muder trellis for C are given by

|Vi| = q|A∩{1,...,i}|−|B∩{1,...,i}|,

|Ei−1,i| = q|A∩{1,...,i}|−|B∩{1,...,i−1}|,

where A and B are the first and last bases of the corresponding matroid.

For example, if C is the dual Hamming code of the preceding section, then the
first base is {1, 2, 3} and the last base is {4, 6, 7}, so we find immediately that the
sizes of the vertex layers are 1, 2, 4, 8, 4, 4, 2, 1 respectively.

8 Column permutations

The various measures of trellis size for a code differ from the more usual coding-
theoretic parameters in one significant way: they may differ for equivalent codes
(those obtained by column permutations). For example, if we reverse the order of
the coordinates of the dual Hamming code, the first base is {1, 2, 4} and the last
base {5, 6, 7}; the size of the trellis is unaltered but the individual layers change.
Swapping the fourth and fifth columns gives first base {1, 2, 3} and last base
{5, 6, 7}, so that the sizes of the layers in the minimal trellis are 1, 2, 4, 8, 8, 4, 2, 1.
We see that, to construct a small trellis for a code equivalent to C, we want to
make the first base come as late as possible, and the last base come as early as
possible. This is a difficult problem; it is known to be NP-complete in general
(see [5]). However, we can use the geometric structure of some codes to find the
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smallest trellises. First a class of codes in which we have no choice. A linear
code C of length n and dimension k is said to be maximum distance separable, or
MDS, if the corresponding matroid is the uniform matroid Un,k of rank k on n
elements (that is, every set of size k is a base – this is not the usual definition!)
A representation of the uniform matroid Un,k over GF(q) is simply a n-arc in
PG(k − 1, q); this instance of the code–matroid connection has been the subject
of a lot of research (see [2]). MDS codes are the worst with respect to trellis size:

Proposition 8.1 Suppose that k ≤ n/2.

(a) The number of vertices in the Muder trellis for an [n, k] code is at most
(n− 2k + 1)qk + 2(qk − 1)/(q − 1).

(b) The code C has the property that the Muder trellis for any code equivalent
to C has (n− 2k+1)qk +2(qk− 1)/(q− 1) vertices if and only if C is MDS.

Proof The given bound is the number of vertices in the Muder trellis for a code
whose first base is {1, . . . , k} and whose last base is {n − k + 1, . . . , n}. Clearly
this is the worst case. Now if C is MDS, then every set of k elements is a base,
so the first base is {1, . . . , k} and the last base {n− k+ 1, . . . , n} in any ordering.
Conversely, suppose that the bound is attained for all codes equivalent to C. Any
set of k columns can be brought to the first k positions by some permutation, and
so forms a base; so C is MDS.

We conclude with the extended binary Golay code C24, a [24, 12] binary code with
minimum weight 8. Since C is self-dual, the complement of any base is a base,
and we simply have to arrange the columns so that the first base occurs as late
as possible. A sextet is a partition of the 24 coordinates into six tetrads or sets
of 4, with the property that the union of any two tetrads supports a codeword.
Permute the coordinates so that the sets {1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {21, 22, 23, 24}
are the tetrads of a sextet. Then the first base contains 1, 2, 3, 4, 5, 6, 7 but not 8,
and 9, 10, 11 but not 12. The same argument shows that the last base does not
contain 13 or 17, so these are the remaining elements of the first base. Now we
can calculate that the number of vertices of the Muder trellis is 2686. On the
other hand, we cannot do better. Since the minimum weight of the code is 8,
the future subcode Fi is zero for i > 16, and so the last possible position for an
element of the first base is 17. Similarly, looking at the smallest possible support
of a d-dimensional subcode for d = 2, 3, . . ., we find upper bounds for the positions
of the elements of the first base, and we conclude that the best we can do is as
given in the preceding paragraph. This example hints at a connection between the
trellis parameters and the Hamming weight hierarchy of a code. Such a connection
was worked out by Papadopoulos in his thesis and is given in [1]. It states:
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Theorem 8.2 The first and last base of the [n, k] code C saatisfy

ai ≤ n− dk−i+1(C) + 1, bi ≥ di(C).
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What is an Infinite Design?
P.J. Cameron, B.S. Webb*

The Open University - Milton Keynes, UK
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It is usually assumed that an infinite design is a design with infinitely many points, with
the added condition that no block contains every point.

This encompasses a myriad of structures, some nice and others not. We are looking
at adding conditions to tighten this definition in order to exclude anomalous structures.
In particular, we would expect a design to be regular, the complement of a design to be a
design, and a t-design to be an s-design, for every 0 < s ≤ t. These are all properties that
can be taken for granted with finite designs, and for infinite Steiner systems. Most of the
work to date on infinite designs has concerned Steiner systems; they are well behaved,
despite being far more numerous than finite Steiner systems (they exist for all t < k ≤ v,
large sets exist for all finite t < k, and any Steiner system can be extended).

In this talk, we present examples of structures that we would not like to call designs
and investigate which additional conditions guarantee good behaviour.
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Constructing Geometries for PSL(2,11)
P. Cara*, F. Buekenhout, K. Vanmeerbeek

Department of Mathematics - Vrije Universiteit Brussel
Pleinlaan 2 - B-1050 Brussels, Belgium

e-mail: pcara@vub.ac.be

We present joint work with F. Buekenhout and K. Vanmeerbeek. Computer programs
allow us to construct and classify coset geometries with prescribed properties on which a
given group acts flag-transitively. Computerfree proofs of existence of these geometries
can then be looked for. For the group PSL(2, 11) a list of 23 geometries satisfying the
RWPRI property was obtained. For each of these we give a geometric construction. A
striking fact is that most constructions do not rely on the natural action of PSL(2, 11) on
12 points but rather on its sporadic action on 11 points. The set of 11 points on which
PSL(2, 11) acts 2-transitively will be called the short Galois line. Our constructions
also use structures on a pair of short Galois lines which are related to the Desargues
configuration and the Petersen graph.
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A new Family of Flocks in Characteristic 2
W. E. Cherowitzo

Denver, USA
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There have been few constructions of flocks of the quadratic cone in characteristic 2,
with the only families previously known being the linear flocks, the Fisher-Thas-Walker-
Kantor-Betten flocks, the Payne flocks, and the Subiaco flocks. There are many cor-
responding structures, including elation generalized quadrangles, translation planes and
herds of ovals.

In the generalized quadrangle setting, the hypothesis that there is a cyclic group
acting regularly on the lines through the base point is satisfied by all but the Payne
family, and was shown by Payne, Penttila and Royle to lead to further examples for
q = 43, 44, 45, 46, 47 and 48. Here we give a unified construction of the linear, FTWKB
and Subiaco flocks, as well as a new family that we name the Adelaide flocks, which
encompasses the examples of Payne, Penttila and Royle.
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Some Plane Isoperimetric Inequalities
and Applications

A.R. Chouikha
LAGA CNRS UMR 7539 - Mathematics - University of Paris-Nord

Av J.B. Clement - 93430 Villetaneuse, France
e-mail: chouikha@math.uinv-paris13.fr

We present some applications of plane Bonnesen-type isoperimetric inequalities, pub-
lished in our previous paper [1]. This is related to a conjecture of Paul Levy which
asserts:

Let a n-polygon Πn of sides a1, a2, ..., an, of perimeter Ln and enclosing an area An.

Define Pn = Ln
2

4

√
(1 − 2a1

Ln
).....(1 − 2an

Ln
), then the followings hold e

π≤An
Pn
≤1

.

This problem has interested many geometers. We propose to discuss some of their
contributions and give examples.

References

[21] A. R. Chouikha: Problems on polygons and Bonnesen-type inequalities, Indag
Math., vol 10 (4), p. 495-506, 1999.

70



The Steiner Ratio
of Several Discrete Metric Spaces

D. Cieslik
University of Greifswald, Germany

e-mail: cieslik@mail.uni-greifswald.de

The “Problem of shortest connectivity”, usually called Steiner’s Problem, is to find for
a finite set of points in metric space (X, ρ) a network interconnecting these points with
minimal length. Such a network must be a tree, called a Steiner Minimal Tree (SMT).
Whereas Steiner’s Problem is very hard as well in combinatorial as in computational
sense, the determination of a Minimum Spanning Tree (MST) is simple. Consequently,
we are interested in the greatest lower bound for the ratio between the lengths of these
both trees:

m(X, ρ) := inf

{
L(SMT for N)

L(MST for N)
: N ⊆ (X, ρ) is a finite set

}
,

which is called the Steiner ratio (of the space (X, ρ)).
This quantity is a parameter of the considered space and describes the approximation
ratio for Steiner’s Problem. It will be present a overview of the exact value and lower or
upper bounds for the Steiner ratio of several discrete metric spaces.
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Group Testing, Combinatorial Designs
and Computational Biology
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C.J. Colbourn
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e-mail: colbourn@emba.uvm.edu

A revolution in biology is underway, as researchers examine the structure and
function of complex biological molecules. Combinatorial methods have long played
an important role in these researches, for example in the phylogenetic problem of
tracing evolutionary paths. The recent dramatic increase in effort and interest has
occurred in part as a result of the focus of the Human Genome Project. It has
concurrently generated a comparable dramatic increase in the role of combinatorics
in general, and combinatorial designs in particular. These notes do not serve as
a detailed introduction to this emerging area. Rather they give an overview and
some references for further study.

1 A Problem in Molecular Biology

Let us begin with a motivating example. DNA structure and function are the
main foci of much current research. DNA can be thought of as very long but finite
sequences of symbols or letters from the alphabet {A,C,G,T}. Natural goals are to
first determine the particular sequence which forms the DNA of an organism, and
then to relate characteristics of this sequence to biological, chemical, and physical
properties, i.e. to understand the function. Simple molecular structures typically
have one primary function. On the other hand, DNA exhibits complexity both
of structure and of function. Functions appear to be encoded within contiguous
fragments. Hence we are concerned both with global and with local structure of
the DNA sequence. In general, we are able to test for the presence of certain
very short sequences within a DNA fragment; the exact location of the match or
matches is in general uncertain. We can also employ certain reactions to partition
a long DNA sequence into many shorter ones, “cutting” the sequence whenever a
certain subsequence occurs. Both of these processes ought not to be viewed with
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mathematical exactness. Instead, the presence or absence of certain subsequences
is complicated by physical, biological, and chemical similarities to other subse-
quences. In this setting, locating particular fragments within a large DNA chain,
to relate their presence to their function for example, is challenging. An approach
which has gained acceptance is to first employ a number of different reactions to
partition the same long DNA sequence into many shorter ones, called clones. Us-
ing multiple reaction mechanisms typically results in the DNA sequence being cut
in many different locations, so that in general clones can overlap, and a particular
short fragment of DNA may be covered by many clones. The clones produced in
this manner form a clone library. Clones are chosen so that they are simple enough
to analyze and sequence directly; so that they cover the entire DNA string, typi-
cally with all sections appearing in at least two clones; and so that they are long
enough to be recognizable (for the most part) within the entire DNA sequence.
Then to locate a particular short sequence within the DNA string, we search for
similarities between this string and the clones. To do this, we employ our ability to
test for the presence of very short fragments, called sequenced tagged sites. When
one is present in the desired string, knowledge of the clones in which it appears
restricts the possible locations within the entire DNA string. By comparing our
target string against the clones using a number of different sequenced tagged sites,
we can determine the location of our string with some exactness. ¿From a practical
viewpoint, we are not finished. Testing each clone individually is time-consuming
and expensive. However, we can accelerate this process dramatically by testing
many clones at the same time rather than testing them one at a time. Naturally,
in the process we lose our ability to distinguish which clone matched, but not the
information that some clone of the selection matched. Our brief tour of some
problems in DNA structure examination leads us then to a natural combinatorial
problem, which has been studied for many years. We take up this topic next, from
a mathematical viewpoint.

2 The Framework

A population P of b items contains a number d of defective items, and the remaining
b−d items are good. Items can be pooled together for testing: for a subset X ⊆ P,
the group test reports “yes” if X contains one or more defective elements, and
reports “no” otherwise. The objective is to determine, using a number of group
tests, precisely which items are defective. When group tests are all undertaken in
parallel, the problem is nonadaptive; otherwise it is adaptive. Then results from one
or more tests are available while constructing further pools to be tested. Among
adaptive testing methods, some operate in a limited number of stages or rounds.
Group testing was first studied in screening large populations for disease [15], and
with the advent of large-scale HIV screening, it has grown in importance. It has
also arisen in satellite communications [6, 30]. In this application, a large number
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of ground stations which rarely communicate share a satellite link. Rather than
polling the ground stations individually, pools of the ground stations are formed as
part of the system design. When the satellite enters a phase of accepting requests
for reservations of time slots, it polls each pool and from the positive results on the
pools it determines which ground stations wish to transmit. The satellite may have
many positive responses within one pool, but detects only that there is at least
one response. Hence, while cosmetically similar to the optical communication
situation, this problem encounters unions rather than sums of colliding signals.
A further application arises in the construction of frameproof codes, which are
designed to avoid coalitions of users forging the signature of a user not in the
coalition; see [27, 28]. In this paper, the primary application explored arises in
mapping genomes. To determine where a particular sequence is located within the
genetic material, we conduct a test to determine in which of the clones it appears.
Pooling of different clones can then be used [1, 2, 3, 4, 8, 19, 21, 24, 25].

3 The Role of Combinatorial Designs

Let P be a set of b items, and let X be a collection of subsets of P corresponding
to the group tests performed. Then (P,X ) is a solution to the nonadaptive group
testing problem if and only if, for any possible sets D1 and D2 of defective items,
{X : D1 ∩X �= ∅, X ∈ X} = {X : D2 ∩X �= ∅, X ∈ X} only if D1 = D2. The
dual of a solution (P,X ) is a pair (V,B), where the v group tests of X are in one-
to-one correspondence with the points of V , and the b items are in correspondence
with the blocks of B (for each item, the corresponding block contains the elements
corresponding to the group tests containing the item). Typically (V,B) is referred
to as a solution to the group testing problem; the goal is to maximize the number of
blocks (items tested) as a function of the number of points (group tests performed).
Often it is known with high probability that the number of defectives d does not
exceed some threshold value p. In the hypergeometric problem, the number of
defectives is assumed never to exceed p, and hence it is necessary that (V,B) has
the union of any two distinct sets, each containing at most p blocks, themselves
distinct. In the strict problem, it is necessary to identify the set of defective items
correctly when d ≤ p and to report when dp. In the latter case, the specific set of
defective items need not be determined, however. Now consider a solution (V,B)
to the nonadaptive group testing problem with d defectives. Form a |V | × |B|
incidence matrix. This matrix has the property that the unions of two sets of at
most d columns are distinct. The matrix is then called d-separable [16], and the
corresponding set system is d-union free [18, 20]. The columns of a d-separable
matrix form a superimposed code [17, 23] which permits up to d simultaneously
transmitted codewords to be unambiguously decoded. The decoding technique
appears somewhat involved, because we could in principle be required to examine
all unions of up to d columns. Hence a related family of matrices (or codes, or set
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systems) arises. If the incidence matrix contains no collection of d columns whose
union covers a column not in the collection, then M is a d-disjunct matrix. If a
disjunct matrix is employed, there is a simple decoding mechanism, observing that
all codewords covered by the received union are ‘positive’. Equivalently, we can
alter the condition on the set system to require that it is d-cover free, i.e. that no
union of d or fewer blocks contains another. Evidently, a d-cover free family is also
d-union free. Probabilistic bounds on the maximum numbers of blocks in cover
free and union free families are available [16]; see [17, 26] for upper bounds for
cover free families. See [13] for progress in the union free case. Erdős, Frankl, and
Fűredi [18] established that among cover free families with constant block size,
the maximum is realized by a Steiner t-design S(�, 2�− 1,m); indeed Balding and
Torney [3] recommend the use of an S(3,5,65) in a genetic application. For union
free families, Frankl and Fűredi [20] noted that Steiner triple systems give the
largest 2-union free families when the block size is three; by permitting block size
at most three, Vakil and Parnes [29] established a somewhat larger exact bound
using group divisible designs with block size three. In the error correction version
of group testing, some group tests are permitted to report “false positives”; an
a priori bound q on the number of such false positives is assumed. Balding and
Torney [2] observed that (V,B) is a solution to the strict group testing problem
with threshold p and error correction for q false positives if and only if, for every
union of p or fewer blocks, every other block contains at least q + 1 points not in
this union. Any packing (V,B) of t-sets into k-sets having k ≥ p(t− 1) + q+ 1 is a
solution to the strict group testing problem with threshold p and error correction
for q false positives. A Steiner system S(t, 2t − 1, v) is a solution to the strict
group testing problem with p = 2 and q = 0 that has the maximum number of
blocks of any solution [2]. Finally, we consider the use of combinatorial designs
in two-stage group testing. Here the objective in a first stage of pools is not to
identify all defectives precisely, but rather to identify a small subset of the items
which is guaranteed to contain all defective items. Frankl and Fűredi call a family
of sets d-weakly union free if, whenever two disjoint sets of blocks are chosen, each
containing d or fewer blocks, their unions are distinct. A 2-weakly union free family
with block size three provides pools for a group testing method for d = 2, in which
a set of at most three potential defectives are identified [10]. Moreover, while union
free families have no more blocks than a Steiner triple system has, weakly union
free families can have twice as many blocks [20]. Chee, Colbourn, and Ling [10]
established that certain twofold triple systems realize the bound. Not any twofold
triple system forms a weakly union free family; four forbidden configurations of
four blocks each must be avoided. Again, while the bound of Frankl and Fűredi
[20] suggests that designs can realize the maximum, the particular designs needed
require additional structural properties [10]. Applications of designs in general
in two-stage group testing appear to be just being explored; see [5] for useful
observations.
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4 Closing Remarks

Nonadaptive group testing finds the most natural applications in molecular biology,
as a consequence of the difficulty of each test to be performed on a pool. The close
connections between applications and the combinatorial framework outlined here
are already well established in communications, and are emerging in cryptography.
However, the connection with the analysis of complex molecular structure appears
to be the largest new source of interesting and difficult problems in design theory
and related discrete mathematics.
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1 Introduction

Our topic today is a new development: the Whitney algebra of a matroid. We
here present, with some indications of the role Gian-Carlo Rota played in its
development, the outlines of our recent work on matroids and an associated tensor
algebra. Our results were announced at the memorial session of the A.M.S. in
Washington, D.C. in January 2000, and were first published [11] in the Rota
Memorial issue of the JCT(A). We take the unusual measure of composing the
following text in the first person of the first of the two coauthors, as he will be
presenting this text at the Gaeta meeting. But rest assured that this a question
of style, not content.

Let me preface our report on the Whitney algebra by remarks in a some-
what broader context, recalling work I did with Gian-Carlo Rota, work which,
one November day in 1995, began to crystallize into this new subject. Gian-Carlo
Rota’s views on the Whitney algebra are fortunately recorded in a series of mes-
sages by electronic mail, and in the notebooks he filled during our discussions. It
is a pleasure to reread Gian-Carlo’s comments and advice, since they convey so
keenly his enthusiasm for the subject, and provide yet another proof of his uncanny
intuition for algebraic structures in combinatorics. As with so many of Rota’s long
range predictions, this one has taken years to sort out, but I can assure the reader
that his assessment of the situation was brutally correct. As predicted, the ab-
stract play of coordinates on a matroid points us to a natural algebraic structure
– a lax Hopf algebra – that is “not quite a Hopf algebra, but a new object closely
related to it”, and that may find wide use far from its birthplace in matroid theory.
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2 Higher Order Syzygies

Gian-Carlo and I met frequently during the past decade to discuss what we liked
to call ‘higher order syzygies’. Let me explain. Say you start with a finite set of
n1 vectors spanning a vector space V of rank n0. The linear relations among those
vectors will then form a vector space of rank n1 − n0. If we choose a set of n2

vectors spanning that space, the linear relations among those n2 vectors will form a
vector space of rank n2−n1+n0, ainsi de suite. The vector spaces spanned at each
level of the resolution, we called the spaces of syzygies, respectively of order 0 (the
vector space V itself), order 1 (spanned by the n1 linear relations), order 2, etc.
Fortunately, there is a natural choice of syzygies at each stage: take all relations
of minimal support. Any linear relation of minimal support is (for any given
support set) uniquely determined up to an overall scalar multiple, and is thus best
considered as a projective point. In particular, the projective configuration whose
points are the support sets of first order syzygies, that is, minimal dependent
subsets of P , we called the geometry of circuits. borrowing the term ‘circuit’
from matroid theory. In this way, the study of higher order syzygies becomes the
study of a sequence of configurations of projective points. These can be studied
algebraically, geometrically, even combinatorially. Gian-Carlo and I sensed that
there were fascinating combinatorial structures here, yet to be discerned, structures
that could shed light on the deeper mysteries of representation theory. If, instead
of a specific set P of vectors in a vector space, or configuration of projective
points, we simply have the combinatorial information as to which subsets of P
are independent, which dependent, that is, if we have only its matroid, then the
minimal support sets of the first order syzygies are uniquely determined, but the
higher order syzygies are not. A simple example: for six points a, b, c, d, e, f in
the plane, the uniform matroid M6,3, the four circuits abcd, abef, cdef have rank
3 for most representations of the matroid, but have rank 2, and become collinear
in the geometry of circuits, if and only if the lines ab, cd, ef are concurrent in the
plane. This distinction is not carried by the matroid. The idea of the geometry of
circuits of a configuration of points came out of earlier (1983) work on rigidity and
scene analysis [4]. If the matroid in question is the uniform matroid Mp,n on a set
P of p points in general position, rank n, then the circuits are all (n+ 1)-element
subsets of P , supports of the ‘elementary’ first order syzygies. The geometry of
circuits is the Dilworth completion of the n-fold lower truncation of the Boolean
algebra B(P ). The combinatorics of the Dilworth completion, where flats are
defined by a clever minimization of rank sums over partitions, thus provided the
first practical information about the structure of second order syzygies in simple
configurations [5]. Gian-Carlo and David Anick made a big step forward in 1991,
with their resolution of the bracket ring [7]. For uniform matroids they identified
spanning sets of syzygies of all orders, of a particularly simple form. Syzygies of
order k can always be written as linear combinations of syzygies of order k − 1,
using ‘scalar’ coefficients from the bracket ring. Anick and Rota restricted their
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attention to a class of linear combinations with single bracket coefficients. These
syzygies they found to be in natural bijection with a well-defined class of non-
standard tableaux. They characterized an appropriate boundary operator acting
on non-standard tableau that ‘returned’ the syzygy in question. They provided
me with an advance copy of their article; I set to work rewriting it [9]. I was able
to show that the boundary operator could be expressed as the action of a sum of
certain products of elementary straightening operations (working on various pairs
of consecutive rows of the tableau). The products (of idempotent operators) in
question are those produced by a finite state automaton. One biproduct of this
adventure was a computer program for the Anick-Rota resolution. To avoid the
doubly exponential behavior of the usual straightening algorithms, I implemented
the Rutherford method of interpolation, used by Jacques Désarménien in his work
with Rota on bitableaux [2][3], and as promoted and improved by Christophe
Carré, Alain Lascoux, and Bernard Leclerc [8]. We will come back to this below,
since it is the also the key to straightening in Whitney algebras. In the early 1990’s,
we worked mostly on what Gian-Carlo dubbed the ‘resolving bracket’, a way of
turning the geometry of circuits into a Peano space [10]. We often looked for ways
to unify this approach with the Anick-Rota resolution, or better, to carry out the
necessary calculations using a meet operator in an appropriate Cayley algebra.
Gian-Carlo and I met whenever and wherever we could, usually twice a year, in
Milano, in Firenze, in Strasbourg, in Los Angeles, or of course in Cambridge.

3 Tensor expressions for linear dependence

What turned out eventually to be the main line of attack arose quite unexpectedly.
Gian-Carlo realized he could build a new geometric theory around one simple idea:
that linear dependencies are more naturally expressed as equations in the tensor
algebra of an exterior algebra, rather than as linear combinations of points over
the bracket ring. In prior work, Gian-Carlo and his coauthors had expressed the
fact that a set, say abcde, was dependent by writing

[abcd] e − [abce] d + [abde] c − [acde] b + [bcde] a = 0,

a reasonable expression if the five points span a space of rank 4. If three points
a, b, c are collinear (of rank 2) in a space of rank 4, Rota et al were forced to employ
two extraneous general points d, e, to express this fact in the form

[abde] c − [acde] b + [bcde] a = 0,

using a procedure they called ‘filling brackets’. But in fact it’s both simpler and
more natural to write

ab⊗ c − ac⊗ b + bc⊗ a = 0, (1)
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where ab, ac, bc are extensors, wedge products of points. Let’s see what this means.
Consider a matrix C, whose rows coordinatize three collinear points:

C =
(a 0 −3 −5 9

b 9 6 4 0
c 5 2 0 4

)

The row vectors are dependent, for example with 4a + 5b − 9c = 0. The scalar
coefficients of the linear relation among these three points can be computed as
minors in any two independent columns of the matrix C, as in the calculation

a

∣∣∣∣ 9 4
5 0

∣∣∣∣ − b
∣∣∣∣ 0 −5
5 0

∣∣∣∣ + c

∣∣∣∣ 0 −5
9 4

∣∣∣∣ = 0,

where we formed the minors using columns 1 and 3. This is just Cramer’s rule,
as Gian-Carlo liked to say. But these minors are Grassmann coordinates; rewrite
this as:

a (bc)13 − b (ac)13 + c (ab)13 = 0

This equation holds for all pairs of indices (trivially so for indices of dependent
pairs of columns):

a (bc)jk − b (ac)jk + c (ab)jk = 0

so we arrive at the equation (1), an equation in tensor products of extensors. By
symmetry of point of view relative to the two tensor ‘positions’, equation (1) also
yields a spanning set of linear relations among the three extensors ab, ac, bc. Since
the three pairs of points all have the same span, the extensors ab, ac, bc differ
from each other only by a scalar multiple. In Grassmann coordinates they are,
respectively, −9,−5, and 4 times the vector

( 12 13 14 23 24 34
−3 −5 9 −2 6 4

)
The space of linear relations among ab, ac, bc has rank 2, spanned by any of the
columns of matrix C, that is:

ai (bc) − bi (ac) + ci (ab) = 0,

expressions obtained by acting on equation (1) by a linear functional: ith coor-
dinate projection of the vector in the first tensor position. Another way of inter-
preting the tensor equation (1), that better explains how it arises, is to observe
that the scalar expression

ai ◦ (bc)jk − bi ◦ (ac)jk + ci ◦ (ab)jk

is a Laplace expansion of (abc)ijk, the ijk-coordinate of the wedge product abc.
Since the set {a, b, c} is linearly dependent, the product abc is zero, so all its
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coordinates (3× 3 minors of the matrix C) are zero. Equation (1) is thus keeping
track of those algebraic relations among non-zero coordinates of vectors and wedge
products of vectors that follow from the fact that abc = 0. The origins of tensor
equations such as (1) are most clearly revealed, however, by the Hopf algebra
structure of the exterior algebra Λ =

⊕
Λk. Recall that the coproduct δ : Λ →

Λ ◦ Λ is the multiplicative map determined by δ(a) = a ◦ 1 + 1 ◦ a, for all vectors
a ∈ Λ1; for example,

δ(abc) = δ(a) δ(b) δ(c)
= abc ◦ 1 + ab ◦ c − ac ◦ b + bc ◦ a

+ c ◦ ab − b ◦ ac + a ◦ bc + 1 ◦ abc,

for vectors a, b, c (where the signs are determined by anticommutativity). Now
if the set {a, b, c} is dependent, then the wedge product abc is equal to zero in Λ,
and hence the coproduct δ(abc) is also zero. Since Λ is graded by the nonnegative
integers N, the tensor product Λ ◦ Λ is thus graded by N×N, and an element of
Λ ◦ Λ is equal to zero if and only if all its (N×N)-homogeneous components are
zero. Hence, in particular, if {a, b, c} is linearly dependent, then the homogeneous
component a ◦ bc − b ◦ ac + c ◦ ab of shape (1, 2) in the coproduct δ(abc) is equal
to zero; in other words, Equation (1) holds. We obtain similar relations in each
component T k(Λ) = Λ◦· · ·◦Λ of the tensor algebra T (Λ) =

⊕
T k(Λ) from the fact

that the iterated coproduct δk(a1 · · · ar) is zero for any dependent set of vectors
{a1, . . . , ar}. So that’s ultimately what’s hidden in that innocent-looking tensor
equation!

4 A flurry of electronic mail

In November 1995 Gian-Carlo and I began to take seriously the idea that the
abstract ‘play of coordinates’ in a geometric configuration was best expressed in
a tensor product of exterior algebras. It was the possible connection between
Hopf algebras and combinatorial geometry that whetted Gian-Carlo’s appetitite.
We began an exchange of electronic mail on what Gian-Carlo soon dubbed the
Whitney algebra of a matroid. Work began in earnest over the winter holidays,
and reached a climax in January 1966, thanks to a heavy snowfall that stranded
Rota in Cambridge for several days. By October of that year, our correspondence
ran to some 100 pages of text.

18 November, 1995 — Telephone call from Rota. He finds that the ‘tensor-
product’ approach to non-spanning syzygies is correct, that is, that

a⊗ bc− bc⊗ ac+ c⊗ ab
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is the zero tensor whenever a, b, c are collinear points (dependent vectors) in any
space, and gives a Hopf-algebra structure on an arbitrary matroid, potentially
replacing the ‘bracket ring’, which had the disadvantage of being commutative.
Idea: in an exterior algebra generated by formally independent points, set to zero
all joins of dependent sets of points, and their coproducts.

22 November, 1995 — I just read your fax, it is exactly what I
was thinking. I have gone a little further in the formalization of the
Hopf algebra of a matroid, so far everything checks beautifully. The
philosophical meaning of all this is that every matroid has a natural
coordinatization ring, which is the infinite product of copies of a certain
quotient of the free exterior algebra generated by the points of the
matroid (loops and links allowed, of course). This infinite product
is endowed with a coproduct which is not quite a Hopf algebra, but
a new object closely related to it. Roughly, it is what one obtains
when one mods out all coproducts of minimal dependent sets, and
this, remarkably, give all the exchange identities. I now believe that
everything that can be done with the Grassmann-Cayley algebra can
also be done with this structure, especially meets.

28 November, 1995 — I will send you material as soon as I
physically can. Everything works beautifully, and we have defined a
new concept of independent algebraic interest: Whitney algebras, which
generalize Hopf algebra in a way that is so natural that it will make
the Hopf algebraists envious. Your latest fax was very helpful, but I
will have to explain to you the main idea. I think there may be even
an interpretation of the critical problem for general matroids! This is
an idea of yours that is really bearing fruit.

29 November, 1995 — I will try to write down something tonight
and send it to you by latex. I still think this is the best idea we have
been working on in years, and all your past work on syzygies will fit in
beautifully.

20 December, 1995 — I am working on your ideas, trying to
recast them in letterplace language. I tried to write down something
last night, but I was too tired. Things are getting quite rough around
here.

9 January, 1996 — Thanks for the message. I am snowbound
in Cambridge, and won’t be leaving for Washington until Friday, at
least, so I hope to redraft the remarks on Whitney algebras I have been
collecting. It seems that we will have to translate Tutte’s homotopy
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theorem into the language of Whitney algebras, using circuits instead
of copoints. Has the theorem been restated in terms of circuits (as it
can, by taking complements)? If it has, I would appreciate your send-
ing me the statement, it will save me quite a bit of work. Neil White
has a translation into the language of brackets, and I am working with
his translation.

Here are some philosophical remarks. First, all of linear algebra should
be done with the Whitney algebra, no scalars ever mentioned. Second,
there is a new theorem to be stated and proved preliminarily, which
seems to be a vast generalization of the second fundamental theorem
of invariant theory. (Why, Oh why, did I not see this before?!)1 I think
this is the first step towards proving the big theorem. It is already
difficult, and I would appreciate your help.

Another priority is to see following your lead how to completely get
rid of meets, using Whitney algebra techniques. The point is to prove
classical determinant identities, such as Jacobi’s identity, using only
Whitney algebra methods (with an eye towards their quantum gener-
alizations!) Only by going through the Whitney algebra proofs will we
see how to carry out a quantum generalization of all this stuff.

It is of the utmost importance that you familiarize yourself with the let-
terplace representation of the Whitney algebra, through the Feynman
operators, and I will write up this stuff first and send it to you.

Two days later, still snowbound in Cambridge, Gian-Carlo composed a long
piece on his strategy for the Whitney algebra. I’ll show you this in at the end of
the talk, but first we should bring the story quickly up to date, and take a closer
look at the Whitney algebra. It was a busy Spring, with many visitors arriving at
M.I.T. for the RotaFest. In September, Bill Schmitt, an expert on Hopf algebras
in combinatorics, made a stop-over in Paris, enroute for a fall term visit at M.I.T.
At the conclusion of this visit, he and I proposed to collaborate with Gian-Carlo
in an effort to develop the theory of Whitney algebras. The three of us met in
Gian-Carlo’s Cambridge apartment late in October 1996, to map out the project.
This was regrettably to be our only three-way discussion of the subject. It was not
until the summer of 1997 that Bill and I had the occasion to work together over an
extended period. We found a basic cancellation property in exterior algebra, which
we call the ‘Zipper lemma’. From this we were able to derive the exchange relations
for a Whitney algebra. We then set out to settle the question: in precisely what

1Gian-Carlo here suggests a comparison between the Whitney algebra of a vector space, when
viewed as a matroid, and its exterior algebra.
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sense is the Whitney algebra a generalization of a Hopf algebra? The resulting
categorical setting, and in particular the concept of lax Hopf algebra, are quite
recent developments due to Bill Schmitt.

5 The free exterior algebra on a finite set

Given a linearly ordered finite set S of letters, the free R-exterior algebra E(S)
is the free R-algebra on S, with concatenation product of words, modulo the
ideal I generated by squares aa of letters a and sums ab + ba for pairs a, b in S.
The free exterior algebra E(S) is freely generated as an R-module by monotone
words. E(S) is a Hopf algebra, with coproduct δa = a ⊗ 1 + 1 ⊗ a and antipode
χ(w) = (−1)|w| w. If S is a basis for a finite dimensional vector space V , then E(S)
is isomorphic to the exterior algebra Λ(V ). The zipper lemma, below, is expressed
in terms of generalized binomial coefficients

(
n
k

)
with value 0 for negative k, but

with appropriate non-zero values for negative values of n. These are given by(
n

k

)
=

{
n(n−1)···(n−k+1)

k(k−1)···(1) for k > 0
1 for k = 0

This means that for n ≥ 0,
(
n
k

)
counts, as usual, k-element subsets of an n element

set, while for n ≤ 0, it is equal to

(−1)k
(
k + |n|
k

)
,

and counts k element multi-sets formed from an n-element set. These generalized
binomial coefficients still obey the usual recursion(

n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
.

An alternating sum of these recursion steps produces the usual cancellation: for
all integers n, k, p, with p ≥ 0,

p∑
i=0

(−1)i
(
n

k + i

)
=

(
n− 1
k − 1

)
+ (−1)p

(
n− 1
k + p

)
. (2)

For small values of n and k, they are given by the array




n k 0 1 2 3
3 1 3 3 1
2 1 2 1 0
1 1 1 0 0
0 1 0 0 0
−1 1 −1 1 −1
−2 1 −2 3 −4
−3 1 −3 6 −10




(3)
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The following cancellation theorem, holding in the free exterior algebra on a set,
considered as a Hopf algebra, will lead us directly to the exchange relations that
hold in Whitney algebras. For any subwords (not necessarily consecutive letters)
u and v of a monotone word w = a1 · · · ar, write u ≺ v to indicate that if
u = ai1 · · · aik then v is equal to aik+1 · · · ar, the final word in w, following all
elements of u.

Theorem 1 (The Zipper Lemma) For 0 ≤ k ≤ r, and for any word w of length r,

∑
(w)(r−k+1,·,·)
w(1)≺w(2)

δ(w(1)) ( χ(w(2)) ◦ w(3)) =
r∑
j=0

(
j−1
k−1

)
δr−j,j (w)

= (−1)k−1 w ◦ 1 + δr−k,k (w)
+ {terms of shape (r − l, l) for l > k}

(4)

Granted, this is not the sort of formula one digests at first glance. A few
examples will illustrate the extensive cancellation which there occurs, and the
reason for the appearance of the binomial coefficients. It may then be clear why
the Zipper (itself a theorem in exterior algebra) becomes the key to exchange
properties in the Whitney algebra, where the terms of shape (r − l, l), for l > k,
will all be zero. The simplest non-trivial case of the Zipper is that for r = k = 2,
where

δ(a) (b ◦ 1) + δ(b) (1 ◦ a) = (ab ◦ 1− b ◦ a) + (b ◦ a− 1 ◦ ab) = ab ◦ 1 − 1 ◦ ab

For r = 4, k = 3, all monomial terms cancel except for those of shapes (4, 1),
(1, 3), and (1, 4):

+ δ(ab) (cd ◦ 1) − δ(ac) (d ◦ b) + δ(bc) (d ◦ a)
+ δ(ad) (1 ◦ bc) − δ(bd) (1 ◦ ac) + δ(cd) (1 ◦ ab)

= abcd ◦ 1 + (a ◦ bcd− b ◦ acd+ c ◦ abd− d ◦ abc) + 3 (1 ◦ abcd)
= (δ(4,1) + δ(1,3) + 3δ(1,4)) abcd.

The full extent of cancellation in the zipper lemma is best revealed in tabular
form, below. Take r = 5, k = 4. The columns of the table are labelled by the
expressions abbreviated as follows:

ab : + δ(ab) (cde ◦ 1) ac : + δ(ac) (de ◦ b)
bc : − δ(bc) (de ◦ a) ad : + δ(ad) (e ◦ bc)
bd : − δ(bd) (e ◦ ac) cd : + δ(cd) (e ◦ ab)
ae : + δ(ae) (1 ◦ bcd) be : − δ(be) (1 ◦ acd)
ce : + δ(ce) (1 ◦ abd) de : − δ(de) (1 ◦ abc),

respectively, and contain the signs of the various monomials (given as row labels)
occurring in the expansions of those expressions. The total coefficient of each
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monomial is shown in the final column T .
ab ac bc ad bd cd ae be ce de T

abcde ◦ 1 + +1
acde ◦ b − + 0
bcde ◦ a + − 0
ade ◦ bc − + 0
bde ◦ ac + − 0
cde ◦ ac + − − + 0
ae ◦ bcd − + 0
be ◦ acd + − 0
ce ◦ abd − + 0
de ◦ abc − − + + + − 0
a ◦ bcde − −1
b ◦ acde + +1
c ◦ abde − −1
d ◦ abce + +1
e ◦ abcd + + + − − − − −1
1 ◦ abcde − − − − −4

so the sum is equal to

(δ(5,1) − δ(1,4) − 4δ(1,5)) abcde.

Notice that the non-zero signs in any row, for blocks of columns labelled by terms
in which the coproduct acts on words with the same last letter, are constant,
and that the number of such signs is a binomial coefficient. The cancellations
giving 0 in column T are in this way the result of formula (2). The coefficients in
column T , for any block of rows labelled by monomials of the same shape, combine
those labels into a coproduct slice. The coefficients thus obtained for the various
coproduct slices, 1, 0, 0, 0,−1,−4, form an interval in column 3 of the display (3)
of generalized binomial coefficients. In accordance with Taoist tradition, it is the
0’s in this expression that ‘matter’: the extensive cancellation which takes place
for monomials of ‘middle’ shapes.

6 The Whitney algebra of a matroid.

We develop a symbolic calculus based directly on a matroidM =M(S), a calculus
of independent sets for M that is the analogue of the exterior algebra of a vector
space. Start with the free exterior algebra E, over the integers, generated by the
set of points S; hence E consists of Z-linear combinations of anticommutative
words on S, and is a graded Hopf algebra, with coproduct determined just as for
the exterior algebra of a vector space. For example,

adceb = −abcde, abda = 0
(1 + ad) (c− ef + ab) = −acd− adef + ab+ c− ef
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We then construct the tensor algebra T (E) =
⊕
T k(E), consisting of linear com-

binations of tensor products of anticommutative words on S. and, finally, divide
out the ideal generated by all words formed from dependent sets in M and all ho-
mogeneous components (homogeneous by shape) of coproducts of such words. In
this manner we impose those algebraic relations on T (E) that necessarily would
hold if ‘dependence in M ’ meant ‘linear dependence over Z’, but without impos-
ing specific Z-linear relations on the points of M . We call the resulting structure
W (M) the Whitney algebra of the matroid M . The defining ideal D is homo-
geneous relative to the grading of T (E) by number of tensor positions, so the
quotient structure W is a direct sum of quotient algebras:

W = T (E)/D =
⊕
k≥0

T k(E)/Dk,

the idealsDk being the intersections withD∩T k. For example, ifM is the matroid
of rank 3 on five points abcde, with circuits abc, ade, bcde, then we have relations
such as

0 = (1 ◦ bc) δ2,1ade = ad ◦ bce − ae ◦ bcd
the term de◦abc disappearing because abc is dependent. In addition to the product
(which we denote by ◦, rather than ⊗) that a Whitney algebra W inherits as a
quotient of T (E), each component W k has an internal product, induced by the
product on T k(E). For example, in W 3, the internal product w of u = ad ◦ cdf ◦ a
and v = be ◦ ae ◦ b is

(ad ◦ cdf ◦ a) (be ◦ ae ◦ b) = − abde ◦ acdef ◦ ab. (5)

The algebra W is also graded by shape, the sequence of ranks of the tensor factors
in a monomial, and by content, the multiset of letters in a monomial. Thus, in
product (5),

σ(u) + σ(v) = (2, 3, 1) + (2, 2, 1) = (4, 5, 2) = σ(w)
|u| · |v| = (a2cd2f) · (ab2e2) = (a3b2cd2e2f) = |w|

In the grading by tensor power, W 0 = Z, while W 1 = E/D is freely generated,
having as basis the set of monotone independent words. The passage from matroids
to their Whitney algebras is functorial with respect to weak maps of matroids. Any
representation of a matroid M in a vector space V induces a unique morphism
from the Whitney algebra W (M) to the tensor algebra of the exterior algebra
T (Λ(V )). The coproduct on E induces a map δ : W 1 → W 2, to which we also
refer as a coproduct, which is coassociative in the appropriate sense and respects
internal products, that is, δ(uv) = δ(u)δ(v) in W 2, for all u, v ∈ W 1. In fact, W
has precisely the same algebraic structure as the tensor algebra of a commutative
Hopf algebra H, whereW k plays the role of the tensor power T k(H), but with the
crucial distinction that W k is not equal to T k(W 1). A good deal of elementary
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matroid theory is transported to Whitney algebra by the following device. For a
word w = b1 · · · bk and a letter a, write wi,a for the word b1 · · · bi−1abi+1 · · · bk.
If the letter a is in the closure of the word w, then the equality

w ◦ a =
k∑
i=1

wi,a ◦ b

holds in W (M). Whenever a matroid is represented in a vector space V , the
bracket in V converts this abstract information into concrete information about
linear relations among points. More generally, if w = b1 · · · bk and v = a1 · · · ak
are words in W with all ai in the closure of w, then, setting

wi,j = b1 · · · bi−1ajbi+1 · · · bk,

the equality
k−1︷ ︸︸ ︷

w ◦ · · · ◦ w ◦v = det (wi,j)1≤i,j≤k

holds in W (M). This is the Whitney algebra analogue of Bazin’s theorem. For
instance, under the above hypotheses,

b1b2b3 ◦ b1b2b3 ◦ a1a2a3 =

∣∣∣∣∣∣
a1b2b3 a2b2b3 a3b2b3
b1a1b3 b1a2b3 b1a3b3
b1b2a1 b1b2a2 b1b2a3

∣∣∣∣∣∣

7 The Fano matroid

It takes a bit of work to show it, along lines first developed by Peter Vamos, but a
matroid M is representable if and only if no product w1 ◦ · · · ◦wk of independent
words wi is zero in W (M). Suppose that there exists a product m of independent
words in W (M) and some integer r > 1 such that rm = 0. If M is representable
over some field K, then the characteristic of K divides the integer r. We can see
this at work in the Whitney algebra of the Fano matroid, the matroid of seven
nonzero vectors in a vector space of rank 3 over the two-element field GF (2). It
has circuits

abc ade afg bdg bef cdf ceg
defg bcfg bcde acef acdg abeg abdf

Given the high degree of symmetry in this matroid, there is essentially only one
type of non-zero monomial m, up to linear isomorphism, of shape (1, 3, 3), content
abcdefg. Each point gives rise to a partition of the complementary set of six points
into three pairs, the pairs of points collinear with the given point. For instance,
the point a gives rise to the partition bc, de, fg. The only way to form a non-zero
monomial of shape (1, 3, 3) with a in position 1 is to keep two of the three pairs
bc, de, fg together, splitting the other pair into the two final tensor factors. Thus,
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without loss of generality, we may assume m = a ◦ bcf ◦ deg. Consider the three
syzygies:

γ1 : (1 ◦ bc ◦ de) δ1,1,1 afg = + a ◦ bcf ◦ deg − a ◦ bcg ◦ def,
γ2 : (a ◦ b ◦ eg) δ0,2,1 cdf = − a ◦ bcd ◦ efg − a ◦ bcf ◦ deg,
γ3 : (a ◦ c ◦ ef) δ0,2,1 bdg = − a ◦ bcd ◦ efg + a ◦ bcg ◦ def.

Note that many monomials potentially occurring in these syzygies are zero because
of their inclusion of dependent words. Syzygies γ1 = 0 and γ3 = 0 establish that
the three monomials

a ◦ bcf ◦ deg, a ◦ bcd ◦ efg, a ◦ bcg ◦ def

are equal in the Whitney algebra of the Fano matroid. Syzygy −γ2 then establishes
that a◦bcf ◦deg, and thus each of these monomials, becomes zero when multiplied
by 2. By the symmetry noted above, any monomial of shape (1, 3, 3), content
abcdefg, becomes zero when multiplied by 2. It follows that the Fano matroid is
representable only over fields of characteristic 2.

8 Categorical setting

The categorical interpretation for Whitney algebras is as follows. We will see
that a Whitney algebra has the structure of a generalized Hopf algebra. The
generalization in question is called a lax Hopf algebra. Now R-Hopf algebras are
themselves the cogroup objects in a certain category, the category ComAlgR of
commutative R-algebras (see below). Cogroup objects in a category C can in
turn be defined as sum-preserving functors to C from a category, say T, with a
single cogoup object. This permits us to define a lax R-Hopf algebra as arbitrary
functors from T to ComAlgR, that is, functors not necessarily preserving sums.
Lets go back over this bit by bit. A graded R-algebra A is commutative if µA τ =
µA; in other words, if xy = Sign|x||y|yx, for all homogeneous x, y ∈ A. (In
general, the notion of commutativity for algebras in a symmetric monoidal category
depends on the choice of twist map τ ; this form of commutativity, familiar to
topologists, is referred to in many contexts as anticommutativity.) The category
ComAlgR of graded commutative R-algebras, and degree zero homogeneous R-
algebra maps, is not only symmetric monoidal, but has finite sums given by the
tensor product operation. Let T be the free category with finite sums generated
a single cogroup object. There is then a one-one correspondence between cogroup
objects in a category C and sum-preserving functors from T to C. The cogroup
objects themselves form a category, isomorphic to the category (T→ C), in which
the maps are natural transformations. In particular, taking C to be the category
ComAlgR of commutative R-algebras, we obtain the category of R-Hopf algebras.
Adopting this point of view, we define a lax Hopf algebra as any functor from T to
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the category of commutative R-algebras, not necessarily preserving sums. More
precisely, a lax R-Hopf algebra is a functor H from T to the category ComAlgR of
graded commutative R-algebras that satisfies H(1) = R. Let H be a lax R-Hopf
algebra, L a lax S-Hopf algebra. A morphism f : H → L is a sequence of ring
homomorphisms f : Hk → Lk that commute with the structure maps (coproduct
δ : H1 → H2, counit ε : H1 → R, antipode χ : H1 → H1, products µk : Hk → Hk,
units υk : R→ Hk). It follows that the pairs (f0, fk) are algebra morphisms from
(R,Hk) to (S,Lk) for each k ≥ 0, that is, a morphism of lax Hopf algebras is
a natural transformation of the corresponding functors from T to the category
ComAlg. We identify a lax Hopf algebra H with the direct sum Ĥ of the Hk.
A lax Hopf algebra H is of quotient type if the natural mapping from the tensor
algebra T (H1) into Ĥ is surjective. Any morphism f defined on a Hopf algebra
of quotient type is determined by the maps f0, f1 on H0, H1. If H is a Hopf
algebra and I ⊆ H is an ideal (not necessarily a coideal) of H such that ε(I) = 0
and χ(I) ⊆ I, then we obtain a lax Hopf algebra Ĥ by letting H0 = R, H1 = H
modulo the ideal I1 generated by the homogeneous components of I, H2 = H ◦H
modulo the ideal I2 generated by homogeneous components of δ(I), etc. (If I is
already homogeneous, then I1 = I.) Furthermore, the direct sum of the Ik’s is an
ideal I∞ of the tensor algebra T (H), and Ĥ = T (H)/I∞.

9 The Geometric Product

The fundamental exchange relations for Whitney algebra are expressible in terms
of a geometric product, an operator on pairs of words that generalizes the join and
meet operations in the Cayley algebra of a Peano space. In what follows, for any
word w in the free monoid on the set of elements of a matroid M , let ρ(w) denote
the rank in M of the set w. Thus for the matroid of three collinear points a, b, c,
the rank ρ(bacb) is equal to 2.

Definition 1 For words u, v ∈ W 1, with |u| = r, |v| = s, let k = r + s − ρ(uv).
The geometric product of u and v in W , written u � v, is given by the expression

u � v =
∑

(u)r−k,k

u(1)v ◦ u(2)

Whenever a matroid is represented, the geometric product u � v of bases u and
v for flats U and V is the tensor product of a basis for the join of U and V with a
basis for the meet, in the ambient space, of U and V . When the pair U, V of flats
is not modular inM , this ‘intersection’ will not be present as a flat of the matroid.
For any represented matroid, all words u(1)v occurring in the first tensor position
of the geometric product will be scalar multiples of each other, so we can express
the geometric product u � v as the tensor product of an extensor, representing
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the subspace spanned by uv, with a linear combination f of extensors of step k.
In this sense the geometric product furnishes a convenient algebraic sustitute for
the missing ‘intersection’ of u and v, and ‘restores modularity’: ρ(u) + ρ(v) =
ρ(uv) + ρ(f). The following theorem, which provides an alternative expression
for the geometric product, is the Whitney algebra analogue of the basic properties
of the meet operation in a Cayley algebra.

Theorem 2 (Exchange Relations) For words u, v ∈ W 1, with |u| = r, |v| = s, let
k = r + s− ρ(uv); then

∑
(u)r−k,k

u(1)v ◦ u(2) =
∑

(v)k,s−k

uv(2) ◦ v(1).

The commutativity of the geometric product is an immediate consequence. For
words u, v, and integer k as above,

u � v = (−1)(r−k)(s−k) v � u.

From this, we can pass directly to questions of commutativity of the tensor, or
external product in the Whitney algebra. At least for matroids M in which we
are sure that the product u ◦ v of independent words is non-zero (such as in all
representable matroids), then two non-zero words (necessarily of the same length)
commute if and only if they span the same flat in M . In particular, words formed
from bases for M commute, and generate a commutative subring called the basis
ring, a ring intimately related with Neil White’s bracket ring. For any matroid
represented in (and spanning) a vector space V , the basis ring maps into the
pseudoscalar algebra of V , and conversely, any such map that is nonzero on each
basis of M determines a representation of M (up to choices of bases for M and V ,
just as for maps of White’s bracket ring into a field.

10 Straightening in the Whitney algebra of a uniform matroid

In his proofs of the fundamental theorems in invariant theory, Gian-Carlo had fre-
quent recourse to straightening algorithms, claiming for these methods of proof the
virtue of being characteristic free. The idea is to arrange all monomials of a homo-
geneous component in lexicographic order, to determine the lexicographically-first
basis, and to design an algorithm that will express any given monomial in terms
of that basis.

For the Whitney algebra of a matroid, the straightening process should be
carried out in each homogeneous component in the grading by shape and content.
In general, as we have seen in the case of the Fano matroid, there will be a non-zero
torsion submodule, generated by monomials w such that kw = 0 for some non-zero
integer k. But even when there is no torsion, it may be difficult to characterize
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the monomials residing in the lexicographically-first basis. These problems do
not arise in uniform matroids: matroids Mn,k on an n-element set P , where the
circuits are precisely all (k+1)-element subsets of P . Such matroids are described
geometrically as ‘n points in general position, rank k’. We can present their
straightening method today, a variant of Rutherford’s interpolation algorithm [1].

So, choose a uniform matroid Mn,k on an n-element set P , and single out a
homogeneous componentWλ,c of shape λ and matching content c. In what follows,
all words are assumed to be monotone, with distinct letters. A inverted split of
a word A ⊆ P is any tensor product Aj ◦ · · · ◦ A2 ◦ A1 of words Ai such that
A1A2 · · ·Aj = A in the concatenation product. For example, st ◦ ir ◦ f is an
inverted split of the monotone word first. We call a monomial w is standard in
the Whitney algebra W (Mn,k) if and only if no factor of w is an inverted split
of a (k + 1)-element word, that is, of a circuit of M . For example, the monomial
ac ◦ e ◦ bd is standard in M5,3, but cd ◦ b ◦ ae is not.

We now assign a ‘best standard tableau’, which we call ‘standard form’, to each
monomial. The notion of the ‘depth’ of a letter in a particular tensor position in
a monomial will turn out to be particularly helpful concept. The j-truncation w|j
of a monomial w = w1 ◦ · · · ◦ wq is equal to w1 ◦ · · · ◦ wj if j ≤ q, and is equal
to w if j > q. Since letters (elements of P ) can be repeated in different tensor
positions of a monomial inW , we use the word token to refer to a letter in a tensor
position in a monomial. A token in a monomial w, written as lj , say, to denote
the letter l in tensor position j of w, is of depth d = d(lj) if and only if d is the
maximum value such that some inverted split of a word y of length d beginning
with the letter l is a factor of the j-truncation w|j of w. A monomial w is of depth
d, written d(w) = d, if and only if d is the maximum depth of tokens in w. The
standard form [|w|] of a monomial w ∈W (q) is a q × d array partially filled by the
tokens of w, such that each token lj occurs in row j, column d(lj), the columns
being numbered (exceptionally) from right to left. The integer d, the number of
columns, is the depth of w. Positions in the q × d array that are not filled are
called holes. For example, the monomials bd◦ad◦ bc and bd◦ bc◦ad have standard
forms

[|bd ◦ ad ◦ bc|] =


 • b d
a • d
b c •


 , [|bd ◦ bc ◦ ad|] =


 • • b d
• b c •
a • • d


 .

The token b2 in the second monomial is of depth 3 because the inverted split
d ◦ bc ◦ 1 divides the monomial bd ◦ bc ◦ ad.

Proposition 3 The standard form of any monomial is strictly increasing across each
row, and weakly increasing down each column. A monomial w in W (Mn,k) is
standard if and only if its standard form has no more than k columns.

Proof: The rows of [|w|] are monotone words (possibly with holes) because if ej
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and fj are consecutive tokens in the tensor position j, and if f is the initial letter of
a d-letter word y for which an inverted split y1 ◦· · ·◦yj divides w, then y1 ◦· · ·◦eyj
also divides w, and ey is a (d + 1)-letter word for which an inverted split divides
w. If fi is a token of depth d, let y = y1 ◦ · · · ◦ yi be an inverted split of a d-letter
word beginning with f . If ej is a token in a later tensor factor (i < j) such that
e is earlier in the alphabet than f , then ey is a (d + 1)-letter word for which the
inverted split y1 ◦· · ·◦yi ◦1◦· · ·◦1◦e divides w, and d(ej) > d(fi). So no inversion
of alphabetical order is possible in any column. A monomial is non-standard in
W (Mn,k) if and only if it contains an inverted split y1 ◦ · · · ◦ yi of a (k + 1)-letter
word y, if and only if some token (the first letter of the word yi) is of depth k+1.
If y = y1◦· · ·◦yq is a standard monomial of depth d in a homogeneous component
Wλ,c of W (Mn,k), so d ≤ k, and if w = w1 ◦ · · · ◦wq is any monomial in Wλ,c, an
interpolant from w to y, written U : w → y, is any d × q array U partially filled
with content c such that

(1) the row contents of U are the respective tensor factors of w, and

(2) the columns of [|y|] are obtained from the respective columns of U by a per-
mutation of letters only, leaving all holes in place.

The sign of an interpolant U : w → y is the product of the signs ±1 of the
individual row permutations used to pass from the tensor factors of w to the rows
of U (irrespective of holes). Define an integer value τ(w, y) to be the integer sum
of the signs of all interpolants U from w to y. Observe that if the content c has
no repeated letters then an interpolant U , if it exists, is unique, so the integers
τ(w, y) will be in the set {−1, 0,+1}.

Proposition 4 If w is a monomial, z a standard monomial, and τ(w, z) �= 0, then
z ≤ w in lexicographic order. For any standard monomial y, τ(y, y) = 1.

Proof: Let U : w → y be an interpolant from a monomial w ∈W q to a standard
monomial y, say of depth d. Let Y = [|y|]. Create a d × q array V with holes in
the same positions as in Y , but with row words equal to the corresponding tensor
factors of w. Let pi be the first token in V that is different from the corresponding
token qi in Y . Since all tokens in tensor positions prior to i, and all tokens to
the left of pi in row i, are fixed in the passage via V to Y , the letter p can only
be moved to the right in passing from V to U , and can only be fixed or move
downward in the passage from U to Y . The letter p thus occupies a position SE
of that of qi in the standard form Y . Since p �= q, we have p > q, so y < w in
the lexicographic order on monomials. For any standard monomial y, the identity
permutation on rows provides an interpolant of sign +1 from y to y. Since no
column content is modified in passing from [|y|] to [|y|], only the identity interpolant
is available, and τ(y, y) = 1.
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Let be Mon (λ, c) be the set of monomials of shape λ, content c, and Monst(λ, c) ⊆
Mon (λ, c) the subset of standard monomials. Let F = F (Mon (λ, c)) be the Z-
module freely generated by Mon (λ, c), and Fst = F (Monst(λ, c)) the submodule
freely generated by the subset Monst(λ, c).

Define a function τy on generators w of F by τy(w) = τ(w, y), and extend it
by Z-linearity to a linear form, also denoted τy, from F to Z, an element of the
dual module F ∗.

Proposition 5 Ker τy contains all elementary syzygies of Wλ,c, so τy is well-defined
as a linear form on Wλ,c, an element of W ∗λ,c.

Proof: In any elementary syzygy x · δz, where z is a word of length k + 1 and
x · δz is homogeneous of shape λ, content c, two monomials differing only by the
exchange of two letters in z have opposite sign. Because [|y|] has at most k columns
there is a pair ai, bj of tokens from z in the same column of [|y|]. If w is any term
in the syzygy x · δz such that w has an interpolant U to y, then, exchanging the
letters a and b which interpolate to ai and bj in y, we obtain another monomial
summand w′ of x · δz, with opposite sign, and which has an interpolant U ′ to y
obtained by exchanging the tokens ai and bj . Since the row permutations used
to pass from w and w′ to U and U ′, respectively, are the same, the interpolants
U and U ′ have the same sign, and their contributions to τy(x · δz) cancel. Thus
τy(x · δz) = 0.

Now define a function τ on generators w of F by

τ(w) =
∑
y

τ(w, y) y,

the sum being over all standard monomials y ∈ Monst(λ, c), and extend it by
Z-linearity to a map from F to Fst.

Proposition 6 Ker τ contains all elementary syzygies of Wλ,c, so τ is well-defined
as a linear map from Wλ,c to Fst.

Proof: Since τ =
∑
y τy(y), and since by Proposition (-1), τy(x · δz) = 0 for

every elementary syzygy x · δz, all defining syzygies of Wλ,c are in the kernel of τ .

Let σ be the restriction of τ to Fst. Consider the matrix of τ relative to the
basis Monst(λ, c), in lexicographic order. By Proposition (-2), the matrix is lower
triangular, with ones on the diagonal, and thus is invertible. The inverse matrix
defines a Z-linear transformation σ−1 from Fst to Fst. Define a Z-linear map ρ
from F to Fst as the composite τσ−1 (τ acts, then σ−1). For any fixed standard
monomial z, define ρz as the projection of ρ on the z-component of Fst. Thus

ρz(w) =
∑
y

τ(w, y)σ−1(y, z),
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the sum being over all standard monomials y.

Proposition 7 The homogeneous component Wλ,c of the Whitney algebra of the uni-
form matroid Mn,k is isomorphic to the Z-module Fst freely generated by the stan-
dard monomials of shape λ, content c.

Proof: For any standard monomial z, the linear form rz maps z to 1, and all other
standard monomials y to 0. So the standard monomials are independent in Wλ,c.
Any non-standard monomial w is expressible the internal product w = x · z′
for some monomial x and some inverted split z′ of a (k + 1)-element set z. The
elementary syzygy x · δz expresses w as a linear combination of monomials earlier
in lexicographic order. Repeating this reduction process a finite number of times
produces an expression for w as a Z-linear combination of monomials not further
reducible, that is, as a linear combination of standard monomials.

Proposition 8 The linear map ρ : Wλ,c → Fst straightens the homogeneous com-
ponent of the Whitney algebra, expressing each element uniquely as a Z-linear
combination of standard monomials.

Proof: The map ρ, followed by the inclusion map of Fst in Wλ,c, is an isomor-
phism.

Let’s look at one example of the straightening algorithm in action, for the
uniform matroid M4,2, a figure of four collinear points, and with a choice of shape
(1, 2, 1), content abcd. The complete interpolation table is in Figure 1. The row
and column labels for the following matrices are to be found in that figure.

The matrix σ of interpolation coefficients from standard monomials to standard
monomials, is 



+1 0 0 0 0
+1 +1 0 0 0

0 0 +1 0 0
0 0 +1 +1 0
0 0 +1 0 +1


 (σ)

with inverse matrix 


+1 0 0 0 0
−1 +1 0 0 0

0 0 +1 0 0
0 0 −1 +1 0
0 0 −1 0 +1


 (σ−1)

The matrix of interpolation coefficients from non-standard monomials to standard
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 • a
b c
• d





 • a
b d
c •





 • b
a c
• d





 • b
a d
c •





 • c
a d
b •





 a •
b c
d •





 • a
b c
• d





 a •
b d
c •





 • a
b d
• c





 • a
b d
c •





 b •a c
d •





 • b
a c
• d





 b •
a d
c •





 • b
a d
• c





 • b
a d
• c





 c •
a d
b •





 • c
a d
• b





 • c
a d
b •





 a •
c d
b •





 • a
c d
b •





 b •
c d
a •





 • b
c d
a •





 c •a b
d •





 • c
b a
• d





 • c
a b
• d





 c •
b d
a •





 • c
b d
• a





 • c
b d
a •





 d •
a b
c •





 • d
b a
• c





 • d
b a
c •





 • d
a b
• c





 • d
a b
c •





 d •
a c
b •





 • d
c a
b •





 • d
a c
• b





 • d
a c
b •





 d •
b c
a •





 • d
b c
• a





 • d
b c
a •





 • d
b c
a •




Figure 1: Interpolation table for shape (1, 2, 1), content abcd in M4,2
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monomials, is 


0 +1 0 0 0
0 0 0 +1 0
−1 0 +1 0 0
+1 0 0 0 +1
−1 −1 +1 +1 0

0 −1 +1 0 +1
+1 0 0 −1 +1




(τ)

The product matrix τσ−1 is the matrix for straightening:




a ◦ bc ◦ d a ◦ bd ◦ c b ◦ ac ◦ d b ◦ ad ◦ c c ◦ ad ◦ b
a ◦ cd ◦ b −1 +1 0 0 0
b ◦ cd ◦ a 0 0 −1 +1 0
c ◦ ab ◦ d −1 0 +1 0 0
c ◦ bd ◦ a +1 0 −1 0 +1
d ◦ ab ◦ c 0 −1 0 +1 0
d ◦ ac ◦ b +1 −1 0 0 +1
d ◦ bc ◦ a +1 0 0 −1 +1




(ρ)

11 On the Feynman entangling operator

On 11 January, 1996, during that snowstorm in Cambridge, Gian-Carlo sent me
a long and detailed email message proposing to represent any Whitney algebra as
a quotient of a supersymmetric letter-place algebra, via the Feynman entangling
operator.

Specifically, Gian-Carlo explained that the Whitney algebraW (M) of any ma-
troidM =M(S) can be faithfully represented as a quotient of the supersymmetric
algebra Super[S− |P+]. He mapped each monomial w1 ⊗w2 ⊗ · · ·wk in W (M) to
the product

(w1 | p(|w1|)
1 ) (w2 | p(|w2|)

2 ) · · · (wk | p(|wk|)k ),

where the words p(|wi|)i are divided powers of positive letters representing the
different possible positions in the tensor product. (The letter-place pairs (a | p)
are thus anticommutative.) The linear extension of this definition to a map on
W (M), he termed the Feynman entangling operator.

As Gian-Carlo later insisted on several occasions, the exchange relations for
Whitney algebra should in principle be proved using straight-forward properties
of the Feynman entangling operator, along the lines of the simple proof of the
superalgebra exchange property, Theorem 10 of [6], noting in passing that the
coproduct operators of the Whitney algebra correspond, under entangling, to po-
larizations of positive places.

This important task has not yet been carried out; I seize the present occasion
to enlist the aid, in particular, of our friends from Bologna. I would be delighted
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to share the original texts of these messages and notes on the Feynman entangling
operator with anyone willing to pursue this research.
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Partial and Semipartial Geometries: an Update

F. De Clerck
University of Ghent - Department of Pure Mathematics and Computer Algebra

Galglaan 2, B-9000 Gent, Belgium
e-mail: fdc@cage.rug.ac.be

The Handbook of Incidence Geometry [6] appeared in 1995. In chapter 12, On some
rank two geometries, an almost complete overview was given on the status of the theory
on partial and semipartial geometries. Now, five years later, it is maybe a good time to
give an update of this status. Indeed a lot of things have happened during these years.
Moreover we take the opportunity to give complete parameter lists of all known examples
of partial and semipartial geometries known so far.

1 Introduction

An (α, β)-geometry S = (P,L, I) is a connected partial linear space of order (s, t)
(i.e. two points are incident with at most one line, each point is incident with
t + 1 (t ≥ 1) lines, and each line is incident with s + 1 (s ≥ 1) points), with the
property that for every anti-flag (x, L) there are either α or β lines through x
intersecting L.

The point graph Γ(S) of an (α, β)-geometry is the graph with vertex set the
set of points of S; two vertices are adjacent if and only if they are different and
collinear in S. The block graph of an (α, β)-geometry is the graph whose vertices
are the lines, and vertices are adjacent if and only if the corresponding lines are
concurrent.

If α = β, S is called a partial geometry with parameters s, t, α, which we
denote by pg(s, t, α) [1]. In this case the graph Γ(S) is a strongly regular graph
srg(v, k, λ, µ); more precisely it is a

srg((s+ 1)
st+ α
α

, s(t+ 1), s− 1 + t(α− 1), α(t+ 1)).

A strongly regular graph Γ with these parameters (which are satisfying t ≥
1, s ≥ 1, and 1 ≤ α ≤ min{s + 1, t + 1}) is called a pseudo–geometric (s, t, α)–
graph. If the graph Γ is indeed the point graph of at least one partial geometry
then Γ is called geometric.
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Note that a graph can be pseudo–geometric for at most one set of values s, t, α
and assuming α 	= s + 1, the cliques of size s + 1 corresponding to potential
lines must be maximal. However, there can exist several non-isomorphic partial
geometries with the same graph as point or block graph. A pseudo-geometric graph
is called faithfully geometric if and only if there is up to isomorphism exactly one
partial geometry with this graph as point graph.

Another important family of (α, β)-geometries is given by the so-called (0, α)-
geometries (i.e. β = 0). Here the point graph is not necessarily a strongly regular
graph. Those (0, α)-geometries which have a strongly regular point graph are called
semipartial geometries and are denoted by spg(s, t, α, µ) and were introduced in
[17]. Note that the parameter µ is the parameter of the strongly regular point
graph, which counts the number of vertices adjacent to two non-adjacent vertices.
If α = 1 these semipartial geometries are better known as partial quadrangles
which are introduced by P. J. Cameron [8].

Remarks

1. Special classes of partial geometries are the generalized quadrangles (α = 1)
introduced by Tits, see [28]; the 2–(v, s+ 1, 1) designs (α = s+ 1) and their
duals (α = t+1); the Bruck nets (α = t) and dual Bruck nets (α = s). In this
overview we will restrict ourselves to the so-called proper partial geometries,
which are the partial geometries with 1 < α < min{s, t}.

2. A proper semipartial geometry is a semipartial geometry which is not a partial
geometry.

3. For the description of the examples of partial and semipartial geometries
known until 1995, we refer to [16]. In the sequel we will give an overview of
some new constructions of partial geometries having sometimes new param-
eters. In section 4 we will give complete parameter lists of the examples of
the proper partial and semipartial geometries known at present.

2 New constructions of partial geometries

2.1 The partial geometry constructed from the Hermitian two-graph

A two-graph [30] (Ω,∆) is a pair of a vertex set Ω and a triple set ∆ ⊂ Ω(3), such
that each 4-subset of Ω contains an even number of triples of ∆. A two-graph is
called regular whenever each pair of elements of Ω is contained in the same number
a of triples of ∆.

Given any graph Γ = (X,∼), one can construct a new graph by using Seidel-
switching. For this, partition the vertex set X as X = X1 ∪X2, leave the adjacen-
cies inside X1 and X2 as they are and interchange edges and non-edges between
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vertices of X1 and X2. Graphs which can be mapped to each other by Seidel-
switching are called switching equivalent. It is known [30] that, given v there is
a one-to-one correspondence between the two-graphs and the switching classes of
graphs on the set of v elements. If the two-graph (Ω,∆) is regular and if (Ω,∼)
is any graph in its switching class which has an isolated vertex ω ∈ Ω, then
(Ω \ {ω},∼) is a strongly regular graph.

Let H be the Hermitian curve in PG(2, q), q odd, defined by the Hermitian
bilinear form H(x, y). The Hermitian two-graph (Ω,∆) is defined by taking as
a vertex set Ω the set of q3 + 1 points of H and a triple {x, y, z} ∈ Ω(3) is an
element of ∆ if and only if H(x, y)H(y, z)H(z, x) is a square (if q ≡ −1 (mod 4))
or a non-square (if q ≡ 1 (mod 4)) [34]. This two-graph appears to be regular
with a = (q2+1)(q−1)

2 and in its switching class there is indeed a graph which
has an isolated vertex. This yields a strongly regular graph H(q) which is an
srg(q3, (q2+1)(q−1)

2 , (q−1)3

4 −1, (q2+1)(q−1)
4 ) and is pseudo-geometric with parameters

s = q − 1, t = q2−1
2 , α = q−1

2 . If q = 3 this graph is the point graph of the unique
generalized quadrangle of order (2, 4). Although it has been proved (computer
search) by Spence [33] that H(q) is not geometric for q = 5 and q = 7 it is
remarkable that the graph is indeed geometric if q = 32m which has been proved
by Mathon; we refer to [25] for more details. So far, a pure geometric construction
of this partial geometry is not known. However, see [24] for some more geometric
background.

2.2 Partial geometries from perp-systems

R. Mathon announced in June 1999 during the 2nd Pythagorean Conference
(Samos, Greece) the existence of a set R of 21 lines of PG(5, 3) that are pair-
wise skew (hence form a partial line-spread) with the property that every plane
of PG(5, 3) through one of the 21 lines of R intersects exactly two other lines of
R. Actually it is an SPG 1-regulus in the sense of Thas [38] (a brief description
can also be found in [16]) with no tangent planes. The construction by R. Mathon
is a computer construction. It yields a new partial geometry with parameters
s = 8, t = 20, α = 2. Embed PG(5, 3) as a hyperplane Π in PG(6, 3). The points
of the partial geometry are the 36 points of AG(6, 3) = PG(6, 3) \ Π, the lines of
the partial geometry are the affine planes of AG(6, 3) having as line at infinity one
of the 21 elements of R. Although quite some other nice properties of this SPG
1-regulus R in PG(5, 3) are known, there is so far no computer free construction
known. However these properties have led to a new concept, namely Perp-systems
which we shortly describe here. For more details we refer to [11].

Consider a PG(N, q) equipped with a polarity ρ. Define a partial perp-system
R(r) to be any set {π1, . . . , πk} of k(> 1) totally non-singular r-spaces of PG(N, q)
such that no πρi meets an element of R(r). One easily proves that
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|R(r)| ≤ q
N−2r−1

2 (q
N+1

2 + 1)

q
N−2r−1

2 + 1
. (2.1)

We will only deal with systems R(r) such that equality holds in (2.1), such a
system is called a perp-system.

Theorem 1 Let R(r) be a perp-system of PG(N, q) equipped with a polarity ρ and
let R(r) denote the union of the point sets of the elements of R(r). Then R(r)
has two intersection sizes with respect to hyperplanes.

This implies that R(r) yields a two-weight code and a strongly regular graph
Γ∗(R(r)) [7]. The graph is constructed by embedding PG(N, q) as a hyperplane Π
in PG(N + 1, q). The vertices of the graph are the qN+1 points of AG(N + 1, q) =
PG(N, q) \Π, two vertices are adjacent whenever the line of PG(N + 1, q) joining
them is intersecting Π in an element of R(r).

One easily checks that this graph is a pseudo-geometric(
qr+1 − 1,

q
N−2r−1

2 (q
N+1

2 + 1)

q
N−2r−1

2 + 1
− 1,

qr+1 − 1

q
N−2r−1

2 + 1

)
-graph.

One can prove some restrictions on the parameters. More precisely one can
prove the following theorem.

Theorem 2 Let R(r) be a perp-system of PG(N, q) equipped with a polarity ρ. Then

• 2r + 1 ≤ N ≤ 3r + 2;

• If N = 2r + 1 then q is odd and Γ∗(R(r)) is the point graph of a net with
qr+1 points on a line and qr+1+1

2 lines through a point.

• Assume that N 	= 2r + 1 then r+1
N−2r−1 is a positive integer; if N is even

then q has to be a square. The graph Γ∗(R(r)) is the point graph of a partial
geometry

pg

(
qr+1 − 1,

q
N−2r−1

2 (q
N+1

2 + 1)

q
N−2r−1

2 + 1
− 1,

qr+1 − 1

q
N−2r−1

2 + 1

)
.

One can construct perp-systems from other perp-systems. More precisely the
next theorems are proved in [11].

Theorem 3 Let R(r) be a perp-system with respect to some polarity of PG(N, qn),
then there exists a perp-system R′((r + 1)n − 1) with respect to some polarity of
PG((N + 1)n− 1, q).
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Theorem 4 If the classical polar space P admits a perp-system R(r), then the polar
space Q admits a perp-system R(2r + 1), for (P,Q) =

(H(2n, q2),Q−(4n+ 1, q))
(H(2n+ 1, q2),Q+(4n+ 3, q)),
(Q(2n, q2),Q+(4n+ 1, q)) for q odd,
(Q(2n, q2),Q(4n, q)) for q even,
(Q−(2n+ 1, q2),Q−(4n+ 3, q)),
(H(2n, q2),W4n+1(q)).

Remarks

1. A net with the parameters as in theorem 2 and coming from a perp-system
does exist for every odd q.

2. If N is maximal i.e. if N = 3r+ 2 then r is odd and the partial geometry is
a

pg(qr+1 − 1, q
r+1
2 (qr+1 − q

r+1
2 + 1), q

r+1
2 − 1).

This partial geometry has the parameters of a partial geometry T ∗2 (K), with
K a maximal arc of degree q

r+1
2 in a PG(2, qr+1). A selfpolar maximal arc

of degree qn in a PG(2, q2n) is a maximal arc K such that each point p ∈ K
is mapped by a polarity ρ of the plane on an exterior line pρ of K. If q is
even, there exist selfpolar maximal arcs of Denniston type; they yield a perp-
system R(0). Applying theorem 3 this gives a perp-system with r = n − 1
in PG(3n− 1, q2) and a perp-system with r = 2n− 1 in PG(6n− 1, q).

3. The set of 21 lines in PG(5, 3) found by Mathon is a perp-system R(1) in
PG(5, 3). The polarity evolved can be either the symplectic polarity or the
elliptic orthogonal polarity. In this case N = 5 and r = 1, hence N is
maximal and the partial geometry has the parameters of a T ∗2 (K), with K a
maximal arc of degree 3 in PG(2, 9); however such a maximal arc does not
exist.

4. So far, there is no example known of a perp-system in PG(N, q) with 2r+1 <
N < 3r + 2.

5. The results in theorem 4 are results that are of the same type as known
results on m-systems, introduced by Thas and Shult [31, 32]. There are
indeed connections with m-systems. For more details we refer to [11].

2.3 Partial geometries with t = s+ 1

2.3.1 Derivation of partial geometries

Let Φ be a pg–spread of a pg(s, t, α) S = (P,L, I), that is a (maximal) set of stα +1
lines partitioning the point set. Assume t > 1 and let L be any line of L \ Φ. Let
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ΦL be the set of s+1 lines of Φ intersecting L. Then L is called regular with respect
to Φ if and only if there exists a set of s+1 lines L(L) = {L0 = L,L1, . . . , Ls} that
partitions the set P(ΦL) of points covered by ΦL, and each element of L\(L(L)∪Φ)
is intersecting P(ΦL) in at least one point and at most s points.

It is easy to prove (see [13]) that if a pg(s, t, α) S has a regular line L with
respect to a pg–spread Φ, then t ≥ s + 1. If t = s + 1 then every line M not
being an element of the pg–spread Φ neither of L(L) intersects P(ΦL) in α points.
Now assume that Φ is a pg–spread of a pg(s, s + 1, α) such that every line is
regular with respect to Φ. Then L \ Φ is partitioned in s(s+1)

α + 1 sets Li (i =
1, . . . , s(s+1)

α +1) each containing s+1 mutually skew lines. The spread Φ is called
a replaceable spread and can be used to construct the following incidence structure
SΦ = (PΦ,LΦ, IΦ). The elements of PΦ are on the one hand the points of S and
on the other hand the sets Li (i = 1, . . . , s(s+1)

α + 1), LΦ = L \ Φ. Finally p IΦ L
is defined by p I L if p ∈ P and by L ∈ p if p ∈ {Li | i = 1, . . . , s(s+1)

α + 1}.
Generalizing a construction of Mathon and Street [26], one can prove (see [13])
that SΦ is a pg(s + 1, s, α). The partial geometry SΦ (and its dual) is called a
partial geometry derived from S with respect to Φ.

Note that the set φ = {Li | i = 1, . . . , s(s+1)
α +1} is a replaceable spread of SDΦ

and that the derived partial geometry (SDΦ )φ is isomorphic to the partial geometry
SD [9]

2.3.2 The derived partial geometries of PQ+(4n− 1, q) (q = 2 or 3)

It has been checked by computer (see [26]) that the partial geometry PQ+(7, 2)
constructed by De Clerck, Dye and Thas [14] (but other constructions do exist,
see [16] for details) has exactly 3 replaceable spreads yielding (after dualizing) 3
non-isomorphic partial geometries pg(7, 8, 4). De Clerck [13] proved this result
geometrically for both q = 2 and q = 3. Actually, Mathon and Street [26] have
constructed by computer seven new partial geometries pg(7, 8, 4) by starting from
the partial geometry PQ+(7, 2) and by using derivation with respect to a suitable
replaceable spread. They give in [26] information on the order of the automorphism
groups of the geometries as well as information on the point and block graphs of
these geometries. They remarked that the point graphs of four of the geometries
pg(7, 8, 4) constructed by them, are isomorphic graphs while their block graphs all
are different. Actually that point graph was not a new graph, it is the complement
of the graph constructed in [3]. It is an element of the class of graphs called the
graphs on a quadric with a hole. Such a graph has vertex set the points of a
quadric Q+(2m − 1, q) \M , M a generator of the quadric and vertices x and y
are defined to be adjacent whenever 〈x, y〉 ⊂ Q+(2m − 1, q) \M . This graph is
strongly regular for general dimensions and general q.
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Klin and Reichard [23, 29] found, again by computer, but independently from
Mathon and Street, that the complement of the graph on Q+(7, 2) with a hole, is
indeed the point graph of exactly four partial geometries pg(7, 8, 4).

In [9] it has been proved that from the eight known partial geometries pg(7, 8, 4),
four of them are the smallest member of an infinite class of pg(22n−1−1, 22n−1, 22n−2)
and all of them are constructed using derivation.

Remarks

1. For quite a long time it was conjectured that there is only one pg(7, 8, 4)
up to isomorphism. This conjecture has turned out to be false. However
in [15] it has been proved that the point graph of the partial geometry
PQ+(7, 2) is faithfully geometric. This does not guarantee that the block
graph is also faithfully geometric. But, in [27] Panigrahi proves, using com-
binatorial arguments, that the block graph Γ′(7, 2) of the partial geome-
try PQ+(7, 2) is faithfully geometric indeed. Actually the graph Γ′(7, q) is
the graph Γc(Q+(7, q)) with vertices the points on the hyperbolic quadric
Q+(7, q), two vertices being adjacent if and only if they are on a secant of
the quadric (see [22]). In [9] a shorter proof based on the triality property
of the quadric Q+(7, q) has been given for the result of Panigrahi and has
been extended for the case q = 3.

2. Kantor [22] also proved that if n 	= 2, then the block graph of the par-
tial geometry PQ+(4n − 1, q), (q = 2 or 3) is not isomorphic to the graph
Γc(Q+(4n−1, q)). Note that the graph Γc(Q+(2m−1, q)) is pseudo-geometric
with parameters s = qm−1, t = qm−1 − 1, α = qm−2(q − 1), for any q. The
graph Γc(Q+(3, q)), is the complement of the (q+ 1)× (q+ 1)–grid, hence is
geometric if and only if there exists a projective plane of order q+1. It is not
known whether Γc(Q+(5, q)), q ≥ 4, is geometric. The graph Γc(Q+(5, 2))
is a pseudo-geometric (4, 3, 2)-graph but a pg(4, 3, 2) does not exist (see for
instance [12]). As explained in [27], it can be read off from the computer
aided results of M. Hall, Jr. and R. Roth in [20] that Γc(Q+(5, 3)) is not
geometric. As remarked in [27] the graph Γc(Q+(2m− 1, q)) with m ≥ 5 is
not geometric for q = 2, but the question is still open for q > 2. Hence, the
fact that the graph Γc(Q+(7, q)) is geometric for q = 2, 3 is quite remarkable
indeed; see also theorem 7.

3. Brouwer, Haemers and Tonchev [2] have proved that the pg(7, 8, 4) PQ+(7, 2)
is embeddable into a Steiner system S(2, 8, 120). This result has been ex-
tended for the three partial geometries directly derived from PQ+(7, 2) in
[10].

4. In some cases derivation of the partial geometry can be rephrased in terms
of Seidel switching of graphs. We refer to [10] for the technical details.
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3 New constructions of semipartial geometries

3.1 The semipartial geometries spg(q − 1, q2, 2, 2q(q − 1))

A very interesting example of semipartial geometry is the semipartial geometry
by R. Metz (private communication). We recall his construction. Let Q(4, q) be a
non-singular quadric of the projective space PG(4, q). If we define P as the set of
the elliptic quadrics Q−(3, q) on Q(4, q), L as the set of all pencils of such elliptic
quadrics which are pairwise tangent in a common point, and I as the natural
incidence relation then S = (P,L, I) is an spg(q − 1, q2, 2, 2q(q − 1)).

Let Q−(5, q) be an elliptic quadric of PG(5, q) and p be a point of PG(5, q) not
on Q−(5, q). Let Π be a hyperplane of PG(5, q) not containing p. Let P1 be the
projection of the point set of Q−(5, q) from p on Π and let P2 be the set of points
of Π on a tangent of Q−(5, q) through p. Let S be the geometry with point set
P = P1 \P2, whereas the line set L is the set of all projections on Π of the lines of
S, excluding the projections completely contained in P2. The incidence is the one
of the projective space. Then Hirschfeld and Thas [21] have proved that this is a
semipartial geometry spg(q − 1, q2, 2, 2q(q − 1)) isomorphic to the one by Metz.

It has been observed by Brown [4] that one does not need necessarily the
GQ Q−(5, q) for this construction. Indeed if a GQ S of order (s, s2) contains a
subquadrangle S ′ of order s, then every point x of S \S ′ is collinear with the s2 +1
points of an ovoid, denoted by Ox, of S ′. The ovoid Ox is said to be subtended
by x. If it happens to be that every such subtended ovoid Ox is also a subtended
ovoid Oy for another point y ∈ S \ S ′, then the ovoid is called doubly subtended
and is denoted by Ox,y. If every subtended ovoid of S ′ is doubly subtended, then
the subGQ S ′ is called doubly subtended in the GQ S.

Theorem 5 ([4]) Assume S is a GQ of order (s, s2) containing a subGQ S ′ that
is doubly subtended in S; then the incidence structure with points the subtended
ovoids of S ′, lines the rosettes of subtended ovoids (a rosette is a set of s subtended
ovoids containing a common point x and having two by two just x in common),
incidence the natural incidence, is a semipartial geometry spg(s−1, s2, 2, 2s(s−1)).

The generalized quadrangle Q(4, q) is indeed doubly subtended in Q−(5, q) and
this yields the construction of R. Metz. However Brown [4] remarks that Q(4, q)
is also doubly subtended in the GQ of order (q, q2) (q odd) related to the flock K1
of Kantor, and hence yields a semipartial geometry.

It is worthwhile to remark that the construction by Hirschfeld and Thas of the
semipartial geometry of Metz, implies that for q even, this semipartial geometry
spg(s − 1, s2, 2, 2s(s − 1)) is embedded in AG(4, q). All semipartial geometries
embedded in an affine space AG(n, q) for n = 2, 3 are classified. For n > 3 the
question is however open. Assuming q > 2, then apart of the partial quadrangle
T ∗3 (O), two models of semipartial geometries embeddable in AG(4, q) are known.
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On the one hand there is the semipartial geometry T ∗3 (B) with B a Baer subspace
of PG(3, q), q a square. On the other hand there is the semipartial geometry
spg(q− 1, q2, 2, 2q(q− 1)) of Metz, q even. Recently the following results on affine
embeddings have been proved. For more details we refer to [5].

Theorem 6 Let S be a semipartial geometry spg(q− 1, q2, 2, 2q(q− 1)) embedded in
AG(4, q). Then q = 2h, and S is the Hirschfeld-Thas model of the semipartial
geometry of Metz.

Corollary

Let S be a semipartial geometry embedded in AG(4, q), such that the lines of S
through a point x of S induce an ovoid θx at the hyperplane at infinity, then α = 1
or 2.

(i) If α = 1 then µ = q(q− 1), θx = θ for any point x of S and S is isomorphic to
T ∗3 (θ).

(i) If α = 2 then µ ≤ 2q(q − 1). If equality holds then q = 2h, and S is the
Hirschfeld-Thas model of the semipartial geometry of Metz.

We will see in the next section that the semipartial geometry of Metz is part
of bigger family, namely of the family of semipartial geometries constructed from
an SPG system.

3.2 SPG systems and semipartial geometries

Very recently Thas [39] has generalized the concept of SPG regulus of a polar
space P to SPG systems of P . Without any doubt this concept will open new
perspectives in the near future. We will restrict ourselves here to this part of
the theory that yield semipartial geometries with new parameters. It is however
important to underline that some of the examples (including the partial geometries
PQ+(4n− 1, 2) and PQ+(4n− 1, 3)) can be constructed from SPG systems.

3.2.1 Definition of an SPG-system and construction of the semipartial geometry

Let Q(2n + 2, q), n ≥ 1 be a nonsingular quadric of PG(2n + 2, q). An SPG
system of Q(2n+ 2, q) is a set D of (n− 1)-dimensional totally singular subspaces
of Q(2n + 2, q) such that the elements of D on any nonsingular elliptic quadric
Q−(2n+ 1, q) ⊂ Q(2n+ 2, q) constitute a spread of the quadric Q−(2n+ 1, q).

Let Q+(2n+1, q) be a nonsingular hyperbolic quadric of PG(2n+1, q), n ≥ 1.
An SPG system of Q+(2n+ 1, q) is a set D of (n− 1)-dimensional totally singular
subspaces of Q+(2n+1, q) such that the elements of D on any nonsingular quadric
Q(2n, q) ⊂ Q+(2n+ 1, q) constitute a spread of Q(2n, q).
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Let H(2n+ 1, q) be a nonsingular Hermitian variety of PG(2n+ 1, q), n ≥ 1, q
a square. An SPG system of H(2n+ 1, q) is a set D of (n− 1)-dimensional totally
singular subspaces of H(2n+ 1, q) such that the elements of D on any nonsingular
Hermitian variety H(2n, q) ⊂ H(2n+ 1, q) constitute a spread of Q(2n, q).

One can prove that in each case the number of elements in D equals the number
of points of the polar space.

The construction by Thas of the semipartial geometry is as follows. Let P be
one of the above polar spaces, i.e. Q(2n+2, q), Q+(2n+1, q), H(2n+1, q) (n ≥ 1).
Let PG(d, q) be the ambient space of P . Hence in the first case d = 2n + 2, in
the other two cases d = 2n + 1. Let D be an SPG system of P and let P be
embedded in a nonsingular polar space P̄ with ambient space PG(d+ 1, q) of the
same type as P and with projective index n. Hence for P = Q(2n + 2, q), we
have P̄ = Q−(2n + 3, q); for P = Q+(2n + 1, q), we have P̄ = Q(2n + 2, q) and
for P = H(2n + 1, q), we have P̄ = H(2n + 2, q). If P̄ is not symplectic and
y ∈ P̄ , then let τy be the tangent hyperplane of P̄ at y; if P̄ is symplectic and θ
is the corresponding symplectic polarity of PG(d+ 1, q), then let τy = yθ for any
y ∈ PG(d+ 1, q).

For y ∈ P̄ \P let ȳ be the set of all points z of P̄ \P for which τz ∩P = τy ∩P .
Note that no two distinct points of ȳ are collinear in P̄ . If P is orthogonal then
|ȳ| = 2 except when P = Q+(2n+ 1, q) and q even, in which case |ȳ| = 1. If P is
Hermitian then |ȳ| = √q + 1.

Let ξ be any maximal totally singular subspace of P̄ , not contained in P , such
that ξ ∩ P ∈ D and let y ∈ ξ \ P . Further let ξ̄ be the set of all maximal totally
singular subspaces η of P̄ , not contained in P , for which ξ∩P = η∩P and η∩ȳ 	= ∅.

Let S = (P,L, I) be the incidence structure with P = {ȳ‖y ∈ P̄ \ P}; L
contains all the sets ξ̄ as defined above; if ȳ ∈ P and ξ̄ ∈ L then ȳ I ξ̄ if and only
if for some z ∈ ȳ and some η ∈ ξ̄, one has that z ∈ η.

In [39] it is proved that this incidence structure is a (0, α)-geometry of order
(s, t) with s + 1 = qn and t + 1 the number of elements in a spread of P . The
parameter α equals to qn−1 times the number of points of P̄ in any set ȳ ∈ P.

Theorem 7 1. If P is the polar space Q(2n+ 2, q) then S is a semipartial geom-
etry spg(qn − 1, qn+1, 2qn−1, 2qn(qn − 1)).

2. If P is the polar space Q+(2n + 1, q) then the point graph Γ(S) is strongly
regular if and only if q = 2 or q = 3. In these cases S is a partial geometry.

3. If P is the polar space H(2n+1, q) then S is a semipartial geometry spg(qn−
1, qn
√
q, qn−1(

√
q + 1), qn−1(qn − 1)

√
q(
√
q + 1)).
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Corollaries

1. Let P be the polar space Q(2n + 2, q). The geometry will be denoted by
TQ(2n+ 2, q).

If n = 1 the SPG system is the complete set of points of Q(4, q) and the
semipartial geometry was known before, it is the semipartial geometry of
Metz, see [16].

Assume n = 2. It is proved in [39] that there are exactly two SPG systems
on Q(6, q). One arises from a spread of Q(6, q), the other arises from the
classical general hexagon of order q.

For any n ≥ 3, any spread of Q(2n + 2, q) defines an SPG system. Such a
spread is known to exist if q is even.

In [18] Delanote gives a construction of a semipartial geometry with point
graph the graph on the internal points of a quadric Q(4m + 2, 3), (vertices
are adjacent when non-orthogonal) under the condition of existence of an
orthogonal spread. His arguments can easily be generalized for any odd q
and in fact, his semipartial geometry is isomorphic to TQ(2n + 2, q) with
n = 2m.

2. Let P be the polar space Q+(2n+ 1, q); q = 2 or 3.

If n = 2m − 1 is odd and q = 2 then Q+(2n + 1, 2) has a spread and the
partial geometry is isomorphic to the partial geometry PQ+(4m − 1, 2) of
De Clerck, Dye and Thas [14].

If n = 2m−1 is odd and q = 3 then the partial geometry is isomorphic to the
partial geometry PQ+(4m−1, 3) of Thas, which only exists if Q+(4m−1, 3)
has a spread; the existence of such a spread is open for m ≥ 3.

3. Let P be the polar space H(2n + 1, q). The geometry will be denoted by
TH(2n+ 1, q).

Unfortunately, if n ≥ 2 then no SPG system of H(2n + 1, q) is known. If
n = 1, then D =is the set of points of H(3, q) and the semipartial geometry
is the one of Thas as described in [16].
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4 Parameter lists

4.1 The known partial geometries (up to duality)
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4.2 The known semipartial geometries
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Affine Semipartial Geometries
and Projections of Quadrics

M. Delanote
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A semipartial geometry with parameters s, t, α, µ, denoted by spg(s, t, α, µ), is a partial
linear space of order (s, t) such that for all antiflags (x, L) the incidence number α(x, L)
equals 0 or a constant α (�= 0) and such that for any two points which are not collinear,
there are µ (> 0) points collinear with both points. Debroey and Thas introduced
semipartial geometries and raised the question of finding a classification of semipartial
geometries embedded in AG(n, q). A complete answer was given when n = 2, 3. For
n > 3 the question is open. We prove that an spg(q − 1, q2, 2, 2q(q − 1)) embedded in
AG(4, q) must be the known model coming from the projection of the elliptic quadric
Q−(5, q), q even, from a point off the quadric.
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Ovoidal Linear Spaces
P. De Vito*, N. Melone
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e-mail: devito@matna2.dma.unina.it

An interesting problem in Incidence Geometry consists in the characterization of linear
spaces satisfying suitable combinatorial conditions [1, 4, 5].

As in the classical case, a cap in a finite linear space is a subset Ω of points meeting
every line in at most two points. The tangent set to a point x ∈ Ω is the union of the
one-secant lines through x. Results on finite planar spaces with caps are obtained in the
papers [2, 3, 6].

The aim of this paper is to prove that a finite linear space, not generated by three
points, in which a cap Ω exists, with few exterior lines and such that the tangent sets
satisfy suitable conditions, is either a double near-pencil and Ω consists of two points or
the 3-dimensional Galois space PG(3, q) and Ω is an ovoid.
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Pappus’ Configuration in non Commutative
Projective Geometry with Applications
to a Theorem of A. Schleiermacher
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In non commutative projective geometry there exist Pappus’ configuration whose diag-
onal points are not collinear. We consider two lines r and s in a projective plane and
the points A,B on r, A′, B′, C′on s, and we investigate which points X on r lead to
collinear diagonal points in corresponding Pappus’ configuration. A geometric interpre-
tation is given, showing that these are exactly all the fixed points of a projectivity ω
of the line r. Further the system of fixed points of a large class of projectivities of the
line r may be seen as the set of points X on r such that the diagonal points of Pappus’
configuration defined by X and other points, are collinear. Finally, with the help of the
projectivity ω, which is product of three perspectivities, we are able to improve a result
of Schleiermacher ([3] or [2]) proving that every desarguesian projective plane satisfying
the property Pn,3 (that is a projectivity of a line into itself which is product of at most
three perspectivities with n fixed points is the identity)is a pappian plane.
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Blocking Semiovals in PG(2,7) and Beyond
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A blocking semioval in a projective plane is a set with is both a blocking set and a
semioval (i.e. there exists a unique tangent at each point). In this talk, we discuss a
search for all blocking semiovals in PG(2, 7), as well as some infinite families which have
arisen from the results of this search.
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Polarity-paired Spreads of PG(3,q), q Odd
G. Ebert, C. Culbert*
University of Delaware, USA

e-mail: culbert@math.udel.edu

In PG(3, q) there exist spreads where each line is fixed by a symplectic polarity. Are
there spreads where the symplectic polarity acts on the spread and fixes no line of the
spread, thereby pairing the lines? Such a spread will be called polarity-paired. These
spreads can only exist if q is odd. The search for symplectic polarity-paired spreads was
motivated by J.W.P. Hirschfeld, who raised the question of their existence. Such spreads
do exist for all odd q, the Hall spread being one such example. For q ≡ 3 mod 4 a
“special” spread corresponding to a certain flag-transitive plane is always symplectically
paired. Polarity-paired spreads also exist for orthogonal polarities. The regular spread is
an example for an elliptic polarity and the Hall spread for a hyperbolic polarity. Other
examples of spreads have also been obtained.
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On Construction of Bound Graphs
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In this talk, we consider construction of upper bound graphs and double bound graphs.
An upper bound graph can be transformed into a nova by contractions and a nova
also can be transformed into an upper bound graph by splits. These results induce a
characterization on upper bound graphs as follows:

Let G be a connected graph. G is a upper bound graph if and only if the graph
obtained by successive contractions of all pairs of adjacent non-simplicial vertices u, v
adjacent to a simplicial vertex w in G is a nova. We also consider construction of double
bound graphs. A double bound graph can be transformed into a bipartite graph by
deletions and a bipartite graph also can be transformed into a double bound graph by
additions. These results induce a characterization on double bound graphs.
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A Construction of Arcs
in High–dimensional Projective Spaces
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The n–dimensional finite projective space, PG(n, q) admits a cyclic model, in which the
set of points of PG(n, q) is identified with the elements of the group Zqn+qn−1+...+q+1.
It was proved by M. Hall that in the cyclic model of PG(2, q), the additive inverse of a
line is a conic. The following generalization of this result is proved:

In the cyclic model of PG(n, q), the additive inverse of a line is a (q + 1)-arc if n+ 1 is
a prime and q + 1 > n.

It is also shown that in any dimension almost all of the lines have the property that its
additive inverse is an arc. A line > is called exceptional, if −> is also a line. The number
of exeptional lines in PG(n, q) is determined, and it is proved that the exceptional lines
form interesting objects.
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Dividing Cyclotomic Polynomials
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Given two cyclotomic polynomials Φn(x),Φm(x) (n �= m), an integer k and two integral
polynomials a(x), b(x) exist, such that

k = aΦn + bΦm,

for Φn(x),Φm(x) are irreducible. Determining k is our goal.
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An Intrinsic Characterisation of Quadrics
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Quadrics of a projective space PG(n,K) of finite dimension n over a field K are widely
studied. Some results about elliptic quadrics in PG(n, q) have been obtained by A. Bar-
lotti and G. Panella in 1955, and, about general quadrics, by G. Tallini in 1956/57. In
this context, the notion of Tallini set (name suggested by C. Lefèvre in 1975) naturally
arose, and we can find many characterisations of quadrics as Tallini sets satisfying suit-
able arithmetic or incidence conditions (see Tallini, 1956/57; Buekenhout-Lefèvre, 1976;
Lefèvre-Percsy, 1980; Ferrara Dentice-Lo Re-Melone, 1996). In this talk I point out my
attention on the point-line geometry of a quadric within semilinear spaces, in which the
incidence geometry of ruled algebraic varieties is naturally studied.

A semilinear space is a point-line geometry such that any two distinct points lie
on at most one line, any line contains at least two points and any point lies on at least
one line. Two distinct points are said to be collinear if there exists a line containing
them, and two subsets of points are collinear if each point of one of them is collinear with
all points of the other one. A subspace is a subset W of pairwise collinear points such
that the line joining two of them is contained in W . The rank of the semilinear space
is the maximum lenght of all saturated chains of subspaces W0, . . . ,Wk, such that W0 is
a point and Wk is a maximal subspace with respect to inclusion. Finally, the semilinear
space is said to be non singular if it does not contain any point collinear with all the
others, and connected if for any pair of points p, q there exists a finite chain of points
p = p1, p2, . . . , pt = q such that pi is collinear with pi + 1, for i = 1, . . . , t.

Using the characterisation of polar spaces of Buekenhout-Shult (1974) and the no-
tion of Tallini set of a desarguesian projective space, I prove the following Theorem.

Theorem. Let P be a connected and non singular semilinear space of rank d ≥ 4,
whose lines are not maximal subspaces and satisfying the following condition:

For every pair L,M of non collinear disjoint lines, the set W of all the points
collinear with L and M contains at least one point external to L and M and, if W
contains at least one point of L ∪M , then it is a subspace intersecting L and M .

Then there exist a field K and a projective space PG(n,K) such that P is a quadric of
PG(n,K).
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Unitary Polarities
in non Commutative Twisted Field Plane
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A parabolic unital of an affine plane πl∞ is the affine restriction of a unital of π with
exactly one point L∞ on l∞. So l∞ is the tangent of the unital at this point. A transitive
parabolic unital is a parabolic unital which is invariant under a collineation group of π
fixing L∞ and transitive on the remaining q3 affine points.

Examples of transitive parabolic unitals embedded in PG(2, q2) are the Hermitian
unitals and the Buekenhout-Metz unitals arising from elliptic quadrics of PG(3, q) [1].

Further examples of transitive parabolic unitals are given by Ganley in [5] and by
Korchmaros with other authors in [2]. They consist of the absolute points and non
absolute lines of a unitary polarity in a plane over a Dickson semifield of odd order q2

and in a commutative twisted field plane respectively . In fact, by [4], it is easily to
prove that every plane over a commutative semifield with an involutory automorphism
admits transitive parabolic unitals. In a recent paper [3], Biliotti, Jha and Johnson
devoted their attention to generalized twisted field planes in order to examine carefully
the properties of the collineations and the correlations of these planes, in particular they
determined all the possible polarities. Besides the known ones, in commutative twisted
field planes, another class of polarities has been exhibited in suitable non commutative
twisted field planes. In the paper, starting from the results given in [3], the polarities
in non commutative twisted field planes are investigated in details; it is proved that
these polarities are unitary and conjugate under the collineation group on the plane. In
particular it is proved that the associated unitals are transitive parabolic unitals. To
the author’s knowledge these are the first examples of transitive parabolic unitals in non
commutative semifield planes. They are also the first examples of transitive parabolic
unitals in non desarguesian planes of even order.
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On 2–factor Hamiltonian Bipartite Graphs
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A graph G is 2–factor hamiltonian if every 2–factor of G is a Hamilton circuit, whereas
a k–regular bigraph H is minimally 1–factorable if every 1–factor of H is contained in a
unique 1–factorization of H. We are interested in determining which regular graphs can
be 2–factor hamiltonian. We prove that if H is minimally 1–factorable and k ≥ 2 then
H is 2–factor hamiltonian. In particular, if k = 3, then H is minimally 1–factorable if
and only if H is 2–factor hamiltonian. Furthermore, we show that there are no 2–factor
hamiltonian k–regular bigraphs for k ≥ 4.
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Canonically Pfaffian Cubic Bigraphs
and Blocking–set–free Configurations
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Recently N. Robertson, P. D. Seymour, R. Thomas and, independently, W. McCuaig
found a good characterization of bipartite graphs admitting a Pfaffian orientation, i.e an
orientation where every central circuit has an odd number of edges in both directions.
We investigate the class of cubic bigraphs G where a Pfaffian orientation is obtained by
orienting each edge in the same way, say from X to Y , with respect to the bipartition
V (G) = X ∪ Y . If G is 3–connected, a characterization has already been given by
W. McCuaig. We prove that all such 2–connected graphs can be obtained from cubic
bigraphs with a Pfaffian orientation by substituting edges not oriented from X to Y
by a suitable combination of copies of the Heawood graph. This result completes the
classification of all blocking-set-free symmetric configurations of type n3.
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Actions of Permutation Groups
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We are interested in actions induced by permutation groups (other than the natural one),
mainly on the set of cycles appearing in their elements. This can always be done for finite
groups and, with some care, for infinite ones: some similarities and differences among
the two situations will be presented.
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Upper and Lower Chromatic Numbers
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A mixed hypergraph is a triple H = (X, C,D) where X is the vertex set and each of C,D is
a list of no-empty subsets of X, called C − edges and D− edges respectively. In a proper
k-coloring of H, any C−edge has at least two vertices with the same color and any D−edge
has at least two vertices colored with different colors. The minimum number k of colors
for which there exists a proper k-coloring of H is called the lower chromatic number χ,
the maximum number is called the upper chromatic number χ̄. The theory of mixed
hypergraphs was introduced by V. Voloshin (The mixed hypergraphs Computer Sciences
Journal of Moldova, 1993) and it had a great development. Many authors studied this
kind of coloring, also for Steiner systems. Actually, the study regards the determination
of hypergraphs with χ = χ̄, of uncolorable hypergraphs and hypergraphs with broken-
spectrum ( i.e. χ < χ̄ and no-existence of some proper k-coloring with χ < k < χ̄).
Recently, we have constructed same classes of uncolorable P3 − designs, other classes of
uniquely P3 − designs and classes of P3 − designs having broken–spectrum.
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A (k, d)-arc K in P2(Fq), Fq being the finite field with q elements, is a set of k elements
such that no line in P2(Fq) meets K in more than d points. The (k, d)-arc is complete if
it is not contained in a (k + 1, d)-arc.

A natural example of a (k, d)-arc is the set X (Fq) of Fq-rational points of a plane
curve X defined over Fq, where k is the number of Fq-rational points of X and d is the
degree of X .

Only few examples of plane curves giving rise to complete arcs are known. Here
we show that the set of Fq-rational points of either certain Fermat curves or certain
Fq-Frobenius non-classical plane curves is a complete (k, d)-arc in P2(Fq).
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Maximal Partial t-spreads
and Minimal t-covers in Finite Projective Spaces
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A t-spread of PG(N, q), (t + 1)|(N + 1), is a partitioning of the point set of PG(N, q)
into t-dimensional subspaces. A partial t-spread in PG(N, q), (t+1)|(N + 1), is a set of
pairwise disjoint t-dimensional subspaces. A partial t-spread is called maximal when it
cannot be extended to a larger partial t-spread. The deficiency δ of a partial t-spread is
the number of t-dimensional spaces it has less than a t-spread.

For δ ≤ √
q, it is known that partial t-spreads of deficiency δ are uniquely extendable

to a t-spread. We improve on this result.
We also study t-covers of PG(N, q). A t-cover of PG(N, q), (t + 1)|(N + 1), is a

set of t-dimensional subspaces covering all the points of PG(N, q). A t-cover is called
minimal when it has no proper subset that is still a t-cover. The excess r of a t-cover is
the number of t-dimensional spaces it has more than a t-spread.

For small excess r, we describe the configuration of points covered by more than
one element of the t-cover.
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Definition: A symmetric (v,k,λ)-design is a finite incidence structure of v elements and
v blocks such that each block contains k elements, each element occurs on k blocks, and
(*) 2 different elements occur in a common block exactly λ times. This talk will discuss
some of the following generalizations of this concept and investigate further properties of
these discrete structures. Concerning the time restrictions I shall mainly focus on recent
results on configurations.
Tactical Configurations: Without the above condition (*) we obtain a tactical config-
uration TC(v,k).
Even Designs: For even designs ED(v,k) condition (*) is replaced by (**) 2 different
elements occur in a common block an even number of times.
Symmetric Configurations: For symmetric configurations vk condition (*) is replaced
by (***) 2 different elements occur in a common block at most once.
Orbital Matrices: All the structures above can be described by square incidence matri-
ces of entries 0 and 1 denoting the incidence of elements and blocks in the usual way. An
orbital matrix OM(v,k,x;λ) is described by a corresponding matrix A of size v with non-
negative integer entries and row and column sum k such that AAt = (k+x−λ)Iv +λJv
where Iv and Jv denote the identity matrix and the all-one-matrix of size v and At

denotes the transpose of A.
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We report on recent results concerning generators for algebraic extensions of Galois fields.

Keywords. Finite (Galois) field, irreducible polynomial, primitive element, normal element,
normal basis, complete normal basis, completely normal element.

Mathematics Subject Classification: 11T, 12E20.

1 Introduction and outline

Galois fields (or finite fields) are a fundamental algebraic structure of Discrete
Mathematics. They are important for Algebraic and Finite Geometry and have
become an established tool in applied disciplines like Coding Theory, Cryptogra-
phy or Signal Processing. Concerning the existence of particular generators for
algebraic extensions of finite fields, considerable progress has been achieved in the
last years, and it is our aim to report on these new developments by emphasiz-
ing the combinatorial aspects underlying these generators. In particular we shall
discuss the following topics:

• the explicit construction of normal bases (Section 4);

• the existence of primitive normal bases with precribed trace or norm (Sec-
tion 5);

• cyclotomic polynomials and their (additive) q-analogues (Section 6, intro-
duced in Section 3);

• the structure of cyclotomic modules under the complete point of view (Sec-
tion 7);

135



• the enumeration of completely normal elements (Section 8);

• the existence of primitive complete normal bases (Section 9).

We shall not discuss generators for infinite algebraic extensions of finite fields, here,
and refer to [Ha1 (Section 26), Ha3, Ha4, Sche], instead. In Section 2 and Section 3
of the present work we shall start with some classical results on the theory of finite
fields and thereby fix our notation. Most of these facts are well-known and may
be found in several texts on algebra or number theory. The standard reference for
finite field theory is Lidl and Niederreiter [LiNi]. For the early history of Galois
fields we refer to the recent paper of Lüneburg [Lü].

The contents of Section 2 and Section 3 are presented as variations of a funda-
mental combinatorial theme, namely Möbius inversion over partially ordered sets
(see Rota [Ro]). The variations concern three objects which are of fundamental
importance for the theory of finite fields, namely

• irreducible polynomials,

• primitive elements, and

• normal bases.

The rest of this section is devoted to introduce the unifying combinatorial theme.
Consider a triple (S,A,⊆), where S is a nonempty set and A is a nonempty

collection of finite subsets of S such that S = ∪A∈AA. We assume further that
∩G∈GG ∈ A for all nonempty subsets G of A. The symbol ⊆ indicates that A is
considered as a partially ordered set with respect to set inclusion. For every x ∈ S
the subset of S (in A) generated by x is defined by

〈x〉S,A :=
⋂

A∈A, x∈A
A.

Observe that 〈x〉S,A is in fact a member ofA. The Euler function φS,A for (S,A,⊆)
is defined by

φS,A : A → N0, A �→ |{x ∈ S : 〈x〉S,A = A}|,
(where |X| denotes the cardinality of the set X and N0 the set of nonnegative
integers). Now, we have

|A| =
∑

B∈A, B⊆A

φS,A(B),

and therefore Möbius inversion yields

φS,A(A) =
∑

B∈A, B⊆A

|B| · µS,A(B,A),
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where µS,A denotes the Möbius function for the partially ordered set (A,⊆).
If φS,A(A) ≥ 1 for all A ∈ A then one has A = {〈x〉S,A : x ∈ S}, whence

(S,A,⊆) might be called cyclic. The latter situation will be met when dealing
with finite fields.

2 The basic structure of Galois fields

The cardinality of a finite field F is a power q = pm (m ≥ 1) of a prime p (the
characteristic of the field). Conversely, for any prime power q there exists a field
with q elements and any two such fields are isomorphic. The unique field F with
q elements is also denoted by GF(q).

Given a finite field F it is convenient to work in an algebraic closure F̄ of F .
Let E denote the collection of all finite subfields of F̄ which are extensions of F .
We here consider the triple (F̄ , E ,⊆).

For any integer n ≥ 1 there exists exactly one extension En in F̄ with degree n
over F . En is thus a field with qn elements and we have E = {En|n ∈ N} (where
N denotes the set of positive integers). If v ∈ F̄ then 〈v〉F̄ ,E = F (v) is the field
obtained by adjoining v to F . If F (v) = En, then n is called the degree of v over
F . One has Ed ⊆ En if and only if d divides n, and therefore an application of
Möbius inversion yields that the number of γq(n) := φF̄ ,E(n) of v ∈ F̄ having
degree n over F is equal to

γq(n) =
∑
d|n

µ(
n

d
)qd. (2.1)

(The sum runs over all positive divisors of n and µ denotes the classical Möbius
function for the partially ordered set (with respect to divisibility) of natural num-
bers, i.e., µ(1) = 1, µ(k) = 0 if k is divisible by the square of a prime and
µ(k) = (−1)r if k is square-free and r is the number of distinct prime divisors of
k.) It is easily seen that

γq(n) ≥ qn − qn − 1
q − 1

≥ 1.

The minimal polynomial νv (over F ) of v ∈ F̄ is the monic f ∈ F [x] of least degree
such that f(v) = 0. It is clear that νv is irreducible over F , and the degree of v,
say n, is equal to the degree of νv. Conversely, if ι ∈ F [x] is monic and irreducible
of degree n, then all roots of ι have degree n over F (whence En is the splitting
field of ι and thus is isomorphic to the residue ring F [x]/ιF [x]). Therefore, using
(2.1), we conclude that the number iq(n) of monic irreducible ι ∈ F [x] of degree
n is equal to

iq(n) =
1
n

∑
d|n

µ(
n

d
)qd. (2.2)
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The determination of an irreducible ι in F [x] with specified degree n is necessary
to obtain a concrete description of En as a residue ring of F [x]. Unfortunately,
no deterministic algorithm is known which, for a general pair (q, n), produces a
monic irreducible ι ∈ F (of degree n) and runs in polynomial time (in n and
log(q)). However, as there are plenty of irreducible polynomials and since testing
irreducibility is easy, such polynomials can efficiently be determined at random.
For algorithmic versions and the complexity status of the fundamental results from
finite fields we refer to Lenstra [Le].

We finally mention that the roots (in F̄ ) of the polynomial xqn − x ∈ F [x]
are exactly the elements of En (the latter polynomial is the basic example of a
q-linearized polynomial). Let Iq,n be the product of all ι ∈ F [x] which are monic
and irreducible of degree n. Since xqn − x is square-free we obtain

xqn − x =
∏
d|n

Iq,n, (2.3)

and therefore a further application of the Möbius inversion principle (in a version
for polynomials) yields

Iq,n =
∏
d|n

(xqd − x)µ(n/d). (2.4)

3 The multiplicative and the additive group

As in Section 2 let F = GF(q) be a finite field (with characteristic p) and F̄ the
algebraic closure of F . In the present section we investigate the multiplicative
group F̄ ∗ and the additive group (F̄ ,+) of F̄ .
We start with the multiplicative group by considering the triple (F̄ ∗,U ,⊆) where U
denotes the collection of all finite subgroups of F̄ ∗. The members of U correspond
bijectively to the positive integers which are not divisible by p: the subgroup
corresponding to N is

UN := {v ∈ F̄ ∗|vN = 1}, (3.1)
i.e., UN consists of all N th roots of unity. By the choice of N the cardinality of UN

is equal to N . Furthermore, any such group is cyclic, i.e., free on one generator
as a module over the ring of integers. For v ∈ F̄ ∗ the (multiplicative) order of
v is defined to be the smallest integer k ≥ 1 such that vk = 1 (it is denoted by
ord(v)). The generators of UN are exactly the elements whose order is equal to N ,
i.e., 〈v〉F̄∗,U = UN if and only if ord(v) = N . If ord(v) = N then v is also called a
primitive N th roots of unity. Since UD ⊆ UN if and only if D divides N , Möbius
inversion yields that the number ϕ(N) := φF̄∗,U (N) of v ∈ F̄ with ord(v) = N is
equal to

ϕ(N) =
∑
D|N

µ(
N

D
)D, (3.2)
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i.e., ϕ is the classical Euler totient function counting the number of D ≤ N (D ∈ N)
which are relatively prime to N .

Concerning the multiplicative structure of finite fields, the most interesting
objects are the primitive elements: v ∈ F̄ ∗ is called primitive for En, if ord(v) =
qn − 1, i.e., if v generates Uqn−1 = E∗n, which is the multiplicative group of the
unique n-dimensional extension En of F .

Let us now turn to polynomials associated to the multiplicative structure. For
N as above, the roots of xN − 1 in F̄ are exactly the elements of UN . The N th
cyclotomic polynomial ΦN over F is defined as the product of all x − ζ where
ζ runs over all ϕ(N) primitive Nth roots of unity (in F̄ ). Then ΦN has in fact
coefficients in the prime field of F . Since xN − 1 is square-free, we obtain

xN − 1 =
∏
D|N

ΦD, (3.3)

and a further application of Möbius inversion gives

ΦN =
∏
D|N

(xD − 1)µ(N/D). (3.4)

We will next turn to the additive group of F̄ and shall see that the structure is
quite similar to that of the multiplicative group. Most of the following material is
taken from [Ha1] which is a recent monograph on the additive structure of finite
fields with particular emphasis on normal bases and complete normal bases (see
Section 7).

First of all, the Frobenius automorphism of F̄ over F is the mapping σ defined
by

σ : F̄ → F̄ , w �→ wq. (3.5)

The Frobenius automorphism fixes F elementwise and leaves every subfield of
F̄ /F invariant. The restriction of σ onto En (which is likewise denoted by σ) is
a (canonical) generator of the Galois group of En/F , which is cyclic. For any
polynomial f ∈ F [x] and any field element w ∈ F̄ , we define another field element
by

f ◦ w := f(σ)(w), (3.6)

i.e., by evaluating the polynomial f at the Frobenius automorphism and by apply-
ing the resulting F -endomorphism f(σ) of F̄ to w. With respect to the operation
◦, (F̄ ,+) turns into a module over the Euclidean domain F [x]. Any σ-invariant F -
subspace of F̄ is called an F -module. Let us therefore consider the triple (F̄ ,M,⊆)
where M denotes the collection of finite F -modules.

The structure of the members in M is summarized in Theorem 3.1. Here, µq

denotes the Möbius function for the partially ordered set of monic polynomials in
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F [x] (i.e., µq(1) = 1, µq(h) = 0 if h is divisible by the square of an irreducible poly-
nomial and µq(h) = (−1)r if h is square-free and r is the number of distinct monic
irreducibles which divide h) and φq denotes the corresponding Euler function.

We need further notation. For any monic g ∈ F [x] which is not divisible by x
we define the set Mg by

Mg := {v ∈ F̄ |g ◦ v = 0}. (3.7)

For every w of F̄ the mapping

αw : F [x]→ F̄ , f(x) �→ f ◦ w (3.8)

is a homorphism of rings. The unique monic g ∈ F [x] such that the kernel of αw is
equal to gF [x] is called the (additive) q-order of w (recall that q is the cardinality
of F ); it is denoted by Ordq(w). The image of αw is equal to 〈w〉F̄ ,M, i.e., the
(finite) F -module of F̄ which is generated by w.

Theorem 3.1 If M is a finite F -module of F̄ , then there is a unique monic g ∈ F [x]
which is not divisible by x such that M = Mg. Conversely, every Mg is finite (and
thus M consists of all sets of the form Mg).

The cardinality of Mg is equal to qdeg(g) and one has Mh ⊆ Mg if and only if
h divides g. Moreover, Mg is cyclic (i.e., free on one generator as an F -module),
and Mg is generated by w if and only if g = Ordq(w). The number φq(g) of v ∈ F̄
with Ordq(v) = g, i.e., the number of generators of Mg is equal to

φq(g) =
∑
h|g

µq(
g

h
)qdeg(g), (3.9)

where the sum runs over all monic F -divisors of g. ✷

Observing that En = Mxn−1, the part of Theorem 3.1 concerning the cyclicity of
the finite F -modules generalizes the famous normal basis theorem, which for finite
fields was first proved by Hensel (1888).

Normal Basis Theorem. For any extension En/F of Galois fields there exists an
element w ∈ En such that {w, σ(w), ..., σn−1(w)} is an F -basis of En. ✷

A basis of the latter kind is called a normal basis of En/F , while w is called normal
in En/F . (Unfortunately the terminology is not consistent; sometimes w is also
called a free element in En/F . We here shall use the term normal.) We conclude
that the normal elements for En/F are exactly the elements in F̄ whose q-order
is equal to xn − 1.

In [Ha2] we have introduced the (additive) q-analogues of the cyclotomic poly-
nomials, which we are going to describe next. First, we have to recall from Ore
[Or] the notion of a linearized q-polynomial (these objects are intimately related
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to the modules in M). For a polynomial h = hnx
n + hn−1x

n−1 + ... + h1x + h0

the associated (linearized) q-polynomial is defined by

αq(h) := hnx
qn + hn−1x

qn−1
+ ... + h1x

q + h0x. (3.10)

Now, if g ∈ F [x] is monic and not divisible by x then define Ψg to be the product
of all linear factors x− w where Ordq(w) = g. Then Ψg in fact has coefficients in
F . Since g ◦ v = 0 if and only if v is a root of αq(g) and as αq(g) is square-free,
we see that

αq(g) =
∏

w∈Mg

(x− w) =
∏
h|g

Ψh, (3.11)

and Möbius inversion yields a formula for the Ψg in terms of linearized q-polynomials:

Ψg =
∏
h|g

αq(h)µq(g/h). (3.12)

In Section 6 we shall return to cyclotomic polynomials and their q-analogues. For
the time being we summarize that besides the degree, to any nonzero field element
w ∈ F̄ there are associated two fundamental parameters, the multiplicative and
the (additive) q-order. It is a fundamental (and in general unsolved) problem to
decide which pairs (Ordq(v), ord(v)) of orders can occur.

Problem 3.2 Given the field F with q elements, what are the possible pairs (f,N)
(f ∈ F [x] monic, not divisible by x, N ≥ 1 an integer not divisible by the char-
acteristic p of F ) such that there exist elements v ∈ F̄ satisfying ord(v) = N and
Ordq(v) = f? ✷

In the following two sections we shall discuss results which are related to that
fundamental problem. To conclude the present section we remark that the degree
of an element v ∈ F̄ is determined by its multiplicative order as well as by its
additive order (see [LeSc]). For an explanation we have to introduce yet another
type of order, namely the order of units in certain residue rings. First, if k, l are
nonzero relatively prime integers then the order of k modulo l is the least integer
α ≥ 1 such that kα ≡ 1 mod l (this number is denoted by ordl(k)). Similarly,
if f, g ∈ F [x] are relatively prime polynomials then the order of f modulo g is
the least integer β ≥ 1 such that fβ ≡ 1 mod g (by abuse of notation this
number is denoted by ordg(f)). Now, for v ∈ F̄ the degree of v (say n) satisfies
n = ordN (q) = ordf (x) where N = ord(v) and where f = Ordq(v).

4 Explicit construction of normal bases

In the last section we have introduced the mappings φq which are the additive
analogues of Euler’s totient ϕ. In the present section we discuss some properties
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of these functions and show how normal bases for arbitrary extensions over finite
fields can be constructed explicitly. The present section is mainly based on [Ha1,
Chapter II and Chapter VI].

Let again F be a finite field with q elements and characteristic p. For a monic
G ∈ F [x] which is relatively prime to x, we have defined φq(G) to be the number of
generators of the F -module MG (i.e., the number of v with Ordq(v) = G). Define

Ωq(G) := {v ∈ F̄ |Ordq(v) = G}. (4.1)

If ν(G) is the square-free part of G (i.e., the product of all distinct monic irreducible
divisors of G), then one has

φq(G) = qdeg(G)−deg(ν(G)) · φq(ν(G)). (4.2)

The analogous condition of (4.2) for Euler’s ϕ is

ϕ(N) =
N

ν(N)
· ϕ(ν(N)).

A further important property of φq is its multiplicativity: if G =
∏

i gi is a decom-
position of G into monic pairwise relatively prime polynomials, then

φq(G) =
∏
i

φq(gi). (4.3)

The latter formula reflects the corresponding decompositions of MG and ΩG:

MG =
⊕
i

Mgi and Ωq(G) =
⊕
i

Ωq(gi), (4.4)

where the direct sum (as usual) indicates that the representation of an element as
a sum is unique.

For a special case which is important for constructions of normal bases, formula
(4.2) as well has an interesting algebraic interpretation (a proof will be given in
[Ha5]): assume that G = gπ where π is a power of the characteristic p, then

Ωq(G) = αΩq(g)⊕Mgπ−1 for any α ∈ Ωq(xπ − 1). (4.5)

We now turn to the construction of normal bases for finite extensions over F . Let
n ≥ 1 be an integer which is not divisible by p and let π be a power of p. In F [x]
one has xnπ − 1 = (xn − 1)π, whence by (3.3) we have

xnπ − 1 =
∏
d|n

Φπ
d . (4.6)

Because of this (canonical) decomposition into cyclotomic polynomials, the deter-
mination of an element of Ωq(xnπ−1) is reduced to the determination of elements
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of Ωq(Φπ
m), m a divisor of n. Moreover, by (4.5) it is sufficient to study sets of the

type Ωq(xπ − 1) and Ωq(Φm), where p does not divide m.
A classical result of Perlis [Pe] says that w ∈ Eπ is normal over F if and only

if the (Eπ, F )-trace of w is nonzero, and therefore an element w ∈ Ωq(xπ − 1) can
easily be obtained by Linear Algebra (see [Ha1, Section I.5]). We thus arrive at a
core problem, namely the determination of generators for MΦm (where m ∈ N
is not divisible by p). In this context the notion of regularity as well as the
determination of the q-orders of certain roots of unity is of fundamental interest.

Definition 4.1 For an integer N let N ′ denote the largest divisor of N which is not
divisible by the characteristic p of F . The pair (q,N) is called regular if ordν(N ′)(q)
and N are relatively prime. In this case, the field extension EN/F as well as all
its F -submodules are called regular. ✷

Let us return to the situation above. In [Ha1, Chapter VI], there is an explicit
description of elements from Ωq(Φm) when (q,m) is regular. In order to avoid the
distinction of several cases, below we have restricted our attention to a certain
class of regular pairs. For the general situation we refer to [Ha1].

Theorem 4.2 Assume that (q,m) is regular and that q ≡ 1 mod 4 if m is even and
q is odd. Let s := ordν(m)(q) and let ρ = ρ(m, q) denote the largest divisor of
qs − 1 such that ν(ρ) = ν(m). If η ∈ F̄ is a primitive (mρ)th root of unity (i.e.,
if ord(η) = mρ), then Ordq(η) = f(xs) where f is some irreducible F -divisor of
Φm. ✷

Now, in the situation of Theorem 4.2 one has the following.

Theorem 4.3 Let a = gcd(m, ρ). Then the group Ua of units modulo a acts on the
set of primitive (mρ)th roots of unity by exponentiation. Let Q be the subgroup of
Ua generated by q modulo a, and let R be a complete set of coset representatives
of Q in Ua. Then v :=

∑
i∈R ηi has q-order equal to Φm(xs). Finally, under

the regularity assumption for (q,m), the (Ems, Em)-trace of v has q-order equal to
Φm, i.e.,

s−1∑
j=0

(
∑
i∈R

ηi)q
mj

=
∑
i∈R

s−1∑
j=0

ηiqmj ∈ Ωq(Φm). ✷ (4.7)

In order to complete the construction of normal bases for arbitrary extensions of
finite fields (including those with non-regular parameters), it is important to know
that the class of regular pairs is quite large, e.g., (q,m) is always regular when
m = rk is a power of a prime r (for further examples see Section 9). One can
therefore cover all values of m with the help of the following product construction
(see [Ha1, Section 25]):

Ωq(Φk) · Ωq(Φl) ⊆ Ωq(Φkl) if k and l are relatively prime. (4.8)
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The inclusion in (4.8), however, is always proper, whence in contrast to (4.4) and
(4.5) there is a loss of information in (4.8).

We conclude this section with an example.

Example 4.4 Let F = GF(2) be the Galois field with 2 elements. We will determine
a normal element for E84/F . Since x84 − 1 = (x21 − 1)4 over F , we first consider
the set Ω2(x21 − 1) which is equal to Ω2(x − 1) ⊕ Ω2(Φ3) ⊕ Ω2(Φ7) ⊕ Ω2(Φ21)
(by (4.4)). Let α be any nonzero element of F , then Ord2(α) = x − 1. If η is a
primitive 9th root of unity then (according to Theorem 4.1) Ord2(η) = Φ3(x2),
and by Theorem 4.2, β := η + η8 ∈ Ω2(Φ3). Next, let ζ be a primitive 49th
root of unity. Yet an application of Theorem 4.2 and Theorem 4.3 shows that
γ := (ζ + ζ3) + (ζ + ζ3)2

7
+ (ζ + ζ3)2

14
= ζ + ζ3 + ζ5 + ζ41 + ζ18 + ζ30 is an

element of Ω2(Φ7). Since the pair (2, 21) is not regular, we use (4.8) to obtain that
δ := βγ ∈ Ω2(Φ21). Finally, if ρ is a 5th root of unity, then ρ is normal in E4/F
and with (4.5) we therefore conclude that ρ(α + β + γ + βγ) is normal in E84/F .
✷

We finally give the well-known formula for the number of normal elments of En/F .
Let n = mπ as above. For each divisor d of m, Φd over F splits into ϕ(d)/ordd(q)
irreducible polynomials of degree ordd(q), each. Observing that Ωq(h) = Mh\{0}
(and thus φq(h) = qdeg(h) − 1) if h ∈ F [x] is monic and irreducible, from (4.2),
(4.3) and (4.6) we thus obtain

φq(xmπ − 1) = q(π−1)m ·
∏
d|m

(qordd(q) − 1)ϕ(d)/ordd(q). (4.9)

In [Or] the q-polynomials have been used to determine the number of normal bases
for En over F (i.e., the degree of Ψxn−1) (see also [LiNi]). The exact number of
normal bases was also determined in Hensel’s classical paper [He].

5 Primitive normal bases

In Section 3 we have seen that the multiplicative and the additive structure of
finite fields are quite similar. Primitive and normal elements are important be-
cause they yield representations for the multiplicative and the additive structure,
respectively. In particular the arithmetic based on normal bases is important for
applications in cryptography (we refer to Jungnickel [Ju] for an extensive treat-
ment of the arithmetic of finite fields). ¿From an algorithmic point of view there
is a fundamental difference between primitive and normal elements: suppose that
En is given over F in terms of an irreducible polynomial, then there are several
deterministic polyomial time algorithms known (in n and log(q)) which determine
a normal element for En/F (we here only mention the work of Poli [Po] whose
algorithm seems to have the best known complexity); it is not known however
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whether there exists a deterministic polynomial time algorithm which produces
a primitive element for En; in fact, all known tests for primitivity require the
factorization of qn − 1, which itself is a difficult problem.

Given a Galois field F (again with q elements) and the extension En (in F̄ ), it
is natural to ask, whether there exists a primitive w in En which is simultaneously
normal over F , i.e.,

(Ordq(w), ord(w)) = (xn − 1, qn − 1).

Completing previous work of Carlitz [Ca] and Davenport [Da], the final answer has
only been achieved in 1987, when Lenstra and Schoof [LeSc] proved the primitive
normal basis theorem.

Primitive Normal Basis Theorem. For any extension En/F of finite fields there exists
a primitive w ∈ En which is normal over F . ✷

In the present section we shall report on recent progress concerning the existence
of primitive normal elements with additional properties. A monic irreducible

ι = xn + ιn−1x
n−1 + ... + ι1x + ι0 ∈ F [x]

is called primitive (resp. normal) if all its roots are primitive (resp. normal) (if
w is a root of ι then σi(w) = wqi where 0 ≤ i ≤ n − 1 are all the roots of ι;
in particular all roots have the same additive order and the same multiplicative
order). Since there are known no efficient methods which determine primitive nor-
mal polynomials (equivalently which determine primitive normal elements), one
may ask whether certain coefficients of such a polynomial can be prescribed. Mo-
tivated by a conjecture of Morgan and Mullen [MoMu1], the existence of primitive
normal elements with prescribed trace or/and prescribed norm was recently stud-
ied by Cohen and the author [CoHa1, CoHa2, Co2]. If w ∈ En is a root of ι, then
observe that

−ιn−1 = T (w) :=
n−1∑
i=0

wqi and (−1)nι0 = N(w) :=
n−1∏
i=0

wqi , (5.1)

where T (w) denotes the (En, F )-trace of w and N(w) the (En, F )-norm of w. The
main results of [CoHa1, CoHa2, Co2] are summarized in the following (the letter
F refers to free, which in [CoHa2] is used instead of normal).

Theorem PFT ([CoHa1], conjectured in [MoMu1]): If En/F is an extension of Ga-
lois fields with n ≥ 2 and if a ∈ F is any nonzero element, then there exists a
primitive wa ∈ En which is normal over F and satisfies T (wa) = a. (The assump-
tion on a is necessary as the trace of a normal element is always nonzero.) ✷

Theorem PFN ([CoHa2]): If En/F is an extension of Galois fields with n ≥ 2 and
if b ∈ F is any primitive element, then there exists a primitive wb ∈ En which is
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normal over F and satisfies N(wb) = b. (The assumption on b is necessary as the
norm of a primitive element is always primitive.) ✷

Theorem PFNT ([CoHa2, Co2]): Let En/F be an extension of Galois fields with
n ≥ 5. Assume that a ∈ F is nonzero and b ∈ F is primitive. Then there exists
a primitive wa,b ∈ En which is normal over F and satisfies the two conditions
T (w) = a and N(w) = b. ✷

The existence of primitive elements with prescribed trace (not necessarily nonzero)
was settled by Cohen [Co1] (see also Jungnickel and Vanstone [JuVa]). The exis-
tence of normal elements with prescribed norm (not necessarily primitive) is settled
in [CoHa2]. For the precise statements we refer to the original papers. Concerning
the degree n = 3 and n = 4 for which “problem PFNT” is still meaningful, we
offer the following conjecture.

Conjecture 5.1 Let F be a finite field, a ∈ F nonzero and b ∈ F primitive. Then
there exist elements α, β, γ ∈ F such that the polynomials

x3 − ax2 + αx− b and x4 − ax3 + βx2 + γx + b

are primitive and normal. ✷

The key method which is used to attack problems of the above kind is to derive
formulae involving Gauss sums of the characteristic functions of the set of ele-
ments satisfying all properties one is interesting in. We shall demonstrate this by
considering the generalization of the “PFNT-problem” studied in [Ha3].

Definition 5.2 If q and n are as above, then, for divisors k, l ≥ 1 of n, the quadruple
(q, k, l, n) is called universal if for every primitive b ∈ El and every normal a in
Ek/F there exists a primitive wa,b in En which is normal over F with (En, Ek)-
trace equal to a and (En, El)-norm equal to b (again the assumptions on a and b
are necessary). ✷

Problem 5.3 Which quadruples (q, k, l, n) are universal? ✷

In [Ha3], the motivation for studying this generalized version of the “PFNT-
problem” is to prove an infinite version of the primitive normal basis theorem for
primary closures of finite fields. In this context the following is true.

Theorem 5.4 (q, rα, rβ , rγ) is universal for all prime powers q > 1, all primes r ≥ 7,
all α, β ≥ 0 and all γ > max{α, β}. ✷

In the rest of this section we follow [Ha3] and demonstrate how to derive a suffi-
cient criterion for a quadruple to be universal. Throughout, the (En, Ek)-trace is
denoted by Tn,k and the (En, El)-norm is denoted by Nn,l.
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Consider first the multiplicative part. If D is a divisor of qn − 1, then MD in
(5.2) is the characteristic function of all elements of E∗ whose multiplicative order
is divisible by D̄, where D̄ is defined to be the largest divisor of qn − 1 whose
square-free part is that of D (see [Ca, Da, LeSc, CoHa1]).

MD(w) :=
ϕ(D)
D

∑
d|D

µ(d)
ϕ(d)

∑
(η,d)

η(w), w ∈ E∗, (5.2)

here the second sum runs over all ϕ(d) multiplicative characters η of the character
group Ê∗ of E∗ (isomorphic to E∗) whose order is equal to d.

For a divisor l of n, the characteristic function of the set of w ∈ E∗n having
(En, El)-norm b ∈ E∗l is given by

Nb(w) :=
1

ql − 1

∑
ν∈Ê∗l

ν(Nn,l(w)b−1), w ∈ E∗, (5.3)

where the sum runs over all multiplicative characters of El.
We next investigate normality and prescribed trace. For a divisor k of n let

Êk be the group of additive characters of Ek. The characteristic function Ta of all
w ∈ En with (En, Ek)-trace equal to a is as follows:

Ta(w) :=
1
qk

∑
λ∈Êk

λ(Tn,k(w)− a), w ∈ E. (5.4)

In order to cope with normality, we have to remark that, similar to the multi-
plicative case, the group Ên of additive characters is isomorphic to (En,+) as
F [x]-module as defined in Section 3 (see also [LeSc], [CoHa1], [Ha4]). For a monic
divisor G of xn − 1 let

AG(w) :=
φq(G)
qdeg(G)

∑
g|G

µq(g)
φq(g)

∑
(χ,g)

χ(w), (5.5)

where the first sum runs over all monic F -divisors of G and the symbol (χ, g)
indicates that the second sum runs over all additive characters of En having q-
order equal to G. Then AG is the characteristic function of the set of w ∈ En

whose q-order is divisible by Ḡ where Ḡ is the largest monic divisor of xn − 1
whose square-free part is equal to that of G.

The following result is taken from [Ha3].

Theorem 5.5 Given a quadruple (q, k, l, n) as above, let P be the largest divisor of
qn − 1 which is relatively prime to ql − 1 and let t ∈ F [x] be the largest monic
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divisor of xn − 1 which is relatively prime to xk − 1. Then, with a ∈ Ek being
normal over F and b ∈ El being primitive,

∑
w∈E∗

MP (w)At(w)Nb(w)Ta(w) (5.6)

is the total number of elements in En which are primitive and normal over F with
(En, Ek)-trace equal to a and (En, El)-trace equal to b.

Moreover, (q, k, l, n) is universal provided that

qn/2

qk(ql − 1)
> (2Ω − 1

qk
)(2ω − 1

ql − 1
), (5.7)

where ω denotes the number of distinct prime divisors of P and Ω denotes the
number of distinct monic irreducible F -divisors of t. ✷

The criterion (5.7) is derived through analysis of absolute values of Gauss sums
occuring in the term (5.6) (for a multiplicative character η and an additive char-
acter χ of En, the (complex valued) Gauss sum G(η, χ) is defined by G(η, χ) :=∑

w∈E∗n η(w)χ(w), see [LiNi, Chapter 5, Section 2]). We shall here demonstrate
how (5.7) can be used to prove the following asymptotic result (see [Ha4] for a
similar reasoning).

Theorem 5.6 There are at most finitely many quadruples (q, k, l, n) with n ≥ 5,
q ≥ 257 and k, l ≤ n/5 which are not universal.

Proof. For an integer z ≥ 1 let d(z) denote the number of positive divisors of z.
Then 2ω ≤ d(P ) ≤ d(qn − 1). By [HaWr, Section 18.1, Satz 315], for any ε > 0
there exists a constant cε > 0 such that 2ω ≤ cεq

nε. On the other hand n−k is an
upper bound of Ω. Thus, using (5.7), for (q, k, l, n) to be universal it is sufficient
to have 2n−kcεq

nε < qn/2−k−l. Thus, with max{k, l} ≤ n/5, an easy calculation
shows that for (q, k, l, n) to be universal, the condition 24n/5cεq

−(1/10−ε)n < 1 is
sufficient. Now, let ε < 1/10 and δ := 1/8 − 5ε/4. Then δ > 0 and (q, k, l, n) is
universal provided that

cε(
2
qδ

)4n/5 < 1. (5.8)

The latter holds, for all n ≥ 5, whenever q is large enough, say q ≥ qε, where
qε is a constant depending only on ε. Observe next that δ < 1/8, whence for
q ≥ 257 > 28 one has 2/qδ < 1 and therefore (5.8) is also satisfied whenever n is
large enough. We conclude that for any q from the interval [257, qε] there are only
finitely many n such that (q, k, l, n) is not universal for divisors k, l of n which are
less than n/5. This completes the proof of the theorem. ✷

We remark that the range of possible exceptions to universality can be made more
precise when using more concrete upper bounds for ω (see the proof of the present
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Theorem 4.4 given in [Ha3]). When n ≥ 7 and k = l = 1 then (5.7) turns out
to be a good criterion (see [CoHa2]). In order to solve the “PFNT-problem” for
n = 6 and n = 5 (i.e., the universality of (q, 1, 1, 5) and (q, 1, 1, 6) for all q) Cohen
[Cp2] has developed an efficient sieving technique as well as an improvement of
(5.7) (for k = l = 1).

We also remark that it is not difficult to show (see [Ha3]) that the universality
of (q, k, l, n) implies that of (q, k′, l′, n) if k′ divides k and l′ divides l. It is therefore
important to know the universality for divisors of n as large as possible.

6 Cyclotomic polynomials and their additive q-analogues

In the present section we are once more concerned with the cyclotomic polynomials
and their (additive) q-analogues Ψg which were introduced in Section 3. It is
here our aim to present properties of these polynomials which are useful for their
computation (see [Ha1, Section 10] for the cyclotomic polynomials). We use the
same notation as in Section 3 and start with the cyclotomic polynomials.

1. If D is a divisor of N such that ν(N) divides D then ΦN = ΦD(xN/D); in
particular ΦN = Φν(N)(xN/ν(N));

2. if N and T are relatively prime and p does not divide T then ΦN (xT ) =∏
D|T ΦND;

3. if π is a power of p then ΦN (xπ) = Φπ
N .

Next, consider Ψg and recall that αq(g) is the associated q-polynomial of g. In
order to describe the analogous properties of the polynomials Ψg, we denote the
compositions of polynomials by ∗ (e.g., see above, we have ΦND = ΦN ∗ xD when
D and N have the same prime divisors).

1. If h is a divisor of g such that ν(g) divides h then Ψg = Ψh ∗ αq(g/h), in
particular Ψg = Ψν(g) ∗ αq(g/ν(g));

2. if g and h are relatively prime then Ψg ∗ αq(h) =
∏

d|h Ψgd.

Observe that the first formula reflects (4.2) while there is a connection between
the second formula and (4.3) (we do not go into further detail, here).

7 Cyclotomic modules and completeness

So far we have always studied (F̄ ,+) as a module with respect to the fixed ground
field F (see (3.6)). In the present section we introduce a dynamical component by
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allowing a variation of the ground field. We shall be concerned with the complete
module structure of F̄ , a theory which has been developed in [Ha1] and [Ha6].

Observe first that if Ek is any finite extension of F then (F̄ ,+) also carries the
structure as an Ek-module with respect to the Frobenius automorphism σk over
Ek, i.e., the scalar multiplication is given by

h ◦k w := h(σk)(w), w ∈ F̄ , h ∈ Ek[x]. (7.1)

Now, analogously to Section 3, the qk-order of w ∈ F̄ is defined to be the monic
polynomial h of least degree in Ek[x] such that h ◦k w = 0.

Let us consider a finite F -module Mg (g ∈ F [x] indivisible by x). There is
a largest integer κ = κ(g) such that g has the form g = h(xκ) for some monic
h ∈ F [x].

Definition 7.1 The parameter κ is called the module character of Mg. ✷

The latter definition is motivated by the following fact.

Proposition 7.2 Mg is an Ed-module (i.e., a σd-invariant Ed-subspace of F̄ ) if and
only if d is a divisor of κ(g). ✷

Now, from Theorem 3.1, applied to any divisor d of κ, we know that Mg is a cyclic
Ed-module (the generators of Mg as an Ed-module are exactly the elements of
Ωqd(h(xκ/d)), i.e., those elements having qd-order equal to h(xκ/d)). The following
result says much more, namely that Mg is in fact completely cyclic.

Theorem 7.3 Let Mg be a finite F -module of F̄ . Then there exists an element
v ∈ Mg such that v simultaneously generates Mg as Ed-module for all d dividing
κ(g). Such an element v is called a complete generator for Mg. ✷

As in Section 3 it is important to emphasize the special case where g = xn − 1
(where n ≥ 1 is some integer). Recall that En = Mxn−1. The module character
of the latter is equal to n, and one therefore recovers the complete normal basis
theorem which is due to Blessenohl and Johnsen [BlJo].

Complete Normal Basis Theorem. For every extension En/F of finite fields there
exists an element w ∈ En such that w simultaneously is normal for En/Ed for all
divisors d of n, i.e, for all intermediate fields of En/F . ✷

An element of the latter kind is called completely normal in En/F (again the
terminology is not consistent since sometimes the term completely free is used).

According to Section 5 we next define Ωc
q(g) to be the set of all complete

generators of Mg and let φc
q(g) denote the cardinality of that set. We shall discuss

some properties of these sets and therefore restrict our attention to the class of
cyclotomic modules (introduced in [Ha1, Ha6]) for which the properties of the
cyclotomic polynomials given in Section 6 are important.
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Definition 7.4 Mg is called a cyclotomic module if g is of the form Φk(xt) where
k, t ≥ 1 are integers such that p does not divide k and (without loss of generality)
k and t are relatively prime. ✷

Since xn − 1 = Φ1(xn), each finite extension En of F is a cyclotomic module.
Moreover, the module character corresponding to Φk(xt) is equal to kt/ν(k).

The most important structural result for complete generators of cyclotomic
modules is the following Complete Decomposition Theorem ([Ha1, Ha6]), which
can be seen as a complete version of (5.4).

Complete Decomposition Theorem (CDT). Consider a finite field F and the cyclotomic
module corresponding to the polynomial g = Φk(xt). Let t′ be the largest divisor of
t which is relatively prime to the characteristic p of F . Assume that r is a prime
divisor of t′ and denote by R the largest power of r dividing t. Then the following
four assertions hold for the polynomials δ and ε defined by

δ := Φk(xt/r) and ε := ΦkR(xt/R). (7.2)

• g = δ · ε and δ and ε are relatively prime,

• Mg = Mδ ⊕Mε,

• κ(δ) = κ(g)
r = κ(ε),

• Ωc
q(g) ⊆ Ωc

q(δ)⊕ Ωc
q(ε).

Moreover, the following two assertions are equivalent

1. Ωc
q(g) = Ωc

q(δ)⊕ Ωc
q(ε) (and therefore φc

q(g) = φc
q(δ) · φc

q(ε)),

2. the order of q modulo ν(kt′) is not divisible by R. ✷

One of the main features of the Complete Decomposition Theorem (CDT) is that
it can be applied iteratively yielding a product formula for φc

q(Φk(xt)). We demon-
strate this in an example.

Example 7.5 Let n = 84 and F = GF(q) where the characteristic p of F is different
from 2, 3 and 7 (which are the prime divisors of 84). CDT can always be applied
to xn − 1 by choosing the largest prime divisor r of n which is different from p.
Thus, taking r = 7, we obtain

Ωc
q(x

84 − 1) = Ωc
q(x

12 − 1)⊕ Ωc
q(Φ7(x12)).
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For the subsequent applications we remark that 42 is the square-free part of 84
and that ord42(q) is a divisor of 6, whence ordν(d)(q) is not divisible by 7 or 4 for
every divisor d of 84. Taking r = 2 applied to both summands above yields

Ωc
q(x

84 − 1) = Ωc
q(x

6 − 1)⊕ Ωc
q(Φ4(x3))⊕ Ωc

q(Φ7(x6))⊕ Ωc
q(Φ28(x3)).

Next, CDT can be applied to decompose x6 − 1 into x2 − 1 and Φ3(x2) (r = 3),
x2 − 1 into x − 1 = Φ1 and Φ2 (r = 2), and Φ4(x3) into Φ4 and Φ12 (r = 3).
Altogether we have a decomposition of Ωc

q(x
84 − 1) which is described by the

following set of polynomials:

{Φ1,Φ2,Φ3(x2),Φ4,Φ12,Φ7(x6),Φ28(x3)}.

In general, CDT cannot be applied to Φ3(x2), Φ7(x6) and Φ28(x3) but a specifi-
cation of q can lead to further decompositions. For a general q we can summarize
that φc

q(x
84 − 1) is equal to

(q − 1)2 · φc
q(Φ3(x2)) · φc

q(Φ4) · φc
q(Φ12) · φc

q(Φ7(x6)) · φc
q(Φ28(x3)). ✷

In [Ha6] we have proved that a decomposition of a cyclotomic module as obtained
in Example 7.5 is uniquely determined no matter in which order the primes r are
chosen.

A further important feature of the CDT is that the module character of the
summands corresponding to δ and ε is a proper divisor of the module character of
the entire module (corresponding to g), i.e., with every decomposition the module
character decreases. In the above example the highest module character in the
achieved decomposition is equal to 6, while we have started with κ(x84 − 1) = 84.
The phenomenon of decreasing the module character is important for constructions
of completely normal elements, which is done in [Ha1, Chapter VI]. In this context
we remark that the notion of regularity (see Section 4) also plays an important
rôle for cyclotomic modules under the complete point of view and that a complete
version of (4.8) is available (see also Section 8). It follows also from results in
[Ha1] that a complete generator of any cyclotomic module can be constructed
deterministically in polynomial time.

8 On the enumeration of complete normal bases

Via computer search, Morgan and Mullen [MoMu2] have determined the ex-
act number of completely normal elements for the 56 pairs (q, n) where q =
2, 3, 4, 5, 7, 8, 9 and n ≤ 18, 12, 9, 8, 6, 5, 5, respectively, and they have posed the
problem to find formulae for the number of completely normal elements. We shall
discuss this in the present section.

First of all, as outlined in Section 7, the CDT gives a product formula for the
number of complete generators of cyclotomic modules (in particular completely
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normal elements, see Example 7.5). According to Definition 5.1, we define the
cyclotomic module described by Φk(xt) to be regular if (q, kt) is regular, i.e., if
ordν(kt′)(q) is relatively prime to kt. In [Ha1, Chapter VI] we have applied the
decomposition theory for studying regular cyclotomic modules and we were able to
determine the exact value for φc

q(Φk(xt)) in that case. Instead of reproducing the
complicated formula, we offer the following conjecture which is valid for regular
cyclotomic modules.

Conjecture 8.1 Assume that p does not divide kt′ and let π be a power of p. Then

φc
q(Φk(xt′π)) ≥ (q − 1)ϕ(k)t′ · qϕ(k)t′(π−1). (8.1)

Morever, equality holds if and only if q − 1 is divisible by kt′. ✷

For general cyclotomic modules we have used a complete version of the product
construction (4.8) in order to derive lower bounds for the number of complete
generators (see [Ha1, Section 25]). However, in general, these bounds are rather
weak compared to the bound in (8.1).

For the rest of this section we shall have a look at the smallest non-regular
problem instance, as this already indicates the difficulty of the general problem of
finding the number of completely normal elements.

We consider the extension Ers/F where F = GF(q) with characteristic p and
where r and s are primes different from p. If r = s (a regular case) then by [Ha1,
Section 15], every normal element of Er2/F is already completely normal. Let
us therefore assume that r < s. An application of the Complete Decompositon
Theorem gives

φc
q(x

rs − 1) = φq(x− 1) · φq(Φr) · φc
q(Φs(xr)).

If r does not divide the order of q modulo s (a regular case), then

φc
q(Φs(xr)) = φq(Φs) · φq(Φsr)

and therefore, again, every normal element of Esr/F is completely normal.
Let us thus look at the non-regular case where r divides ords(q).
First, letting f1, ..., fd be the irreducible F -divisors of Φs (where d = (s −

1)/ords(q)), we have (see [Ha1, Section 12])

Ωc
q(Φs(xr)) =

d⊕
i=1

Ωc
q(fi(x

r)),

and we need to consider φc
q(f(xs)), where f is one of the fi. Let Q = qr. An

element v is a complete generator of Mf(xr) over F if and only if Ordq(v) = f(xr)
and OrdQ(v) = f . In the following, g denotes a monic F -divisor of f(xr) and h
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denotes a monic Er-divisor of f . For such an h let Vh be the kernel of h(σr), in
particular, Mf(xr) = Vf .

One can show (see [Ha1, Section 14]) that for every pair (g, h), Mg ∩Vh carries
the structure of an El-vector space, where l = ords(q) is the degree of f (this is due
to the fact that Mg and Vh are F [x]-modules with respect to the F -endomorphism
σr). Now, for every pair (g, h) let ε(g, h) be the El-dimension of Mg ∩ Vh. Then
knowledge of the function ε enables one (via the inclusion-exclusion principle) to
determine φc

q(f(xr)). In this context we offer the following problem.

Problem 8.2 Define the function m by

m(g, h) := max {0,dimEl(Mg)+dimEl(Vh)− r}. (8.2)

Is it true (independent from the choice of f) that ε = m? ✷

Up to now we were able to show that m = ε for r = 2, r = 3 or r = 5, only. But
we are thereby able to determine formulae for the number of completely normal
elements for most of the pairs (q, n) where n ≤ 100 and where q is any prime
power which is relatively prime to n. (This and the rest of this section will have
to be worked out in [Ha7].) We shall give an example.

Example 8.3 Let s = 7, r = 3 and assume that q modulo 7 is equal to 2,3,4 or 5,
whence ord7(q) is divisible by 3.

If q ≡ 2 modulo 3 then

φc
q(Φ7(x3)) = (q9 − 4q6 + 5q3 − 2)2,

and therefore

φc
q(x

21 − 1) = (q − 1) · (q2 − 1) · (q9 − 4q6 + 5q3 − 2)2.

If q ≡ 1 modulo 3 then

φc
q(Φ7(x3)) = (q9 − 6q6 + 15q3 − 10)2,

and
φc
q(x

21 − 1) = (q − 1)3 · (q9 − 6q6 + 15q3 − 10)2.

In both cases, Conjecture 8.1 is true. In the special case where q = 2 we obtain
φc

2(x
21−1) = 259308 (see [Ha1, Section 14]). The total number of normal elements

for E21/GF(2) is 583443. ✷

The general problem seems to be very difficult, but we shall finally discuss an
interesting connection to MDS-codes.

MDS-codes are important objects studied in Coding Theory (see [MWSl])
which are related to some fundamental objects in Finite Geometries as well (see
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[HiTh]). MDS-codes are optimal in the sense that among all codes with the same
length and the same minimum distance, they have the maximum number of code-
words and therefore carry the highest information rate.

Let us return to the situation above. If hj is an irreducible Er-divisor of f , then
Vhj is a one-dimensional El-space. Hence, choosing a nonzero element of each of
the Er-submodules Vhj (running over all irreducible Er-divisors of f) we obtain an
El-basis of Mf(xr). Let Mf(xr) be coordinatized with such a basis. Next, let g be
a fixed monic F -divisor of f(xr). Then the fact that dimEl(Mg ∩ Vh) = m(g, h)
for all h (see Problem 8.2) is equivalent to the fact that Mg is an MDS-code
with respect to the chosen coordinate system of Mf(xr). In other words, the
minimum weight of Mg considered as block code of length r over El is equal to
r − dimEl(Mg) + 1.

We close this section with the following (down-to-earth) problem (compare
with Example 7.5).

Problem 8.4 Let q be a prime power such that ord7(q) = 6. Determine the number
of complete generators for the cyclotomic modules corresponding to Φ7(x6) and
Φ28(x3). ✷

9 On primitive complete normal bases

In this final setion we turn to a further important problem in finite field theory.

Problem 9.1 Let F = GF(q) and consider an extension En/F . Does there exist a
primitive element in En which additionally is completely normal over F? ✷

It is conjectured in Morgan and Mullen [MoMu2] (and widely believed) that such
elements in fact do always exist (i.e., for all prime powers q ≥ 2 and all n ≥
1). By means of a computer search, Morgan and Mullen have supported this
conjecture by calculating for every pair (q, n), with q ≤ 97 a prime and qn < 1050,
a monic irreducible polynomial of degree n over GF(q) whose roots are primitive
and completely normal for GF(qn) over GF(q). Besides an extensive table with
1061 polynomials they have also determined the exact number of primitive and
completely normal elements for the 56 pairs (q, n), where q = 2, 3, 4, 5, 7, 8, 9 and
n ≤ 18, 12, 9, 8, 6, 5, 5, respectively.

In [Ha8] we were able to solve Problem 9.1 by proving a primitive complete
normal basis theorem for a large class of extensions. The precise result is as
follows.

Theorem 9.2 Let En be the field extension of degree n over a finite field F = GF(q).
Assume that (q, n) is regular (see Definition 4.1). Assume further that q − 1 is
divisible by 4 if q is odd and n is even. Then there exists a primitive element
w ∈ En which is completely normal over F . ✷
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For the proof of that result we have combined character sum methods (as in Section
5) together with the decomposition theory of cyclotomic modules (as outlined in
Section 7). We shall finally give examples which demonstrate that the class of
regular extensions is in fact quite large.

Example 9.3 A Carmichael number is an odd composite N ∈ N such that r− 1 di-
vides N−1 for every prime divisor r of N (see [Ko, page 128], there exist infinitely
many Carmichael numbers). E.g., 561, 1105, 1729 and 2465 are Carmichael num-
bers. Now, if N is a Carmichael number, then (Ns, q) is regular for each prime
power q > 1 and each integer s ≥ 1, and Theorem 9.2 applies to this situation. ✷

Example 9.4 Let q ≥ 2 be any prime power. We determine a set L of primes as
follows: we start with L = {s} where s is an odd prime and consider all primes r
with s + 1 ≤ r ≤ B in increasing order; if s is not a divisor of r − 1 for every s
in the current set L, then r is added to L. Now, if n is any number all of whose
prime divisors are from L (no matter in which multiplicity the primes occur in
n), then (q, n) is regular and Theorem 9.2 applies to this situation. When taking
s = 7 and B = 1000, we obtain the following list with 70 primes (the total number
of primes r with 7 ≤ r ≤ 1000 is equal to 165):

{ 7, 11, 13, 17, 19, 31, 41, 47, 49, 61, 73, 97, 101, 107, 109, 139, 151, 163, 167, 173,
179, 181, 193, 227, 233, 241, 251, 263, 269, 271, 277, 317, 349, 383, 401, 431, 433,
461, 479, 487, 499, 509, 523, 541, 563, 569, 577, 587, 601,
619, 641, 691, 719, 751, 769, 787, 797, 811, 823, 829, 839, 853, 887, 929,
983, 997 }.
For s = 7 and B = 100000 we obtain a list with 3181 primes the largest of which
is 99907. The total number of primes in the interval [7; 100000] is equal to 9585. ✷
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Tilburg University
e-mail: Haemers@kub.nl

We deal with the question: When can one see from the spectrum of a graph whether it
is distance-regular or not? We give some new cases for which this is true. As a conse-
quence we find (among others) that the following distance-regular graphs are uniquely
determined by their spectum: The collinearity graph of the generalized octagons of or-
der (2, 1), (3, 1) and (4, 1), the Biggs-Smith graph and the coset graphs of the doubly
truncated binary Golay code and the extended ternary Golay code.
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Veronese Varieties over Fields with non-zero
Characteristic: A Survey

Hans Havlicek
Abteilung für Lineare Geometrie

Technische Universität
Wiedner Hauptstraße 8–10, A-1040 Wien, Austria

e-mail: havlicek@geometrie.tuwien.ac.at

1 Introduction

Non-zero characteristic of the (commutative) ground field F heavily influences
the geometric properties of Veronese varieties and, in particular, normal rational
curves. Best known is probably the fact that, in case of characteristic two, all
tangents of a conic are concurrent. This has lead to the concept of a nucleus.
However, it seems that there are essentially distinct definitions. Some authors, like
J.A. Thas [38], use this term to denote a point which extends a normal rational
curve to an (q+2)-arc (F a finite field of even order q), others, like A. Herzer [23],
use the same term for the intersection of all osculating hyperplanes of a Veronese
variety. In order to overcome this difference of terminology we introduce the
term (r, k)-nucleus. The two types of nuclei mentioned above are just particular
examples fitting into this general concept.

Each nucleus is an invariant subspace, i.e. a subspace in the ambient space of a
Veronese variety which is fixed (as a set of points) under the group of automorphic
collineations of the variety. However, an invariant subspace needs not be a nucleus.

In the present survey we collect some recent results on nuclei of Veronese
varieties and invariant subspaces of normal rational curves. We must assume,
however, that the ground field is not “too small”, since otherwise a Veronese
variety is like dust: “few points” in some “high-dimensional” space.

Nuclei and invariant subspaces do not appear in classical textbooks on Veronese
varieties (F = R,C), since for characteristic zero all invariant subspaces are trivial.
If the ground field has characteristic p > 0, then geometric properties of invariant
subspaces are closely related to multinomial coefficients that vanish modulo p and
to the representations of certain integers in base p. In order to illustrate this
connection some results on binomial and multinomial coefficients are gathered in
Chapters 2 and 4.
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2 Pascal’s triangle modulo a prime p

2.1 A partition of zero entries

Throughout this section let p be a fixed prime. The representation of a non–
negative integer n ∈ N := {0, 1, 2, . . .} in base p has the form

n =
∞∑
σ=0

nσp
σ =: 〈nσ〉 (1)

with only finitely many digits nσ ∈ {0, 1, . . . , p− 1} different from 0.
Let 〈nσ〉 and 〈jσ〉 be the representations of non–negative integers n and j in

base p. By a Theorem of Lucas [4, 364],
(
n

j

)
≡
∞∏
σ=0

(
nσ
jσ

)
(mod p). (2)

Pascal’s triangle modulo p will be denoted by ∆. The numbering of its rows starts
with the index 0. Also, let ∆i (i ∈ N) be the subtriangle of ∆ that is formed by
the rows 0, 1, . . . , pi − 1. From (2) each triangle ∆i+1 (i ≥ 0) has the following
form, with products taken modulo p: (

0
0

)
∆i(

1
0

)
∆i ∇i

(
1
1

)
∆i(

2
0

)
∆i ∇i

(
2
1

)
∆i ∇i

(
2
2

)
∆i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
p−1
0

)
∆i ∇i . . . ∇i

(
p−1
p−1

)
∆i

Here the ∇i’s are triangles with all entries equal to zero. Observe that the baseline
of ∆i has pi entries, whereas the top line of ∇i is formed by pi − 1 zero entries.
So ∇0 is empty. The binomial coefficients on the left hand side of the ∆i’s are
exactly the entries of ∆1. None of them vanishes modulo p. If i ≥ 2, then each
subtriangle

(
n
j

)
∆i from above can be decomposed into subtriangles proportional

to ∆i−1 and subtriangles ∇i−1, and so on. Cf., among others, [24, 91–92], [33,
Theorem 1], [44].

The zero entries of Pascal’s triangle modulo p fall into (disjoint) maximal sub-
triangles ∇i (i ∈ N+). We get a partition of all zero entries of ∆ by gluing together
all triangles∇i of same size to one class, say i. A formal definition of this partition,
which is the backbone of many further considerations, is as follows:

Definition 1 [11] A pair (n, j) = (〈nσ〉, 〈jσ〉) of non–negative integers with j ≤ n,(
n
j

)
≡ 0 (mod p), and L := max{σ ∈ N | jσ > nσ}, is in class i, if

i = min{σ | σ > L, jσ < nσ} ∈ N+.

161



2.2 Counting zero entries

The following is taken from [11]. Let n = 〈nσ〉 ∈ N and i ∈ N+. Then the number
of entries in row n of ∆ belonging to class i equals

Φ(i, n) := #i(n) =
(
pi − 1−

i−1∑
µ=0

nµp
µ
)
· ni ·

∞∏
σ=i+1

(nσ + 1). (3)

The number of entries in row n of ∆ belonging to classes i, (i+ 1), . . . is

Σ(i, n) :=
∞∑
η=i

Φ(η, n) = n+ 1−
(
1 +

i−1∑
µ=0

nµp
µ
) ∞∏
σ=i

(nσ + 1). (4)

For i = 1 this is due to N.J. Fine [7].
When exhibiting “vertical” properties of ∆ the following top line function turns

out useful: Given b ∈ N+ and R ∈ N then let

T (R, b) :=
∞∑
σ=R

bσp
σ. (5)

This function has the following property: If (n, j) ∈ i and b := n + 1 then T (i, b)
gives the “top line” of the triangle ∇i containing the (n, j)-entry of ∆, i.e.

0 ≡
(
n

j

)
≡

(
n− 1
j

)
≡ . . . ≡

(
T (i, b)
j

)
≡

(
T (i, b)− 1

j

)
(mod p). (6)

We refer to [14], [31], [36] for further properties of ∆.

3 Normal Rational Curves

3.1 Definition of k-nuclei

Let {b0,b1} be a basis of a 2-dimensional vector space X over a commutative field
F (the parameter space) and let Y be an (n+ 1)-dimensional vector space over F
with a basis {c0, c1, . . . , cn}, where n ≥ 2. The Veronese mapping

F (x0b0 + x1b1) �→ F
( n∑
e=0

xn−e0 xe1ce
)

(xi ∈ F ). (7)

maps the point set of the projective line P(X) into the point set of P(Y), i.e.
the projective space on Y. Its image is a normal rational curve Vn1 (sometimes
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abbreviated as NRC) with ambient space P(Y) [1], [2], [3], [5], [26, Chapter 21].
In terms of coordinates and an inhomogeneous parameter x := x1/x0 we obtain

Vn1 := {F (1, x, . . . , xn) | x ∈ F ∪ {∞}}. (8)

Recall the non-iterative derivation due to H. Hasse, F.K. Schmidt, and
O. Teichmüller [15], [27, 1.3]. The k-th derivative D(k) : F [X] → F [X] is a
linear mapping such that D(k)(Xr) =

(
r
k

)
Xr−k for k ≤ r and D(k)(Xr) = 0

otherwise (r, k ∈ N).
If we fix one u ∈ F then columns of the regular matrix




(
0
0

)
0 0 . . . 0(

1
0

)
u

(
1
1

)
0 . . . 0(

2
0

)
u2

(
2
1

)
u

(
2
2

)
. . . 0

...
. . .

...(
n
0

)
un

(
n
1

)
un−1

(
n
2

)
un−2 . . .

(
n
n

)




(9)

give, respectively, a point of the NRC (8) and its derivative points. The k-
osculating subspace (k ∈ {−1, 0, . . . , n − 1}) of Vn1 at the given point is the k-
dimensional projective subspace spanned by the first k + 1 columns of the matrix
(9). The derivative points at Fcn (u =∞) are Fcn−1, Fcn−2 . . . , Fc0.

Formal derivation in F [X] is in general not an adequate tool to describe oscu-
lating subspaces [35].

The (empty) (−1)-osculating subspace is introduced for formal reasons only.
However, we refrain from calling the entire space an n-osculating subspace. As
usual, a 1-osculating subspace is also called a tangent.

Definition 2 [11] The k-nucleus N (k)Vn1 (k ∈ {−1, 0, . . . , n−1}) of a normal rational
curve Vn1 is the intersection of all its k-osculating subspaces.

Remark 1 Instead of a parametric representation one could also use a generating
map [16], [19], Segre varieties [5], [32], [46], [47] or tools from multilinear algebra
[12], [23] in order to define osculating subspaces.

If #F ≥ n + 2 or n = 2, then each automorphic collineation of the NRC (8)
preserves osculating subspaces. Otherwise, there are automorphic collineations of
the NRC that do not preserve all osculating subspaces, whence the concept of
osculating subspaces depends on the parametric representation of the NRC rather
than on the points of the NRC [17], [19, 2.4].

3.2 Number and dimensions of nuclei

The following theorem links nuclei of a NRC with Pascal’s triangle:
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Theorem 1 [11] If #F ≥ k + 1, then the k-nucleus N (k)Vn1 of the normal ra-
tional curve (8) equals the subspace spanned by those base points Fcj, where
j ∈ {0, 1, . . . , n} is subject to

(
k + 1
j

)
≡

(
k + 2
j

)
≡ . . . ≡

(
n

j

)
≡ 0 (mod charF ). (10)

By Theorem 1, charF = 0 implies that all nuclei of a NRC are empty. Thus
we assume in the remaining part of this section that

charF =: p > 0; n =: 〈nσ〉, n+ 1 =: b =: 〈bσ〉 (in base p). (11)

The (projective) dimension of a k-nucleus is described in

Theorem 2 [11] If #F ≥ k + 1 and

T (R, b) =
∞∑
µ=R

bµp
µ ≤ k + 1 <

∞∑
σ=Q

bσp
σ = T (Q, b) (12)

with at most one bσ = 0 for σ ∈ {Q,Q + 1, . . . , R − 1}, then the k-nucleus of Vn1
has dimension

n−
(
1 +

R−1∑
µ=0

nµp
µ
) ∞∏
σ=R

(nσ + 1) = Σ(R,n)− 1. (13)

The condition on the digits bσ guarantees that the top line function T does not
assume a value that is properly between T (R, b) and T (Q, b).

If k = n− 1, then (13) turns into Timmermann’s formula [41, 4.15]

dimN (n−1)Vn1 = n−
∞∏
σ=0

(nσ + 1) = Σ(1, n)− 1; (14)

cf. also [40].

Remark 2 If the ground field F does not meet the richness condition of Theorem 2,
then (13) is a lower bound for the dimension of the k-nucleus, but it seems to be
an open problem to explicitly determine the dimension of the k-nucleus in terms
of k, n, and #F . See also [18] and Example 3.

Next we state a formula for the number of distinct nuclei:

Theorem 3 [11] If #F ≥ n, then there are as many distinct nuclei of Vn1 as non-
zero digits in the representation of b = n+ 1 in base p.
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Example 1 Let p = 2 and n = 50: The representation of 50+1 in base 2 is 〈110011〉;
there are four non-zero digits. So there are four distinct nuclei, including one empty
nucleus. From

T (0, 51) = 〈110011〉 = 51, T (1, 51) = 〈110010〉 = 50,
T (2, 51) = T (3, 51) = T (4, 51) = 〈110000〉 = 48,
T (5, 51) = 〈100000〉 = 32, T (6, 51) = 〈0〉 = 0,

we obtain the following values:

k −1, 0, . . . , 30 31, 32, . . . , 46 47, 48 49
dimN (k)Vn1 −1 12 38 42

Remark 3 Let #F ≥ n. Then

n = 2pi − 2 ≥ 2 (15)

is necessary and sufficient for the smallest non-empty nucleus to be a single point.
In fact, this point is Fcpi−1. In particular, if F is a finite field of even order q,
then this point together with Vn1 is a (q+ 2)-arc [38]. Cf. also [8], [37]. In general,
however, the geometric meaning of this point seems to be unknown.

From Theorem 3 all nuclei are empty exactly if

n = 〈nJ , p− 1, . . . , p− 1〉 = nJp
J − 1 ≥ 2 (16)

with 1 ≤ nJ < p and J ∈ N. See also [23], [32].
Further properties of nuclei can be found in [10], [11].

3.3 Invariant subspaces

Each NRC Vn1 admits a group of collineations that is similar - via (7) - to PΓL(2, F )
acting on the projective line P(X). If #F ≥ n+ 2 or n = 2 then this group is the
full collineation group of the curve [17].

Each nucleus is an invariant subspace i.e. it remains fixed (as a point set) under
the full collineation group of the NRC. In many low-dimensional examples there
are no invariant subspaces other than nuclei. Clearly, all invariant subspaces form
a lattice with the operations of “join” and “meet”.

In order to find all invariant subspaces, we follow J. Gmainer [9]: Suppose that
the dimension n is fixed. For j ∈ N let

Ω(j) := {m ∈ N | 0 ≤ m ≤ n,
(
m
j

)
≡ 0 (mod charF )}. (17)

Given a subset J ⊂ {0, 1, . . . , n} then put

Ω(J) :=
⋃
j∈J

Ω(j), Ψ(J) :=
⋃
j∈J
{j, n− j}. (18)
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Both Ω and Ψ are closure operators on {0, 1, . . . , n}.
Now we are able to formulate the main theorem for invariant subspaces.

Theorem 4 [9] Let #F ≥ n + 2 or n = 2. A subspace U is invariant under the
collineation group of the normal rational curve (8) if, and only if, U is spanned by
base points Fcλ with λ ∈ Λ ⊂ {0, 1, . . . , n} such that Ψ(Λ) ⊂ Λ and Ω(Λ) ⊂ Λ.

In case of charF = 0 there are only trivial invariant subspaces. Thus we may
restrict ourselves to the case

charF = p > 0. (19)

By Theorem 4 it suffices to find all Ψ-closed index sets Ω(J) ⊂ {0, 1, . . . , n}. To
this end we proceed in four steps:

Firstly, let 〈bσ〉 be the expansion of b = n+ 1 in base p. We define

V (i, b) :=
i−1∑
σ=0

bσp
σ for all i ∈ N. (20)

Secondly, we fix one number i ∈ N. Suppose that Iα, where α ∈ {1, 2, . . . , L},
is a family of sets such that the following conditions on the sets Iα and the digits
bσ of b hold true:

1. Each non-empty set Iα has the form Iα = {j ∈ N | Hα > j ≥ hα} with
i− 1 ≥ Hα > hα ≥ 0.

2. If α > β and Iα, Iβ = ∅, then hα > Hβ .

3. bHα < p− 1 and bhα > 0 for each non-empty set Iα.

For empty subsets Iα no numbers Hα, hα will be defined. Thus

V (i, b) = 〈. . . , bHα , bHα−1, . . . , bhα︸ ︷︷ ︸
Iα �=∅

, . . .〉 (21)

and blocks of digits belonging to different non-empty sets Iα∪{Hα} do not overlap.
So we are in a position to define a number by simultaneously changing the digits
of V (i, b) for all non-empty sets Iα as follows:

V (I1, . . . , IL; i, b) := 〈. . . , bHα + 1, 0, . . . , 0︸ ︷︷ ︸
Iα �=∅

, . . .〉
(22)

Thirdly, we assign to each (I1, I2, . . . , IL, i, b), such that V (I1, I2, . . . , IL; i, b) is
defined, the set

T (I1 × I2 × · · · × IL) (23)

of all (T1, T2, . . . , TL) satisfying the following conditions:
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1. If Tα = ∅ then Tα ⊂ Iα and hα = minTα.

2. V (T1, T2, . . . , TL; i, b) is defined.

Finally, whenever V (I1, I2, . . . , IL; i, b) is defined, put

Λ(I1, . . . , IL; i, b) :=
⋃ (

Ω(V (T1, . . . , TL; i, b))
)
, (24)

by taking the union over all (T1, T2, . . . , TL) ∈ T (I1 × I2 × · · · × IL).
Let us say that an invariant subspace is irreducible if it is not spanned by the

invariant subspaces properly contained in it. Then, with all the assumptions made
so far, we obtain

Theorem 5 [9] Let #F ≥ n + 2 or n = 2. An invariant subspace U of the normal
rational curve (8) is irreducible if, and only if, it can be written as

U := span{Fcλ | λ ∈ Λ(I1, . . . , IL; i, b)}. (25)

As the lattice of invariant subspaces has only finitely many elements, each invariant
subspace is a join of irreducible ones.

Example 2 Let n = 31, p = 3 and #F ≥ 33. From b = 32 = 〈1012〉 we get

V (0, 32) = 〈0〉, V (1, 32) = 〈2〉,
V (3, 32) = 〈012〉, V ({0}; 3, 32) = 〈020〉,

V ({1}; 3, 32) = 〈102〉, V ({0, 1}; 3, 32) = 〈100〉,
V (4, 32) = 〈1012〉.

Note that, for example, V (0, 32) = V (∅; 0, 32). Further V (2, 32) = V (3, 32),
V ({0}; 2, 32) = V ({0}; 3, 32), and V (I1, I2, . . . , IL; 4, 32) ≥ 32. So

Ω(〈0〉) = {〈0〉, 〈1〉, . . . , 〈1011〉},
Ω(〈2〉) = {〈2〉, 〈12〉, 〈22〉, 〈102〉, 〈112〉, 〈122〉, 〈202〉, 〈212〉, 〈222〉, 〈1002〉},

Ω(〈12〉) = {〈12〉, 〈22〉, 〈112〉, 〈122〉, 〈212〉, 〈222〉},
Ω(〈20〉) = {〈20〉, 〈21〉, 〈22〉, 〈120〉, 〈121〉, 〈122〉, 〈220〉, 〈221〉, 〈222〉},

Ω(〈102〉) = {〈102〉, 〈112〉, 〈122〉, 〈202〉, 〈212〉, 〈222〉},
Ω(〈100〉) = {〈100〉, 〈101〉, . . . , 〈222〉},

Ω(〈1012〉) = ∅,

are the relevant index sets and

Λ(∅; 0, 32) = Ω(〈0〉),
Λ(∅; 1, 32) = Ω(〈2〉),
Λ(∅; 3, 32) = Ω(〈12〉),

Λ({0}; 3, 32) = Ω(〈12〉) ∪ Ω(〈20〉)
Λ({1}; 3, 32) = Ω(〈12〉) ∪ Ω(〈102〉)

Λ({0, 1}; 3, 32) = Ω(〈12〉) ∪ Ω(〈20〉) ∪ Ω(〈102〉) ∪ Ω(〈100〉)
Λ(∅; 4, 32) = ∅.
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The Hasse diagram of the lattice of invariant subspaces is given in the figure. Filled
circles represent irreducible subspaces and double circles mark nuclei.� Λ(∅; 0, 32)❝❣

�� ❅❅❝ �❣Λ({0, 1}, 3, 32)

�
�
❅
❅
���Λ(∅; 1, 32) ❝

❅
❅
�
�
❅
❅�Λ({1}; 3, 32) � Λ({0}; 3, 32)

❅
❅
�
�� Λ(∅; 3, 32)�❣Λ(∅; 4, 32)

In many low-dimensional examples the invariant subspaces form a chain. In
general, however, the following holds true:

Theorem 6 [9] Let the positions of the non-zero digits of b := n + 1 in base p
be denoted by N1, N2, . . . , Nd. Then the lattice of invariant subspaces is totally
ordered if, and only if, one of the following cases occurs:

1. d ∈ {1, 2}.
2. d ≥ 3, Nd −N1 = d− 1, and N2 = . . . = Nd−1 = p− 1.

Thus all invariant subspaces can be found, provided that the ground field is
sufficiently large. Also, in specific cases the structure of the lattice of invariant
subspaces is known.

Remark 4 If we project a NRC from one of its invariant subspaces other than P(Y),
then a rational curve is obtained; this curve admits a collineation group isomorphic
to PΓL(2, F ). Via (7) and the projection, the group actions on the curve and the
projective line P(X) are similar.

4 Pascal’s simplex modulo a prime

Throughout this section let p be a fixed prime. Given m, t ∈ N then put

Etm := {(e0, e1, . . . , em) ∈ Nm+1 | e0 + e1 + . . .+ em = t}. (26)

The array of multinomial coefficients
(

t
e0,e1,...,em

)
with (e0, e1, . . . , em) ∈ Etm is

frequently called Pascal’s simplex.
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The theorem of Lucas (2) can be generalized to multinomial coefficients as
follows [4, 364]: If t, e0, e1, . . . , em ∈ N have representations t =

∑
σ tσp

σ and
ei =

∑
σ ei,σp

σ in base p then
(

t

e0, e1, . . . , em

)
≡

∏
σ∈N

(
tσ

e0,σ, e1,σ, . . . , em,σ

)
(mod p). (27)

For trinomial coefficients (m = 3) it is possible to illustrate Pascal’s simplex in
the form of a pyramid:

The picture above shows a part of Pascal’s pyramid modulo 2. It is based upon
a tiling of the space by rhombic dodecahedra. If an entry of the pyramid vanishes,
then the corresponding dodecahedron is omitted. Entries at the same “horizontal”
level (t constant) are equally shaded. Cf. [25].

The following has been established independently by F.T. Howard [30, Theorem
3.1] and N.A. Volodin [42, Theorem 2]; see also [43]:

The number of (m+1)–tuples (e0, e1, . . . , em) ∈ Etm such that the multinomial
coefficient

(
t

e0,e1,...,em

)
is divisible by the prime p equals

(
m+ t

t

)
−

∏
σ∈N

(
m+ tσ
tσ

)
. (28)

5 Veronese varieties

5.1 Definition of (r, k)-nuclei

Let {b0,b1, . . . ,bm} be a basis of an (m + 1)-dimensional vector space X over
F (the parameter space) and let Y be an

(
m+t
t

)
-dimensional vector space over F

with a basis {ce0,e1,...,em | (e0, e1, . . . , em) ∈ Etm}; cf. (26). We shall always assume
that m ≥ 1 and t ≥ 2 in order to avoid trivialities.
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Generalizing (7), the Veronese mapping is given by

F
( m∑
i=0

xibi
)
�→ F

( ∑
Etm

xe00 xe11 . . . xemm ce0,e1,...,em
)

(xi ∈ F ). (29)

Its image is a Veronese variety Vtm with ambient space P(Y), i.e. the projective
space on Y. (By putting m := 1 and n := t a NRC Vn1 is obtained.)

The Veronese image of each r-dimensional subspace of P(X) (0 ≤ r < m) is a
sub-Veronesean Vtr of Vtm. (For r = 0 we get just one point, for r = 1 a normal
rational curve, etc. Cf. also [6].) For each k ∈ {−1, 0, . . . , t − 1} there exists a
k-osculating subspace of Vtm along Vtr. We call it an (r, k)-osculating subspace of
Vtm. Its dimension equals

t∑
i=t−k

(
r + i

i

)(
m+ t− r − i− 1

t− i

)
− 1; (30)

cf. [23] and the papers cited in Remark 1. Now we adopt the following

Definition 3 The (r, k)-nucleus of a Veronese variety Vtm is the intersection of all its
(r, k)-osculating subspaces.

The k-nuclei of a normal rational curve are the (0, k)-nuclei according to the
present definition.

Remark 5 A geometric characterization of quadratic Veronese mappings (t = 2)
can be found in [22]. Combinatorial characterizations of the Veronese surface
(m = t = 2) over a finite field are given in [29]. Applications of Veronese varieties
over finite fields in coding theory and authentication systems can be found in [13],
[20], [21], [28], [37], [39], [45]. Partial linear spaces derived from Veronese varieties
are discussed in [34].

5.2 Intersection of osculating hyperplanes

From (30), each (t−1,m−1)-osculating subspace of a Veronese variety Vtm is a hy-
perplane of P(Y) which is called an osculating hyperplane (or contact hyperplane)
of the Veronese variety Vtm. Thus to each hyperplane of the parameter space there
corresponds an osculating hyperplane of the Veronesean. In terms of dual bases
this dual Veronese mapping is given by

F
( m∑
i=0

aib∗i
)
�→ F

( ∑
Etm

(
t

e0,e1,...,em

)
ae00 ae11 . . . aemm c∗e0,e1...,em

)
(ai ∈ F ). (31)

See also [5, pp. 160–163]. The intersection of all osculating hyperplanes of a Vtm is
its (m − 1, t − 1)-nucleus. Both A. Herzer [23] and H. Karzel [32] determined all
Veronese varieties where this specific nucleus is empty.
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Theorem 7 [12] The (m−1, t−1)-nucleus of a Veronese variety Vtm contains exactly
those base points Fce0,e1,...,em satisfying

(
t

e0, e1, . . . , em

)
≡ 0 (mod charF ). (32)

If #F ≥ t, then this nucleus is spanned by those base points.

From this and (28) follows

Theorem 8 [12] Let
∑
σ∈N tσp

σ be the representation of t in base p = charF > 0.
If #F ≥ t, then the (m−1, t−1)-nucleus of a Veronese variety Vtm has dimension

(
m+ t

t

)
−

∏
σ∈N

(
m+ tσ
tσ

)
− 1. (33)

Example 3 Let charF = 2.
The (1, 1)-nucleus of the Veronese surface V2

2 is a plane; cf. [29, Chapter 25].
From Theorem 8 the (1, 2)-nucleus of the Veronese surface V3

2 is a single point
provided that #F = 2. On the other hand, if #F = 2 then, by solving a sys-
tem of seven linear equations, the (1, 2)-nucleus of V3

2 is easily seen to be three-
dimensional. In either case V3

2 carries a family of twisted cubics that arise as
Veronese images of the lines in the parameter plane. For #F = 2 the 2-nucleus of
a twisted cubic is empty, but for #F = 2 this nucleus is a single point.
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It is known that the classical embeddings of geometries such as Grassmannians and
products of two projective spaces are essentially unique [1,2]. In this talk we deal with
the analogous question concerning products of Grassmannians, and give a partial answer
to it.
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On the Steiner System S(24,8,5)
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We present a new characterization of the Steiner System S(24,8,5).
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Given a plane algebraic curve C defined over a finite field Fq, how many points does it
have?

The short answer is that it depends what you mean. Here are four possible con-
tenders:

(1) the number Nq of Fq-rational points on a non-singular model of C;
(2) the number Mq of points in the projective plane PG(2, q) which lie on C.

(3) the number M̂q of points in PG(2, q) which lie on C with each t-fold point counted
with multiplicity t;

(4) the number Bq of branches of C centred at points of PG(2, q).

These numbers can all be distinct.
The theorems of Hasse–Weil and Stöhr–Voloch give bounds on Nq. Applications to

combinatorial problems in PG(2, q) can require bounds on Bq. Upper and lower bounds
on Bq will be discussed.
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A (lineal) conic blocking set is a set of lines in PG(2, q) with the property that every
conic of the plane intersects at least one line of the set. Such sets arise naturally in the
study of flocks of general cones where they are used to distinguish the case of quadratic
cones from the others. The study of these sets is in its infancy and we will report on our
preliminary findings. We examine only the special case where the lines are concurrent.
The results of computer searches in planes of order less than 100 provide data on the
sizes of minimal conic blocking sets. A dualization of the problem and an application
of some optimization techniques has provided an efficient algorithm for handling the
combinatorial explosion inherent in these searches. We provide several constructions, in
both odd and even characteristic, of irreducible conic blocking sets (those not containing
a smaller conic blocking set). The proofs for these constructions heavily rely on the
theory of flocks of quadratic cones. Finally, we report on the progress made in proving
the conjectured bounds for the sizes of the minimal conic blocking sets of this type.
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Skewaffine Spaces
in the Language of Distance Spaces
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University of Hannover, Germany
e-mail: hotje@math.uni-hannover.de

In the past J. André generalized the affine spaces under different aspects to so called
non commutative geometries. One of the most general definitions which was inspired by
Pfalzgraf is that of skewaffine spaces. Many interesting results are found but this subject
is not much familiar to the geometry community. Maybe the reason for this lies in the
language of the axioms used.
Here we will give descriptions of such spaces in the language of distance spaces as pro-
posed by W. Benz. Moreover we can find connections to other geometries like Ferrero
geometries.
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Given two points x and y of a graph Γ, the segment [x, y] is the union of all shortest
paths joining x and y. A graph Γ is said to be fully gated if for every convex subset Y of
Γ (i.e. a set containing the segment determined by any two of its points) and every point
x of Γ, there exists a point px of Y (the “projection” of x on Y ) with the property that
px belongs to each segment [x, y], where y ∈ Y . P. J. Cameron has observed a connection
between dual polar spaces and fully gated graphs: the collinearity graph of every dual
polar space is fully gated. This observation suggests the possibility to characterize dual
polar spaces in terms of fully gated graphs. In this talk, I will discuss some developments
in that direction.
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On Subplanes of Free Planes
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For the families of free affine, projective, non-projective Moebius, Laguerre and
Minkowski planes the ascending chain condition (Sandler 1964) is proved. The tool is a
theorem that establishes a basis for subplanes of such planes based on the representation
of these planes as posets.
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Departamento de Matemática - Universidade Estadual Paulista (UNESP)
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Conway and Sloane [2] describe several constructions of n-dimensional constellations,
also known as multilevel codes. One way to construct them is to take finite subsets of
an n-dimensional lattice Λ, which in turn is obtained from an algebraic number field
F = Q(α) of degree n. The finite set consists of the representatives of the cosets of a
prime ideal in oF, the maximal order of F. The key to the construction of Λ is to use the
canonical embedding σ of oF into Rn [1]. In this contribution we define and determine the
linear labeling of the elements of such a lattice Λ = σ(oF) by the elements of a Galois field
GF (q). For this, let {ω1, . . . ωn} be an integral basis for oF. A mapping > : Λ → GF (q)
is called a linear labeling (of the points of Λ by GF (q)) if >(σ(x1ω1 + . . . + xnωn)) =
x1>(σ(ω1)) + . . . + xn−1>(σ(ωn)). It can be obtained as follows: Given a rational prime
p, let mα,Q(x) be the minimal polynomial of α (over Q) with its coefficients reduced

modulo p. Suppose further that mα,Q(x) =
∏g

j=1
Pj(x)

ej , where the Pj(x) are distinct

irreducible polynomials of degree fj over GF (p). Then poF =
∏g

j=1
p
ej
j , where pj are

distinct prime ideals in oF given by pj = (p, Pj(α)), and Norm(pj) = qj = pfj . It follows
that oF/pj ∼= GF (qj). Denote this isomorphism by ϕ, and let pr be the natural mapping
from oF onto oF/pj . It can be proven that > = ϕ ◦ pr ◦ σ−1 is a linear labeling of Λ by
GF (qj). In fact, > can be completely defined by setting >(σ(α)) = α, where α is a root
of the polynomial Pj(x) over GF (p). Finally, by taking qj elements of σ(oF) of minimal
energy and distinct labels, a finite constellation of the highest density is determined,
labeled by GF (qj). The linear labeling can be extended in a natural way to sublattices
of oF, which are images of principal ideals of oF.
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The generalization which will be present is on the bidirected graphs, a natural extension
of directed graphs. A bidirection τ of an undirected graph G = (V,E) is a mapping τ
from the set H of half edges of G into {−1,+1} (H = {(e, v) ∈ E×V |e is incident to v}).
Every bidirection gives rise to a signature of the edges

σ : E−→{−1,+1} where σ(e) = −τ(e, u) · τ(e, v) if e = uv .

A cycle of G is balanced if it contains an even number of negative edges snd G is balanced
if every cycle of G is balanced.

If G = (V,E, τ) is a bidirected graph, let us recall that the ZZ-module ZZV (resp. ZZE)
is the set of mappings from V (resp. E) into ZZ. We recall also the classical mappings

∂τ : ZZE −→ZZV and : ZZV −→ZZE

defined by

∂τ (f)(v) =
∑
e∈E

τ(e, v)f(v) ∀ v ∈ V ;

δτ (f)(e) =
∑
v∈V

τ(e, v)f(v) ∀ e ∈ E .

The ZZ-modules Ker (∂τ ) and Im (δτ ) are respectively the set of (generalized) flows and
tensions in G and are the sets of mappings from E into ZZ. The support of a tension
t : E−→ZZ is the set of edges of G where t is not zero. The minimal supports of tensions
are the cocircuits of the matroid M(G) associated to the bidirected graph G.
We prove some results on the tensions whose supports are circuits as difference of
0-1 potentials on the vertices and we interpret them in terms of subgraphs of G, thus
extending some results of W.T. Tutte. In particular we prove the following generaliza-
tion of a result of A. Bouchet on isthmuses in bidirected graphs: “Let G = (V,E, τ) be
a connected bidirected graph and A a subset of V . If ω(A) is an elementary cocycle of
the undirected graph of G = (V,E) and if the induced subgraph GA (or G–A) is balanced,
then either ω(A) is a cocircuit of the matroid M(G) or a disjoint union of two such
cocircuits”.
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An F-pair (N,Φ) consists of two groups (N,+) and Φ such that Φ acts as an automor-
phism group on N , and such that for every φ ∈ Φ \ {1}, the map φ − 1 : N → N is
bijective. We call (N,Φ) finite if N is finite. In this case the condition is equivalent to the
condition that Φ acts fixed point free on N . A finite F-pairs gives rise to the 2-designs
(N,B) with the set B := {Φa + b; a, b ∈ N, a �= 0}. The F-pair and the design are
called circular if |B ∩ B′| ≤ 2 for all B,B′ ∈ B. We’ll present some new results on the
circularity of F-pairs with non-abelian Φ.
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The only known ovoids of PG(3, q) are the elliptic quadrics, which exist for all q, and the
Suzuki-Tits ovoids, which exist for q = 2e, e ≥ 3 odd. It is well known that for odd q,
the only ovoids are the elliptic quadrics. For even q, the ovoids have been classified only
for q up to and including 32. We use Aschbacher’s Theorem (together with two theorems
of Flesner) to study ovoids admitting collineation groups with various properties, and in
particular show that, for even q, an ovoid admitting a transitive collineation group must
be an elliptic ovoid or a Suzuki-Tits ovoid.
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Let H(r, q2) be the non–degenerate Hermitian variety in PG(r, q2). A cap (or partial
ovoid) of H(r, q2) is a point–set K in H(r, q2) such that K has at most one point in
common with every maximal singular subspace of H(r, q2). A cap K is a (k, n)-cap if
K has size k and n is the maximum number of common point of K with a hyperplane
of PG(r, q2). We show that H(n, q2) contains large (k, n)-caps with n ≤ q + 1 arising
from GF(q2)-maximal curves. Here a GF(q2)-maximal curve of genus g is a projective,
geometrically irreducible, non-singular, algebraic curve defined over GF(q2) such that the
number of its GF(q2)-rational points attains the Hasse-Weil upper bound 1 + q2 + 2qg.
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and its applications

E. Kuijken

Fund for Scientific Research - Flanders (Belgium) (F.W.O.)
Universiteit Gent

Vakgroep Zuivere Wiskunde en Computeralgebra
Galglaan 2 - B-9000 Gent - Belgium
e-mail: ekuijken@cage.rug.ac.be

A two-graph (Ω,∆) is a pair of a finite vertex set Ω and a block set ∆ which is a subset
of the set of 3-subsets of Ω, such that each 4-subset of Ω contains an even number of
blocks. Let ρ be a Hermitian polarity in PG(2, q2), q an odd prime power, with associated
Hermitian form H and set of absolute points U . The Hermitian two-graph is defined as
follows: the point set is U , and a triple {x, y, z} is a block iff H(x, y)H(y, z)H(z, x) is a
square, respectively a non-square, if q ≡ −1 (mod 4), respectively q ≡ 1 (mod 4). We
give a geometric construction for the Hermitian two-graph for certain values of q. In the
case q = 3h, h ∈ IN, we use the representation of U on the parabolic quadric Q(6, q). If
q is prime, a geometric description arises from the study of the automorphism group of
the two-graph.
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Some of the most interesting problems connected with pseudosimilarity in graphs concern
the construction of graphs with large sets of pseudosimilar vertices or edges. This can
be understood in two ways: Either the graph contains a large set of vertices or edges
which are mutually pseudosimilar or else for every vertex (edge) in the graph there is
another vertex (edge) to which it is pseudosimilar. We shall survey the methods used
to construct such graphs and on the way we shall also discuss some related results and
point out some unanswered questions.

1 Introduction

All graphs considered will be finite, simple and undirected, unless otherwise stated.
The vertex-set and the edge-set of a graph G are denoted by V (G) and E(G),
respectively. If v is a vertex in G, then G− v denotes the subgraph of G obtained
by removing v and all edges incident to v; if e is an edge of G then G− e denotes
the subgraph obtained by removing the edge e.

Two vertices u, v in a graph G are said to be similar if there is an automorphism
of G which maps u into v. The vertices u, v are said to be removal-similar if the
subgraphs G − u and G − v are isomorphic. If u and v are removal-similar but
not similar, then they are called pseudosimilar. In this case we sometimes say
that v is a pseudosimilar mate of u and vice-versa. If S ⊂ V (G) such that any
two vertices in S are pseudosimilar mates, then we say that the vertices of S are
mutually pseudosimilar in G.

Pseudosimilar edges are similarly defined, as are the terms pseudosimilar mates
for pairs of edges and mutually pseudosimilar for sets of edges.

The reason why pairs of pseudosimilar vertices arise is quite well understood
in terms of a sort of truncation of cyclic symmetry. Thus, take a graph H with
vertices u and v and an automorphism α of H such that αt(u) = v for some
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t > 1 and αr(u) �= v for 1 ≤ r < t. Then u and v are removal-similar in
G = H − {α(u), . . . , αt−1(u)}; if moreover they also happen to be not similar,
then we have a pair of pseudosimilar vertices. Godsil and Kocay [7] showed that,
in fact, every pair of pseudosimilar vertices can be obtained this way.

Theorem 1 ([7]) Let u and v be two pseudosimilar vertices in a graph G. Then G
is an induced subgraph of some graph H such that H has an automorphism α with
α(G − v) = G − u and αt(u) = v, and such that V (H) − V (G) = {x1, . . . , xr},
where xi = αt+i(u) and α(xr) = u.

Therefore the most interesting questions and constructions involve graphs with
several pseudosimilar vertices or edges. The two situations we shall be investigating
are the construction of graphs in which every vertex (edge) has a pseudosimilar
mate and graphs with large sets of mutually pseudosimilar vertices (edges).

A general survey about pseudosimilarity can be found in [18]. Some work
presented here has been carried out since the publication of that survey. Graph
theoretic terms used but not defined in this paper are standard and can be found
in any graph theory text such as [9].

2 Every vertex can have a pseudosimilar mate: The KSS construction.

The question of whether or not in a graph every vertex can have a pseudosimilar
mate has been settled since 1981 [12]. The solution to this question turns out
to be a simple corollary of the solution to another problem about symmetries
of graphs, namely the construction of graphical regular representations (GRR) of
groups of odd order. A graph G is said to be a GRR of a group Γ if Aut(G) � Γ
and Aut(G) acts regularly on V (G), that is, it is transitive on V (G) and the
stabiliser of any v ∈ V (G) is trivial. Except for a finite number of known groups,
all finite, nonabelian groups which are not generalised dicyclic groups have GRRs.
A number of authors contributed towards obtaining this result, but here we shall
only be requiring GRRs for groups of odd order (it follows, see [2] for example,
that such groups must be nonabelian).

Theorem 2 ([10]) Except for one group of order 27, all nonabelian groups of odd
order have GRRs.

Using the existence of GRRs for groups of odd order enabled Kimble, Schwenk
and Stockmeyer to construct graphs in which every vertex has a pseudosimilar
mate.

Theorem 3 ([12]) There are infinitely many graphs in which every vertex has a pseu-
dosimilar mate.
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Proof Let Γ be a group of odd order and let H be a GRR of Γ. We note that,
since the stabiliser of any vertex of H under the action Aut(H) � Γ is the identity
element of Γ, it follows that if r is any vertex of H, then G = H − r has the
identity automorphism group.

Now, let v be any vertex in G. There is an automorphism α of H mapping r
to v. The vertices α−1(r) and v = α(r) are distinct, because otherwise α would
contain a cycle of length 2, which is impossible since Γ has odd order. Since α−1

maps {v, r} onto {r, α−1(r)}, it follows that G−v = H−r−v � H−α−1(r)−r =
G−α−1(r); that is, v = α(r) and α−1(r) are removal-similar in G. But G has the
identity automorphism group, therefore v and α−1(r) are pseudosimilar.

We shall refer to this construction as the KSS construction. In [12], Kimble,
Schwenk and Stockmeyer also gave some nice examples illustrating the use of the
above theorem.

One question which the above result brings up is whether or not the KSS con-
struction is the only one which gives graphs all of whose vertices have pseudosimilar
mates.

Question 1 Is there a characterisation analagous to Theorem 1 of graphs all of
whose vertices have a pseudosimilar mate? If in a graph G all vertices have a
pseudosimilar mate, is it always possible to extend G to a vertex-transitive graph
by adding only one new vertex? In particular, are all such graphs obtainable via
the KSS construction?

3 Every edge can have a pseudosimilar mate:

Adapting the KSS construction.

Finding graphs in which every edge has a pseudosimilar mate proved to be more
elusive. First attempts [11, 18] only managed to show that there are families
of graphs of order n such that, as n increases, the proportion of edges in the
graph having a pseudosimilar mate tends to 1. However, in 1996, using graphs
constructed by Alspach and Xu [1], Lauri and Scapellato [21] proved the following.

Theorem 4 ([21]) There are infintely many graphs in which every edge has a pseu-
dosimilar mate.

The idea is to adapt the KSS construction as follows. Let H be a graph with
an odd number of edges and whose automorphism group acts regularly on its edge-
set. Then, as in Theorem 3, deleting from H any edge gives a graph all of whose
edges have a pseudosimilar mate.

The problem is to find such graphs H. Families of graphs with these properties
were, in fact, constructed in [1] and a special case of this family can be described
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as Cayley graphs in the following way. (We recall that, if Γ is a group and S ⊂ Γ
with S−1 = S, 1 �∈ S and Γ = 〈S〉, then the Cayley graph Cay(Γ, S) is the graph
with vertex-set equal to Γ and in which two vertices x, y are adjacent if and only
if y = xs for some s ∈ S.)

Let p be a prime number with p ≡ 1 mod 3 and p ≡ 1 mod 5. Let Γ3p be the
group defined by

Γ3p = 〈b, c|b3 = cp = 1, cb = b−1cb = cr〉

where r is such that r3 = 1 mod 3. Let t be such that t5 = 1 mod p, and let a
be the automorphism of Γ3p defined by ba = b and ca = ct. Let

T = {ca, ca2
, ca

3
, ca

4
, ca

5
= c}

and

S = bT ∪ T−1b−1 = bT ∪ T−1b2.

Let H3p be the Cayley graph Cay(Γ3p, S).

Theorem 5 ([1]) The automorphism group of the Cayley graph H3p constructed
above acts regularly on its edge-set.

This Cayley graph has order 3p and degree 10, therefore it has an odd number,
15p, of edges, as required. Also, by Dirichlet’s Theorem on primes in an arith-
metic progression (see [4], for example), there is an infinite number of primes in
the arithmetic progression {1 + 15k : k = 0, 1, 2, . . . } and therefore an infinite
number of Cayley graphs H3p can be constructed as above. This therefore proves
Theorem 4.

The smallest value of p for which the above construction works is p = 31 giving
a Cayley graph with 465 edges and therefore a graph with 464 edges, all of them
paired by pseudosimilarity.

In the above construction, the Cayley graphs H3p are all 1
2 -transitive, that is,

the automorphism group is transitive on the vertices and the edges, but not on
the directed arcs. Since what we need is a graph whose automorphism group acts
regularly on its edges, one question which arises following the previous construction
is whether or not it is possible to obtain a graph which is not vertex-transitive but
whose automorphism group has the required action on the edge-set—such a graph
would, of course, have to be bipartite. A graph of this type was constructed in
[19] and we shall now briefly describe it.

We first give a few general definitions and results. The motivating idea behind
these is the well-known characterisation, due to Sabidussi [23], of vertex-transitive
graphs in terms of coset graphs.
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Let Γ be a group and H,K two subgroups of Γ. Let S be a subset of Γ.
Define the graph Cos(Γ,H,K, S) as follows: Its vertices are the left cosets of H
and of K; two cosets xH and yH are adjacent if and only if y−1x ∈ KSH. If,
moreover, S ⊆ KH, that is, KSH = KH, then we denote Cos(Γ,H,K, S) simply
by Cos(Γ,H,K).

If H∩K = {1}, then any two cosets xH, yK are either disjoint or have exactly
one element in common. In this case, xH and yK are adjacent in Cos(Γ,H,K) if
and only if they are not disjoint, that is, all edges of Cos(Γ,H,K) are of the form
{tH, tK}, where t is the element common to both cosets. Another useful way to
look at adjacencies in Cos(Γ,H,K) when H ∩ K is trivial is as follows: The coset
xH is adjacent to all the cosets xhK, for all h ∈ H (all these cosets are distinct);
similarly, the coset yK is adjacent to all the cosets ykH for all k ∈ K. Clearly,
the degrees of the cosets xH and yK as vertices in Cos(Γ,H,K) are |H| and |K|,
respectively.

The following two results are not difficult to prove.

Theorem 6 Let G be a graph whose vertex-set is partitioned into two orbits V1, V2

under the action of the automorphism group Γ. Let H be the stabiliser of the
vertex u ∈ V1 and K the stabiliser of the vertex v ∈ V2. Let S be the set of all
those permutations α ∈ Γ such that α(u) is adjacent to v. Then G is isomorphic
to Cos(Γ,H,K, S). Moreover, if G is edge-transitive then S ⊆ KH, that is, G is
isomorphic to Cos(Γ,H,K).

Theorem 7 Let G = Cos(Γ,H,K). For t ∈ Γ, let λt denote the action of left
translation by t on the left cosets of H and K. Then λt is an automorphism of G;
this action is transitive on the edges of G. Suppose φ is an automorphism of Γ
which fixes setwise both H and K. Let φ̂ denote the induced action on the cosets
of H and K. Then φ̂ is an automorphism of the graph G.

From these two theorems it is clear that to obtain a graph whose automorphism
group acts regularly on the edges but non-transitively on the vertices we need to
find a coset graph Cos(Γ,H,K) such that no automorphism of the group fixes H
and K. Of course we also require the graph to be connected, therefore H∪K must
generate all of Γ. We can now describe the graph constructed in [19].

Let Ξ be the group of order 3 · 5 · 31 defined as follows

Ξ = 〈a,w, c|a5 = w3 = c31 = 1, wa = awc, ca = ac2, cw = wc25〉.

Now let H be the cyclic subgroup generated by a and let K be the cyclic sub-
group generated by w. Let H = Cos(Γ,H,K). This graph is edge-transitive but
not vertex-transitive since the cosets of H have degree 5 whereas the cosets of K
have degree 3. Moreover, it is not difficult to check that no nontrivial automor-
phism of the group Γ fixes H ∪ K, therefore there is reason to hope that, in fact,
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the full automorphism group of H is Ξ, that is, the automorphism group of H acts
regularly on the edges. For this it is required to show that the stabiliser of any
edge is trivial.

Figure 1: All the 8-cycles passing through the edges incident to K

It turns out that the girth of H is 8 and that there are exactly eight cycles
of length 8 containing any edge. A detailed consideration of these possible cycles
leads to Figure 1, which shows all the 8-cycles passing through any of the three
edges incident to K (and also the names of some of the vertices). By a more
detailed consideration of the configuration shown in Figure 1 and using the fact
that H is edge-transitive it is shown in [19] that if an automorphism of H fixes
the edge {H,K} then it must be trivial, as required.

The graph H in this last construction has 248 vertices and 465 edges, and
therefore this again gives a graph with 464 edges all of which are paired by pseu-
dosimilarity. The following question therefore naturally arises.

Question 2 Are there graphs with less than 464 edges in which every edge has a
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pseudosimilar mate?

Also, the non-vertex-transitive graph whose automorphism group acts regularly
on its edges, and which was used in the previous construction, could very well be
the first such graph in an infinite family, analogous to H3p, p = 31, for Theorem 5.
Therefore one can ask,

Question 3 Find an infinite family of graphs which are not vertex-transitive but
whose automorphism groups act regularly on the respective edge-sets.

Finally, one can ask for pseudosimilar edges a question analogous to Question 1
of the previous section.

Question 4 Is there a characterisation, analogous to Theorem 1, of graphs all of
whose vertices have a pseudosimilar mate? Are all such graphs obtainable via the
KSS construction adapted for edges?

4 Cayley line-graphs

Whereas the problem of constructing graphs in which every vertex has a pseu-
dosimilar mate turned out to be an easy application of the existence of GRRs
for finite groups of odd order, the analogous problem for pseudosimilar edges was
more difficult because there it was not sufficient to know that a group had a GRR;
the GRR had to have some particular structure—not any GRR of the group would
do.

The situation is perhaps best understood in terms of line-graphs, for now,
since we are looking for a graph H whose automorphism group acts regularly on
its edge-set, the line graph L(H) is a GRR of its automorphism group (which is
isomorphic to Aut(H)). Therefore L(H) is a Cayley graph of Aut(H) (see [2], for
example). Hence we are now looking for particular Cayley graphs, namely those
which are line-graphs.

It is therefore natural to ask, in this context, what form the set S must take
for the Cayley graph Cay(Γ, S) to be a line graph. The answer is given by the
next theorem.

Theorem 8 Let Γ be a finite group and let S ⊆ Γ with S−1 = S, 1 �∈ S and Γ = 〈S〉.
Let S∗ = S ∪ {1}. Then G = Cay(Γ, S) is a line-graph if and only if S∗ = S1 ∪S2

such that:

1. S1 ∩ S2 = {1}, and

2. either both S1 and S2 are subgroups of Γ,
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3. or else S1 = H ∪Ha and S2 = a−1Ha ∪ a−1H, for some H ≤ Γ and a ∈ Γ
with H ∩ a−1Ha = {1}.

Proof We first recall the characterisation of line-graphs in terms of the Krausz
decomposition of its edge-set (see [9]), namely, that a 2-connected graph (as is
our Cayley graph G since it is vertex-transitive) is a line-graph if and only if its
edges can be partitioned so that the edges in each part induce a complete graph
and every vertex is incident to edges from exactly two parts of the partition. In
the case of G (again since it is vertex-transitive) it is a line-graph if and only
if the neighbours of one of its vertices v0 together with v0 induce two complete
graphs which intersect only in v0. We can take v0 to be the vertex 1, whose set of
neighbours is S. Therefore G is a line-graph if and only if S∗ = S1 ∪ S2 such that

(i) S1 ∩ S2 = {1}, and

(ii) if s1, s2 ∈ S∗ then s−1
1 s2 ∈ S∗ if and only if both s1 and s2 are in S1 or S2.

If Condition 1 and one of Conditions 2 or 3 of the theorem hold, then so do
Conditions (i) and (ii), that is, G is a line-graph. Therefore, for the converse,
suppose G is a line-graph, that is, Conditions (i) and (ii) hold. In the sequel, for
x, y ∈ S∗ we shall use the notation x ∼ y to denote that x and y are both in S1

or in S2.

We now make two observations:
Observation 1.
Suppose Si (i = 1 or 2) contains two subgroups A,B of Γ. Then Si also contains
the subgroup C = 〈A ∪ B〉 generated by A ∪ B. For, by (ii) and since each of
A,B contains the inverse of each of its elements, we have that for all a ∈ A and
b ∈ B, the elements ab = (a−1)−1b and ba = (b−1)−1a are both in S∗. Moreover,
since a−1(ab) and b−1(ba) are in S∗ and a, b ∈ Si, then, by (ii), ab and ba are
also in Si. Therefore, if an element like w = a1b2a3 . . . an−1bn is a product of
elements ai ∈ A, bj ∈ B, we can show that w ∈ Si by induction on n: since a−1

1

and b2a3 . . . an−1bn are both in Si then w = (a−1
1 )−1b2a3 . . . an−1bn is in S∗; also,

since a1 ∈ Si and a−1
1 w is in S∗, then w is also in Si, by (ii).

Therefore Si contains a subgroup of Γ which is maximal in the sense that it
contains every subgroup of Γ found in Si. We denote this maximal subgroup by
Hi.
Observation 2.
Each Si is the union of right cosets of Hi. For, let g ∈ Si. Then, for any h ∈ Hi,
h−1g ∈ S∗, that is, H−1

i g = Hig ⊂ S∗. But, for any h1 ∈ Hi and h2g ∈ Hig, we
have that h−1

1 h2g ∈ S∗. Therefore h2g must be in Si, that is, Hig ∈ Si. However,
g ∈ Hig, that is, any element of Si is in some right coset of Hi.

We now claim that any two elements of Si not contained in Hi must be in the
same right coset of Hi.
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Consider, without loss of generality, S1. Let x, y ∈ S1, x �= y and let x−1y =
z ∈ S∗. From the relation xz = y and yz−1 = x it follows that x−1 ∼ z and
y−1 ∼ z−1. There are now four cases to consider. (Note that below we use the
fact that if both a and a−1 are in Si then so is 〈a〉.)
Case I: z ∈ S1.
Case I.1: z−1 ∈ S1.

Therefore x−1, y−1 ∈ S1, and so, 〈x〉 and 〈y〉 are in S1. Therefore all pairs of
elements x, y ∈ S1 such that x−1y = z ∈ S1 with z−1 also in S1 must be in H1.
Case I.2: z−1 ∈ S2.

Therefore 〈x〉 ⊂ S1 and so x ∈ H1. Moreover, y−1 �∈ S1, therefore y �∈ H1, that
is, y is in a nontrivial coset H1y of H1 contained in S1.

Case II: z ∈ S2.
Case II.1: z−1 ∈ S1.

Therefore y, y−1 ∈ S1, that is, 〈y〉 ⊂ S1. Again, y ∈ H1 and x is in a nontrivial
right coset H1x contained in S1.
Case II.2: z−1 ∈ S2.

Therefore x−1, y−1 ∈ S2. Consider xy−1 = (x−1)−1y−1 ∈ S. But x−1 · xy−1 =
y−1§. Therefore x ∼ xy−1, that is, xy−1 ∈ S1. Similarly, yx−1 S1. Therefore S1

contains 〈xy−1〉 ≤ H1. Therefore x, y are in non-trivial cosets of H1 (nontrivial
since x−1, y−1 �∈ S2). But H1y contains xy−1 · y = x, that is, x and y are in the
same nontrivial right coset of H1.

This proves our claim, and hence we can say that S1 = H1 or S1 = H1 ∪H1a and
similarly S2 = H2 or S2 = H2 ∪ H2b. If S1 = H1 and S2 = H2 then we are done.
So, suppose S1 = H1 ∪H1a with a �∈ H1. Therefore a−1 �∈ S1, otherwise 〈a〉 ⊂ S1

and a would therefore be in H1.
Hence a−1 ∈ S2, and since a−1 �∈ H2 then a−1 ∈ H2b, which is therefore

H2a
−1. That is, S2 = H2 ∪H2a

−1.
Now, for all g ∈ H1a, g−1 is in S2 but not in H2 (since g �∈ S2). Therefore

g−1 ∈ H2a
−1, so that (H1a)−1 ⊆ H2a

−1. Similarly, (H2a
−1)−1 ⊆ H1a. Therefore

(H1a)−1 = a−1H1 = H2a
−1, hence H2 = a−1H1a. Therefore S1 = H1 ∪ H1a and

S2 = a−1H1a ∪ a−1H1, as required.

(The line-graph of the Cayley graph H3p for p = 5 considered in the previous
section is, in fact, the Cayley graph Cay(Ξ, S) (where Ξ is the group considered
later in the same section) with S∗ = H∪Hw ∪w−1Hw ∪w−1H, where H = 〈a〉.)

The problem of finding a graph whose automorphism group acts regularly on its
edges can therefore be regarded as a problem of finding a Cayley graph Cay(Γ, S)
which is a GRR and such that S has the special form described in the previous
theorem. From this theorem, the simplest way to guarantee that Cay(Γ, S) is a
line-graph is to let S = H ∪ K − {1} where H,K are subgroups of Γ with trivial
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intersection. (In this case, if Cay(Γ, S) is the line-graph L(H) of H then H is the
graph Cos(Γ,H,K) as defined in the previous section.)

Now, for the Cayley graph to be a GRR it is necessary that no automorphism
of Γ fixes S. This necessary condition is not, in general, sufficient. The following
result of Godsil [6], however, affirms that for a wide class of p-groups this simple
condition is also sufficient to guarantee that the Cayley graph is a GRR.

Theorem 9 ([6]) Let Γ be a finite p-group which admits no homomorphism onto the
wreath product of Zp by Zp. Let S ⊂ Γ, S = S−1 and Γ = 〈S〉 such that no
nontrivial automorphism of Γ fixes S. Then the Cayley graph Cay(Γ, S) is a GRR
of Γ.

Godsil’s theorem and the above discussion have led Lauri and Scapellato [21]
to pose the following question:

Question 5 Does there exist a p-group Γ (p an odd prime) having two subgroups
H,K with the following properties: (i) H ∩ K = {1}, (ii) Γ = 〈H ∪ K〉, and (iii)
no nontrivial automorphism of Γ fixes H ∪K setwise?

If Γ is not a p-group then finding such subgroups is possible. For example, if Ξ
is again the group defined in the previous section, then it is routine to check that
the subgroups H = 〈a〉 and K = 〈w〉 have the required properties.

We were, however, been unable to find even any nilpotent group which has
two such subgraphs—nilpotent groups might therefore be the right class of group
to look at if one is trying to show that the answer to the above question is
negative.

5 Sheehan’s fixing subgraphs

The idea of fixing subgraphs was introduced by John Sheehan in [25, 26, 27]. Since
then it has turned out that fixing subgraphs are important in many areas of graph
theory—an excellent survey of this development is given by [24]. We shall here
point briefly to the connection between fixing subgraphs and pseudosimilarity,
focusing in particular on a consequence of Theorem 4.

A spanning subgraph U of a graph G is termed a fixing subgraph of G if
G contains exactly |Aut(G)|/|Aut(G) ∩ Aut(U)| subgraphs isomorphic to U (the
graph G must contain at least this number). If, in addition, Aut(U) ≤ Aut(G)
then U is called a strong fixing subgraph of G. Let F (G) (F ∗(G)) be the set of
fixing (strong fixing) subgraphs of G.

The connection with pseudosimilarity is that if an edge e has a pseudosimilar
mate then the spanning subgraph G− e cannot be in F ∗(G). As a direct corollary
of Theorem 4 Sheehan proves,
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Theorem 10 ([24]) There are infinitely many graphs G such that

(i) G− e �∈ F ∗(G) for all e ∈ E(G), and

(ii) |F ∗(G)| = 1.

6 Large sets of mutually pseudosimilar vertices or edges

With the settling of the question of the existence of graphs in which every edge
has a pseudosimilar mate, the most interesting and difficult problem in pseudosim-
ilarity would now seem to be the following.

Question 6 In a graph G of order n, what is the largest possible size k of a set
of mutually pseudosimilar vertices? Alternatively, given k, what is the smallest
graph which contains k mutually pseudosimilar vertices? What is the answer for
the analogous questions on mutually pseudosimilar edges?

This seems to be a very difficult question. We shall here review some construc-
tions which attempt to pack as many as possible mutually pseudosimilar vertices
(or edges) in a graph of order n. It is clear that not all of V (G) can be mutually
pseudosimilar, for such a graph G would be regular and an isomorphism from
G− u to G− v could therefore be extended to an automorphism of G mapping u
into v. With slightly more work one can also show that k must be less than n− 1.
Also, this question has been resolved for trees (in [5] it is shown that k < 3 for any
tree), for k = 2 ([7]; G must have order at least 6) and, it seems, for k = 3 (in [13]
a graph on 17 vertices with three mutually pseudosimilar vertices is constructed,
and this seems to be the smallest possible graph for k = 3).

The difficulty of Question 6 and these partial results suggest two questions.

Question 7 Are there other interesting classes C of graphs such that, for any graph
G in C, the number of mutually pseudosimilar vertices in G must be less than some
constant?

Question 8 Verify that a graph with k = 3 mutually pseusosimilar vertices must
have order at least 17. What would be the analogous result for k = 4?

But now we shall be considering sequences of graphs for which k, the number
of mutually pseudosimilar vertices, increases without bound.

The simplest way [12] obtain such a sequence is to start with the transitive
tournament Tk on k vertices (that is, the tournament with vertex-set {1, 2, . . . , n}
in which i dominates j if and only if i < j). Clearly the vertices of Tk are
all mutually pseudosimilar, but the tournament has to be transformed into an
undirected graph while preserving the pseudosimilarity of its vertices. This process
is illustrated for T4 in Figure 2.
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Figure 2: Transforming T4 into a graph with 4 mutually pseudosimilar vertices

This construction gives a sequence of graphs Gk having k mutually pseudosim-
ilar vertices and order O(k2).

Another general construction for creating a sequence of graphs with large sets
of mutually pseudosimilar vertices runs as follows:

Let G′ be a graph containing r endvertices, all of which are mutually
pseudosimilar. Let G be the graph obtained from G′ by removing all
its endvertices, and let R be the set of neighbours of the endvertices of
G′—since no two endvertices are similar, no two can share a common
neighbour, therefore |R| = r. Let X be the set of all those vertices of
G which are in the same orbit as some vertex in R under the action
of Aut(G). We now construct a sequence of graphs Gt, t = 1, 2, . . . ,
containing rt mutually pseudosimilar endvertices. Let G1 = G′ and let
H1 be G1 less one of its endvertices. Having constructed Gt, let Ht be
Gt less one of its pseudosimilar endvertices. Then, Gt+1 is obtained
by attaching a copy of Gt to each vertex in R and a copy of Ht to each
of the other vertices in X −R. (By attaching a copy of Gt (or Ht) to
a vertex v of G we mean joining v to every vertex of Gt (or Ht) which
is not an endvertex.)

Each graph Gt so obtained has rt mutually pseudosimilar end-
vertices and O(|X|t) vertices. Therefore if k = rt is the number of
pseudosimilar endvertices, then the total number of vertices in Gt is
O(klog |X|/log |R|).

(Since the pseudosimilar vertices resulting from this construction are endver-
tices, that is, vertices of degree 1, the edges incident to these endvertices are also
mutually pseudosimilar.)

The crucial step in the above construction is finding the starting graph G′,
that is, one with endvertices all of which are mutually pseudosimilar. We shall
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describe different methods which have been employed in order to do this.
Krishnamoorthy and Parthasarathy [16] started with the tournament on three

vertices forming a directed cycle. If an endvertex is attached to two vertices of the
tournament and the arcs are transformed into edges using “gadgets” as in the proof
of Frucht’s Theorem, then the two endvertices are pseudosimilar and the resulting
graph G′ = G1 can be used as the base graph in the above construction. The
graph G2 obtained in this sequence, containing 22 = 4 mutually pseudosimilar
vertices, is shown in Figure 3. Starting with this base graph therefore gives a
sequence of graphs Gt with k = 2t mutually pseudosimilar endvertices and order
O(klog 3/log 2).

p q r s

Figure 3: The graph G2 with 22 mutually pseudosimilar vertices p, q, r, s

In [20] a different starting graph was used by exploiting the arc homoge-
neous property of the quadratic residue tournaments. Thus, consider QT (7), the
quadratic residue tournament on seven vertices (that is, the tournament with
vertex-set {1, 2, . . . , 7} such that (i, j) is an arc if and only if j − i is a nonzero
square modulo 7). The vertices 1, 2, 3 form a transitive subtournament of QT (7)
so that if an endvertex is joined to each of 1, 2, 3 and the arcs of the tournament
are transformed into edges by means of appropriate gadgets, then we get the graph
G′ = G1 with three endvertices all of which are pseudosimilar. The above con-
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struction then yields a sequence of graphs Gt with k = 3t mutually pseudosimilar
endvertices and order O(klog 7/log 3), which is better than the construction of Kim-
ble, Schwenk and Stockmeyer using transitive tournaments, but not as good as
the construction of Krishnamoorthy and Parathasarthy.

The problem of finding a base graph G′ as the starting graph of the above
construction can be described in terms of permutation groups. Suppose Γ is a
group of permutations acting on some set X such that, for some R ⊂ X, the
following two conditions hold: (i) the setwise stabiliser Γ{R} of R is the identity
and, (ii) for any two (|R| − 1)-subsets A,B of R, there is a permutation α in Γ
such that α(A) = B. Then, by a result of Bouwer [3], one can construct a graph G
with minimum degree at least 2 and X ⊆ V (G) and whose automorphism group is
isomorphic to Γ and such that X is invariant under the action of Aut(G) and also
Aut(G) has the same action as Γ on X. Therefore if we attach one endvertex to
each vertex of R ⊂ V (G) we obtain the starting graph G′ all of whose endvertices
are mutually pseudosimilar. Hence such starting graphs can be constructed if
permutation groups satisfying conditions (i) and (ii) are found.

In [17] such a permutation group with |X| = 8 and |R| = 4 was constructed.
Let Γ be the group of affine transformations on the field GF (8). This group is not
3-transitive but it is 3-homogeneous [22] (that is, any two 3-sets are similar under
the action of Γ). Therefore all we need is a 4-set R such that Γ{R} is trivial. If we
represent GF (8) as Z2[x]/p(x), where p(x) is the primitive, irreducible (over Z2)
polynomial x3 + x + 1, and if we let R = {0, 1, x, x2}, then one can easily check
that the only permutation in Γ which fixes R setwise is the identity.

This then gives a starting graph G′ with 4 endvertices all mutually pseudosim-
ilar, and therefore a sequence of graphs Gt with k = 4t mutually pseudosimilar
endvertices and order O(k3/2). Till now, this sequence seems to be the one which
gives the best “packing” of mutually pseudosimilar vertices.

In [17] there is also described a construction which produces, for all r, a graph
containing r endvertices all of which are mutually pseudosimilar. However, this
construction requires that |X| = O(|R|2|R|) and it therefore does not solve the
problem of obtaining as dense a packing of mutually pseudosimilar vertices as
possible.

In [17] it is also shown that a permutation group satisfying Conditions (i) and
(ii) above must have |X| ≥ 2|R|−1. Therefore the above construction can, at best,
produce a sequence of graphs Gt with k = rt mutually pseudosimilar endvertices
and order O(klog(2r−1)/log r).

The above constructions suggest the following questions, the first two of which
are restricted versions of Question 6. In view of the preceding comments, a positive
answer to Question 9 would require a totally different construction from the one
we have been discussing. The constructions used in [8, 13] employ Cayley graphs
and exploit the equivalence of the action of a permutation group Γ on a set X with
its action on the set of cosets of a stabiliser. In [15], Kocay, Niesink and Zarnke
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systematically search for groups Γ with a subgroup K such that the action of Γ
on the cosets of K can be used to construct graphs with 4 ≥ k ≥ 2 pseudosimilar
vertices. Perhaps these methods need to be investigated and extended further in
order to tackle this problem.

Question 9 Is it possible to construct a sequence of graphs 〈Gk〉 such that Gk has
k mutually pseudosimilar vertices and order O(k)?

Question 10 Given k, what is the smallest graph which contains k endvertices all
of which are mutually pseudosimilar?

The next question asks whether there are tournaments which extend the arc
homogeneous property of the quadratic residue tournaments to a type of local
homogeneity with respect to one of its subtournaments. Such tournaments could
be used (as the tournament QT (7) was used above) in order to obtain the base
graph G′ for the above construction.

Question 11 Can one construct, for any k ≥ 4, a tournament Ak with the following
property: Ak contains, as a subtournament, a transitive tournament Tk on k ver-
tices such that, for any two subtournaments Tk−1 and T ′k−1 of Tk on k−1 vertices,
there is an automorphism α of Ak such that α(Tk−1) = T ′k−1.

Finally, one can ask questions analogous to Question 1, namely whether there
is a characterisation similar to Theorem 1 of graphs with k > 2 mutually pseu-
dosimilar vertices. In [14] a theorem analogous to Theorem 1 was proved, but
there the graph H could be infinite. In [8] this problem was partially solved for
k = 3 with the extra assumption that there are no edges between a certain set of
vertices containing the pseudosimilar ones. One can therefore ask the following.

Question 12 Suppose a graph G has k > 2 mutually pseudosimilar vertices u1, u2,
. . . , uk. Is G the induced subgraph of a finite graph H in which u1, . . . , uk are
similar and which has k − 1 automorphisms α1, . . . , αk−1 such that αi(G− u1) =
G − ui+1 and such that the vertices in V (H) − V (G) are in the same orbit as
u1, . . . , uk under the action of Aut(H)?
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Invariants of m-dimensional Linear Subspaces
of a Binary [n,k]-code

J.G. Maks*, J. Simonis
University of Delft, The Netherlands
e-mail: j.g.maks@twi.tudelft.nl

Let C be a binary [n, k]-code, and let D be an m-dimensional subspace of C. A well-known
invariant of D is the size of the support of D. Another invariant, perhaps not as widely
known, is the Hamming weight of the image of D under the Plücker mapping

Span{u1, ..., um} �→ [u1 ∧ ... ∧ um].

In this talk we describe the full list of invariants of D under the action of the group

Sn ×GL(m).

In particular the case m = 2 is discussed in great detail. We also explore the relations
between the multiweight distribution of the code Cm of all m-dimensional linear subspaces
of C and the multiweight distribution of the appropriately defined dual code C⊥m.
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On the Acrhomatic Number
of P(α,Kn) and P(α,K1,n)

M.F. Mammana
Dipartimento di Matematica - Università di Catania

e-mail: flavia@dmi.unict.it

Let G = (V, S) be a graph. A k-coloring of G is a mapping c of the vertex set V onto a
set of k-colors C such that any two adjacent vertices have different colors.

The smallest number n such that there is a n-coloring of G is called the chromatic
number of G and is denoted by χ(G).

A complete k-coloring of a graph G is a k-coloring c such that for any distinct colors
i and j there are two adjacent vertices in G colored with i and j.

The largest number n such that there is a complete n-coloring is called the achro-
matic number of G and is denoted by ψ(G) [1].

Let G be a graph of order n and α be a permutation on the set {1, 2, . . . , n}. The
permutation graph P (α,G) of the graph G is the graph that consists of two disjoint,
identically labeled copies of G, G1 and G2, with n more edges xi,α(i) that join the vertex
vi in G1 with the vertex vα(i)inG2.

Some results concerning the achromatic number of P (α, Pn) and P (α,Cn) have been
proved by F. Milazzo and V. Vacirca [2]. In this talk we give some results concerning the
achromatic number of P (α,Kn) and P (α,K1,n).
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Using a Progressive Withdrawal Algorithm
to Study Superconnectivity in �1-Digraphs

X. Marcote*, I. Pelayo, C. Balbuena, J. Fabrega

Universitat Politecnica de Catalunya (UPC), Spain
e-mail: francisco.javier.marcote@upc.es

A maximally connected digraph is said to be superconnected if every minimum discon-
necting set F of vertices is trivial, i.e., it consists of the vertices adjacent to or from a
given vertex not belonging to F . This work is devoted to presenting a sufficient condition
- in terms of the parameter >1 - on the diameter, in order to guarantee that the digraph
is superconnected, giving also a lower bound for the superconnectivity parameter (κ1)
when nontrivial disconnecting sets exist. This result has been carried out with the help
of a ’progressive withdrawal algorithm’, that establishes how far away a vertex can be to
or from a given set of vertices. An analogous result is presented in terms of arcs, assuring
arc-superconnectivity and giving a lower bound for the parameter λ1.

AMS classification: 05C40, 05C20
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Decomposing Sets of Triples into Small Planes
R. Mathon

Toronto, Canada

A.P. Street*
University of Queensland, Australia

e-mail: aps@maths.uq.edu.au

In this talk we consider decompositions of the set of all triples chosen from a v-set into
copies of the Fano plane on 7 points or copies of the affine plane on 9 points.
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Generalized Balanced Weighing
and Difference Matrices

V.C. Mavron
University of Wales - Aberystwyth, UK

e-mail: vcm@aber.ac.uk

BGW matrices are constructed over new groups, some non-abelian. The matrices do not
have new parameters but some of their base designs are new. A construction of Colbourn
and Kreher for difference matrices is generalized.
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Mixed Partitions and 3-Spreads of PG (7,q)
K.E. Mellinger

University of Delaware - Newark, USA
e-mail: kmelling@math.udel.edu

By a classical result of Bruck and Bose, the study of translation planes is equivalent to the
study of spreads; that is, a set of qn + 1 mutually disjoint (n− 1)-spaces which together
form a partition of PG(2n − 1, q). The case when n = 2 has been studied in detail,
but less is known about the higher dimensional cases. In General Galois Geometries,
by Hirschfeld and Thas, a method of constructing (2m+ 1)-spreads of PG(4m+ 3, q) is
described. The construction starts with a partition of PG(2m+1, q2) into α Baer spaces
(isomorphic copies of PG(2m+1, q)), and β m-spaces (isomorphic copies of PG(m, q2)).
This so called mixed partition can then be used to create a spread of PG(4m + 3, q).
It is also pointed out that such a partition is known to exist for α = 0. The author
investigates the possibilities when m = 1 and α �= 0. Two infinite families of such mixed
partitions are discovered and their associated spreads are examined.
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Sequences from Groups
F. Merola

Dipartimento di Matematica - Università di Roma “La Sapienza” - Roma, Italy
e-mail: merola@mat.uniroma1.it

I will talk about some properties of the orbit-counting sequence of an oligomorphic per-
mutation group. Oligomorphic groups are a class of permutation groups acting on an
infinite set with links to combinatorial enumeration.
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Upper and Lower Chromatic Number
for Steiner Systems

L. Milazzo
Department of Mathematics - University of Catania

Viale A. Doria, 6 - 95125 Catania, Italy
e-mail: milazzo@dipmat.unict.it

The last results about upper chromatic number and the first ones about lower chromatic
number in Steiner systems.
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Scattered Subsets
E. Munarini, N. Zagaglia Salvi*

Politecnico di Milano - milano, Italy
e-mail: norzag@mate.polimi.it

An h-scattered subset of a linearly ordered set L is a subset S with the property that for
each two elements x, y of S there are at least h elements not in S between x and y. An
h-scattered subset of a cycle is defined in a similar way. We study some combinatorial
properties of the species of scattered subsets in the case of linearly orderd sets and in
the case of cycles. The cardinalities of the families of such subsets turn out to be a
generalization of the Fibonacci numbers and of the Lucas numbers.
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A Class of Imprimitive Permutation Groups
S. Musumeci

Università di Palermo - Palermo, Italy
e-mail: musumeci@dipmat.math.unipa.it

We try to classify permutation groups endowed with a system of imprimitivity Ξ sub-
ject to the following conditions, where N denotes the normal subgroup leaving every
component in Ξ fixed:

(1) The group G/N , induced on Ξ, is finite;
(2) Let ∆ be a block in Ξ, the group G∆/G[∆] acts 2-transitively on ∆;
(3) The induced action of N on a block ∆ ∈ Ξ is regular, which means that N acts

transitively on ∆ and, if g ∈ N leaves a point X ∈ ∆ fixed, then g leaves every
point in ∆ fixed (in symbols NX = N[∆]);

(4) Let ∆1, . . . ,∆m be distinct blocks in Ξ and, for i = 1, . . . ,m, let Xi, Yi ∈ ∆i.
Then, there is just one element g ∈ N such that g(Xi) = Yi for all i = 1, . . . ,m.
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On the Orientation Associated with
a 3-Face-coloring of a Triangulation

A. Nakamoto, K. Ota, M. Watanabe*
Department of Computer Science and Mathematics

Kurashiki University of Science and the Arts
watanabe@soft.kusa.ac.jp

We consider an orientation associated with a 3-face-coloring of a triangulation, defined
as the following: If most frequently used colors are red and blue in a 3-face-coloring for
it, the edges of each red triangle are given the clockwise orientation, the edges of each
blue triangle the anticlockwise orientation, and the other edges arbitrary orientations.
We give upper and lower bounds of the number of triangles with the cyclic orientation in
oriented triangulations. We also discuss long cycles in oriented Eulerian triangulations,
including results related to these topics.
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On 2-reducible Paths in k-edge-connected Graphs
H. Okamura

Department of Applied Mathematics - Konan University
Kobe 658-8501, Japan

e-mail: okamura@center.konan-u.ac.jp

Let G = (V (G), E(G)) be a k-edge-connected graph. We call a path (or cycle) P (not
necessarily simple) of G 2-reducible if G− E(P ) is (k − 2)-edge-connected. If k is even,
for each two edges f and g, there is a 2-reducible cycle containing f and g. However
for odd k, we can construct k-edge-connected graphs G having two vertices s and t of
distance three such that any cycle containing s and t is not 2-reducible. We disscuss
about 2-reducible paths in G.
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Superconnected Digraphs and Graphs
with Small Conditional Diameters
I. Pelayo*, C. Balbuena, J. Fàbrega, X. Marcote

Universitat Politecnica de Catalunya (UPC). Spain.
e-mail: ignacio.m.pelayo@upc.es

The conditional diameter Dν of a (di)graph G measures how far apart can be a pair of
subdigraphs G1 and G2 with δ+(G1) ≥ ν and δ−(G2) ≥ ν. Thus, D0 is the standard
diameter and D0 ≥ D1 ≥ . . . ≥ Dδ. We prove that if Dν ≤ 2>−3, where > is a parameter
which can be thought of as a generalization of the girth of a graph, then G is maximally
connected, superconnected or has a good superconnectivity, only depending on the value
of ν. To guarantee the same properties in the edge case it is enough that Dν ≤ 2> − 2.
The results for (undirected) graphs are obtained as a corollary of those for digraphs.
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Pappus’ Theorem for Ring-Geometries
T. Pfeiffer
ERC Frankona

Zelterstrasse 6; D-55545 Bad Kreuznach, Germany
e-mail: Thorsten.Pfeiffer@ercgroup.com

A famous result due to David Hilbert states for a projective plane over a division ring K
the equivalence of Pappus’ theorem and the commutativity of K. We extend this result
to the projective plane over an arbitrary ring.
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Partial K-loops of Exponent 2 and Factorizations
of Graphs with Trapezium Condition

S. Pianta
Università Cattolica - Brescia, Italy

e-mail: geomet@dmf.bs.unicatt.it

Let P be a non empty set, 0 ∈ P a fixed point, P ′ ⊆ P \ {0} and o :P ′ → Sym P ∩ J
(where J := {σ ∈ Sym P |σ2 = id �= σ}) a map.
We call (P, P ′,o ; 0) a semiregular invariant reflection structure if:

i) ∀x ∈ P ′ : xo(0) = x(B1’)

ii) ∀y ∈ P \ {0} ∃n ≥ 1 and ∃a1, a2, ..., an ∈ P ′ : ao1a
o
2...a

o
n(0) = y ;

∀x, y ∈ P ′ xoyoxo ∈ (P ′)o .(B2)

By introducing a partial operation + : P ′ × P → P ; (a, b) → a + b := ao(b) one obtains
a partial K-loop of exponent 2 i.e.

∀a, b ∈ P ′, ∀x ∈ P : a+ a = 0 and (a+ (b+ a)) + x = a+ (b+ (a+ x)) .

Now for all {a, b} ∈
(
P
2

)
such that there is a c ∈ P ′ with co(a) = b we write (a, b) := c

and we associate to (P, P ′,o ; 0) a graph with parallelism (P, E , ‖) where

E := {{a, b} ∈
(
P
2

)
|(a, b)exists}

is the set of edges and {a, b} ‖ {c, d} :⇔ (a, b) = (c, d).
Then the set of all parallelism classes is a factorization of the graph (P, E). In addition
this graph satisfies the following trapezium condition:

∀{a, b}, {b, c}, {a′, b′}, {b′, c′}, {c, d}, {c′, d′} ∈ E with b �= c and(T)

{a, b} ‖ {a′, b′} ‖ {c, d} ‖ {c′, d′} and {b, c} ‖ {b′, c′} then

{a, d}, {a′, d′} ∈ E and {a, d} ‖ {a′, d′} .

There is a one-to-one correspondence between these three types of partial structures. We
discuss how one can complete them in order to obtain new examples of proper K-loops.

218



What is a Binary String?

F. Piper
London, UK

e-mail: f.piper@rhbnc.ac.uk

Clearly a simple answer to the question is that it is a string of 0s and 1s. However, that
is neither interesting nor helpful. In this talk which is intended primarily for research
students, we look at some of the ways in which mathematicians and communications en-
gineers view binary strings, and take a very high level look at some of the fascinating and
productive interaction between these various viewpoints. We will be particularly inter-
ested in cryptographic applications. Our basic assumption, since this is a paper presented
at a combinatorics conference, is that the reader will be familiar with the mathematical
concepts but may not be conversant with cryptography.
We also take this opportunity to resurrect an old, unresolved research problem that pro-
vides us with an opportunity to illustrate the potential interplay between the various
interpretations. From a cryptographic viewpoint the problem is not particularly im-
portant, but it has remained unresolved for more than twenty years, and it would be
interesting to know the answer.

1 Introduction

The digital age is with us and we now have both digital TV and digital telephones.
So communications is ’all about’ transmitting binary strings.

To communications engineers a bit string is likely to represent encoded data,
i.e. a string of codewords. Clearly the identity of the data will depend on the
encoding scheme used, and the coding scheme may be carefully chosen to achieve
a specific objective eg error correction or detection. To quote from [4]: ”Although
it has origins in an engineering problem, the subject has developed by using more
and more sophisticated mathematics.” In fact coding theory provides an excel-
lent example of a topic where communications engineers and combinatorists have
worked in harmony for years. To many pure mathematicians certain block codes
are merely vector spaces with certain (distance related) properties. They have
exploited these properties to provide ’useful’ codes without worrying about, or
maybe not even being aware of, the practical applications.
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Many excellent papers and books have been written to illustrate the rich inter-
play between error correcting codes and, for example, projective geometries over
GF (2). (See [4],[5] and [6]).

When data is coded for secrecy, an encryption algorithm is used to produce
’unintelligible’ ciphertext. The encryption process involves the selection of one (of
a large number) encryption keys that determines the transformation. Of neces-
sity the transformation must be reversible, and the receiver has the appropriate
decryption key that selects the inverse transformation. In most practical applica-
tions, the secrecy of the data relies on the secrecy of the deciphering key. Systems
where the enciphering key is known publicly are called public key systems.

If we regard our data as a bit-string then the encryption process may act as
a permutation on substrings, or blocks, of a fixed size s > 1, in which case it is
called a block cipher, or it may encrypt the data bit by bit, which we will call a
stream cipher.

Most public key systems are block ciphers and interpret a block as the binary
representation of an integer, and the encryption process is a (modular) number
theoretic transformation, using modular exponentiation. The underlying mathe-
matical theory is straightforward, and the security tends to rely on the high com-
putational complexity of specific, well-studied problems such as the factorisation
of large integers.

Probably the simplest and most well known illustration of this is the celebrated
RSA system. For this system two large primes, p and q say, are generated and
their product n is computed. This value n is part of the public key. The second
part of the public key is an integer e chosen so that (e, (p−1)(q−1)) = 1. In order
to encrypt a binary message, the message is divided into blocks that are regarded
as the binary representations of integers bounded above by n−1. A message block
m is then encrypted to c where c = me mod n. The secret decryption key consists
of n and the integer d which satisfies ed = 1 mod (p− 1)(q − 1) and decryption is
given by m = cd mod n.

The fact that the algorithm ’works’, i.e. that the original message is obtained
after encryption and decryption, is an immediate consequence of Fermat’s Little
Theorem. For RSA to be secure it must be computationally impossible to deduce
the secret key, which really means d, from the public values n and e. The calcula-
tion of d from the equation ed = 1 mod (p−1)(q−1) is straightforward application
of Euclid’s Algorithm. Thus any serious attacker would be able to solve such an
equation and RSA can only be secure if the attacker does not know which equation
they have to solve i.e. only if they cannot factor n.

In this brief discussion of coding and cryptography we have already illustrated
two different ways in which binary strings are ’interpreted’ before specific commu-
nications problems are solved.

We now take the mathematician’s viewpoint and list some of the more obvious
interpretations of a binary string. Not surprisingly, although the terminology may
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be different, some of the interpretations are essentially the same. Interpretations
of a binary string of length n include:

1. the binary representation of an integer from 0 to 2n.

2. a vector in Vn(2).

3. the coefficients of a binary polynomial of degree at most n− 1.

4. an element of GF (2n).

5. an indicator sequence for a subset of an ordered set.

6. the generating cycle of an infinite periodic binary sequence.

7. the leading row of an incidence matrix of a cyclic 1-design.

8. the feedback coefficients for an n-stage LFSR.

9. the coefficients of a binary linear recurrences relation st+p =
∑p−1
i=0 ctst+i

where each ci ∈ {0, 1} and addition is modulo 2.

Clearly (1) to (4) need no explanation. One of the most common examples of
an indicator sequence is where the set is the integers 0 to n − 1 and the binary
sequence identifies a λ-difference set. (Recall: {a1, · · · , ak} is a λ-difference set
modulo n if the differences (ai − aj) mod n (with i �= j) assume each of the
values 1 to n − 1 exactly λ times. Thus, for example, {0, 1, 3} is a 1-difference
set mod 7 with indicator set 1101000.) An infinite binary sequence (st) is said to
be periodic with period p if st + p = st for all t, and the string s0, s1, · · · , sp−1

is called a generating cycle. Clearly any n-bit string is the generating cycle of
an infinite binary sequence with period n. We will be interested in the use of
sequences for encryption. Given an n-bit string then we can construct an n × n
binary matrix A by letting the ith row of A, i = 0 to n− 1, be that string rotated
through i positions. Clearly this matrix is symmetric and each row and column
has the same number of 1s. If this number is k then A is the incidence matrix of
a 1− (n, k, k) incidence structure, which will be a design unless the string itself is
the concatenation of two or more equal cycles.

Note. If we consider the string 1101000 then, regarded as an indicator se-
quence, we get the 1-difference set {0, 1, 3} of integers mod 7. It is easy to see
that if we take the integers 0, 1, 2, 3, 4, 5, 6 as points and the translates of {0, 1, 3}
i.e. {1, 2, 4}, {2, 3, 5} etc as the blocks then we have a 2− (7, 3, 1) design i.e. the
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projective plane of order 2. Similarly if we consider the matrix



1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0




then A is an incidence matrix for the same design. These examples merely show
that, not surprisingly, it is often easy to travel from one interpretation to the other.
Nevertheless the knowledge and expertise required of the various interpretations is
often different and there can be rich interplay between different approaches. (As
an example of the type of result that arises, many people have studied ways of
generating difference sets and been able to characterise the geometric properties
of the resultant designs. See, for example [1].) The Multiplier Theorem, which
shows that the existence of an arithmetic property of a difference set implies the
existence of an automorphism of the corresponding design, is just one example of
a relevant result.

Representation (8) is very familiar to engineers and is similar to (9). A dia-
grammatic definition of an n-stage (binary) Linear Feedback Shift Register (LFSR)
is given below. Each switch may be either open or closed. If the ith switch is open
we put ci = 0 while if it is closed ci = 1.

n − 1

c c cc c0 1 2 n − 1

S S S0 1

Initially, at time t = 0, the stages S0, S1, · · · , Sn−1 are filled with an initiali-
sation binary vector s0, s1, · · · , sn−1. At each increase in the time t, the content
S0(t) is output as the tth entry of a binary sequence (st). For i = 0 to n − 2,
Si(t + 1) = Si(t) while Sn−1(t + 1) =

∑n−1
i=0 ciSi(t), where addition is modulo 2.

(Thus an LFSR is an electronics device that produces a binary sequence satisfying
a linear recurrence relation. Two excellent references are [2] and [3].)

We make 3 observations:
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(a) If the state vector, i.e. the contents of the stages, is ever all zeros then
it can never change and the output sequence will be all zeros.

(b) The output sequence will depend on the initialisation vector.

(c) If c0 = 1 then the sequence is always periodic with period at most
2n − 1.

LFSRs are commonly used as components of special types of encryption devices.
NOTE: The 3-stage LFSR with c0 = 1 c1 = 0 c2 = 1 i.e. represented by the

sequence 101 produces the sequence 1110100 when 111 is the initialisation vector.
Thus different binary strings can represent identical ’objects’ depending on the
viewpoint of the user.

To the cryptographer an n-bit string might also represent a cryptographic key.
If the data has been encrypted then it is likely to yield meaningless patterns if
decoded before being decrypted. Indeed, in loose terms, the object of encryption
is to transform (often highly) formatted data into bit-strings that appear to be
randomly generated. Two standard references are [7] and [8].

2 Basic Cryptography

If we denote the message space, cryptogram space and key message space by M , C
and K respectively then a block cipher can be defined as a function f : M×K → C.
There have, not surprisingly, been many attempts to classify block ciphers in terms
of the properties of f . (Clearly, in order that decipherment is possible, for any
fixed key k the function f must be reversible.)

Definition 1 A block cipher is linear if M and C are vector spaces over GF (2) and,
for each k ∈ K, the corresponding F is a linear transformation M → C.

For any linear cipher the all zero message is encrypted as all zeros. Thus
we frequently exclude the all zero vectors from both M and C. In [12] the
authors concentrate on the situation where |M | = |C| = |K| and each cryptogram
can be the encryption of any message, which, since the sets are finite, implies
that for any m ∈ M and c ∈ C, there is a unique k ∈ M with f(m, k) = c.
For reasons explained in the paper such ciphers are called NEKMRP ciphers.
When we do this in the case of a binary linear cipher, we obtain a cipher with
|M | = |C| = |K| = 2n − 1 and with the property that, for any pair of keys k1, k2

f(m, k1) �= f(m, k2) for any m ∈M . If we regard these keys as determining n×n
binary matrices, so that key ki determines matrix Ai, then for a NEKMRP linear
cipher may be regarded as a set of 2n−1 binary n×n matrices such that AiA−1

j fixes
no vector of GF (2)n\{0} for all i, j with i �= j. The authors of [12] then went on to
define NEKMRP bilinear ciphers which were characterised as being linear ciphers
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with the extra property that the set of all the enciphering matrices {Ai}, together
with all non-zero n × n matrix, forms a vector space under matrix addition. A
third family of ciphers, which they called multiplication ciphers, was also defined.
The precise definitions are not relevant here. The important observation is that
two of the world’s leading cryptographers were attempting to characterise certain
classes of block ciphers. They then went on to ask a number of natural questions
such as ”Does there exist a linear cipher which is not bilinear?”. Their paper was
written in 1988 but the answers to all their questions had been provided more than
twenty years earlier by pure mathematicians with interests in translation planes
and spreads (see [13], [14]).

Definition 2 If V is a vector space of dimension 2n over F (with |F | = q) then a
spread of V is a set of qn + 1 n-dimensional subspaces W1,W2, · · · ,Wqn+1 of V
such that Wi ∩Wj = {0} for i �= j.

In order to understand the relationship of spreads to linear block ciphers
we need to represent them in terms of linear transformations. However, this is
straightforward. If W is a vector space of dimension n over F and if V = W ⊕W
then, given qn − 1 linear transformations Ti, i = 3, · · · , qn + 1 of W , we define
subspaces W1,W2, · · ·Wqn+1 of V as follows:

W1 = {(x, 0) : x ∈W}
W2 = {(0, y) : y ∈W}

For i = 3, . . . , qn + 1,

Wi = {(x, xTi) : x ∈W and Ti is a non-singular linear transformation of W}.

It is easy to see that W1,W2, . . . ,Wqn+1 forms a spread if, and only if, for all
i �= j, TiT−1

j does not fix any non-zero vector of W . For q = 2 this is identical to
the condition that a set of linear transformations define a NEKMRP linear cipher
and establishes a correspondence between translation planes (a popular research
topic for combinatorialists in the 1960s and 1970s) with certain classes of block
cipher. The ’extra properties’ introduced in [12] in the context of block ciphers
have geometric equivalents for translation planes. In particular bilinear ciphers
correspond to semi-field planes and, since there are translation planes which are not
semi-field planes, the question which we quoted for [12] was answered long before
it was posed. A similar remark applies to the other questions and conjectures
of [12]. This is an example where two interpretations of vector spaces, one as
’representing’ translation planes and the other as ’representing’ block ciphers, have
led to the posing of identical questions but using terminology which made them
unrecognisable to research workers in the other ’camps’.

For symmetric, (i.e. non-public key), systems there is no uniformity in the way
bit-strings are interpreted. For instance, blocks of size s are frequently combined
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using vector addition modulo 2, but the use of addition mod 2s is also common.
Non-linearity is often introduced by the use of look-up tables and, in general,
these encryption algorithms do not have neat mathematical formulations. They
tend to use simple substitutions and transformations iteratively, and are assessed
by statistical, as opposed to mathematical, analysis. For more details see [7] or
[8].

For steam ciphers the situation is different. The encryption process operates
on a single bit. However, clearly, there is not much you can do to a bit; you either
leave it alone or complement it. If the process is to be secure then the attacker
should have no way of predicting which bits are changed and which ones have been
left unaltered. Diagrammatically a stream cipher is:

Ciphertext

Sequence

Generator

Key

Binary data stream

Keystream

If this keystream were replaced by a truly random binary sequence, and each
keystream bit were used only once then we would have the provably unbreakable
Vernam Cipher. However, in most practical systems this is not the case and, for
stream ciphers, we require our generation to be as indistinguishable from truly
random generation as possible. We call such generation pseudo-random.

It is, of course, very difficult to give a precise mathematical definition of pseudo-
randomness. Indeed the concept of ’good’, changes with the application. However,
in an attempt to quantify some criteria for assessing a given binary sequence’s suit-
ability for use as a pseudo-random sequence, Golomb proposed a set of random-
ness postulates for a binary sequence with (long) period p. Sequences satisfying
Golomb’s postulates are known as PN -sequences, where PN stands for Pseudo
Noise.
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3 PN-Sequences

Before we can introduce PN -sequences we need a few definitions.

Definition 3 If (st) is a binary sequence then a run of length n is a subsequence of
n consecutive identical entries which is neither preceded nor followed by the same
element.

So, for example, 0011101 starts with a run of 2 zeros followed by a run of 3
ones. It does not contain a run of 2 ones.

Definition 4 A run of zeros is called a gap and a run of ones is usually called a
block. However, in order to avoid confusion with the blocks of our designs, in
this paper we will refer to a run of ones as a 1-run.

If (st) has period p then, for any a satisfying 0 ≤ a < p, let (st+a) be the translate
of (st) with shift a and let A(a) be the number of positions in which the generating
cycles of (st) and (st+a) have the same entry.

Definition 5 If (st) has period p then the autocorrelation function C(a) is de-
fined by C(a)=(2A(a)−p)

p . This is often written as (A(a)−D(a))
p , where D(a) is the

number of positions in which the generating cycles of (st) and (st+a) disagree.

Clearly C(0) = 1. If a �= 0 then the autocorrelation is said to be out-of-
phase. It is perhaps worth noting that this type of autocorrelation, called the
periodic autocorrelation, is particularly relevant in cryptography. However, for
synchronisation applications the aperiodic autocorrelation is more appropriate.
Here only the first p− a terms of (st) and (st+a) are compared.

We can now state Golomb’s postulates.

G1 If p is even then a cycle contains p
2 zeros. If pis odd then a cycle

contains either
[
p
2

]
, or

[
p
2

]
+ 1 zeros.

G2 In a cycle of length p, 1/2 of the runs have length 1, 1/4 of the runs
have length 2 and, in general, for each i for which there are at least
2i+1 runs, 2−i of the runs have length i. Moreover, for each of these
values of i there are equally many gaps and 1-runs.

G3 The out-of-phase autocorrelation is constant.

There are a number of observations that we should make about Golomb’s
postulates:

(a) One would expect any (long) sequence obtained by tossing a fair coin
to ’almost’ satisfy them.
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(b) They are probably too precise. As we shall see, the set of sequences
satisfying them is probably very limited. Nevertheless we would expect
any pseudo-random sequence to have characteristics very similar to
them.

4 Geometrical Consequences of Golomb’s Postulates

Definition If (st) is a binary sequence with period p then we define A(st) to be
the p × p matrix whose ith row is (si, si+1, . . . , si+p−1) i = 0 . . . p − 1 and D(st)
to be the incidence structure with A(st) as incidence matrix.

For i = 0, 1, 2, . . . , p − 1, let si be the (i + 1)th row of A(st) (regarded as a
binary vector) and let xi be the block of D(st) determined by si. Thus, for each
i, si is the generating cycle for (st+i).
Definition If x and y are binary vectors of the same length then:

(b) the weight of x, denoted by w(x), is the number of positions in which
x has a 1;

(b) the Hamming distance between x and y, denoted by d(x, y), is the
number of positions in which x and y have different entries.

NOTE that Golomb’s postulate G1 merely says that, for i = 0, 1, 2, . . . , p − 1
w(si) = p

2 if p is even and w(si) =
[
p
2

]
or

[
p
2

]
+ 1 if p is odd.

Thus Golomb’s randomness postulate G1 merely determines the number of
points on each block of D(st).

Postulate G3 says that the out-of-phase autocorrelation (that is, C(a) with
a �= 0) is a constant. This is equivalent to saying that A(a) and D(a) are constants.
From the definition, D(a) is the number of positions in which s0 and sa disagree
which, clearly, is also the number of positions in which si and si+a disagree,
i = 0, 1, . . . , p − 1. Thus for any i and a, D(a) = w(si + si+a) and so, if C(a) is
constant for all a �= 0 then, for all i, j with i �= j, w(si + sj) is a constant.

If xi is the block of D(st) represented by si then w(si+si) = |xi∪xj \(xi∩xj)|.
So, if we let λij = |xi ∩ xj|, then w(si + sj) = 2(k − λij), where k is the number
of points on a block. Hence if we put w(si + sj) = µ, where µ is constant, then
λij = (2k − µ)/2 that is, λij is independent of i and j. This means that if (st)
satisfies G3 then D(st) is the dual of a 2-design which, since it is symmetric,
implies that it is a 2-design.

Thus G3 implies that D(st) is a symmetric 2-design with a cyclic
Singer group.

If D(st) is a 2 − (p, k, λ) design then, since it has a cyclic Singer group, the
positions of the 1s in the generating cycle of (st) must determine a λ-difference
set modulo p. As an illustration suppose (st) is the sequence of period 7 with
generating cycle 0111010. Straightforward verification shows k = 4 and C(a) =
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− 1
7 , a �= 0. It is then easy to check that D(st) is a symmetric 2 − (7, 4, 2) design

and that the set (1, 2, 3, 5), which is determined by the positions of the 1s in the
generating cycle, is a 2-difference set modulo 7. If (st) satisfies G1 and G3 then
D(st) is a symmetric 2− (p, k, λ) design with p = 2k − 1, 2k or 2k + 1. However,
for a symmetric 2-design we cannot have p = 2k. Thus p must be either 2k − 1,
or 2k + 1. From the relation (p− 1)λ = k(k − 1) it is easy to compute λ, and we
then have that D(st) is either a 2− (4λ+ 3, 2λ+ 1, λ) design or 2− (4λ− 1, 2λ, λ)
design. For general properties of designs see [10].

So postulates G1 and G3 together imply that D(st) is either a cyclic
Hadamard 2-design or the complement of a cyclic Hadamard 2-design.

Clearly if D(st) is a Hadamard design then is the complement of a Hadamard
design. Furthermore, if (st) satisfies G1 and G3 then D(st) is a Hadamard design
if a cycle contains 1/2(p+1) zeros and 1/2(p−1) ones. It is worth noting here that
if D is a Hadamard 2-design (or its complement) with a cyclic Singer group, then
D determines a difference set which, in the way described earlier, gives a periodic
sequence satisfying G1 and G3.

The implications of G2 are not as obvious as those of G1 and G3.
However, some detailed counting gives the following:

Theorem If (st) is a PN−sequence then D(st) is either a cyclic Hadamard design
with parameters or the complement of one.

It is perhaps worth noting here that the converse of this result is obviously
not true. In other words if D(st) is a cyclic Hadamard design with parameters
2− (2i+2 − 1, 2i+1 − 1, 2i − 1) or the complement of one, then (st) need not be a
PN -sequence.

It was widely conjectured that if (st) is a PN -sequence then D(st) is isomorphic
to the design of points and hyperplanes of a finite-dimensional projective space over
GF (2), or its complement. However, in 1981 U. Cheng discovered a PN -sequence
(ct) with period 127 that (up to complementation) is the only counter-example
to that conjecture. Although the sequence (ct) was not ’known’ before Cheng’s
work, D(ct), which is a Hadamard 2 − (127, 63, 31) design with a cyclic Singer
group, was known. In fact in [1] Baumert lists all such designs. To obtain the
sequence (ct) from [1] we take the difference set with the appropriate parameters
labelled (e). From this set we construct the sequence (dt), where dt = 1 in the
positions indicated by the difference set. The sequence (ct) is then defined by
ct = d39t where 39t is reduced modulo 127. Thus the existence of a PN -sequence
of period 127 is not at all obvious from Baumert’s list. In fact Baumert exhibits
four non-isomorphic cyclic Hadamard designs on 127 points which do not give PN -
sequences. Cheng has shown, by computer search, that (up to complementation)
(ct) is the only counter example with p ≤ 255.

We have already noted that LFSR produces periodic sequences with period
p ≤ 2n − 1. In fact, for any n it is possible to choose the feedback coefficients so
that, provided the initial state vector is not zero, the period if equal to 2n − 1.
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(This is not quite so easy and we refer the interested reader to [2].)

Definition 6 A sequence of period 2n − 1 which is generated on an n-stage shift
register with linear feedback is called an m-sequence.

Historically, m-sequences and PN -sequences have been confused and many
people assumed they were the same up to complementation). However, the se-
quence (ct) of Cheng provides an example of a PN -sequence that is not an m-
sequence. Any m-sequence is a PN -sequence and, furthermore, if (st) is an m-
sequence then D(st) is the complement of a design formed by the points and
hyperplanes of projective space over GF (2). (There are many proofs of this. One
of the easiest involves showing that the matrix A(st) has the correct rank.)

There are now a number of obvious interesting problems. One is to find all
PN -sequences. Another is to find a characterisation of m-sequences by adding a
suitable extra postulate to those of Golomb. One approach to both these problems
may be via the Hadamard designs introduced here.

5 Conclusion

Some of the fascinating interplay between pure mathematics has been illustrated
under the general theme of the study of binary sequences. This is most certainly
not a new observation as is evidenced by the success of the Journal of Designs,
Codes and Cryptography. Anyone interested in reading about some of the more
recent advances should consult [11].
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On Buekenhout-Metz Unitals
O. Polverino
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In the linear representation of the Desarguesian plane PG(2, q2) in PG(5, q), the classical
unital (the Hermitian curve) is represented by an elliptic quadric ruled by lines of a normal
spread. We prove that a Buekenhout-Metz unital U in PG(2, q2), arising from an elliptic
quadric, is represented in PG(5, q), mainly, by an algebraic hypersurface of degree four.
Moreover, such a hypersurface is reducible if and only if U is classical.
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On the Geometry of Power Mappings
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A. Pott
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Let Fqn denote the finite field with qn elements where q is a power of the prime p. The
field can be also viewed as a vector space Fnq together with a cyclic group of qn − 1
bijective linear mappings.

The simplest mappings f : Fqn → Fqn on finite fields are power mappings xd. If d
is a power of p then xd is simply a linear mapping. It is interesting to see that certain
powers of d give rise to “maximum nonlinear” functions.

We begin with the binary case q = 2. A function f : F2n → F2n gives rise to 2n

boolean functions F2n → F2:

fγ := trace2n/2(γ · f(x))

where “trace” denotes the usual trace function
∑n−1

i=0
x2i and γ ∈ F2n . Note that fγ is

linear if f is linear. In order to measure the nonlinearity of f we define the nonlinearity
of boolean functions g : F2n → F2: A linear function g (�= 0) has the property that its
kernel is a hyperplane, hence

#{x : g(x) = 0 and 〈x, z〉 = 0} ∈ {2n−1, 2n−2}.

or

g(z) :=
∑

x∈F2n

(−1)g(x)+〈x,z〉 = 0.

Therefore, the linearity of an arbitrary boolean function g can be measured by

max
z∈F2n

|g(z)|

and a function f : F2n → F2n is maximum nonlinear if

max
γ∈F∗

2n

max
z∈F2n

|f (z)
γ |

is as large as possible. The first part of my talk will be the following:

Survey bounds on the nonlinearity of power mappings
and discuss several examples.
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Computing the nonlinearity is usually a problem of calculating the number of solutions
of an equation in F2n ; sometimes this equation is a quadratic form.

Another concept of nonlinearity is the so called (A)PN property of a function ((al-
most) perfect nonlinear). A function f : Fqn → Fqn is almost perfect nonlinear if

f(x+ a) − f(x) = b

has at most two solutions in x (given a �= 0 and b). The function is called perfect if the
number of solutions is precisely 1. It is well known that perfect functions give rise to
projective planes of Lenz-Barlotti type II. Unfortunately, not many perfect linear func-
tions are known, in particular, they cannot exist in characteristic 2. On the other hand,
functions f where (*) has only few solutions can be used in differential cryptanalysis.
Therefore, in the second part I will

Survey the known series of (almost) perfect nonlinear
power functions.

In the binary case, both concepts of nonlinearity are linked:

Discuss the connection between APN functions and max-
imum nonlinear functions.

Finally, maximum nonlinear functions give rise to sequences with low (cross)correlations.
These have several applications, in particular in mobile communications (code division
multiple access systems):

Describe the application of power mappings in CDMA
systems.
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Baer Cone Intersections
H. Pralle

Mathematisches Institut der Justus-Liebig-Universität Giessen
Arndtstr. 2 - D-35392 - Giessen, Germany

e-mail: harm.pralle@math.uni-giessen.de

In a projective space P = PG(d, q2), d ≥ 2, let V be a subspace of P of codimension
at least two and C a complement of V in P. A Baer cone is the set of subspaces of
P that contain V and intersect C in subspaces of a given Baer subspace B of C. The
3-dimensional projective space is the lowest dimensional with non trivial intersection
configurations of two Baer cones. We describe the intersection configurations of two
Baer cones in PG(3, q2).
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Extending the Thas-Walker Construction
R. Riesinger

University of Wien, Austria
e-mail: havlicek@geometrie.tuwien.ac.at

Definition. Let S be a spread of a Pappian projective 3-space Π = (P,L) and let
Σ be a collection of proper or improper reguli contained in S; by an improper regulus we
mean a set {x} with x ∈ L. We call Σ a regulization of S, if the following hold: (RZ1)
Each line of S belongs either to exactly one regulus of Σ or to all reguli of Σ. (RZ2)
There are at most two improper reguli in Σ.

By Rc we denote the complementary regulus of a proper regulus R, moreover,
{x}c := {x}. For the Thas-Walker construction the Klein mapping λ of L onto the
Klein quadric H5 plays a crucial role; λ(R) is an irreducible (=proper) conic and λ({x})
or a point (=improper conic). We classify the regulizations via the line set ∪(Rc|R ∈
Σ) =: Sc

Σ and consider the set {λ(Rc)|R ∈ Σ} =: FΣ of conics; dim(span(λ(Sc
Σ))) =: vΣ.

1. (vΣ = 3) If Sc
Σ is a non-degenerate linear congruence (=net) of lines (i.e. Σ is a net

generating regulization, hyperbolic or parabolic or elliptic according to the type of Sc
Σ),

then FΣ is a flock of λ(Sc
Σ) ⊂ H5. quadric or a quadratic The converse of the this

statement is the Thas-Walker construction. 2. (vΣ = 4) <3. (vΣ = 5)> If Sc
Σ belongs to a

single <no> linear complex of lines, then Σ is called a unisymplecticly <asymplecticly>
complemented regulization. Properties of FΣ are used to define the concept ”flockoid
of a Lie quadric” <”flocklet of the Klein quadric”>. First <second> extension of the
Thas-Walker construction: If D is a flockoid of a Lie quadric L4 ⊂ H5 <flocklet of H5>,
then ∪((λ−1(k))c|k ∈ D) is a spread of Π admitting the regulization {(λ−1(k))c|k ∈
D} which is either unisymplecticly complemented or elliptic <either asymplecticly or
unisymplecticly complemented or elliptic>.

References

[46] R. Riesinger.: Extending the Thas-Walker construction, Bull. Belg. Math. Soc.,
Simon Stevin, 6, (1999), 237-247.

[47] R. Riesinger.: The second extension of the Thas-Walker construction, to appear
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Complete Unital-derived Arcs in the Hall Planes
G. Rinaldi

Dipartimento di Matematica - Università di Modena e Reggio Emilia
Via Campi 213/B - 41100 Modena, Italy

e-mail: rinaldi@unimo.it

A well known theorem of B. Segre states that a complete arc of PG(2, n) (n an even
prime power) which is not an hyperoval, contains at most n −

√
n + 1 points. This

theorem is sharp for n = q2. In fact, in PG(2, q2), with either q odd or even, a class of
(q2 − q + 1)−arcs were constructed in [1] and many authors proved their completeness,
(see [2], [3],[4]). The arcs constructed by Kestenband are referred to as unital-derived arcs
because they are the common intersection of q+1 hermitian unitals of PG(2, q2). Under
certain circumstances, the set of points of a hermitian unital of PG(2, q2) constitutes the
set of points of a unital in the Hall plane of the same order, H(q2), [5],[6]. Applying these
results, a suitable choice of complete unital-derived arcs of PG(2, q2) allows to construct
a class of complete arcs with q2 − q + 1 points in the Hall plane H(q2). These arcs are
still the intersection of q + 1 unitals of H(q2). When it is q2 = 9, the same construction
gives rise also to a class of complete q2 − q + 2−arcs of H(9).
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Specialized Colourings of Steiner systems S (2,4,v)
Alexander Rosa*, S. Milici, V. Voloshin

McMaster University - Ontario, Canada
e-mail: rosa@mcmail.cis.mcmaster.ca

We consider colourings of Steiner systems S(2, 4, v) in which blocks have prescribed colour
patterns, as a refinement of the classical weak colourings. We study the question of the
existence of a colouring of given type in which exactly k colours are used, as well as the
question of the existence of uncolourable systems. We also examine the related question
of the existence of S(2, 4, v) with maximal arcs.
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Hopf Algebras and the Penrose Polynomial
I. Sarmiento

Department of Mathematics and Computer Science
Free University of Berlin - Arnimallee 3, D-14195 Berlin, Germany

e-mail: sarmient@math.fu-berlin.de

Let λ be a positive integer and let G be a plane graph. Let P (G,λ) be the Penrose
polynomial of G. We will present an interpretation of P (G,−λ) in terms of colourings
of G. In order to prove our main theorem we construct a Hopf algebra A of graphs and
an homomorphism of Hopf algebras P from A onto a Hopf algebra of polynomials in one
indeterminate. If G is a plane graph, then P (G) coincides with the Penrose polynomial
of G.
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Expectation Values for Codes over Rings
S.E. Schmidt

M.I.T., USA
e-mail: schmidt@math.mit.edu

For any finite ring R we construct a real-valued function w on R with w(0) = 0 such that
the expectation value of w restricted to Rx (with repect to the uniform distribution)
is 1 for all non-zero elements x of R. For our main result we additively extend w to
a real-valued function on powers of R; then a large class of rings allows the following
surprising statement.

Theorem. For any linear code C over a finite Frobenius ring, the expectation
value of w restricted to C is given by the reduced length of C.

Finally, we derive some remarkable applications which underline the importance of
Frobenius rings for future coding theory.
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Maximally Valued Division Algebras
E. Schörner

University of München, Germany
e-mail: schoerne@rz.mathematik.uni-muenchen.de

By a well–known result of Kaplansky, a valued field (K, v,Γ) is maximal if and only if
any pseudoconvergent sequence has a pseudolimit in K; moreover, under the “Hypothesis
A”, (K, v,Γ) is isomorphic to a Hahn field of formal power series with a factor system.
The equivalence of maximality and pseudocompleteness can also be shown for valued
abelian groups and certain classes of valued modules as well as for ultrametric spaces
with totally ordered value set; it is still an open question for valued skewfields. In
this talk we will present the positive result for valued division algebras in the sense of
Zelinsky having the same characteristic as its residue division algebra.
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On Divisible Designs
with Dual Translation Group

R.-H. Schulz*, S. Giese
Mathematisches Institut - Freie Universität Berlin - Berlin, Germany

e-mail: schulz@math.fu-berlin.de

We characterize divisible designs D which admit an elementary abelian full dual transla-
tion group, that means an elementary abelian automorphism group T of D fulfilling the
following conditions.

(i) T fixes all point–classes of D.
(ii) T operates transitively on every point class of D.
(iii) Tp �= TQ for all points P , Q of different point classes of D.
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Line-transitive Point-imprimitive Linear Spaces
M. Sebille

Département de Mathématiques - Campus Plaine C.P. 216 - Université Libre de Bruxelles
Boulevard du Triomphe - B - 1050 Bruxelles, Belgium

e-mail: msebille@cso.ulb.ac.be

A linear space S(2, k, v) is a pair (X,B), where X is a set of v elements called points
and B is a collection of k-subsets of X (called lines) such that every 2-subset of X is
contained in one line (we also assume that 2 < k < v).

In 1989, A. Delandtsheer and J. Doyen proved that if G is a line-transitive point-
imprimitive automorphism group of a linear space S(2, k, v), then v is bounded by a

function f(k) = (
(
k
2

)
− 1)2 depending only on the size of the lines. In 1992, P. Cameron

and C. Praeger proved that if G is a line-transitive point-imprimitive automorphism
group of an S(2, k, f(k)), then k ∈ {4, 5, 8} and, the same year, W. Nickel, A. Niemeyer,
C. O’Keefe, C. Praeger and T. Penttila proved that under the same hypotheses, k = 8
and there exist, up to isomorphism, exactly 446 such linear spaces.

The purpose of this talk is to give a new bound B(k, i) for the number of points
of a line-transitive point-imprimitive linear spaces depending not only on the size of the
lines but also on the number i of unordered pairs of points contained in a given line and
incident with only one imprimitivity class. We investigate the cases i = 2 and i = 3, and
we construct an infinite family of S(2, k, B(k, i)).

This work is supported by the Belgian F.R.I.A. (Fonds pour la formation à la Recherche
dans l’Industrie et dans l’Agriculture).
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Partial Spreads in PG(4,2): Sym(6) Aspects

R. Shaw
Dept. of Mathematics - University of Hull

Hull HU6 7RX, UK
e-mail: r.shaw@maths.hull.ac.uk

Recently, see http://www.hull.ac.uk/maths/research/2000/, it has been proved that
there exist 64 equivalence classes of partial spreads in PG(4, 2). In this paper we make
use of aspects of the group isomorphisms Sp(4, 2) Sym(6) and O(5, 2) Sym(6) to give
descriptions of roughly half of these classes. In particular we describe how to distinguish
simply between the three classes of maximal partial spreads of size 7 by using Sp(4, 2)
considerations. Similarly for those two classes of maximal partial spreads of size 9 which
are of regulus type I∆.
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Multilinear Representability of Matroids
J. Simonis

Eindhoven University of Technology, The Netherlands
e-mail: j.simonis@twi.tudelft.nl

Linear representability of matroids is an old and well-researched subject. Recently, a
more fundamental notion of matroid representability has emerged: almost-affine repre-
sentability or representability by partitions.

There are several almost-affinely representable matroids that are not linearly rep-
resentable. Some examples, notably the non-Pappus matroid and the exceptional 103-
configuration, will be presented. Also the relation with quasigroups and the remarkable
fact that all known examples happen to be multilinearly representable will be discussed.
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Complete Arcs Arising from Conics
A. Sonnino

Università della Basilicata - Potenza, Italy
e-mail: sonnino@unibas.it

By a result going back to B. Segre and L. Lombardo Radice, the maximum number
of points shared by an irreducible conic C and a k-arc K in PG(2, q) is 1

2
(q + 3) for

q, and 1
2
(q + 2) for q even. If the maximum is attained, then K only contains a few

points outside C. This was showed in two long papers by G. Pellegrino who mostly used
synthetic arguments related to certain axial correspondences. The aim of this talk is to
present a different approach based on polynomials and linear collineations. A new proof
will be given for the following result due originally to G. Korchmáros:

Let K be a complete k-arc in PG(2, q), q odd, containing 1
2
(q + 3) points from an

irreducible conic C of PG(2, q). If 1
2
(q + 1) is a prime, then K contains at most four

points outside C. If q2 ≡ 1 (mod 16), then this number can be at most two.
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Caps in PG(5,3) and PG(6,3)
L. Storme*, J. Barát, Y. Edel, R. Hill, C. Jones, I. Landjev

University of Gent - Dept. of Pure Maths and Computer Algebra
Krijgslaan 281 - 9000 Gent, Belgium

e-mail: ls@cage.rug.ac.be

A k-cap in PG(N, q) is a set of k points, no three of which are collinear. A k-cap is called
complete when it is not contained in a larger cap.

The maximal size of a cap in PG(5, 3) is 56 and there is a unique example found by
R. Hill. This 56-cap in PG(5, 3) can be used to construct a 112-cap in PG(6, 3), which
is the largest known cap in PG(6, 3). Until two years ago, the best known upper bound
on the size of a cap in PG(6, 3) was 164.

In [R. Hill, I. Landjev, C. Jones, L. Storme and J. Barát, On com-
plete caps in the projective geometries over F3. Proceedings of the Second Pythagorean
Conference, (Samos, Greece, May 30-June 5, 1999), J. Geom., to appear], a first study
to improve the upper bound on the size of a cap in PG(6, 3), and to find the size of the
second largest complete caps in PG(5, 3), was made.

Since 1999, a new approach involving computer searches has been used. The searches
show that the size of the second largest complete caps in PG(5, 3) is equal to 48, and
this latter result improves the upper bound on the size of caps in PG(6, 3) to 147.
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Covers and Caps of the Klein Quadric Q+(5,q)
P. Sziklai*, J. Eisfeld, L. Storme, A. Blokhuis

University of Budapest, Hungary
e-mail: sziklai@cs.elte.hu

A t-cover of a quadric Q is a set C of t-dimensional subspaces contained in Q such that
every point of Q belongs to at least one element of C. Here 1- and 2-covers of the Klein
quadric Q+(5, q) are considered. For t = 2, a 2-cover contains at least q2 + q planes,
and the extremal configuration can be described explicitly. As (via Plücker coordinates)
there is a well-known bijection between the points of the Klein quadric and the lines of
PG(3, q), it gives a description of sets C containing points and lines, blocking all lines of
PG(3, q). Note that if C contains points only (or, dually, planes) of PG(3, q), then the
lower bound is q2 + q + 1.
For t = 1, a 1-cover of Q+(5, q) has at least q3 + 2q + 1 lines; some examples of this size
will be presented as well.
As three points of the Klein quadric are collinear if and only if the corresponding three
lines are concurrent and coplanar in PG(3, q), a cap (i.e. a set of points, no three of
which being collinear) contained in Q+(5, q) corresponds to a set L of lines in PG(3, q)
such that no three of which are concurrent and coplanar at the same time. It is easy to
prove that |L| ≤ (q + 1)(q2 + 1) if q is odd and |L| ≤ (q + 2)(q2 + 1) if q is even. In the
first case this bound is sharp.
On the other hand, it can be proved, that a complete cap (i.e. which is not contained in

a larger cap) of the Klein quadric has size ≥ q3/2. A better bound will be presented as
well.
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On Blocking Sets in Higher Dimension
T. Szőnyi, Zs. Weiner*

Eotvos University - Budapest, Hungary
e-mail: weiner@cs.elte.hu

A k-blocking set in PG(n, q) is a set of points such that it intersects every (n − k)-
dimensional subspace. It is non-trivial if no k-dimensional subspace is contained in it;
it is minimal when no proper subset of it is a k-blocking set. 1-blocking sets for n = 2
will be called planar. We call a k-blocking set in PG(n, q) small, if its size is less than
3
2
(q(n−k) + 1).

For planar minimal blocking sets their size can only lie in certain (relatively short)
intervals, each of which correspond to a value e, for some 1 ≤ e ≤ h/2. When pe �= 4, 8,
each line intersects the minimal blocking set in 1 modulo pe points.

We generalize the above result for k-blocking sets, furthermore we also present some
corollaries.

248



On m-ary Balanced Codes
L.G. Tallini

Dipartimento Di. Tec. - Politecnico di Milano,
20133 Milano, Italy

e-mail: luca.tallini@polimi.it

A m-ary balanced code with r check digits and k information digits is a code over the
alphabet ZZm = {0, 1, . . . ,m − 1} of length n = k + r and cardinality mk such that
each codeword is balanced; that is, the real sum of its components (or weight) is equal to
.(m− 1)n/2/. This paper contains new efficient methods to design m-ary balanced codes
which improve the constructions found in the literature, for all alphabet size m ≥ 2. To
design such codes, the information words which are close to be balanced are encoded using
single maps obtained by a new generalization of Knuth’s complementation method to the
m-ary alphabet that we introduce in this paper. Whereas, the remaining information
words are compressed via suitable m-ary uniquely decodable variable length codes and
then balanced using the saved space. For any m ≥ 2, a family of m-ary balanced codes
can be obtained whose number of redundant digits is

r = logm k − 1

2
logm s(k) +O(1),

where s = s(k) is any function of k such that 1 ≤ s(k) ≤ k. Such family of codes can be
implemented with O(mk logm k+mks) m-ary digit operations and O(k+ms3) memory
elements to store m-ary digits.
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On Groups Whose Inner Automorphism
Nearring is a Ring

M.J. Thomsen
Universität der Bundeswehr - Hamburg, Germany

e-mail: momme.thomsen@unibw-hamburg.de

Familiar algebraic structures are endomorphism rings, i.e. subrings of the full endomor-
phism ring (EndG,+, ◦) determined by a given abelian group G. The structure of a
given group G is reflected in the structure of its associated endomorphism rings and vice
versa.

Endomorphism rings are subrings of the nearring (M(G),+, ◦) consisting of all map-
pings from G to G which are defined for every group G. (M(G),+, ◦) is called the full
transformation nearring on G. Transformation nearrings on G, i.e. subnearrings of
(M(G),+, ◦) are very general in the sense that every nearring can be embedded into a
full transformation nearring on a suitable group G.

In the talk we concentrate on the so-called inner automorphism nearring (I(G), +, ◦)
which is the subnearring of (M(G), +, ◦) generated by the group (Inn G, ◦) of all inner
automorphisms of G.

We characterize in several ways those groups for which (I(G), +, ◦) is a ring and
also those groups for which (I(G), +, ◦) is even a commutative ring. We explain how
these properties are related to the property “G is of nilpotency class 2” and “G is of
nilpotency class 3” and “G has elements of order 3”.
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A Mass Formula for Steiner Triple Systems
STS (2n-1) of 2-rank 2n- n

V.D. Tonchev
Michigan Technological University - Houghton, Michigan 49931, USA

http://www.math.mtu.edu/∼tonchev

A formula is found for the total number of distinct Steiner triple systems on 2n−1 points
whose 2-rank is one higher than the possible minimum 2n − n− 1. The formula can be
used for deriving bounds on the number of pairwise nonisomorphic systems for large n,
and for the classification of all nonisomorphic systems of small orders. It is proved that
the number of nonisomorphic Steiner triple systems on 2n − 1 points of 2-rank 2n − n
grows exponentially.
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Simultaneous Reduction of a Pair
of Symmetric Bilinear Forms to Canonical Form

M.A. Vaccaro
Dipartimento di Matematica ed Applicazioni - Università di Palermo

Via Archirafi, 34, I-90123 Palermo
e-mail: vaccaro@dipmat.math.unipa.it

We try to classify pairs of symmetric bilinear forms on a finitely generated vector space
over a field K of characteristic �= 2. We give a complete classification in the case where
the algebraic closure of K is a quadratic extension of K.

252



Classical Varieties and Codes
R. Vincenti

Università di Perugia - Perugia, Italy
e-mail: alice@unipg.it

It is well known that every projective variety, read as a projective multiset, can represent
an algebraic code. In this paper we study from this point of view the Schubert varieties
and the cubic surfaces V of PG(4, q). It has been shown by many authors that a Grass-
mannian variety G = G(m, d) of PG(N − 1, q) is a code of length equal to the number
of rational points of G, of dimension N , and of minimum distance q((m − d)d). The
Schubert varieties are special varieties of G, who can represent a basis for the subvari-
eties of G of same dimension. A cubic surface V of PG(4, q) can be built by means of a
birational mapping between a line and a conic not lying in the same plane.
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Infinite Permutation Groups
with Nice Transitivity Properties

H. Wefelscheid
Universität-Gesamthochschule-Duisburg

e-mail: wefelscheid@mat.uni-duisburg.de

The transitivity properties, we have in mind are related with the names of Frobenius,
Zassenhaus und Suzuki.

Beginning with doubly transitive Frobenius and with triply transitive Zassenhaus
groups (e.e. sharply 2-transitive, resp. sharply 3-transitive permutation groups) we
compare those properties which might be valid in the infinite case as well as in the finite
case and examine properties which are only possible in the infinite case.

The literature about infinite Frobenius and infinite Zassenhaus groups is only small
and the research can be devided into to lines: whether the theorem of Frobenius is valid
or not. We concentrate our interest into the latter, more general case, present some
(nontrivial) examples, and exhibit the connection to K-Loops.
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Relations between Certain Classes
of Incidence Loops,

Codes and Chain Structures
E. Zizioli

Università Cattolica - Brescia, Italy
e-mail: geomet@dmf.bs.unicatt.it

The loops (L,+) which are derived from non euclidean geometries ([1]) enjoy the following
properties:

C1. For each a ∈ L∗ := L \ {0}, the centralizer Z(a) := {x ∈ L |x+ a = a+ x} is a
subgroup of (L,+).

C2. The set F := {Z(a) | a ∈ L∗} is an incidence fibration in the sense of [2] (hence
F∗ := {X∗|X ∈ F} is a partition of L∗ ).

The task now arises of studying classes of abstract loops (L,+) satisfying C1 and
C2. Here I shall focus my attention to the subclass characterized by

C3. For each a ∈ L∗, |Z(a)| = 2.

These loops can be related via chain structures to a certain class of MDS codes.
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