Analisi Matematica I – Prova scritta del 14/06/2011	A
COGNOME:	NOME:
CANALE: A-H (Pacella) I-Z (Crasta)	
PROVA ORALE: giugno luglio	
RECUPERO ESONERO: I (Es. 1,2,3) II (Es. 4,5,6,7)	

Un esercizio si considera risolto se le risposte sono corrette e sono giustificate in maniera chiara e completa.

Esercizio n. 1 – (6 pt) Stabilire se esiste il limite, ed eventualmente calcolarlo, delle successioni

$$\left(\frac{n^2 + \log n}{2^n + 1}, \frac{n + \sin n}{\sqrt{n}}\right), \qquad \begin{cases} x_{n+1} = \frac{3}{2} - 2^{-x_n}, \\ x_0 = 0. \end{cases}$$

Soluzione: (a) $x_n \to 0$, $y_n \to +\infty$; la successione diverge a ∞ . (b) La successione è monotona crescente e converge a 1.

Esercizio n. 2 – (4 pt) Stabilire se la funzione

$$f(x) = \sqrt{x} \log x + 2x$$

è uniformemente continua negli intervalli $(0,1], [1,+\infty), (0,+\infty).$

Soluzione: La funzione può essere prolungata con continuità nell'origine, quindi è unif. cont. in (0,1]. Inoltre $f \in C^1((0,+\infty))$ e $\lim_{x\to+\infty} f'(x)=2$, quindi f' è limitata in $[1,+\infty)$. Di conseguenza f è Lipschitziana e dunque unif. cont. anche in $[1,+\infty)$. Infine f è unif. cont. in $(0,+\infty)=(0,1]\cup[1,+\infty)$.

Esercizio n. 3 – (4 pt) Trovare i punti interni e i punti di frontiera dell'insieme

$$E = \bigcup_{n=1}^{+\infty} (2n, 2n+1).$$

Soluzione: E è unione di intervalli aperti, quindi è aperto, cioè $E^{\circ} = E$. Inoltre $\partial E = \{2, 3, ...\} = \mathbb{N} \setminus \{0, 1\}$.

Esercizio n. 4 – (6 pt) Determinare insieme di definizione, asintoti orizzontali e verticali e intervalli di monotonia della funzione integrale

$$F(x) = \int_0^x \sqrt[3]{t} \, e^{-t} \, dt.$$

Soluzione: La funzione integranda f(t) è continua in \mathbb{R} , quindi dom $F = \mathbb{R}$, F è derivabile e F'(x) = f(x). Di conseguenza F' < 0 in $(-\infty, 0)$, mentre F' > 0 in $(0, +\infty)$. L'origine è un punto di minimo assoluto e F(0) = 0. Poiché f non è integrabile in senso generalizzato in $(-\infty, 0)$ avremo che $\lim_{x \to -\infty} F(x) = +\infty$; f è invece integrabile in senso generalizzato in $(0, +\infty)$, quindi esiste finito $\lim_{x \to +\infty} F(x)$.

Esercizio n. 5 – (4 pt) Per ogni $n \in \mathbb{N}^+$, sia $f_n : [0,1] \to \mathbb{R}$ la funzione definita da

$$f_n(x) := \begin{cases} 0, & \text{se } x \in [0, x_n], \\ n\sqrt{x - x_n}, & \text{se } x \in (x_n, 1], \end{cases} \quad \text{con } x_n := 1 - \frac{1}{n^3}.$$

Stabilire se la successione di funzioni (f_n) converge puntualmente e uniformemente in [0,1].

Soluzione: Abbiamo che $\lim_n x_n = 1$. Di conseguenza, se $x \in [0,1)$, avremo che $x_n > x$ definitivamente e dunque $f_n(x) = 0$ definitivamente. Poiché $f_n(1) = 1/\sqrt{n} \to 0$, concludiamo che f converge puntualmente in [0,1] alla funzione identicamente nulla $f \equiv 0$. Si verifica che, per ogni n, f_n è non negativa e monotona crescente; di conseguenza $\sup_{x \in [0,1]} |f_n(x) - f(x)| = f_n(1) = 1/\sqrt{n} \to 0$ per $n \to +\infty$, quindi la successione converge uniformemente in [0,1].

Esercizio n. 6 – (4 pt) Determinare gli insiemi di convergenza puntuale e totale della serie di funzioni

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{x}{n}\right).$$

Soluzione: Abbiamo che, per ogni $x \in \mathbb{R}$, $f_n(x) \sim x/n^{3/2}$, dunque la serie converge assolutamente per ogni $x \in \mathbb{R}$. Dal momento che $\sup_{x \in \mathbb{R}} |f_n(x)| = 1/\sqrt{n}$, la serie non converge totalmente su tutto \mathbb{R} . Per ogni a > 0 si ha invece $\sup_{|x| \le a} |f_n(x)| \le a/n^{3/2}$, dunque la serie converge totalmente sugli intervalli del tipo [-a, a].

Esercizio n. 7 – (5 pt) Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' - \frac{y}{x} + \frac{\log x}{x} = 0, \\ y(1) = 0. \end{cases}$$

Soluzione: Integrale generale: $y = cx + 1 + \log |x|$, nelle semirette $(-\infty, 0)$ e $(0, +\infty)$. Soluzione del PdC: $y = -x + 1 + \log x$, $x \in (0, +\infty)$.

Analisi Matematica I – Prova scritta del 14/06/2011 COGNOME: NOME: NOME

Un esercizio si considera risolto se le risposte sono corrette e sono giustificate in maniera chiara e completa.

Esercizio n. 1 – (6 pt) Stabilire se esiste il limite, ed eventualmente calcolarlo, delle successioni

$$\left(\frac{\sqrt{n}+n+2}{1+\log(n+1)}, \frac{2+\cos n}{n^2+1}\right), \qquad \begin{cases} x_{n+1} = \frac{2x_n}{1+x_n}, \\ x_0 = 2. \end{cases}$$

Soluzione: (a) $x_n \to +\infty$, $y_n \to 0$; la successione diverge a ∞ . (b) La successione è monotona decrescente e converge a 1.

Esercizio n. 2 – (4 pt) Stabilire se la funzione

$$f(x) = x \log x + 3x^2$$

è uniformemente continua negli intervalli $(0,1], [1,+\infty), (0,+\infty)$.

Soluzione: La funzione può essere prolungata con continuità nell'origine, quindi è unif. cont. in (0,1]. Inoltre $\lim_{x\to+\infty} f(x)/x = +\infty$, quindi f non è sub-lineare e dunque non può essere uniformemente continua né in $[1,+\infty)$ né su $(0,+\infty)$.

Esercizio n. 3 – (4 pt) Trovare i punti interni e i punti di frontiera dell'insieme

$$E = \left\{ x = \frac{p}{q} : p, q \in \mathbb{N}^+, q \text{ dispari} \right\}.$$

Soluzione: Poiché $E \subset \mathbb{Q}$, $E^{\circ} = \emptyset$. Più precisamente, E contiene tutti i razionali in $[1, +\infty)$ con denominatore dispari, che sono densi in $[1, +\infty)$. Di conseguenza $\overline{E} = \partial E = [1, +\infty)$.

Esercizio n. 4 - (6 pt) Determinare insieme di definizione, asintoti orizzontali e verticali e intervalli di monotonia della funzione integrale

$$F(x) = \int_0^x \frac{e^t}{t-1} dt.$$

Soluzione: La funzione integranda f(t) non è integrabile in senso generalizzato in un intorno di t=1, dal momento $\operatorname{che} f(t) \sim e/(t-1)$ per $t \to 1$. Di conseguenza $\operatorname{dom} F = (-\infty,1)$. Poiché f è continua in $(-\infty,1)$, avremo $\operatorname{che} F$ è ivi derivabile e F'(x) = f(x) per ogni x < 1; di conseguenza F'(x) < 0 per ogni x < 1. Per quanto già detto, $\lim_{x \to 1^-} F(x) = -\infty$; inoltre, dal momento $\operatorname{che} f$ è integrabile in senso generalizzato in $(-\infty,0)$, esiste finito $\lim_{x \to -\infty} F(x)$.

Esercizio n. 5 – (4 pt) Per ogni $n \in \mathbb{N}^+$, sia $f_n \colon [0,1] \to \mathbb{R}$ la funzione definita da

$$f_n(x) := \begin{cases} 0, & \text{se } x \in [0, x_n], \\ n\sqrt[3]{x - x_n}, & \text{se } x \in (x_n, 1], \end{cases} \quad \text{con } x_n := 1 - \frac{1}{n^4}.$$

Stabilire se la successione di funzioni (f_n) converge puntualmente e uniformemente in [0,1].

Soluzione: Abbiamo che $\lim_n x_n = 1$. Di conseguenza, se $x \in [0,1)$, avremo che $x_n > x$ definitivamente e dunque $f_n(x) = 0$ definitivamente. Poiché $f_n(1) = 1/\sqrt[3]{n} \to 0$, concludiamo che f converge puntualmente in [0,1] alla funzione identicamente nulla $f \equiv 0$. Si verifica che, per ogni n, f_n è non negativa e monotona crescente; di conseguenza $\sup_{x \in [0,1]} |f_n(x) - f(x)| = f_n(1) = 1/\sqrt[3]{n} \to 0$ per $n \to +\infty$, quindi la successione converge uniformemente in [0,1].

Esercizio n. 6 – (4 pt) Determinare gli insiemi di convergenza puntuale e totale della serie di funzioni

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \, \log \left(1 + \frac{|x|}{n} \right) \, .$$

Soluzione: Abbiamo che, per ogni $x \in \mathbb{R}$, $f_n(x) \sim |x|/n^{3/2}$, dunque la serie converge assolutamente per ogni $x \in \mathbb{R}$. Dal momento che $\sup_{x \in \mathbb{R}} |f_n(x)| = +\infty$, la serie non converge totalmente su tutto \mathbb{R} . Per ogni a > 0 si ha invece $\sup_{|x| \le a} |f_n(x)| \le a/n^{3/2}$, dunque la serie converge totalmente sugli intervalli del tipo [-a,a].

Esercizio n. 7 – (5 pt) Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' + y \cos x - \frac{1}{2} \sin(2x) = 0, \\ y(0) = 2. \end{cases}$$

Soluzione: Integrale generale: $y = c e^{\sin x} + \sin x - 1, x \in \mathbb{R}$. Soluzione del PdC: $y = 3e^{\sin x} + \sin x - 1, x \in \mathbb{R}$.