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CHAPTER 1

To begin

Let us recall some basic concepts and some calculation methods that you will surely have
already encountered in high school; later on, we will return to some of these ideas and
examine them from a more general point of view.

1. Integer, rational and real numbers

In mathematics it is necessary to choose a starting point on whicheverybody agrees; from
here, with a series of logical arguments, we obtain more and more general consequences that
allow us to solve more and more complicated problems. Our starting point are the natural
numbers:

1, 2, 3, 4, 5, . . . .

Natural numbers are so basic that you cannot define them using even simpler objects (there
are no simpler objects ...). We will call the set of natural numbers the collection formed by
these numbers; the notation used is the following:

N = {1, 2, 3, 4, 5, 6, . . . }.
Whenever we have a collection of objects we will say that we have a set, the individual
objects are called the elements of the set, and they are said to belong to the set. If a is
an element of the A set, we write a ∈ A (and if it doesn’t belong, we write a 6∈ A), and
read: a belongs to A, or also: A contains a. Sometimes zero is included in the collection; to
distinguish the two cases we will use the notation

N0 = {0, 1, 2, 3, 4, 5, 6, . . . }.
We note that the elements of the set N are also in the N0 set (there is only one more element).
When all the elements of a set A are also elements of the set B we will write A ⊆ B or also
A ⊂ B and we say that A is a subset of B. For example we have N ⊆ N0.
Another set that you have already encountered is the set of all integers, also called relative

integers: to obtain it, just add zero and all negative integers to N. We will use the symbol
Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . . }.

Thus we have N ⊆ N0 ⊆ Z. The same idea can be expressed writing
n ∈ N =⇒ n ∈ N0 =⇒ n ∈ Z,

where the symbol =⇒ means “implies”. The formula A =⇒ B (read “A implies B”) is
a shorthand to say that if A is true, then B is also true. For practical purposes, we shall
write B ⇐= A with the same meaning as A =⇒ B.
Now we make a qualitative leap: we know that given two integers p and q, positive or

negative, we can consider the fraction p
q , if the denominator q is different from zero (in

symbols: if q 6= 0). We will call the set of all fractions the set of rational numbers Q. If we
want to use the above notation for Q as well, we need to modify it a bit. We want to write
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in a single formula that Q is the set of all numbers x such that x is a fraction of relative
integers, with the denominator other than zero:

Q =

{
x : x =

p

q
, p, q ∈ Z, q 6= 0

}
(and the formula is read just like this: the set of all x such that x is equal to p/q etc.). Of
course, if p is divisible by q we obtain an integer; hence Z ⊆ Q.
You will surely remember that fractions can be expressed as decimal numbers, with an

integer part and a decimal part:
1

3
= 0, 333333 . . . ,

13

7
= 1, 857142857142 . . .

−28

70
= −0, 40000 . . . .

Indeed, when we divide two integers, the decimal expansion is a very special one: in some
cases, from a certain point on we obtain a sequence of zeros (finite decimal expansion) and
in these cases we do not write the zeros:

−28

70
= −0, 40000 . . . = −0, 4;

in other cases, the decimal expansion does not stop, however there is a group of digits which
always returns the same, periodically:

1338

9990
= 0, 1339339339 . . . = 0, 1339.

This repeating group is called the period and it is denoted by drawing a line over the group.
Nobody forbids us to consider even more general numbers, whose decimal expansion is not

periodic:
−35, 7854365689543560987007654 . . . .

A “general” decimal number is called a real number, and the set of all real numbers (all
possible decimal expansions) is denoted by R. This definition is almost perfect: the only
small trouble is that there are some decimal expansions which look different, but actually
give the same number. Precisely we have:

0, 999999 . . . = 1

and more generally, given a finite decimal expansion, we obtain an equivalent one with the
same method:

65, 2583 = 65, 258299999 . . . .

However this small defect does not give any problem in the definition of real numbers.
There are very many real numbers that are not rational, for example the number

√
2 = 1, 414213562373095048801688724209698078569671875376948073176679 . . .

(ratio between diagonal and side of a square) is real but not rational. Real numbers that
are not rational (= nonperiodic decimal expansions) are said to be irrational.
The set R is very rich in properties: first of all we can perform the usual operations (sum,

product), furthermore given a number x we can consider its opposite −x, and its inverse 1
x

when x 6= 0; so we can make the difference x− y and divide x
y if the denominator does not

vanish. Another important property is that the set R is ordered. This means that given two
real numbers x and y we can always determine which of the two is larger:

one has always: either x ≤ y ot x ≥ y.

The only case when both inequalities are valid is when x = y. Watch out: the inequality
x ≤ y (x is less than or equal to y) is correct both when x is smaller than y, and when x = y.
For example, it is true that 1 ≤ 3 and it is also true that 2 ≤ 2. If we want to exclude
equality we use the symbol x < y (or x > y) which is called strict inequality.
Since the real numbers are ordered, we can put them all “in a row”: the simplest way to

visualize R is to think of a line
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0

R
x < 0 x > 0

Figure 1.1.

This picture is called the real line. Inside the real line we find all the previous sets, since
N ⊆ Z ⊆ R. Drawing integers is easy:

−4 −3 −2 −1 0 1 2 3 4

R

Z N

Figure 1.2.

but if we want to draw Q there is a problem: the rational numbers are not separated from
each other, but they are “dense” everywhere. More precisely, however we choose two real
numbers x and y, even very close to each other, between them we can find an infinite amount
of rational numbers.
Given two numbers a and b, with a < b, we can consider the set of all real numbers between

a and b; this is called an interval of real numbers, and a, b are called the extrema of the
interval. In some cases it is useful to include the two extrema in the interval, in other cases
not; you see easily that in total we have four possibilities: if we include both extrema we
have

the closed interval [a, b] = {x : a ≤ x ≤ b};
if we exclude both extrema we have

the open interval ]a, b[ = {x : a < x < b};
and if we include only one of the extrema, we have the half-open intervals (also called
half-closed)

]a, b] = {x : a < x ≤ b} e [a, b[ = {x : a ≤ x < b}.
What happens if a = b? The closed interval [a, a] contains only the point a; the set containing
only the point a is also denoted by {a}. On the other hand, the open interval ]a, a[ contains
no points, because no x can verify a < x < a; so this is an empty set, often denoted by ∅.
It is very easy to visualize these sets on the real line: just consider the segment of endpoints

a and b. To distinguish the various previous cases, we will draw a solid point if the point is
part of the interval, and a hollow point if it is not part of it:

•a ◦b ◦c ◦d

[a, b[ ]c, d[

Figure 1.3.
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Sometimes it is useful to consider also intervals of infinite length i.e. half–lines: that is,
having chosen a point a, we consider all the points x that are to the right of a, or all those
that are to the left. To denote these infinite intervals we use the infinity symbol ∞, and
precisely we write:

[a,+∞[ = {x : x ≥ a} ]a,+∞[ = {x : x > a}
for the half–line at the right of a (a included or excluded), and

]−∞, a] = {x : x ≤ a} ]−∞, a[ = {x : x < a}
for the half–line at the left of a.

•a ◦b

]−∞, a] ]b,+∞[

Figure 1.4.

With the sets just defined, we can perfomr several operations. There are two main ones:
the union and the intersection. Taking the union of two sets means putting together all
the points that are both in the first and in the second set. For example, the union of the
intervals [1, 4] and [3, 8] is the entire interval [1, 8]; the union of the intervals ] − 1, 2[ and
]− 3.7] is the interval ]− 3.7]; the union of the intervals [0, 1] and [5, 6] is not an interval but
is a set made up of two separate pieces. The union of two sets is indicated with ∪:

]0, 6[ ∪ ]1, 9] = ]0, 9].

•
−1

•2
[−1, 2]

•1 •4
[1, 4]

•
−1

•
4[−1, 2] ∪ [1, 4] = [−1, 4]

Figure 1.5.

The union of two sets A,B contains both A and B.
The second operation between sets is the intersection. Taking the intersection of two sets

means considering only the points in common between them, i.e. the points that are both
in the first and in the second set. Points which are only in one of the two sets but not the
other, are discarded. The intersection of two sets is denoted by ∩. For instance,

[1, 3] ∩ [2, 7] = [2, 3] [3,+∞[ ∩ ]−∞, 5[= [3, 5[.

Clearly, the intersection of two sets is contained in both sets.
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•
−1

•2
[−1, 2]

◦1 •4
]1, 4]

◦
1

•
2

[−1, 2]∩]1, 4] =]1, 2]

Figure 1.6.

Problems.

Exercise 1.1 (¹). Can the following unions and intersections of intervals be written in
a simpler form or not?

[1, 10] ∩ ]4, 12]; ]− 2,−1[ ∪ [0, 5]; [1, 2] ∪ ]3, 4[ .

If p, q ∈ Z are two integers, p is divisible by q if there is a third integer r ∈ Z such that
p = qr. An integer is even if it is divisible by 2, otherwise it is odd. By definition a prime
number is an integer p > 1 which is only divisible by ±1 and ±p.

Exercise 1.2. Let a, b be two integers whose product ab is divisible by 4. Which of the
following statements is certainly true?

(1) a and b are both even,
(2) a and b are both divisible by 4,
(3) a is divisible by 4 or b is divisible by 4,
(4) a is even or b is even.

Exercise 1.3. Which of the following statements are true?
(1) If x is an irrational number, then x2 is too.
(2) If x is an irrational number, then x+

√
2 is too.

(3) If x is an irrational number, then x/2 is rational.
(4) If x is an irrational number, then x−

√
2 is integer.

(5) If x is an irrational number, then x/2 can be rational.
(6) If x is an irrational number, then x−

√
2 can be integer.

2. Equalities and inequalities

In the previous section we have already observed that given two real numbers a, b, if these
numbers coincide we can write this fact as an equality a = b. If a, b are distinct numbers we
can instead write a 6= b: in other words the formula a = b is true if and only if the formula
a 6= b is false.
We know that an equality a = b remains true if the same quantity is added or subtracted

to the expressions at the right and at the left of the = sign: in particular, a = b if and only
if a− b = 0 (just subtract b both from the left and the right).
In a similar way, an equality remains true if the expressions to the right and left of the sign

= are multiplied by the same number: one must be careful since this operation is reversible
only if the number by which both sides are multiplied is different from zero.
We can repeat both the previous statements and the symmetric and transitive properties

in the usual “if–then” formulation:
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(1) if a = b and c = d, then a+ c = b+ d;
(2) if a = b and c = d, then ac = bd;
(3) if a = b, then b = a;
(4) if a = b and b = c, then a = c.

Finally, it is clear that an equality has a non trivial information content when the two parts
are different ways of writing the same number, for example

1

2
=

2

4
,

1

2
= 0, 5,

3

9
= 0, 3,

12

99
= 0, 12 .

On the other hand, an equality like 2 = 2 is true but trivial.
We observe that if a = b then a2 = b2, but the converse is generally false. For example if
a = 1 and b = −1, then a2 = b2 but a 6= b. This is a very common mistate, so beware!
When we speak of an inequality we are referring instead to a formula of one of the following

types:
a < b, a ≤ b, a 6= b, a ≥ b, a > b .

For what concerns inequalities involving the symbols < (strictly minor) and ≤ (minor or
equal), the following properties are valid and are easy and immediate to understand:

(1) if a < b, then a ≤ b;
(2) if a = b, then a ≤ b;
(3) if a ≤ b and b ≤ a, then a = b;
(4) if a < b and b ≤ c, then a < c;
(5) if a ≤ b and b < c, then a < c;
(6) if a ≤ b and b ≤ c, then a ≤ c.

As for the equalities, also the inequalities remain valid if the same quantity is added to
both sides. For example if a < b then a+ c < b+ c for each c. More generally, if a < b and
c ≤ d, then a + c < b + d. Indeed we have a + c < b + c (add c to both sides of a < b),
b+ c ≤ b+ d (add b to both sides of c ≤ d) and this implies

a+ c < b+ c ≤ b+ d ⇒ a+ c < b+ d .

Unlike the equalities, an inequality remains valid if both members are multiplied by the
same quantity only if this quantity is strictly positive: it is in fact well known that if we
multiply by negative numbers it is necessary to “reverse” the inequality. In other words,
using the “if—then” formulation, we can write;

(1) if a ≤ b and c > 0, then ac ≤ bc;
(2) if a < b and c > 0, then ac < bc;
(3) if a ≤ b and c < 0, then ac ≥ bc;
(4) if a < b and c < 0, then ac > bc.

Example 2.1. Let a, b be positive real numbers (i.e. a > 0 and b > 0). Assume that
a2 = b2. Then we can prove that a = b.
Indeed, if a 6= b we have either a < b or b < a. If a < b, multiplying by a > 0 yields a2 < ab,

while multiplying by b yields ab < b2 and therefore a2 < ab < b2 which is impossible since
we assumed a2 = b2. In a similar way we see that b < a is impossible.

The same argument used in the previous example shows that if 0 < a < b then a2 < b2,
a3 < b3, a4 < b4 and more generally an < bn for all positive integer n. For example, for
the cubic powers, multiplying a < b by a2, by ab and by b2 we have the three inequalities
a3 < a2b < ab2 < b3, which imply a3 < b3.

Example 2.2. We prove that for each pair of real numbers a, b the inequalities hold
2ab ≤ a2 + b2, 4ab ≤ (a+ b)2 .
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To this end, it is sufficient to observe that the squares of real numbers are never negative,
therefore (a− b)2 ≥ 0 which implies a2 + b2 − 2ab ≥ 0 which is equivalent to a2 + b2 ≥ 2ab
and also to a2 + b2 + 2ab ≥ 4ab.

Example 2.3. We prove that for each triplet of real numbers a, b, the following inequality
holds:

a2 + b2 + c2 ≥ ab+ ac+ bc .

For the proof just add the three inequalities
a2 + b2 ≥ 2ab, a2 + c2 ≥ 2ac, b2 + c2 ≥ 2bc,

which were proved in the example above, and then divide by 2.

Problems.

Exercise 1.4 (multiple choice). The sum 1
a + 1

b of the reciprocal of two positive numbers
a, b is equal to 1. Then the sum a+ b of the two numbers a, b is:

(1) equal to their difference;
(2) negative;
(3) equal to their product;
(4) zero;
(5) equal to 1.

Exercise 1.5. Let a be a real number such that a3 + a = 100. Which of the following
statements are true and which are false?

(1) a > 5;
(2) a < 5;
(3) a > 4;
(4) a < 4;
(5) a2 + a > 30.

3. Practice with numbers: proportions and percentages

Proportions and percentages are very easy concepts but they are constantly used, both in
all scientific fields ans also in everyday life. Therefore it is of fundamental importance to
have them very clear. Let us see some examples.
A proportion, or proportionality ratio, is nothing more than a ratio between two quantities.

To say that two pairs of numbers a, b and c, d have the same proportionality ratio means
that

a

b
=

c

d
.

Therefore, from the theoretical point of view this is nothing complicated. We now explain
how there ratios are used.

Example 3.1. To make 720 grams of peach jam you need 1800 grams of peaches and 360
grams of sugar. How many peaches and how much sugar are needed to make 1000 grams of
jam?
If we use the unknown p to indicate the grams of peaches, and the unknown z to indicate

the grams of sugar, we have the proportions:
p

1000
=

1800

720
,

z

1000
=

360

720
,

which are equivalent to

p = 1800× 1000

720
= 2500, z = 1800× 360

720
= 900 .
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3.1. Measuring angles. The most common units of measure for angles are the degree
and the radian. The convention is that a round angle measures 360 degrees or 2π radians,
from which it follows, making the necessary proportions, that:

(1) a flat angle measures 180 degrees, or π radians;
(2) a right angle measures 90 degrees, or π/2 radians;
(3) the interior angles of an equilateral triangle measure 60 degrees, or π/3 radians.

More generally, to pass from measure in degrees to measure in radians, we must multiply
by

2π

360
=

π

180
.

For example, an angle of 27 degrees measures

27× π

180
=

3

20
π ' 0, 471 radians.

The symbol ' in the previous expression indicates that we are taking the approximate
decimal expansion (in this case to the third decimal place) of the number 3π/20, which is
irrational and therefore does not allow a finite decimal expansion.
Of course, the measure in degrees of an angle need not necessarily be an integer. For

example, the interior angles of a regular heptagon measure

180− 360

7
' 128, 572 degrees.

To measure smaller angles one uses the prime, which is the sixtieth part of a degree, and
the second, which is the sixtieth part of a prime, that is 3600th part of a degree.
Degrees are usually indicated with a circle superscript ( ◦), primes with a prime ( ′) and

seconds with a double prime ( ′′). Thus
1◦ = 60′ = 3600′′, 1, 5◦ = 90′ = 5400′′, and so on.

Angles are usually written in normal form. For instance,
α = 20◦ 12′ 4′′

indicates that the angle α measures 20 degrees, 12 primes and 4 seconds and this means
that its amplitude is given by the sum of the three indicated quantities. So we have:

α =

(
20 +

12

60
+

4

3600

)◦

.

More generally, a normal form is of the type gg◦ pp′ ss′′, where gg is a non negative integer,
pp is an integer between 0 and 59, and ss is any integer belonging to the interval [0, 60[ .
To pass from the normal form to the measure in degrees is easy: just divide the first by

60, the seconds by 3600 and then take the sum:

1◦ 54′ 3′′ =

(
1 +

54

60
+

3

3600

)◦

2◦ 14′ 31′′ =

(
2× 60 + 14 +

31

60

)′

3◦ 4′ 38′′ = (3× 3600 + 4× 60 + 38)
′′
.

The transition from the measurement in degrees to the normal form is slightly more
complicated. Let’s see the procedure at work in a concrete example. Let’s write in normal
form an angle of 25, 364◦: the integer part are degrees, thus we have

25, 364◦ = 25◦ pp′ ss′′ .
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To calculate the number of primes, multiply the decimal part of the degrees by 60 and take
the integer part:

0, 364◦ = 0, 364× 60 = 21, 84′ ⇒ pp = 21, 25, 364◦ = 25◦ 21′ ss′′ .

To calculate the seconds just multiply the decimal part of primes by 60:
0, 84′ = 0, 84× 60 = 50, 4′′.

In conclusion
25, 364◦ = 25◦ 21′ 50, 4′′ .

Repeating the same procedure, in short, for the angle 65, 323◦, we write
0, 323× 60 = 19, 38, 0, 38× 60 = 22, 8 ,

and we obtain
65, 323◦ = 65◦ 19′ 22, 8′′ .

To add (or subtract) angle amplitudes in normal form, degrees, primes and seconds must
be added separately. For instance:

24◦ 35′ 40′′ + 41◦ 11′ 15′′ = 65◦ 46′ 55′′ .

What can go wrong is that in this way the sum may no longer be in normal form, for
example:

24◦ 35′ 40′′ + 41◦ 51′ 25′′ = 65◦ 86′ 66′′ .

In this case you must first remove the excess seconds (in multiples of 60) and move them onto
the primes, then remove the excess primes (always in multiples of 60) and move onto degrees.
Finally, the excess degrees are removed by multiples of 360. In the previous example, since
66′′ = 60′′ + 6′′ = 1′ + 6′′ and 87′ = 60′ + 27′ = 1◦ + 27′, we obtain

65◦ 86′ 66′′ = 65◦ 87′ 6′′ = 66◦ 27′ 6′′ ,

with the expression on the right in normal form.
Negative numbers may appear when computing differences of amplitudes in normal form.

If the number of seconds is negative, add a multiple of 60′′ taking care to subtract the same
multiple from the number of primes. For instance

3◦ 24′ 12′′ − 1◦ 14′ 35′′ = 2◦ 10′ − 23′′ .

To transform the result into normal form, add 60′′ and subtract 1′: clearly the total remains
unchanged.

2◦ 10′ − 23′′ = 2◦ (10′ − 1′) (60′′ − 23′′) = 2◦ 9′ 37′′ .

In a similar way we proceed if the number of primes is negative: add a multiple of 60′ and
subtract the same multiple of 1◦:

3◦ 24′ 12′′ − 1◦ 34′ 5′′ = 2◦ − 22′ 7′′ = (2◦ − 1◦) (60′ − 22′) 7′′ = 1◦ 38′ 7′′ .

3.2. Percentages. A percentage is nothing more than a proportion multiplied by 100.
For example, if a liter of grappa contains 40 centiliters of alcohol, the ratio of alcohol to the
total is 0.4, while the percentage is 40% (40 percent). We list some practical examples of
usage of percentages.

Example 3.2. During sales, a pair of shoes costs 100 Euros, while the list price was 125
Euros before the sales. What discount percentage has the merchant applied?
The discount is 125−100 = 25 Euros. The proportion between the discount and the initial

price is therefore 25/125 = 0.2. To get the percentage you need to multiply by 100 thus
obtaining 0, 2× 100 = 20%.
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Example 3.3. One hundred grams of a well–known industrial apricot snack contain 64
grams of carbohydrates, of which 37.8 is sugar. What is the percentage of sugar on the total
carbohydrates?
To answer the question, just apply the definition of percentage, i.e. multiply the ratio of

sugars to carbohydrates by 100:
37, 8

64
× 100 = 59, 06% .

Example 3.4. 1) I have a business partner and we have decided to split the earnings always
in the same way. According to our agreements, 55 % to me, 45 % to him. This month we
made 3200 euros. How many euros is my share?
The problem is very easy to solve but we check it in detail. We are making a simple

proportion: we have a total of 3200, which is 100 parts, and we want only 55 of those parts:

3200 : 100 = x : 55 that is 3200

100
=

x

55

The answer is 55/100 of 3200:

x =
3200

100
× 55 = 1760.

A quicker way to remember: to make 55 % of 3200 is to make the 55/100 of 3200, which is
to multiply 3200 by 0.55.
2) Suppose my partner is in financial trouble and asks me to settle for only 800 euros for

this month, in which we have earned 3200 euros. What percentage did I get instead of my
55 %? In addition, the following month goes very well and we earn 5000 euros. My partner
tells me to take my share plus what I didn’t take the previous month. How many euros do
I get, and what percentage did I get out of the total of 5000?
The first question asks: what percentage of x of 3200 does 800 represent? that is

3200 : 100 = 800 : x i.e. 3200

100
=

800

x

(if 3200 euros are 100 parts, 800 euros are x parts) so that

x = 800× 100

3200
= 25

and so I’m only getting 25 % instead of 55 %. A quicker way is to simply divide 800/3200 =
0.25 which tells us precisely that 800 euros are the 25 % of 3200 euros.
The next month, my 55% stake would be worth

5000× 55

100
= 2750.

Also, the month before I only pocketed 800 euros instead of my 1760, so I’m in credit of
1760−800 = 960, and this month in total I can take 960 + 2750 = 3710 euros. This sum,
compared to the total of 5000 euros, represents a share of

3710

5000
× 100 = 74, 2 percent

(more simply, 3710/5000 = 0.742) and so I’m pocketing more than 74 percent of last month’s
earnings.

Example 3.5. A recent survey, carried out on a sample of 4000 people, asked to indicate
various preferences regarding the color of cats. 10 % of the sample did not want to take part
in the survey because they hate cats and only love dogs. The results of the interviews were
as follows:

• 15% prefers black cats;
• 55% prefers white cats;
• 25% prefers grey cats;
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• 5% does not know.
The next day, on the Gatto Quotidiano newspaper, the news appears “more than half of
Italians prefer white cats”. Is the news correct or is it the usual journalistic exaggeration?
Let’s do the math: 10 % of the sample of 4000 is calculated as follows:

4000 : 100 = x : 10

and so x = 400 people hate cats; the interview was done only to 4000-400 = 3600 people.
55 % responded in favor of white cats: it is

55

100
× 3600 = 1980

people, clearly less than half of the sample. Precisely,
1980

4000
× 100 = 49, 5

therefore only 49.5 of Italians love white cats. The next day, great hilarity on the Resto del
Felino.

Example 3.6. A sporting goods store carries out the following promotion: if you buy three
items, you pay the cheapest one only half price. What is the maximum percentage discount
that a customer can get with this promotion?
We denote by x, y, z the prices of the three items in descending order, that is x ≥ y ≥ z.

The customer then pays x + y +
z

2
obtaining an absolute discount of z

2
. The percentage

discount is calculated using the formula:
z

2
x+ y + z

× 100 =
z

2(x+ y + z)
× 100 .

This value ranges from a minimum of 0% (when z = 0) to a maximum of
z

2(z + z + z)
× 100 =

z

6z
× 100 =

100

6
= 16, 66%

obtained when the three items have the same price.

Problems.

Exercise 1.6. 100 grams of low-fat yogurt contain 4.7 grams of protein. How much protein
is contained in a 125 gram jar of the same yogurt?

Exercise 1.7. Find the measure in radians of an angle of 20◦.

Exercise 1.8 (¹). Express the following angles in degrees and radians:
12◦ 27′ 30′′ , 17◦ 2′ 50′′ , 30◦ 12′ 30′′ .

(approximation to the third decimal place is requested and the calculator can be used).

Exercise 1.9. Put in normal form the following angles:
12, 3◦, 1230′, 34, 34◦, 10000′′ .

Exercise 1.10. Put in normal form the triple of the angle 130◦ 50′ , 50′′.

Exercise 1.11. On December 15, 2017, a sweater cost € 111. On January 15, 2018, the
same sweater was sold for sale at a price of 100 euros. What percentage discount has the
shopkeeper given to the customer?

Exercise 1.12. Consider an adult man weighing 80 kilograms and formed by 60% of water
(by weight, before breakfast). Knowing that jellyfish are made up of 99% water (by weight),
how many kilograms of jellyfish must our man swallow to reach 90% water after breakfast?
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Exercise 1.13. In the academic year 2735/2736, 150 students enrolled in the first year of
the degree course in Sciences applied to intergalactic travel. In the first exam session of the
Mathematics course, 80% of the students enrolled and only 40% passed the exam. In the
second session, all those who had not taken or passed the exam before showed up, and 50%
of them pessed the exam. Calculate:
(i) the percentage of those who passed on the total number of members;
(ii) the percentage of those who passed in the first session on those registered;
(iii) the percentage of those who passed in the first session on the total of those who passed.

Exercise 1.14. The brilliance B of a set of monuments is the percentage of white surface
on the total (at a certain moment T ), and can be measured with special instruments; the
blackening is the remaining percentage. The blackening index N(∆T ) is the amount of
blackening (i.e. lost brightness) in a fixed period of time ∆T .
In two archaeological sites in Rome and Milan, between December 2003 and February 2005,

the following data relating to brilliance were collected:
Roma Milano

Dec.2003 75 80

Dec.2004 70 50

Feb.2005 68 47
Compute:
(i) the blackening index in the two sites in 2004;
(ii) the blackening index in the first two monthsof 2005.

Exercise 1.15. A Swiss and an Abruzzese take the two ends of a 738 kilometer long
tunnel at the same time. Knowing that the speed of the Swiss is 0.000025 % of the speed
of the neutrino and the speed of the Abruzzese is 0.000020 % of the speed of the neutrino,
determine how many kilometers the Swiss traveled before colliding with the Abruzzese.

4. Practice with numbers: powers and roots

Powers are a very useful notation that is used everywhere in mathematics, but you have
to be careful. If x is a number (or more generally a numeric expression) and n is a positive
integer then

xn = x · x · · · · · x︸ ︷︷ ︸
n factors

denotes the product of x with itself n times, such as:
x7 = x · x · x · x · x · x · x .

The first three basic rules of powers are:
• (product with the same base) xn · xm = xn+m;
• (product with the same exponent) xn · yn = (xy)n;
• (power of a power) (xn)m = xnm.

For example, we have the equalities:
23 · 27 = 210, 83 = (23)3 = 29, 2333 = 63,

210 + 29 = 2 · 29 + 29 = (2 + 1)29 = 3 · 29 .
If x 6= 0 and n > m, then xm 6= 0 and dividing by xm the relation xm · xn−m = xn we get

the formula

(4.1) xn

xm
= xn−m .
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We can remove the n > m limitation from this formula by setting x0 = 1 and more in
general

(4.2) x−n =
1

xn
, n ∈ Z, x 6= 0 .

We reiterate the importance of the condition x 6= 0 in order to define the powers of x with
null and negative exponents: under this condition the three basic rules xn · xm = xn+m,
xn · yn = (xy)n and (xn)m = xnm are still valid for all x, y 6= 0 and n,m ∈ Z. For instance

24 · 4−3 = 24 · (22)−3 = 24 · 2−6 = 2−2 =
1

4
.

We observe that if x ≥ 1 then xn ≥ 1 for every n > 0; moreover x2 = x · x ≥ x · 1 = x,
xn+1 = xn · x ≥ xn · 1 = xn and therefore there is an infinite chain of inequalities

1 ≤ x ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · .
It is well known that if x > 1 then the powers xn grow very fast as n increases, so much so
that the term exponential growth has entered the common lexicon to indicate rapid growth
phenomena.
Now we want to go a step further and extend the possible exponents to all rational numbers,

so that the basic rules of powers continue to hold. Let us first consider the case of the
exponent ±1/2: we want the relations

(a
1
2 )2 = a

1
2 ·2 = a, (a−

1
2 )2 = a−1 =

1

a

to be true. We see that a1/2 must be a number such that its square is a; a positive number
with this property is called the square root of a and is denoted by

√
a. Since the squares of

real numbers are all non–negative, a necessary condition for the definitions a
1
2 and a−

1
2 to

make sense is a > 0.
The condition a > 0 is also sufficient due to the following theorem which we state without

proof.

Theorem 4.1. For every positive integer n > 0 and every non–negative real number a ≥ 0
there exists a unique non-negative real number n

√
a ≥ 0, called n-th root of a, such that(

n
√
a
)n

= a .

When n = 2, we write simply
√
a in place of 2

√
a. The Theorem 4.1 implies in particular

that for every positive real number b it holds
√
b2 = b and more generally n

√
bn = b for any

integer n.
We see that the formulas

(a
1
n )n = a

1
n ·n = a, a > 0, n > 0,

force us to define
a

1
n = n

√
a = n–th root of a,

and as a consequence

a
n
m = (a

1
n )m = ( n

√
a)m, a, n > 0, n,m ∈ Z

which we can write also
a

n
m = (am)

1
n = n

√
am.

Example 4.2. We have
√
23 =

√
22 · 2 =

√
22 ·

√
2 = 2

√
2, and also:

2
3
2 = (23)

1

2
=

√
8 ,

= (2
1
2 )3 =

√
2
3
,

= 21+
1
2 = 21 · 2 1

2 = 2
√
2 .

.
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If a, b are positive real numbers and s ∈ Q the formula asbs = (ab)s is still true. For
example:

2434 = 64, 23π2 = 2(2π)2,
√
2335 =

√
23

√
35 = 2 · 32

√
2
√
3, and so on.

Example 4.3. We can perform the following simplifications and rationalizations:
2 +

√
20

2
=

2 +
√
22 · 5
2

=
2 + 2

√
5

2
=

2(1 +
√
5)

2
= 1 +

√
5 ;

1√
2
=

1√
2
·
√
2√
2
=

√
2

(
√
2)2

=

√
2

2
;

√
3√
2
=

√
3√
2
·
√
2√
2
=

√
2
√
3

(
√
2)2

=

√
6

2
;

1

1 +
√
2
=

1

1 +
√
2
· 1−

√
2

1−
√
2
=

1−
√
2

12 − (
√
2)2

=
1−

√
2

1− 2
=

√
2− 1 .

Example 4.4. If a, b, c > 0, we have
3
√
a4b2c

2
√
abc3

=
(a4b2c)

1
3

(abc3)
1
2

=
a

4
3 b

2
3 c

1
3

a
1
2 b

1
2 c

3
2

= a
4
3−

1
2 b

2
3−

1
2 c

1
3−

3
2 = a

5
6 b

1
6 c−

7
6 .

Problems.

Exercise 1.16. The square root of (−3)2 is equal to:

−3, 3, 9, 81,
√
3 ?

Exercise 1.17. The sum 29 + 29 is equal to:
218, 210, 49, 418, or an irrational number?

Exercise 1.18. Simplify the expressions:
(2n + 2n+1)2, (3n + 3n+1)2 − 7 · 9n .

Exercise 1.19. If 8x+3 = 2x+1, what is the value of x?

Exercise 1.20. Simplify the fractions:
√
50

10
,

8− 2
√
8

4
,

1

2−
√
3
,

11−
√
121√

17 +
√
19

.

Exercise 1.21 (¹). Which of the following numbers are integers?

(1 +
√
3)2 − 2

√
3, (1 +

√
2)2 −

√
2,

√
200√
8

, (1 +
√
2)(1 +

4
√
2)(1− 4

√
2) .

Exercise 1.22. Simplify the following expressions:
3
√
a12b6c7√
a5b3c

,
4
√
a9b5c2

3
√
a8b8c8

,
5
√
a2b3c3

3
√
abc2

,

√
a12b6c3,

3
√
8a10,

3
√
27a4b3√
16a3b5

,
a

3
2 b

9
4

3
√
c3√

a3
4
√
b9

.

Exercise 1.23. Put each of the following sequences of numbers in order of size:
(1) 25, 53, 34, 101;
(2) 2500, 5300, 3400, 10100;

(3) 2−10, 10−2, 1

2000
, 1

20
, 2

1000
;

(4) 2200, 430, 825, 1651.
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Exercise 1.24. Which of the following numbers is half of
(
1

2

)50

?(
1

4

)50

,

(
1

2

)25

,

(
1

2

)49

,

(
1

2

)51

,

(
1

4

)25

,

(
1

2

)100

.

Exercise 1.25. Which of the following simplifications are right and which are wrong?
22n + 3

2n + 3
= 2n,

22n + 2n

2n
= 2n + 1,

3

5n
(5n + 3) = 9,

3n

2m
2

3
=

1n

1m
.

5. Practice with numbers: real powers, logarithms, scientific notation

More generally, the powers ab can be defined for any real number a > 0 and any real
number b (even irrational). The same rules always apply:

abac = ab+c, (ab)c = abc, a−b =
1

ab
, 1b = 1,

and ab ≤ ac every time that a ≥ 1 and b ≤ c .

It is important to remember that in order to compute the powers ab where the exponent b
is any real number, the base a must be a strictly positive number. We have already dealt
with the case of fractional powers:

a
n
m = (a

1
n )m = ( n

√
a)m,

= (am)
1
n = n

√
am .

To define the powers ab with any real number b, it is necessary to treat separately the three
cases a > 1, a = 1 and 0 < a < 1. The case a = 1 is the simplest since 1b = 1 whatever the
exponent b is.
When a > 1 we know that as ≤ at for any pair of rational numbers s, t such that s ≤ t. If

b is any real number, the power ab is defined as the unique number1 such that
as ≤ ab ≤ at

for any pair of rational numbers s, t such that s ≤ b ≤ t. In a more informal way we can
therefore say that the real number ab is approximated by the fractional power as when the
rational number s approximates b: the closer s is to b, the closer as is to ab.

Example 5.1. The first five digits of the decimal development of π are π = 3, 1415 . . ..
Thus we have 3, 1415 ≤ π ≤ 3, 1416 and for the properties of the powers we have

23,1415 ≤ 2π ≤ 23,1416

which, as seen on fractional powers, can be written as
10000

√
231415 ≤ 2π ≤ 10000

√
231416 =

2500
√
27854.

Bringing the development of π = 3.141592653 . . . to 10 decimal digits we obtain a better
approximation

23,141592653 ≤ 2π ≤ 23,141592654 .

1The proof that such a number exists and is unique is analogous to the proof of Theorem 4.1 and is
therefore omitted.
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When 0 < a < 1 we reason in the same way as in the case a > 1, keeping in mind that
ab ≥ ac if b ≥ c. For example, since 3, 141 ≤ π ≤ 3, 142 one has

(0, 41)3,141 ≥ (0, 41)π ≥ (0, 41)3,142 .

Alternatively we can write ab = (a−1)−b and observe that a−1 > 1 when 0 < a < 1.
If a, b are positive real numbers and s ∈ R the formula still holds asbs = (ab)s: for example
2π3π = 6π, 2

√
23

√
2 = 6

√
2 and so on.

We remember the notion of decimal logarithm (we will return to logarithms later). Suppose
we know that

10a = x

(where a can be any real number). Then the number a is called the decimal logarithm, or
in base 10, of the number x, and it is written

a = log10 x = log10(x)

(parentheses are used only if necessary). We see that the following rules are true:
log10(10

a) = a ossia 10log10 x = x

For example, the decimal logarithm of 1000 = 103 is 3; the decimal logarithm of 1047 is 47;
the decimal logarithm of 1/10 = 10−1 is −1; the decimal logarithm of

√
10 is 1/2. On the

other hand, the logarithm of 1 is zero:
log10(1) = log10(10

0) = 0.

What if the number x can’t be written as a power of 10? For example, what is log10 3? To
answer this question you need a calculator; we can calculate how many digits of the decimal
development we want, but an exact answer is impossible. The approximate value is given
by log10 3 = 0, 4771212547 . . . . The values of the logarithms of integers between 1 and 10,
rounded to the third decimal place, are shown in the following table:

log10 2 ' 0, 301 log10 3 ' 0, 477 log10 4 ' 0, 602 log10 5 ' 0, 699

log10 6 ' 0, 778 log10 7 ' 0, 845 log10 8 ' 0, 903 log10 9 ' 0, 954

Rules for the powers follow immediately from the corresponding rules for the logarithm.
The following rules should be remembered:

log10(a · b) = log10(a) + log10(b), log10(a
b) = b · log10 a

that is, the logarithm of the product is the sum of the logarithms, and the logarithm of a
power is the exponent times the logarithm of the base. A consequence of the previous rules
is

log10

(a
b

)
= log10(a)− log10(b)

(indeed a/b = a · b−1) and also

log10

(
1

b

)
= − log10(b).

Example 5.2. We use the properties of the logarithm to show that the number log10 3 is
irrational, i.e. it cannot be written as a quotient of integers. If, by contradiction, you had
log10 3 = a/b, then a = b log10 3 = log10(3

b) which is equivalent to equality 10a = 3b which
is impossible for a, b ∈ N (10a is even, 3b is odd).
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A very common use of powers is the representation of numbers in scientific notation. The
scientific notation is a way of writing numbers that allows to compare them and understand
how big (or small) they are much more quickly. A number written in scientific notation has
the form

x = 3, 12571 · 107

while the traditional notation of the same number would be
x = 31.257.100

The general form is the following:
x = m, pqrs . . . · 10n

that is, the number must be written as the product of a power of 10 (n can also be negative
or null) by a decimal number m, pqrs . . . in which the integer part m at the left of the
comma is an integer between 1 and 9. Then

• the exponent n is called order of magnitude of the number x;
• the digits to the right of the comma are called significant digits of the number x.

We note a very useful fact. If we calculate the decimal logarithm of x = m, pqrs . . . · 10n
we see that

log10 x = log10(m, pqrs . . . · 10n) = log10(m, pqrs) + n

and the number log10(m, pqrs) is between 0 and 1 since the number m, pqrs is between
1 = 100 and 10 = 101. So we see that to calculate the order of magnitude of a number x it
is sufficient to calculate the decimal logarithm of x and take the integer part.

Example 5.3. Let us see concretely how to proceed to write a number in scientific notation.
If a number is a power of 10, this is trivial:

1000 = 1 · 103, 1000000 = 1 · 106, 0, 00001 = 1 · 10−5, 1 = 1 · 100.
Note that we can also write 1000 = 10 · 102 = 0, 1 · 104 but these are not scientific notations.
In particular, the order of magnitude of 1000 is 3, that of 0, 00001 is −5; and indeed we have
log10(1000) = 3, log10)0, 00001 = −5.
If we have a more complicated number like x = 121,950.394, we can write

x = 1, 21950394 · 105

so the order of magnitude is 5 (note that 5 + 1 = 6 is the number of digits of the integer
part of x). Instead,

0, 0007432... = 7, 432 · 10−4

has order of magnitude −4.
Very often not all the digits are written but only the first ones: for example

121.950, 39 = 1, 21950394 · 105 ' 1, 219 · 105

is the expression approximated to the third significant digit.

Example 5.4. A case in which scientific notation is very convenient concerns large powers,
if use decimal logarithms in the proper way. Suppose we want to write the number 8100 in
scientific notation, knowing that

log10 8 = 0, 903...

Since
log10(8

100) = 100 · log10 8 = 90, 3...

we see that the order of magnitude is 90 (this tells us that 8100 has 91 digits). Since
90.3 · · · = 90 + 0.3 . . . , we can write

8100 = 1090,3... = 100,3... · 1090
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and we’re almost done. To complete the representation in scientific notation we should
calculate more precisely 100,3..., but for many problems the representation we have obtained
is already sufficient.

If we have two numbers written in scientific notation, comparing them is very easy: the
one with the largest order of magnitude is the largest; and if the two numbers have the same
order of magnitude, the significant figures are compared. For example:

1, 902 · 1046 è più grande di 8, 342 · 1044

3, 141 · 10−6 è più grande di 2, 992 · 10−9

4, 554 · 1012 è più grande di 3, 109 · 1012

and so on. Sometimes the most efficient way to compare two numbers with each other it is
precisely to write them in scientific notation.

Example 5.5. Knowing that log10 6 = 0.77815 . . . , tell if 6100 is larger than 6050 or not.
We have immediately

log10(6
100) = 100 · log10 6 = 100 · 0, 77815 · · · = 77, 8 . . .

so that 6100 has order of magnitude 77. On the other hand
log10(60

50) = 50 · log10 60 = 50 · (log10 6 + log10 10) = 50 · (0, 77815 · · ·+ 1) = 39, 9 . . .

so that 6050 has order of magnitude 39 and is much smaller.

Problems.

Exercise 1.26. Simplify the following expressions:

log10

(
24107

31173

)
, log10

(
n
√
a12bpc−1

)
, log10(3, 55 · 10−100).

Exercise 1.27. Simplify the following expressions:

log10(a
3b2c5)− log10(a

3)− log10
√
a3b, log10(100)− 4 log10 5

log10

(√
abc

25

)
+ 2 log10 10, log10 338− 2 log10 13.

Exercise 1.28. Knowing that log10 8 = 0, 9030..., compute the order of magnitude of
850, 8020, 80030.

Exercise 1.29. Compute the order of magnitude of 3100, 9100, 9020 and order these
numbers in ascending size (use that log10 3 ' 0, 477).

Exercise 1.30. Compute the order of magnitude of 8100 and of 8020, and determine which
of the two numbers is larger. (use that log10 2 ' 0, 301).

Exercise 1.31. Compute the order of magnitude of 950 (use that log10 3 ' 0, 477).
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6. Practice with algebraic operations: rational functions

To do mathematics, and more generally science, it is necessary to know how to handle
with familiarity mathematical objects more complex than simple numbers. For example,
it is necessary to perform algebraic operations between polynomials and rational functions
without errors. Recall that a polynomial of degree n in the variable x is an expression of
the type

p(x) = a0 + a1x+ · · ·+ anx
n,

with each ai a number that can be real, rational or integer. Even a simple number a0 can be
regarded as a polynomial (of degree 0). The number 0 is therefore also a polynomial, which
is called null polynomial. The degree of a polynomial p(x) is the largest integer n such that
the power xn appears in p(x) with coefficient an 6= 0. By convention, the degree of the null
polynomial is equal to −∞.

Polynomial p(x) Degree deg(p(x))

0 −∞

a 6= 0 0

ax+ b, a 6= 0 1

ax2 + bx+ c, a 6= 0 2

ax3 + bx2 + cx+ d, a 6= 0 3

The principle of identity of polynomials holds: two polynomials are equal if and only if
they have the same degree and the same coefficients of each power of x. In other words, the
two polynomials

a0 + a1x+ · · ·+ anx
n, b0 + b1x+ · · ·+ bmxm,

are equal if and only if n = m and ai = bi for each index i.
It is well known that polynomials can be added and multiplied: for example

(x+ 2x2) + (x2 − 1) = 3x2 + x− 1, (x+ 1) + (x2 − 1) = x2 + x ,

(x+ 2)(x2 − 1) = x3 + 2x2 − x− 2, (x+ 1)(x2 − 1) = x3 + x2 − x− 1 ,

(x+ a)2 = x2 + 2ax+ a2, (x+ a)3 = x3 + 3ax2 + 3a2x+ a3 ,

(x+ a)(x− a) = x2 − a2, (x− a)(x2 + ax+ a2) = x3 − a3 .

It is useful to observe that the degree of the product of two polynomials is equal to the
sum of the degrees, while the degree of the sum (or of the difference) is always less than or
equal to the maximum of the degrees of the single polynomials:
deg(p(x)q(x)) = deg(p(x)) + deg(q(x)), deg(p(x)± q(x)) ≤ max(deg(p(x)),deg(q(x))) .

For polynomials, the product deletion rule applies: if p(x) is a polynomial other than 0 and
p(x)q(x) = p(x)r(x) for two polynomials q(x), r(x), then q(x) = r(x). In fact, if p(x)q(x) =
p(x)r(x) then p(x)(q(x)− r(x)) = 0; if it were q(x) 6= r(x) then the polynomial q(x)− r(x)
would have degree n ≥ 0; if p(x) has degree m ≥ 0, then the product p(x)(q(x)− r(x)) has
degree n+m and therefore it cannot be the null polynomial.
A rational function is an expression of the form

p(x)

q(x)
, ( read: p(x) over q(x) ),
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where p(x) and q(x) are polynomials, with q(x) 6= 0. For example, the following expressions
are rational functions:

x+ 2

1
,

x+ 1

x− 1
,

x2 + x+ 1

x3 − 2
,

x134 − x17

x22 − 3
,

1

x3 + 1
.

When the denominator is the polynomial 1, we simply write p(x)

1
= p(x) and therefore

any polynomial can be interpreted as a rational function: for example
x+ 1

1
= x+ 1,

x2 + x+ 1

1
= x2 + x+ 1 .

Like for numerical fractions we have the equalities 1

2
=

2

4
and 6

8
=

9

12
, also for rational

functions there are similar equalities, such as
x2

x3
=

1

x
,

x2 − 3x+ 2

x2 − 2x+ 1
=

(x− 2)(x− 1)

(x− 1)2
=

x− 2

x− 1
.

In general the following properties are true:
(1) multiplying (or dividing) the numerator and denominator of a rational function by

the same polynomial other than 0, the rational function does not change;
(2) the following rule holds:

p(x)

q(x)
=

r(x)

s(x)
if and only if p(x)s(x) = r(x)q(x) .

For example we have x2 − 4x+ 4

x
=

x3 − 5x2 + 8x− 4

x2 − x
, since

(x2 − 4x+ 4)(x2 − x) = (x3 − 5x2 + 8x− 4)x = x4 − 5x3 + 8x2 − 4x .

We can therefore rewrite the product cancellation rule by saying that two polynomials p(x),

q(x) are equal if and only if p(x)

s(x)
=

q(x)

s(x)
for some polynomial s(x) which is not null.

Operations between rational functions are quite similar to those between numerical fractions:
• The sum of rational functions with the same denominator is obtained by adding

their respective numerators; ditto for the difference. For example,
1

x− 1
+

x

x− 1
=

1 + x

x− 1
,

x+ 1

x2 + 1
− x

x2 + 1
=

1

x2 + 1
.

• If the fractions to sum do not have the same denominator, before proceeding to the
sum with the above rule, the numerator and denominator of each rational function
are multiplied by an appropriate polynomial so that all the fractions have the same
denominator. For example,

1

x− 1
+

x

x+ 1
=

x+ 1

(x− 1)(x+ 1)
+

x(x− 1)

(x− 1)(x+ 1)

=
x+ 1 + x(x− 1)

(x− 1)(x+ 1)
=

x2 + 1

x2 − 1
.

• The product is obtained by multiplying the numerators and denominators separately.
For example,

1

x− 1
· x

x+ 1
=

x

(x− 1)(x+ 1)
=

x

x2 − 1
.
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• The inverse of a non–zero rational function is obtained by exchanging the numerator
with the denominator, and vice versa:(

x+ 1

x− 1

)−1

=
1

x+ 1

x− 1

=
x− 1

x+ 1
.

• To perform a division, take the product with the inverse of the divider:
x3 − 1

x+ 2
:
x− 1

x2
=

x3 − 1

x+ 2
· x2

x− 1
=

x2(x3 − 1)

(x+ 2)(x− 1)
.

Often the division sign : is replaced with a fraction line:
x2 + 1

x− 2
x+ 1

x− 1

=
x2 + 1

x− 2
:
x+ 1

x− 1
=

x2 + 1

x− 2
· x− 1

x+ 1
=

(x2 + 1)(x− 1)

(x− 2)(x+ 1)
.

Finally we remember the following well–known identities:
x2 − 1

x− 1
= x+ 1,

x3 − 1

x− 1
= x2 + x+ 1,

x4 − 1

x− 1
= x3 + x2 + x+ 1,

and more generally for any positive integer n

xn − 1

x− 1
= xn−1 + xn−2 + · · ·+ x+ 1 .

Similarly we have:
x3 + 1

x+ 1
= x2 − x+ 1,

x5 + 1

x+ 1
= x4 − x3 + x2 − x+ 1,

and more generally for any positive, odd integer n

xn + 1

x+ 1
= xn−1 − xn−2 + · · · − x+ 1 .

Remark 6.1. It is well known that the polynomial x2 + 1 can not be decomposed as the
product of two polynomials of first degree (with real coefficients). Similarly, one can prove
that for any integer n = 2h power of 2, the polynomial xn + 1 can not be decomposed as
a product of polynomials of lower degree with rational coefficients. On the other hand, it
can also be shown that each polynomial decomposes as a product of polynomials with real
coefficients of degree 1 and 2. For example we have:

x4 + 1 = (x2 +
√
2x+ 1)(x2 −

√
2x+ 1) ,

x6 + 1 = (x2 + 1)(x2 +
√
3x+ 1)(x2 −

√
3x+ 1) .

Problems.

Exercise 1.32. Perform the following operations between polynomials:
(1 + x)(1− x+ x2 − x3), (1− x)(1 + x+ x2 + x3), (x+ a)2 − (x− a)2,

1 + 2x+
(2x)2

2
+

(2x)3

6
−
(
1 + x+

x2

2
+

x3

6

)2

.

Exercise 1.33. Perform the following operations between rational functions:

x

1 + x
+

x2 − 1

x3 + 1
,

x− 2

x2 − 4
− 1

x+ 2
,

1 +
x

x− 1

x+
2

x− 1

+
x

x2 − 1
,

3− x

2x+ 5
− 2x+ 4

x− 3
− x2 − 3x+ 1

2x2 − x− 15
,

x− 1

2x+ 3
− 2x2 + 5x− 1

4x2 − 9
+

6x− 7

(2x− 3)2
,
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x3 + x2

1− x2
+ 1− x− 1− x2

x− 1
− x2 + 1

1− x
,

1− x

1 + x

(
1

1− x
− x

1− x2

)
,x+ 1− 1

1− x

1 + x− x

1− 2x

+
x2

1− 3x

 :

(
x2 − 3x

2x2 − 8
+

x− 1

x+ 2

)
.

Exercise 1.34. Let a, b be rational numbers. If

a =
1

2
and a

a+ b
=

1

7
,

what is the value of b?

Exercise 1.35. Let a, b be rational functions. If

a =
1

x
and a

a+ b
= x ,

what is the value of b?

Exercise 1.36 (¹). Compute, if they exist, two real numbers a, b such that
1

x2 + x
=

a

x
+

b

x+ 1
.

Exercise 1.37. Compute, if they exist, three real numbers a, b, c such that
1

x3 − x
=

a

x
+

b

x+ 1
+

c

x− 1
.

7. The Cartesian plane

By Cartesian plane we mean the Euclidean plane with a Cartesian reference system (O,U, V ):
here O,U, V are three distinct points in the plane such that the two segments OU and OV
are perpendicular to each other in O and have the same length.
To construct a Cartesian reference, we fix two lines perpendicular to each other in the plane

(and we think the first line “horizontal”, i.e. parallel to the line that joins our eyes). The
two lines will be called respectively the x axis (or the axis of abscissas) and the y axis (or
the axis of ordinates).
Let O be the point of intersection of the two lines, which is called the origin of the reference

system, and fix a point U on the first line and a point V on the second, so that U, V have
the same distance from O.

x

y

•
U

•V

•
O

We identify the axis of abscissas with the set of real numbers so that the numbers 0, 1
correspond to the points O and U respectively. Similarly, we identify the axis of ordinates
with the set of real numbers so that the numbers 0, 1 correspond to the points O and V
respectively.
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x

•
(x, y)

y

•
U

•V

•
O

Figure 1.7.

Let us now consider a point P of the plane; to it we associate two real numbers x and
y, which correspond to the projections of the point P on the axes of the abscissas and
ordinates, respectively. In this way, to each point P of the plane we associate an ordered
pair (x, y) of real numbers, which are called the coordinates of P ; vice versa, to each ordered
pair of real numbers we associate a point of the plane. The point O then corresponds to
the (0, 0) coordinate point, U becomes the (1, 0) coordinate point, and V becomes the (0, 1)
coordinate point .
The distance between two points in the plane P,Q is equal to the length of the segment

with endpoints P,Q. If P = (x1, y1) and Q = (x2, y2), the Pythagorean theorem allows you
to calculate the distance between P and Q using the formula (see Figure 1.8):

d(P,Q) =
√
(x1 − x2)2 + (y1 − y2)2 .

x1

•
P = (x1, y1)

y1

x2

•
Q = (x2, y2)

y2 •
R

Figure 1.8. By the Pythagorean theorem

d(P,Q) =

√
PR

2
+QR

2
=
√
(x1 − x2)2 + (y1 − y2)2 .

Example 7.1. The distance between the points P = (1, 2) and Q = (3, 1) is equal to

d(P,Q) =
√
(1− 3)2 + (2− 1)2 =

√
(−2)2 + 12 =

√
5 .

The condition for a point (x, y) to be equidistant from P and Q is obtained by equating the
distances: √

(x− 1)2 + (y − 2)2 =
√

(x− 3)2 + (y − 1)2 .

Squaring both sides we obtain
(x− 1)2 + (y − 2))2 = (x− 3)2 + (y − 1)2

which after suitable simplifications becomes 4x− 2y = 5.
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Equation of the line: first form. Recall that any straight line L on the plane not
parallel to the y axis is defined by an equation of the type y = mx+ q. This means that the
point P with coordinates (x, y) belongs to the line L if and only if y = mx+ q; in particular
the point (0, y) belongs to L if and only if y = q and therefore (0, q) coincides with the
intersection of the line L with the axis y. The number m is called slope or also angular
coefficient of the line.
Given two points (x1, y1) and (x2, y2) with x1 6= 2, it is easy to determine the equation
y = mx+ q of the line passing through the two points. In fact, it is enough to solve the two
equations simultaneously

y1 = mx1 + q, y2 = mx2 + q,

in the unknowns m, q. Computing the difference we get y1 − y2 = m(x1 − x2), while
multiplying the equations x2 and x1 respectively and taking the difference we obtain y1x2−
y2x1 = q(x2 − x1). We then found the formula:

(7.1) m =
y1 − y2
x1 − x2

, q =
x1y2 − x2y1
x1 − x2

.

Example 7.2. We calculate the equation y = mx+q of the line passing through the points
(1, 2) and (2, 3). By applying Formula 7.1 we obtain

y =
2− 3

1− 2
x+

3− 4

2− 1
= x+ 1 .

To calculate in which points of the plane two straight lines L1, L2 of equations y = m1x+q1
and y = m2x+ q2 intersect, we need to solve the linear system{

y −m1x = q1

y −m2x = q2
.

It is very easy to see that if m1 6= m2 the system admits a single solution; if m1 = m2 and
q1 = q2 the two lines are coincident, while if m1 = m2 and q1 6= q2 the system does not
admit solutions, i.e. there are no intersection points between the two lines which therefore
are parallel.

Equation of the line: second form. The first form studied above is simple but has
the disadvantage of not including the lines parallel to the y axis, i.e. the lines of equation
x + c = 0, for some c ∈ R. We can work around this problem by writing the equation of a
line in the form

ax+ by + c = 0, a, b, c not all = 0 .

In this case we are considering all possible lines, including those parallel to the y axis, with
equation x+ c = (1)x+ (0)y + c = 0, and the non parallel lines with equation

mx− y + q = 0 ⇐⇒ y = mx+ q .

Unfortunately, the advantage of incorporating all the lines is paid with the disadvantage that
two distinct equations may determine the same line. In fact we have that two equations
ax+ by+ c = 0 e a′x+ b′y+ c′ = 0 determine the same line if and only if the triplets (a, b, c)
and (a′, b′, c′) are proportional, i.e. if and only if there is a real number λ 6= 0 such that
a′ = λa, b′ = λb e c′ = λc.
A line L of equation ax+ by + c = 0 is not parallel to the y axis if there is only one t ∈ R

such that the point (0, t) belongs to L, that is if and only if the equation bt + c = 0 has a
unique solution. This is possible if and only if b 6= 0. Hence every straight line L of equation
ax+ by + c = 0 can be written in the first form if and only if b 6= 0: more precisely

ax+ by + c = 0 ⇐⇒ y =
−a

b
x+

−c

b

and the ratio −a/b is equal to the slope (angular coefficient) of L .
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Problems.

Exercise 1.38. Calculate the equations (in the form y = mx + q) of the straight lines
passing through each of the following pairs of points in the plane:

(1) (0, 0) and (1, 0);
(2) (1, 0) and (0, 1);
(3) (2, 1) and (1, 1);
(4) (−1,−10) and (−10,−1).

Exercise 1.39. Given the points P = (2, 3) and Q = (5, 7) in the Cartesian plane, calculate
their distance d(P,Q) and the equation of the line L that contains them both. Determine
the point R of intersection of L with the x axis and all the points S of the line L such that
d(S,R) = d(P,Q).

Exercise 1.40. Calculate the coordinates of the intersection point of the line L of equation
x+ y + 1 = 0 with the line M passing through the points (0, 0) and (1, 1).

8. Review of trigonometry

Trigonometry essentially deals with the study of sine and cosine functions, the functions
derived from them (tangent, cotangent, etc.) and their applications to the geometry of
triangles. Later (in Chapter 3) we will study some properties of these functions from the
point of view of analysis; here we limit ourselves to recalling some elementary properties
and some geometric applications.
We recall the geometric construction of the functions sinx, and cosx. Let us consider the

unit circle in the Cartesian plane, with center at the origin O and radius 1. We call A the
point (1, 0) at the intersection between the unit circle and the abscissa axis.
If P is a point on the circle, we can measure the width of the angle AOP with the length

of the arc of circumference
_

AP ; this value is called the measure in radians of the angle.

•

1

P

•
A

0
θ

O

π/2

π

3π/2

Figure 1.9. The measure in radians of the angle θ is equal to the length of the
arc

_

AP in the circle of radius 1, or equivalently, to twice the area of the circular
sector OAP .
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For example:

90◦ (straight angle) = π

2
radians 270◦ = 3π

2
radians

180◦ (flat angle) = π radians 360◦ (round angle) = 2π radians

45◦ = π

4
radians 30◦ = π

6
radians 60◦ = π

3
radians

120◦ = 2π

3
radians 135◦ = 3π

4
radians 150◦ = 5π

6
radians

Remark 8.1. The area A of a circular sector of size θ radians in a circle of radius r is
equal to θr2/2. In fact the ratio between this area and the area πr2 of the circle is equal to
the ratio between the amplitude of the angle and the amplitude of the round angle, i.e. .
Therefore

A

πr2
=

θ

2π
⇐⇒ A =

θr2

2
.

We can now define the sine and cosine of an angle expressed in radians: given a point P
on the unit circumference, if s is the length of the arc AP , the sine and the cosine of s are
exactly the ordinate and abscissa of the point P :

•

1

P = (cos s, sin s)

•
A

s

•
cos s

•sin s

Figure 1.10. Cosine and sine of s are the coordinates of the image of the point
A = (1, 0) by rotating s radians counterclockwise.

It is easy to verify that
sin(0) = 0 cos(0) = 1

sin
(π
6

)
= sin(30◦) =

1

2
cos
(π
6

)
= cos(30◦) =

√
3

2

sin
(π
4

)
= sin(45◦) =

1√
2

cos
(π
4

)
= cos(45◦) =

1√
2

sin
(π
3

)
= sin(60◦) =

√
3

2
cos
(π
3

)
= cos(60◦) =

1

2

sin
(π
2

)
= sin(90◦) = 1 cos

(π
2

)
= cos(90◦) = 0
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sin

(
2π

3

)
= sin(120◦) =

√
3

2
cos

(
2π

3

)
= cos(120◦) = −1

2

sin

(
3π

4

)
= sin(135◦) =

1√
2

cos

(
3π

4

)
= cos(135◦) = − 1√

2

sin

(
5π

6

)
= sin(150◦) =

1

2
cos

(
5π

6

)
= cos(150◦) = −

√
3

2

sin (π) = sin(180◦) = 0 cos (π) = cos(180◦) = −1

sin

(
3π

2

)
= sin(270◦) = −1 cos

(
3π

2

)
= cos(270◦) = 0.

When the point P is in the starting position A, the angle measures zero radians. If we move
P counterclockwise, after one complete turn, the point returns to the position A, and then
the angle is 2π radians. If we continue to move the point counterclockwise, the angle goes
beyond 2π and the point P retraces the positions it passed through in the first turns. In
particular, the sine and cosine values take again the same values after a complete revolution:

sin(s+ 2π) = sin s, cos(s+ 2π) = cos s .

Let us consider a right triangle with legs (catheti) a, b and hypotenuse r

b = r cosα

a = r sinαr

O

α

and let α > 0 be the angle between the hypotenuse and the cathetus b. Then you have
b = r cosα, a = r sinα.
The sine and cosine functions satisfy numerous identities, but here we will limit ourselves

to mentioning only a few: the elementary identity, which follows from the Pythagorean
Theorem,

sin2 s+ cos2 s = 1,

the addition formulas
sin(a+ b) = sin a cos b+ cos a sin b,

cos(a+ b) = cos a cos b− sin a sin b,

and the properties of symmetry
sin(−a) = − sin a, cos(−a) = cos a.

A few more formulas follow immediately from the sum formulas and the symmetry properties:
the subtraction formulas

sin(a− b) = sin a cos(−b) + cos a sin(−b) = sin a cos b− cos a sin b,

cos(a− b) = cos a cos(−b)− sin a sin(−b) = cos a cos b+ sin a sin b ,

the duplication formulas
sin(2a) = 2 sin a cos a, cos(2a) = cos2(a)− sin2(a) = 2 cos2(a)− 1 = 1− 2 sin2(a),

and the bisection formulas

sin
(a
2

)
= ±

√
1− cos a

2
, cos

(a
2

)
= ±

√
1 + cos a

2
.
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Example 8.2. An angle x is between 0 and π radians, and we know that cosx = 1
4 . We

want to calculate the value of sin
(
x+ π

4

)
.

Since 0 < x < π we know that sinx ≥ 0 and therefore we have

sinx =
√
1− cos2 x =

√
1− 1

16
=

√
15

4
.

Since sin π
4 = cos π

4 =
√
2
2 , from the addition formula for the sine we obtain

sin
(
x+

π

4

)
=

√
15

4

√
2

2
+

1

4

√
2

2
=

√
30 +

√
2

8
.

We conclude this paragraph by recalling two applications of trigonometry to the geometry
of triangles. Let us consider a triangle with sides a, b, c and denote with α the angle opposite
to the side a, with β the angle opposite to the side b, and with γ the angle opposite to the
side c.

c B

a

C

b

A

α β

γ

The first application is the Carnot’s theorem: the following formula is valid
a2 = b2 + c2 − 2bc cosα.

Note that if α = π/2, i.e. if the triangle is right and a is the hypotenuse, the theorem is
reduced to a2 = b2 + c2 i.e. the Pythagorean Theorem.
The second application is the Sine Theorem: the following formula holds

a

sinα
=

b

sinβ
=

c

sin γ
.

Note that for a right triangle, with hypotenuse a and catheti b, c, so where the angle α = π/2,
we have simply

b = a sinβ, c = a sin γ.

Example 8.3. Two sides of a triangle are long 8 and 16, and the angle between them is
pi/3 radians. How long is the third side?
Just apply Carnot’s Theorem:

c2 = 82 + 162 − 2 · 8 · 16 · cos π
3
= 64 + 256− 256 · 1

2
= 192

so that
c =

√
192 = 8

√
3.

Example 8.4. During a walk (on the plains) I walk from the starting point for 1 km to
the north, and then for 2 km to the south east. How many km as the crow flies I am from
the starting point?
If we call A the starting point, B the point where I changed direction, and C the ending

point, we know that the side AB = c is 1 Km long, the side BC = a is long 2 Km, and the
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angle ABC = β is 45 degrees i.e. π/4. The problem asks to determine the length of the
third side CA = b. From Carnot’s theorem we see that

b2 = a2 + c2 − 2ac cosβ = 4 + 1− 4 cos(π/4) = 5− 4 · 1√
2
=

5
√
2− 4√
2

so that the solution is

b =

√
5
√
2− 4√
2

.

Problems.

Exercise 1.41. Knowing that π/2 = 1.57 . . . and that 50 · 2π = 314, 15 . . ., determine if
sin(315) and cos(315) (angle of 315 radians) are positive, null or negative.

Exercise 1.42. Using the cosine duplication formula
cos(2α) = 2 cos2(α)− 1,

calculate the cosine of an angle of 15◦ =
π

12
rad.

Exercise 1.43. We knoe that an angle α satisfies cos(2α) = − 3
4 , sin(2α) < 0 and sin(α) <

0. What is the value of cos(α)?





CHAPTER 2

Equations and inequalities

In most practical problems where mathematics can be applied, the solution of the problem
lies in the solution of an equation or a system of equations, which, depending on the case,
can be linear, algebraic, differential, integral, etc. In this chapter we recall the simpler forms
of equations, for the most part already well known to the reader.

1. Equations and systems

When we write an equality, in some cases, for example 2 = 2 or a = a, we are simply
observing a fact that we know to be true; in other cases, we are saying something false, for
example no one forbids us to write 1 = 2, but of course this is a false statement.
An equation is a different kind of statement. An equation is a very concise way of describing

a problem to be solved. For example, if we say
“solve in x the equation 2x− 5 = 7”

we are actually asking:
“find all real numbers x such that double x minus five is exactly seven”.

Therefore, the solutions of an equation can be many, or only one, or none (in this case we say
that the equation is impossible). The letter indicating the quantity to be determined is also
called the unknown; in the previous example we used the letter x to denote the unknown.
Very often, just to complicate things, several letters are used in an equation; all letters

indicate real numbers, but only one is the unknown. In these cases, to make it clear what
the unknown is, we say:

“solve in x the equation ax+ b = c”.
The other letters a, b, c indicate fixed real numbers, but which we do not want to choose
immediately; in this way we reserve the freedom to choose them after having solved the
equation, and the formulas we obtain for the solution can be applied to many different
equations. Sometimes these other letters are called parameters.
How do you solve an equation? It depends. Some equations are very easy to solve, some

are very difficult. The equations we have written so far are very easy, they are first degree
equations that you learn to solve in high school. For example, the equation ax+ b = c, when
a 6= 0 (a different from 0) is solved immediately in two steps:

ax+ b = c ⇐⇒ ax = c− b ⇐⇒ x =
c− b

a
.

The symbol ⇐⇒ reads “if and only if ”, or “is equivalent to”, meaning that the two
expressions on the right and left are same thing, written differently. Notice that in the first
step we subtracted b from both members, in the second step we divided both members by a;
the equations are always solved like this, with a series of steps that transform the equations
into simpler equivalent forms.
What happens if a = 0? The equation becomes a bit strange because the unknown

disappears. But let’s try to go all the way: we have two possibilities. If the numbers b
and c are different, the equation 0 · x + b = c is clearly impossible. What if b = c? For

35
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example, what does it mean to solve for x the equation 0 · x+3 = 3? Very simple: all x are
ok, so the solutions are all real numbers.
Also in high school the second degree equations are studied:

ax2 + bx+ c = 0, a 6= 0 .

The standard solution procedure leads to the following rule: the discriminant ∆ = b2 − 4ac
is calculated. If ∆ < 0, there are no solutions in the real numbers. If ∆ > 0, there are two
distinct solutions given by the formula

x =
−b±

√
b2 − 4ac

2a
=

−b±
√
∆

2a
.

Finally, if ∆ = 0, the above formula is still correct, but gives only one solution x = − b
2a ; it is

also said that the two roots coincide. (To study the second degree equation more completely,
complex numbers are required).
It is useful to remember that finding the solutions of a second degree equation is equivalent

to decomposing the polynomial as a product of linear factors. In fact, if a 6= 0 and if α, β
are the solutions of the equation ax2 + bx+ c = 0, then the formula holds
(1.1) ax2 + bx+ c = a(x− α)(x− β) .

Remark 1.1. Sometimes the equation to solve is already written as a product:
a(x+ b)(x+ c) = 0, with a 6= 0 .

It is always possible to expand the product
a(x+ b)(x+ c) = ax2 + a(b+ c)x+ abc

and then apply the solution formula for the equations of second degree. But it is much more
convenient to observe that a product of real numbers vanishes if and only if at least one of
the factors vanishes. In this case, since a 6= 0 we obtain that a(x + b)(x + c) = 0 if and
only if x+ b = 0 or x+ c = 0. It follows that the solutions of the equation are x = −b and
x = −c.
In a completely analogous way we have that the solutions of the equation

α(βx+ b)(γx+ c) = 0, with α, β, γ 6= 0

are precisely x = − b
β and x = − c

γ .

Example 1.2. The solutions of the equation (x− 1)(x+2)(2x− 3) = 0 are x = 1, x = −2
e x = 3

2 , and coincide with the values of x which make equal to zero at least one of the three
factors (x− 1), (x+ 2) or (2x− 3).

Example 1.3. We calculate the solutions of the equation x3+2x2+x+2 = 0. Recalling a
bit of polynomial decomposition techniques learned in high school it is not difficult to obtain
that

x3 + 2x2 + x+ 2 = (x2 + 1)(x+ 2)

and therefore x3 + 2x2 + x + 2 = 0 if and only if x2 + 1 = 0 or x + 2 = 0. The first factor
never vanishes: in fact, since x2 ≥ 0 for every real number x, we have that x2 + 1 is always
greater than or equal to 1. The x+2 factor vanishes for x = −2. We can conclude by saying
that the equation x3 + 2x2 + x+ 2 = 0 has the unique solution x = −2.

Almost always in concrete problems it happens that you have to solve several equations at
the same time. In this case we have a more complicated problem called a system. We use
the following notation: solving the system{

x2 − 3x+ 2 = 0

6x− 5 = 1
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means “to find all the numbers x that solve both the first and the second equation”. Note
that there is only one unknown x in the system. A procedure that usually works is the
following: first we solve each equation of the system, separately; in this way we obtain the
set of solutions of the first equation, of the second equation, and so on. At the end, the
various sets are compared and we look for the values of x in common among all the sets
of solutions: that is, we compute the intersection of the solutions of each equation. In the
previous system,

the first equation has for solutions x = 1, 2;
the second equation has for solution x = 1;

these two sets of solutions have in common only the value x = 1, so the only solution of the
system is x = 1.

Remark 1.4. In many cases the procedure just described for solving systems of equations
can be speeded up in the following way. We choose one of the equations and we solve it.
Then, for each of the solutions we have found, we verify if is a solution of the other equations
of the system. For example, let’s consider the system of equations{

x2 − 3x+ 2 = 0

x7 − x3 + x− 1 = 0 .

The second equation is of the seventh degree and therefore very difficult to solve, while the
first equation is easily solved and has as solutions x = 1 and x = 2. Calculating x7−x3+x−1
for x = 1 and x = 2 we obtain respectively:

17 − 13 + 1− 1 = 0, 27 − 23 + 2− 1 = 121 6= 0 .

Thus x = 1 is the unique solution of the system.

In some cases the problem contains a single equation, but to solve it easily it is better to

write it as a system. For instance, suppose we want to find the solutions of p(x)

q(x)
= a, with

p(x) , q(x) polynomials and a a number. Since we cannot divide by 0, solving the previous
equation is equivalent to finding the values of x such that

q(x) 6= 0 and p(x)− aq(x) = 0 .

In practice, we first find the solutions x1, x2, . . . of the equation p(x) − aq(x) = 0, the
solutions y1, y2, . . . of the equation q(x) = 0 and then we look for the elements of the set
x1, x2, . . . which do not belong to the set y1, y2, . . ..
Important. The numbers belonging to both sets x1, x2, . . . and y1, y2, . . . must not be

considered solutions, even if in some cases they can be considered limit solutions, but we
will talk about this later.

Example 1.5. Let’s solve the equation

(1.2) x2 + 1

x2 − 2x+ 1
= 1 .

The equation x2 − 2x+ 1 = 0 has only one solution x = 1 (double root), so for each x 6= 1
we can multiply both sides by x2 − 2x+ 1 and we obtain the equation

x2 + 1 = x2 − 2x+ 1

which, after the necessary simplifications, becomes 2x = 0 and has x = 0 as the only solution.
Since 0 6= 1 we have that x = 0 is also the only solution of the equation (1.2).

Example 1.6. Let’s solve the equation

(1.3) x2 − 1

x2 − 2x+ 1
= 3 .
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As in the previous example, the denominator vanishes for x = 1, and for each x 6= 1 we can
multiply both sides by x2 − 2x+ 1 to get the equation

x2 − 1 = 3(x2 − 2x+ 1)

which, after the necessary simplifications, becomes 2(x2 − 3x+ 2) = 0 and has as solutions
x = 1 and x = 2. Since we must discard x = 1, it follows that x = 2 is the only solution of
(1.3). If we try to substitute 1 instead of x in (1.3) we find 0

0 = 3 which doesn’t make any
sense (you can not divide by 0, even 0 itself).

Problems.

Exercise 2.1 (¹). For which values of the parameter k the equation
x2 + kx+ (k2 − 1) = 0

in the unknown x has only one (double) solution.

Exercise 2.2. Solve the following equations:
3(x− 1)(x+ 2) = 0, 2(x+ 1)(2x+ 1)(3x+ 1) = 0, (x+ 1)(x− 1) = 1.

Exercise 2.3. Solve the following equations:
x− 1

x(x− 2)
= 2,

x2

(x− 1)(x+ 1)
= 2,

x2 + 2x+ 1

x2 − 2x+ 1
= 4 .

Exercise 2.4. Solve the following equations:
1

x
+

1

x+ 1
= 2, x+

1

x
= 2,

1

x
− 1

x+ 1
+

1

x+ 2
= 0 .

Exercise 2.5. Using formula (1.1) simplify the following rational functions:
x2 − 2x+ 1

x− 1
,

x− 2

x2 − 3x+ 2
,

2x2 + 5x+ 2

x2 + x− 2
,

x2 + 10x− 200

x3 − 10x2
· x3 − x

2x+ 40
.

Exercise 2.6. Solve the following systems of equations:{
x2 − 4x+ 3 = 0

5x− 4 = 1

{
x2 − 4x+ 4 = 0

x2 − 5x+ 6 = 0

{
x2 − 6x+ 8 = 0

x3 − x2 + 6x− 16 = 0

2. Inequalities

Like equations, inequalities are another synthetic way to describe a problem. An inequality
looks like an equation, but instead of the sign of equality =, it appears one of the 5 signs

6=, <, >, ≤, ≥ .

For example, solving the following first degree inequality
5− 8x > 13

means to find all the numbers x that satisfy this condition.
First degree inequalities are solved like first degree equations, there is only one important

difference to remember: when you multiply or divide both sides of an inequality by a negative
number, the inequality changes direction. For example,

2 ≤ 5 ⇐⇒ −2 ≥ −5.

To solve the above inequality a few steps are enough:

5− 8x > 13 ⇐⇒ −8x > 13− 5 ⇐⇒ −8x > 8 ⇐⇒ x <
8

−8
⇐⇒ x < −1.
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If you prefer, we can also solve like this:

5− 8x > 13 ⇐⇒ 5− 13 > 8x ⇐⇒ −8 > 8x ⇐⇒ −8

8
> x ⇐⇒ −1 > x

which is exactly the same.
Usually the set of solutions is an interval, or a union of intervals; it is very useful to always

draw the set of solutions on the real line, this helps to solve and sometimes to discover errors.
Second degree inequalities have the form

ax2 + bx+ c > 0, or < 0, ≥ 0, ≤ 0, 6= 0.
These inequalities can be solved in a very simple way: in fact we only have to establish the
sign of the trinomial ax2 + bx+ c. As one studies in high school, to understand the sign of
the trinomial just imagine a parabola with the branches facing upwards when a > 0 (glass
shape, Figure 2.1),

∆ > 0 ∆ = 0 ∆ < 0

ax2 + bx+ c, a > 0, ∆ = b2 − 4ac

− b
2a

•• •
−b−

√
∆

2a
−b+

√
∆

2a

Figure 2.1.

and downwards when a < 0 (hat shape, Figure 2.2).

∆ > 0 ∆ = 0 ∆ < 0

ax2 + bx+ c, a < 0, ∆ = b2 − 4ac

− b
2a•• •

−b−
√
∆

2a
−b+

√
∆

2a

Figure 2.2.

The sign of the trinomial is the same as the sign of the parabola.

Example 2.1. For example, let’s solve the inequality
x(x− 4) ≥ 3− 2x.

First of all we take everything to the first member and we collect: we get
x2 − 2x− 3 ≥ 0.

x2 − 2x − 3 is an upward parabola, it has two distinct roots x = −1 and x = 3, so it is
positive in the area outside the roots and negative in the interval between the two roots.



40 Piero D’Ancona, Marco Manetti

In the inequality, the zone ≥ 0 is required, so the solution is given by the zone outside the
roots, roots included (note the greater or equal):

x ≤ −1 and x ≥ 3.

Of course we can also consider systems of inequalities, or mixed systems with equations
and inequalities; in these cases a drawing may be indispensable!

Example 2.2. Solve the system{
3(x2 − 5) < (x+ 1)x

1− x < 3x− 4.

First of all we simplify and solve the two equations separately:

⇐⇒

{
2x2 − x− 15 < 0

4x > 5
⇐⇒

{
− 5

2 < x < 3

x > 5
4 .

Finally, we must find the points in common between the solutions of the first and second
equations (i.e. make the intersection of the two sets):

◦
−5/2

◦3

◦
5/4

◦ ◦
]5/4, 3[

Figure 2.3.

and we obtain that the solutions are all numbers x such that
5

4
< x < 3.

Example 2.3. Solve the system
5x− 3 ≥ −2x2

8x− 7 < 2x+ 3

x(2x− 5) = (x− 2)(x+ 2).

We have immediately

⇐⇒


2x2 + 5x− 3 ≥ 0

6x < 10

x2 − 5x+ 4 = 0

⇐⇒


x ≤ −3 e x ≥ 1

2

x < 5
3

x = 1 e x = 4.

We see immediately from the diagram
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•−3 •
1/2

◦
5/3

•1 •4

•
x = 1

Figure 2.4.

that the only solution of the system is x = 1.

Problems.

Exercise 2.7. Solve the inequalities (this is not a system! These are four separate
inequalities):

2x2 ≤ 1− x; x(2− 3x) > x− 6;

2x ≥ −x2 − 1; x2 + x < −1.

Exercise 2.8 (¹). Solve the following systems:

a)

{
x2 − 1 < x

x− 2 > 2x
b)

{
x2 − 2x ≥ 0

2x ≤ x+ 1
c)

{
x2 − 2x− 3 = 0

x2 < 4

Exercise 2.9. Solve the following systems:
2x− 3 > 2

x+ 1 < 5

x− 3 < 6


7x+ 5 > −1

x2 − 2x− 3 < 0

12− 3x > −3− x


2x+ 3 6= 1

x2 + 2x− 3 ≥ 0

3− x < 15 + 2x.

3. The absolute value

Given a real number x, we want to define its absolute value, also called modulus, which is
denoted by the symbol |x|. Let’s start with some examples:

the absolute value of 3 is 3;
the absolute value of −10 is 10;
the absolute value of 0 is 0.

Is this clear? The absolute value of a positive number is equal to the number; the absolute
value of a negative number is the opposite of the number. (The absolute value of zero is
zero because it can be considered both positive and negative and the result is the same).
Hence the result is always a positive number. Summing up:

|x| =

{
x if x ≥ 0,
−x if x ≤ 0.

The same rule applies in more general cases. For example:

|x− 2| =

{
x− 2 if x− 2 ≥ 0,
−x+ 2 if x− 2 ≤ 0
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which can also be written like this:

|x− 2| =

{
x− 2 if x ≥ 2,
2− x if x ≤ 2.

When an absolute value appears in an equation (or inequality), we are actually dealing with
two different equations (or inequalities), depending on the sign of the unknown x. Let’s see
an example.

Example 3.1. We solve the equation
|x− 2| = 5 .

This equation is satisfied if and only if x − 2 = 5 or x − 2 = −5. In the first case we find
x = 7, in the second x = −3.

Example 3.2. Suppose we want to solve the equation
2x+ |x| = 1− x.

First of all we must interpret the presence of the absolute value. Since |x| means two different
things depending on whether it x ≥ 0 or x ≤ 0, let’s proceed as follows: divide all possible
real numbers x into two groups and study them separately. First group: all x ≥ 0; for these
x we know that |x| = x, so we need to solve the equation

2x+ x = 1− x ⇐⇒ 4x = 1 ⇐⇒ x =
1

4
.

We note that this equation is exactly the original one for x ≥ 0, but for negative x it has
nothing to do with the original equation! Since the new equation has a solution x = 1

4 in
the area under study, we can accept it: we have found a solution of the original equation.
But we can no stop here: we must also study the case x ≤ 0. For these values of x we know
that |x| = −x, so the original equation becomes

2x− x = 1− x ⇐⇒ 2x = 1 ⇐⇒ x =
1

2
.

Also in this case we have intepreted the absolute value, we have obtained a new equation,
and we have solved it; but unfortunately the solution found is not in the right area. In fact,
the new equation is equivalent to the original one only for x ≤ 0; for x ≥ 0 it has nothing
to do with it. In conclusion, the solution is only one: x = 1

4 .

Let’s study another example; the method is always the same! Note that if we start from
a second degree equation, when we solve the absolute value we get two different equations
of the second degree; therefore, depending on the cases, the number of solutions may vary
from 0 (no solution) to 4.

Example 3.3. Solve the equation
x2 − x− 2 = |x+ 1|.

First of all we must understand the meaning of the absolute value:

|x+ 1| =

{
x+ 1 if x ≥ −1,
−x− 1 if x ≤ −1.

Then we must distinguish the two zones x ≥ −1 and x ≤ −1 and in each of them we get a
different equation to be solved only in that zone. Let’s try: if x ≥ −1 instead of |x+ 1| we
must write x+ 1 and we get the equation

x2 − x− 2 = x+ 1 ⇐⇒ x2 − 2x− 3 = 0 ⇐⇒ x = −1and x = 3.
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Both solutions fall into the x ≥ −1 area under examination, so we can accept both of them.
We pass to the zone x ≤ −1: here the absolute value means |x + 1| = −x − 1, and by
replacing we obtain the equation

x2 − x− 2 = −x− 1 ⇐⇒ x2 − 1 = 0 ⇐⇒ x = +1 and x = −1.

The solution −1 is acceptable, however we have already found it as the solution of the first
case. Instead we have to discard the second solution +1 because it does not fall into the
area under examination which is x ≤ −1. Final answer of the problem: the equation has
exactly two solutions x = −1 and x = 3.

Example 3.4. We solve the equation |x2 − 1| = |x2+1| − 1. Since x2 +1 is always greater
than or equal to 0, the equation becomes

|x2 − 1| = x2 + 1− 1 = x2 .

If x2 ≥ 1 we have x2−1 ≥ 0 and the equation becomes x2−1 = x2, which is clearly without
solutions. If x2 ≤ 1 we have x2 − 1 ≤ 0 and the equation becomes 1 − x2 = x2, that is
2x2 = 1 which has as solutions x = ±1/

√
2.

Of course we can also consider inequalities containing an absolute value; the procedure is
completely analogous to the previous one.

Example 3.5. Solve the inequality

|3− x| < 1

2
x− 1.

The absolute value means

|3− x| =

{
3− x if x ≤ 3,
−3 + x if x ≥ 3.

As usual, we split all x into two groups. In the zone x ≤ 3 we substitute the absolute value
|3− x| by its meaning 3− x and we obtain the inequality

3− x <
1

2
x− 1 ⇐⇒ −3

2
x < −4 ⇐⇒ x >

8

3
.

Thus, examining all the x ≤ 3, we found that the solutions are all the numbers x > 8
3 : that

is, we obtained that all the x satisfying
8

3
< x ≤ 3

are solutions of the given inequality.
Let’s move on to the second group x ≥ 3; in this case the equation means

−3 + x <
1

2
x− 1 ⇐⇒ 1

2
x < 2 ⇐⇒ x < 4

and therefore all x such that
3 ≤ x < 4

are also solutions.
If we put together all the solutions obtained, that is 8

3 < x ≤ 3 and 3 ≤ x < 4, we can
conclude that the solutions of the given inequality are all x satisfying

8

3
< x < 4.

Example 3.6. Solve the inequality
x2 ≤ 2x+ 2|x|.

We must distinguish the two cases x ≥ 0 and x ≤ 0. When x ≥ 0 we have |x| = x, then the
equation becomes

x2 ≤ 4x ⇐⇒ x2 − 4x ≤ 0 ⇐⇒ 0 ≤ x ≤ 4
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(parabola pointing up, with roots 0 and 4). Since we’re looking into the x ≥ 0 zone, we’ve
got the solutions

0 ≤ x ≤ 4.

We move to the zone x ≤ 0 where |x| = −x: the equation becomes
x2 ≤ 2x− 2x ⇐⇒ x2 ≤ 0 ⇐⇒ x = 0

and therefore x = 0 is a solution, but we already knew it from the first group. In conclusion,
the solutions of the inequality are the x such that

0 ≤ x ≤ 4 .

Of course, systems of inequalities containing modules are solved with the same methods:
first we solve separately each equation, and then we look for the common solutions among
all the equations of the system.

Problems.

Exercise 2.10 (¹). Solve the following equations:
a) |2x− 1| = |x|+ 4; b) |x− 1| = 3− x; c) |x− 3| = 2|x− 5|;

Exercise 2.11. Solve the following equations:
|x− 1| = 2x− 3; |2x+ 1|+ x = 1; x · |x| − 2x+ 1 = 0;

2x · |x| − x = −2; x = |x|; x · |x| − 3x+ 2 = 0;

x2 = x+ |x| − 1; 2x · |x| = 2|x| − 3; x = 3x(|x| − 2) + 3;

x · |x− 1| = 2x+ 1; (x+ |x|)2 = 3x− 1; x2 + x+ 1 = x · |x| − 6x− 5.

x · |x| − 2x+ 1 = 0; |(x− 1)(x− 2)| = x− 3; 6|x|+ 2|x− 1| = 3|x− 2| .

Exercise 2.12. Solve the following inequalities:
|x− 1| ≤ x+ 2; |2− x| > 3; x+ 1 ≥ |x− 5|;

|x+ 1| − x2 ≥ 0; 2x · |x| − x ≥ −2; 2x2 < |x+ 1|;
4x2 + 4|x| < 3; 4x · |x|+ 4|x| − 3 ≥ 0; x · |x| − |x|+ 2 < 0.

|x2 + 3x− 4| < 2,
x2 + 3x− 4

x− 6
≥ 0, (|x|+ 1)(|x| − 1) ≤ 0 .

Exercise 2.13. Solve the following systems of inequalities:{
x2 − 2x ≥ 0

2x ≤ |x|+ 1

{
2x · |x|+ x− 3 = 0

|x| > 1

{
2|x− 2| < 3x

x2 + |x| < 4
(x− 1)(x+ 2) > 3

|x+ 1| < 16

2x2 + 4 = 8


7|x| − 5 > −1

x2 − 2|x| − 3 < 0

12− 3x > −3− x


x ≤ 5|x|
x2 > 4

6x− 1 < x+ 3.
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4. Irrational equations and inequalities

In some cases the equations or inequalities to be solved contain a square root; to eliminate
it it is necessary to square it, since (

√
A)2 = A; but you have to pay attention to two

problems:
1) a square root is always a positive number (≥ 0);
2) the root argument must always be a positive number.
Let us see what happens if you don’t pay attention to these facts. Consider the equation

√
x = 2− x.

If we square both sides regardless of the two problems mentioned above, we get
x = (2− x)2 ⇐⇒ x2 − 5x+ 4 = 0 ⇐⇒ x = 1 and x = 4.

We check if these two numbers are solutions of the original equation or not: x = 1 is a
solution, in fact by substituting we get 1 = 1. On the contrary, substituting x = 4 we get
2 = −2, which is absurd. What is wrong?
The problem is very simple: if we start from a false relation like 2 = −2, by squaring we

can get a true relation: 4 = 4. Thus, sometimes, by squaring we add solutions that were
not there at the beginning.
We see now how the exercise can be solved correctly. We observe that in the equation√
x = 2 − x the square root is defined only if x ≥ 0, so we must impose this condition.

Then we observe that the first member is always positive, so the second member must also
be positive: 2− x ≥ 0. Under these conditions, both sides are positive and if we square we
don’t add solutions:

√
x = 2− x ⇐⇒


x ≥ 0

2− x ≥ 0

x = (2− x)2

and now we solve the system we have obtained:
x ≥ 0

2− x ≥ 0

x2 − 5x+ 4 = 0

⇐⇒


x ≥ 0

x ≤ 2

x = 1 and x = 4

⇐⇒ x = 1.

Summing up, in general: to eliminate a square root correctly we have to set up a system:

√
A(x) = B(x) ⇐⇒


A(x) ≥ 0

B(x) ≥ 0

A(x) = B(x)2.

We study another example: √
7− 6x = 2− x.

We set up the system:
7− 6x ≥ 0

2− x ≥ 0

7− 6x = (2− x)2
⇐⇒


x ≤ 7

6

x ≤ 2

x2 + 2x− 3 = 0

⇐⇒


x ≤ 7

6

x ≤ 2

x = 1 e x = −3

and in this case we don’t have to discard any solution and we get x = 1 and x = −3.
In a similar way we can study irrational inequalities, i.e. which contain roots. The simplest

type is the following: √
A(x) ≤ B(x).

Here, too, one must be careful before squaring; an inequality can be squared only if we
already know that both sides are positive:

2 ≤ 3 ⇐⇒ 4 ≤ 9
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but if we try to square the inequality
−3 ≤ 2

we get the absurd 9 ≤ 4 and therefore we see that if the two members are not both positive
the direction of the inequality can change.
To solve the inequality √

A(x) ≤ B(x)

we follow the steps:
1) impose that the root is defined, so A(x) must be positive;
2) note that the second member is greater than a root which is always positive, so B(x)

must also be positive;
3) at this point we can safely take the square of both sides.

In other words, we need to set up the system

√
A(x) ≤ B(x) ⇐⇒


A(x) ≥ 0

B(x) ≥ 0

A(x) ≤ B(x)2.

The inequality
√
A(x) < B(x) can be solved in a completely analogous way. Here is an

example:

√
8x+ 24 < 2x− 2 ⇐⇒


8x+ 24 ≥ 0

2x− 2 ≥ 0

8x+ 24 < (2x− 2)2
⇐⇒


x ≥ −3

x ≥ 1

x2 − 4x− 5 > 0

The second degree inequality in the last system has as solutions the values of x outside the
range of the roots (which are x = −1 and x = 5), i.e. all x > 5 and all x < −1. Thus we
arrive at the system 

x ≥ −3

x ≥ 1

x > 5 or x < −1

and it is sufficient to draw the usual diagram to discover that the solutions of the system
are all the numbers x > 5.
Instead, to solve the inequality √

A(x) ≥ B(x)

(or
√
A(x) > B(x) which is analogous) we must distinguish two cases. If the term B(x)

is strictly negative, then there is nothing more to solve, because the first member is a root
which is always positive. In this way we immediately get the first group of solutions:

I.

{
A(x) ≥ 0

B(x) < 0

(we must always impose that the root is defined, i.e. A must always be positive otherwise
the starting expression is not defined). If, on the other hand, B is positive, then we can
safely square and we obtain the second group of solutions:

II.


A(x) ≥ 0

B(x) ≥ 0

A(x) ≥ B(x)2.
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To sum up, to solve the inequalities of the type
√

A(x) ≥ B(x) we must impose two distinct
systems:

√
A(x) ≥ B(x) ⇐⇒ I.

{
A(x) ≥ 0

B(x) < 0
plus II.


A(x) ≥ 0

B(x) ≥ 0

A(x) ≥ B(x)2.

The solutions will be all solutions of system I plus all solutions of system II.
An example: to solve the inequality

x− 3 ≤
√
7− 3x

we must solve two systems:

I.

{
7− 3x ≥ 0

x− 3 < 0
II.


7− 3x ≥ 0

x− 3 ≥ 0

7− 3x ≥ (x− 3)2.

Solving as before, we obtain the solutions from the first system

I.

{
x ≤ 7

3

while the second system is impossible (just compare the first two lines) and does not give
other solutions. All solutions are therefore given by x ≤ 7

3 .

Problems.

Exercise 2.14 (¹). Solve the following irrational equations:
a) x+ 5 =

√
3− 3x; b) x+ 5 =

√
3x− 3; c)

√
2x+ 5 = 3x− 3;

Exercise 2.15. Solve the following irrational equations:
2x− 1 =

√
1 + x;

√
x− 3 + 5 + x = 2x− 1; x− 1 +

√
2− 6x = 3;

√
x = 3x− 1

4
;

√
x+ 1 = 2− x;

√
x−

√
x = 2 .

Exercise 2.16. Solve the following equations containing square roots and absolute values:
√
x2 − |x| = 0; 2

√
|x| − 1 = x;

√
x2 + 1 = |x|+ 1

2
.

Exercise 2.17. Solve the following irrational inequalities:
x+ 5 <

√
3− 3x; x+ 5 ≤

√
3x− 3;

√
2x+ 5 < 3x− 3;

x+ 5 ≥
√
3− 3x; x+ 5 >

√
3x− 3;

√
2x+ 5 ≥ 3x− 3;

2x− 1 <
√
1 + x;

√
x− 3 + 5 + x ≥ 2x− 1; x− 1 +

√
2− 6x < 3.

Exercise 2.18. Solve the following inequalities:
x+ 1

x− 1
≥ 0;

x(x+ 2)

x+ 3
< 0;

x|x+ 2|
x+ 3

≤ 0;
|x− 4|(5− 6x)

2x+ 9
> 0;

x2(5− x)

3x− 7
< 0.
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5. Sign and set of definition of an expression

Let us consider the following inequality:
(x+ 3)(6− x)(2x− 8) > 0.

To solve it we could proceed as in the previous examples and begin to multiply, divide, carry
to the second member etc., but there is actually a much simpler way. In fact, it is sufficient
to observe that the exercise simply asks: for which values of x is the expression on the left
positive? That is, all we are interested in is the sign of the product (x+ 3)(6− x)(2x− 8).
Since the sign of a product is the product of the signs, it is sufficient to study separately

the sign of (x+3), (6−x) and (2x− 8) and finally take the product of all signs. In practice
we proceed like this: we observe that

x+ 3 has sign + when x > −3, and has sign − otherwise;
6− x has sign + when x < 6, and has sign − otherwise;
2x− 8 has sign + when x > 4, and has sign − otherwise.

Then we report these results in the following sign diagram, from which it is very easy to
establish the product of the signs, shown on the lowest line:

−3
x+ 3

− + + + +

6
6− x

+ + + + −

4
2x− 8

− − − + +

◦
−3

◦
4

◦
6

+ − − + −

and therefore the product is positive
for all x < −3 and for all 4 < x < 6.

Pay attention to what happens in the points x = −3, x = 4 and x = 6; in these points the
product vanishes, but in the inequality we ask that the product be strictly positive, so the
three points must be discarded.
The same method works if the expression we are studying is a mixture of products and

ratios:
2x− 3

(x+ 2)(6− x)
≤ 0

in fact the ratio of two signs is identical to the product of the signs. In the case of the ratios,
of course, it is necessary to exclude the values of x for which the denominator vanishes! Let’s
solve the exercise:
2x− 3 has sign + when x > 3

2 , and has sign − elsewhere;
x+ 2 has sign + when x > −2, and has sign − elsewhere;
6− x has sign + when x < 6, and has sign − elsewhere.

We draw the usual diagram; we also observe that the inequality is with ≤, so besides the
case of negative sign we also accept the case in which the fraction vanishes; finally we remove
the points that make the denominator vanish. In conclusion we get

−2 < x ≤ 3

2
and 6 < x.

One last useful observation: if any of the factors is an absolute value, then care must be
taken where it vanishes; in fact, when it is not zero, it is strictly positive and therefore it is
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useless to insert it in the diagram, because it can not change the sign of the expression. For
example to solve

|x− 4|
(3− x)|x− 2|

≥ 0

there is no need to draw the diagram: in fact |x − 2| is always positive or null, |x − 4| is
always positive or null, therefore the sign of the whole expression coincides with the sign of
3 − x and the solution is: x < 3, x 6= 2 (discard x = 2 and x = 3 because they make the
denominator vanish).
When writing an expression containing a variable, such as√

x+ 2

x− 3

we mean that the variable x is an arbitrary real number, and depending on the value of x
the expression takes on a different value. But you need to be careful: for some values of
x the expression cannot be calculated. For example, in the previous expression a division
appears, and dividing by zero is not an admissible operation; furthermore, a square root
appears, and the square root of a negative number cannot be extracted (in real numbers).
The set of all x for which the expression can be calculated is called definition set, or set of
definition of the expression. Let us study the definition set of the previous expression: we
must impose that the denominator is non–zero and that the root argument is ≥ 0, that is
to say we obtain a system

x− 3 6= 0

x+ 2

x− 3
≥ 0

⇐⇒


x 6= 3

x+ 2

x− 3
≥ 0.

Note that in the second line we used the ≥ because and if the root argument is canceled
there is no problem (

√
0 = 0); the problem exists only if the argument is strictly negative.

We solve the second inequality with the known methods and we obtain{
x 6= 3

x ≤ −2 e x > 3

and therefore the definition set is simply
x ≤ −2 e x > 3 .

Using a more synthetic notation we can also write
D.S. = ]−∞,−2] ∪ ]3,+∞[ .

Problems.

Exercise 2.19 (¹). For simplicity of notation we denote by log the logarithm in any
base > 1. Determine the sign and definition set of the expression

log(x− 1) + log(6− x) .

Exercise 2.20. Determine the definition set of the following expressions:√
x+ 1

x− 1
;

√
x(x+ 2)

x+ 3
;

√
x− 1

x
;

√
1− x2;

√
x2 − 3x+ 2;

x2 +
1

2− x
;

√
x|x− 2|(x− 3)

4− 3x
;

1

x2 − 5x+ 4
;

√
x|x| − 2x+ 3;

√
10− 2x− x2;

√
|x− 4|(x+ 2|x| − 2);

1

x+ |x|
;

√
|x− 2|
|x− 3|

;
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√
|x+ 4|;

√
1

|x+ 4|
;

1

|x2 − 8x+ 10|
;

1√
x+ 1

;
1√
x+ 1

.



CHAPTER 3

Functions of a real variable

First of all, some terminology. Suppose we have a set of numbers A, and that M is one of
these numbers: M ∈ A. Then we say that the number M is the maximum of A if it is the
greatest of all numbers in A: with a formula we write

M ≥ a ∀a ∈ A

where the symbol ∀ means “for every”. Similarly, if the number m in the set A is the smallest
of all numbers in A, we say that m is the minimum of A:

m ≤ a ∀a ∈ A.

Warning: not all sets have maximum or minimum. For example, the interval
I = [1, 2[

certainly has a minimum, in fact, the point m = 1 is the smallest of the set; but it has no
maximum! In fact the point 2, which could be the maximum, does not belong to the interval
but is outside. In this case we say that 2 is the upper bound of the interval; this means that
all numbers x < 2 close enough to 2 are in the set I, but the point x = 2 itself is not in the
set. Similarly, the interval

J = ]− 2, 5]

has maximum M = 5, but has no minimum: the point −2 is called the lower bound of J , but
it is not the minimum because it is outside the interval J . Of course, if there is a maximum
M then M is also the upper bound; and in the same way, if there is a minimum m, then
m is also the lower bound. There is also another case in which there is no maximum or
minimum: the set can be unbounded. For example, the half line

I = [2,+∞[

has a minimum m = 2 but clearly has no maximum M ; in fact, given any value M , inside
I we can always find numbers larger than M . In these cases we conventionally say that the
upper bound of I is +∞ (plus infinity). What about the following half line?

J = ]−∞, 3[

We see that J has no maximum and no minimum; the upper bound is 3; again by convention,
we say that the lower bound is −∞.
To indicate the maximum and minimum of a set A we write

maxA, minA;

while to indicate the upper and lower bound of A we write
supA, inf A

and indeed one commonly says “the sup of A” instead of the upper bound, and “the inf of
A” instead of the lower bound.
For the curious readers, the precise definition of inf and sup is the following. We call

majorant of the set A any real number M with the property M ≥ x for all x ∈ A: the
number M is “to the right” of the set A. If it is not possible to find a majorant (for example
if A = N) then we say that supA = +∞. If, on the other hand, there exists a majorant,

51
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then we call supA the minimum of all majorants of A. The fact that such a minimum exists
is not a theorem but is part of the definition of real numbers. Similarly, a number m with
the property m ≤ x for all x ∈ A is called a minorant of A; if there are no minorants, we
say that inf A = −∞, otherwise inf A is defined as the maximum of all minorants of A.

1. The concept of function

Given a set of real numbers A, a function f defined on A with real values is a “rule” which
associates to every number x in A a value f(x). For example: if we choose A = [0,+∞[, the
set of positive numbers, we can define on A the function square root of x

f(x) =
√
x

which associates the value
√
x ∈ R to each number x ∈ A. The set A on which the function

is defined is called the domain of f , and to indicate that f is a function on A with real
values we write

f : A → R.
We write also

x 7→ f(x)

to indicate that f takes the value x into the value f(x). Another example: if we choose
A = {x : x 6= 2}

that is, all real numbers except 2, on A we can define the function

f(x) =
1

x− 2

which associates to each number x ∈ A the value 1
x−2 ∈ R.

The set of all the values of a function f : A → R is also called the image of f and is denoted
by f(A).
The best way to understand these concepts is to visualize them with a drawing. For this

purpose we use the Cartesian plane: we already know that each pair (x, y) can be represented
with a point of the plane on which we have drawn two Cartesian axes. To represent a function
f : A → R, we proceed as follows: for each number x ∈ A in the domain, we calculate the
value f(x), and then draw a point corresponding to the pair (x, y) = (x, f(x)). If we repeat
this operation for all the numbers x ∈ A, eventually the points we draw will form a curve
called the graph of the function f :

x

y

•

••
•

domain A

image f(A)

Figure 3.1.
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We see that if we have drawn the graph of a function, it is quite easy to visualize its image
f(A). Often, in a synthetic way, we speak of the “graph of the function y = f(x)”; more
precisely this means “the set of all points of the Cartesian plane of the form (x, y) = (x, f(x))
as x varies in A”.
When two functions f and g are defined on the same set A, we can immediately define the

sum f + g and the product f · g of the two functions; of course this means f(x) + g(x) and
f(x)g(x) respectively. If g does not vanish, we can also consider the ratio function f

g i.e.
f(x)/g(x). For example:

f(x) = x2, g(x) =
√
x =⇒ f + g = x2 +

√
x, fg = x

√
x,

f

g
=

x2

√
x
= x

3
2 .

Moreover, given two functions f and g, we can consider their composition which is indicated
with g ◦ f or also with g(f(x)): the composition can be defined when the values of f are
contained in the domain of g, and it corresponds to “introduce the function f inside the
function g”. For example:

f(x) = x2, g(x) = x+ 1 =⇒ g(f(x)) = x2 + 1;

f(x) = x+ 1, g(x) = x2 =⇒ g(f(x)) = (x+ 1)2;

f(x) = x3, g(x) =
√
2x− 3 =⇒ g(f(x)) =

√
2x3 − 3.

This example shows among other things that the functions g ◦f and f ◦g are not necessarily
equal and may be different.

To complete the picture, we give some basic terminology. A function is called injective if
it never takes the same value twice: that is, f injective means

f(x) 6= f(y) for x 6= y.

From the graph of f , it is very easy to check if f is injective: if there is a horizontal line
that cuts the graph in two distinct points, then f cannot be injective, otherwise it is.

x

y
y=f(x)

f(x1)=f(x2)

x1 x2

x1 6=x2

Figure 3.2. An example of a non injective function: we can find an horizontal
line which cuts the graph in two distinct points.
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x

y

Figure 3.3. An example of an injective function: every horizontal line cuts the
graph at most in one point.

A function is said to be increasing if it has the property
x ≤ y =⇒ f(x) ≤ f(y)

that is, if “moving x to the right the values of the function increase”. Note that if the
function does not grow but remains constant, the above definition still applies; if instead we
want to talk about a function that does not remain constant but actually grows, then we
must define a strictly increasing function with the property

x < y =⇒ f(x) < f(y)

with strict inequality. It is easy to recognize the graph of increasing functions:

x

y

y=f(x)

f increasing
x

y
y=f(x)

f strictly increasing

Figure 3.4.

Similarly we can define a decreasing function:
x ≤ y =⇒ f(x) ≥ f(y)

and a strictly decreasing function:
x < y =⇒ f(x) > f(y).

Note that a strictly increasing or decreasing function is always injective; why? (think of the
graph ...)
Most functions are neither increasing nor decreasing; usually, functions are increasing on

some intervals and decreasing on others. For example, the parabola f(x) = x2 is decreasing
for negative x that is to say on A =]−∞, 0], while it is increasing for positive x that is to
say on B = [0,+∞[. Then we speak of intervals of increase or decrease of the function f .
Finally, we introduce the concept of inverse function. Suppose we have an injective function
f : A → R; thus f never takes the same value twice, and if we choose a value y in the image,
there is only one x ∈ A such that f(x) = y (if there were any two, the function would not
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be injective!). But in this way we have created a new “rule”, that is a new function: to each
number y in the image of f we associate the unique number x ∈ A such that f(x) = y. This
new function is denoted by f−1 and we call it the inverse function of f : if f has domain A
and image f(A) = B, then the inverse function has B as domain and A as image.
If we know the graph of f , to plot the graph of f−1 it is sufficient to reflect it with respect

to the bisector of the axes: in fact we are simply exchanging the role of the ordinate axis
and the abscissa axis.

x

y y=f(x)

•
a

•f(a)

x

y
y=f−1(x)

•a

•
f(a)

Figure 3.5. The graphs of f and f−1 can be obtained from each other by a
reflection with respect to the line x = y.

How to compute the inverse function? let’s see in practice: if f : A → R is the function
f(x) = x2 on the set of positive numbers A = [0,+∞[, to compute the inverse function of f
we write y = x2 and extract x as a function of y: we get √

y, so the inverse function is the
square root : f−1(x) =

√
x (remember to swap the role of x and y!). If we want to invert

the function
f(x) =

1

x+ 2
,

we write y = f(x) and get x as a function of y:

y =
1

x+ 2
=⇒ x =

1

y
− 2

and therefore the inverse function is

f−1(x) =
1

x
− 2.

Finally, we note that if we compose f with f−1 we are first passing from the value x to the
value f(x), and then we are going back, so

f−1(f(x)) = x;

and in the same way
f(f−1(x)) = x.

One last useful definition: given a function f : R → R, we say that
f is even if f(−x) = f(x)

f is odd if f(−x) = −f(x).
The graphs of even functions and odd functions are easily recognizable: even functions are
symmetric with respect to the ordinate axis, while odd functions are symmetric with respect
to the origin:
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even

x−x

•
f(x)=f(−x)

odd

x

•f(x)

−x

• f(−x)=−f(x)

Figure 3.6.

Problems.

Exercise 3.1. Determine upper bound (sup), lower bound (inf) and, if they exist, maximum
and minimum of the following sets:

[0, 2]; ]0, 2]; [1, 2] ∪ [3, 5[ ; ]−∞, 3] ∪ ]4, 5[ ; [−1, 2]∪ ]3,+∞[ .

Exercise 3.2. If f(x) =
√
x2 − 3x+ 2, compute the values

f(0), f(1), f(2), f(3).

Exercise 3.3 (¹). Write the composite functions f(g(x)) and g(f(x)) for
(1) f(x) =

√
x, g(x) = x2 − 3x.

(2) f(x) =
1

2x− 4
, g(x) = x+ 1.

(3) f(x) =
x+ 1

x− 1
, g(x) = 2x− 3.

Exercise 3.4. Write the inverse function for the following functions:

x2 − 1;
3

5x− 4
;

x+ 1

x− 1
; 6− 12x; 5 +

2

2− x
.

2. Elementary functions

Some functions are so important that they deserve a special study: they are called the
elementary functions. They are the powers, the trigonometric functions (sine, cosine, tangent
etc.), the exponential function and the logarithm.
Recall that to define a function f : A → R in a precise way, two things must be assigned:
1) the domain (definition set) A in which x varies;
2) the rule f(x) to compute the value of f at x.
Line and parabola
A function of the type

f(x) = ax+ b

with a and b fixed constants, is called a linear function. Clearly the definition set of the
expression ax + b is the entire R. The graph of f is a straight line; the number a is called
the angular coefficient of the line and expresses the slope of the line. When a > 0 the line is
increasing, when a < 0 the line is decreasing. In the case a = 0 the straight line is horizontal,
and in fact the function is reduced to the constant function f(x) = b which always assumes
the same value in all points:
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x

f(x) = ax+ b, a > 0

f(x) = c

f(x) = ax+ d, a < 0
•
b

•
−b
a

Figure 3.7. Graphs of linear functions are lines in the plane.

Linear functions are polynomials of degree 1 (or zero when a = 0). If we consider polynomials
of degree 2

f(x) = ax2 + bx+ c

with a 6= 0, we still have functions defined on all R, whose graph is a parabola. The parabola
points upwards if a > 0, and downwards if a < 0. We have already discussed the zeros of the
function f(x) and the positivity and negativity of the parabola. We add that the intervals of
increase and decrease of f(x) are two: in the case a > 0, we have that f(x) is decreasing for
x ≤ − b

2a and increasing for x ≥ − b
2a ; instead, when a < 0, f(x) is increasing for x ≤ − b

2a

and decreasing for x ≥ − b
2a .

x

a > 0

a < 0

•
−b
a •

−b
a

f(x) = ax2 + bx+ c

Figure 3.8. The graph of the quadratic function f(x) = ax2 + bx + c is a
parabola with a vertical symmetry axis x = − b

a
.

Powers.
We know well that if x is a real number and n ≥ 1 a positive integer, xn indicates the

product
xn = x · x · · · · · x n times;
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furthermore, for x 6= 0 we also set x0 = 1, while the power 00 is not defined. Integer negative
powers are defined simply using the rule

x−n =
1

xn
.

Also remember that if x ≥ 0, with n
√
x we indicate the root n-th of the number x that is the

only positive number that raised to n gives as a result x; it is also written

x
1
n = n

√
x.

Note that x
1
n = n

√
x is exactly the inverse function of xn:

(xn)
1
n = (x

1
n )n = x.

Now if x > 0 we can define any power of the type x
p
q where p

q is a rational number (that is,
a fraction of two integers p and q): just define

x
p
q = (xp)

1
q .

But we can extend this definition further, and if x > 0 we can define the power xa where a
is any real number; the usual rules apply

xa+b = xaxb, xab = (xa)b, x−a =
1

xa

and so on.
We now study the graph of these functions. The positive integer powers f(x) = xn are

defined for each x and have a different behaviour depending on whether n is even or odd.
When n is even, we obtain an even function, i.e. symmetric with respect to the ordinate

axis: for example f(x) = x2 satisfies
f(−x) = (−x)2 = x2 = f(x).

All these functions have the same behaviour: they are decreasing for x ≤ 0 and increasing
for x ≥ 0.
Instead the powers xn with n odd are odd functions, i.e. symmetric with respect to the

origin:

x2

x4

−1 1

x3x5

1

1

−1

−1

Figure 3.9. Graph of integer powers of x.
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For example f(x) = x3 satisfies
f(−x) = (−x)3 = −x3 = −f(x).

All these functions have the same behaviour: they are strictly increasing on all R.
Let us now consider the negative powers, viz

f(x) = x−n =
1

xn
, x = 1, 2, 3, . . . .

Negative powers are only defined for x 6= 0, and again we must distinguish n even from n
odd. If n is even then 1

xn is increasing for x < 0 and decreasing for x > 0. On the other
hand, if n is odd then the function 1

xn is increasing both for x < 0 and for x > 0.

1
x2

1
x4

1
x2 1

x4

1

1
x

1
x3

1
x 1

x3

1

Figure 3.10. Graphs of negative integer powers of x.

Finally we study the graph of real powers xa. Here too we have two cases: when a > 0, the
function f(x) = xa is defined on x ≥ 0, it is strictly increasing and positive; in particular
when a = 1

n we get the n-th roots, and when a is integer we get back the powers; instead if
a < 0 the function f(x) = xa is defined only for x > 0, it is strictly decreasing and positive:

xa, a > 1

x1 = x

xa, 0 < a < 1

xa, a < 0

1

1

Figure 3.11. Graphs of real powers of x.

The exponential functions
If in the real power ab we keep the base a > 0 constant and vary the exponent, we get the

exponential functions
f(x) = ax.
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These functions are defined on all R, and their behavior is very simple: they are always
strictly positive (they never vanish), moreover

• when a > 1 the exponential function is strictly increasing;
• when 0 < a < 1 the exponential function is strictly decreasing;
• and of course, when a = 1 we obtain the constant function f(x) = 1x = 1.

ax, a > 1

1x = 1

0 < a < 1, ax

Figure 3.12. Graphs of exponential functions.

Note that all exponential functions have value 1 for x = 0, in fact a0 = 1. If we now draw the
line g(x) = 1+x, we notice that it too passes through the point (0, 1) where all the previous
curves cross. It is possible to prove that only one of the exponential curves lies entirely
above this line (and is actually tangent to it, while all the others cut it in two points): this
happens when the base has the value

e = 2, 718281828459045 . . .

which is called the Napier’s constant. In other words

the constant e is the unique real number such that ex ≥ 1 + x for all x.

x

1 + x

ex

•1

Figure 3.13. A visualization of the fundamental property of the number e.
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One can prove that e is not a rational number1 and therefore its decimal expansion is
infinite and non persiodic. The corresponding exponential function

f(x) = ex

is very important, so much so that it is usually simply called the exponential.

x

g(x) = 1 + x

f(x) = ax, 1 < a < e

x

g(x) = 1 + x

f(x) = ax, a > e

Figure 3.14. The graph of ax when a 6= e.

The logarithm.
As we have seen, the exponential function f(x) = ex is strictly increasing, therefore

injective, and we can consider the corresponding inverse function. The graph is obtained
simply by reflecting the graph of ex with respect to the bisector of the axes:

x

f(x) = log(x)

•1

Figure 3.15. Graph of the function log(x)

1It is easy to find rational numbers which approximate e. Indeed, if n is a positive integer, raising to
the n–th power the relations e

1
n ≥ 1 + 1

n
and e

− 1
n+1 ≥ 1− 1

n+1
we obtain the inequalities(

1 +
1

n

)n

≤ e ≤
(
1 +

1

n

)n+1

which for large n give good approximations of e: for example, using a calculator, we find that(
1 +

1

104

)104

' 2, 7181,

(
1 +

1

104

)104+1

' 2, 7185 .

For a better aproximation of Napier’s constant see Problem ??.
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The function thus obtained is called (natural) logarithm and is indicated with log x. Since
log x is the inverse of ex, we have the properties

ey = x ⇐⇒ y = log x

elog x = x ∀x > 0, log(ex) = x ∀x
which we will use often. From the properties of the exponential we immediately obtain the
following properties of the logarithm function:

log(ab) = log a+ log b, log
(a
b

)
= log a− log b

log(ab) = b log a log 1 = 0, log e = 1.

Also, the definition set of log x (which coincides with the image of ex) is the positive half
line x > 0:

log x is defined only for x > 0,

and the function log x is strictly increasing.
The trigonometric functions.
We resume the study of the trigonometric functions sinx, cosx and tanx already begun

in the first chapter. Now we study these functions from the point of view of analysis. Let
us consider the unit circle in the Cartesian plane, with center at the origin O and radius 1.
We call A the point (1, 0) at the intersection between the circle and the abscissa axis.

•

1

P

•
A

0
θ

O

π/2

π

3π/2

Figure 3.16. The measure in radians of an angle θ is equal to the length of the
arc of circle

_

AP .

Now, if P is a point on the circle, we can measure the width of the angle AOP using the
length of the arc of circle AP . For example, if AOP is an angle of 90◦, the arc will be long
π
2 ; if the angle is 180◦ the arc will be long π, and so on. We say then that we are measuring
angles in radians: a right angle measures π

2 radians and so on.
Then, if P is any point on the unit circle, and if s is the arc length AP , the sine and cosine

of s are exactly the ordinate and abscissa of the point P :
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•

1

P = (cos s, sin s)

•
A

s

•
cos s

•sin s

Figure 3.17. Cosine and sine of s are the coordinates of the image of the point
A = (1, 0) after a counterclockwise rotation of s radians.

From the Pythagorean Theorem we immediately obtain the relation
sin2 s+ cos2 s = 1.

It is easy to verify that
sin 0 = 0, cos 0 = 1

sin
(π
4

)
=

1√
2
, cos

(π
4

)
=

1√
2

sin
(π
2

)
= 1, cos

(π
2

)
= 0

sinπ = 0, cosπ = −1

sin
(
3
π

2

)
= −1, sin

(
3
π

2

)
= 0.

Moreover we have also
sin
(π
6

)
=

√
3

2
, sin

(π
6

)
=

1

2

sin
(π
3

)
=

1

2
, sin

(π
3

)
=

√
3

2
.

When the point P is in the starting position A, the angle measures zero radians. If we move
P counterclockwise, after one complete revolution the point returns to the position A, and
then the angle is 2π radians. If we continue to move the point counterclockwise, the angle
passes 2π and the point P retraces the positions it passed through in the first revolution.
In particular, sine and cosine take on the same values after a complete revolution:

sin(s+ 2π) = sin s, cos(s+ 2π) = cos s.

Functions with this property are called periodic, and precisely a function such that
f(x+ T ) = f(x)

for all x is called periodic of period T , or T -periodic. So sine and cosine are 2π -periodic
functions.
The graph of the two functions is the following:
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sin(x)

cos(x)

Figure 3.18. Graph of the functions sin(x) and cos(x).

Let us recall some other important properties: the sine and cosine functions are always in
the range between −1 and +1:

−1 ≤ sinx ≤ 1, −1 ≤ cosx ≤ 1.

Also the addition formulas are valid
sin(a+ b) = sin a cos b+ cos a sin b, cos(a+ b) = cos a cos b− sin a sin b

and from the graph of the two functions it is easy to understand that

sin
(
x+

π

2

)
= cosx, cos

(
x+

π

2

)
= − sinx.

The sine function is odd, while the cosine function is even:
sin(−x) = − sinx, cos(−x) = x.

The zeroes of the sine are the points of the type π, 2π, 3π, . . . :
sinx = 0 ⇐⇒ x = kπ, k ∈ Z

while the zeros of the cosine are the points of the type π
2 ,

π
2 + π, π

2 + 2π, . . . :

cosx = 0 ⇐⇒ x =
π

2
+ kπ, k ∈ Z.

We recall also that the tangent function is given by

tanx =
sinx

cosx
and of course it is not defined when the denominator vanishes, that is

the domain of tanx is given by x 6= π
2 + kπ, k ∈ Z.

The function tanx is periodic with period π and it is odd. Its graph is showed in Figure 3.19:
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f(x)=tan(x)

π
2

3π
2−π

2− 3π
2

Figure 3.19. Graph of the tangent function.

It is easy to give a geometric description of the tangent. We take a point P on the unit
circle as in Fig. 3.20, and consider the right triangle OPB; we know that OB is the cosine
of the arc s = AP , while PB is the sine of s.

•
•Q

O
•
A

s

P

•
B

Figure 3.20. The radius of the circle is OA = 1. By Talete’s Theorem we have

AQ =
AQ

AO
=

BP

BO
=

sin s

cos s
= tan s.

By the similarity of the triangles OPB and OQA we immediately see that AQ represents
the tangent of s.
We also see that if P is in the first quadrant, the area of the circle section OAP is equal

to s/2, that of the triangle OAP is equal to (sin s)/2, while that of the triangle OAQ is
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(tan s)/2; it follows that for 0 ≤ s < π/2 the inequalities hold
(2.1) segment PB ≤ arc PA ≤ segment QA

that is to say

(2.2) 0 ≤ sin s ≤ s ≤ tan s for 0 ≤ s <
π

2
.

Since sin s and tan s are odd functions, the inequality holds in reverse for −s:

tan s ≤ s ≤ sin s ≤ 0 for − π

2
≤ s ≤ 0 .

We can summarize these inequalities in one:

| sin s| ≤ |s| ≤ | tan s| per |s| ≤ π

2
.

To conclude, we observe that the sine, cosine and tangent functions are not injective,
therefore the inverse function cannot be defined; but if we consider only an increasing (or
decreasing) stretch of these functions, then we get injective functions and we can invert
them. For example, the function

f :
[
−π

2
,
π

2

]
→ R, f(x) = sin

is increasing, its inverse function is called arcsine and is denoted by arcsinx; while the
function

f : [0, π] → R, f(x) = cosx

is decreasing, its inverse function is called arcosine and is denoted by arccosx:

arcsin(x)

−1

−π
2

1

π
2

arccos(x)

−1

π

1

π
2

Figure 3.21. Graph os the arcsine and arcosine functions.

Finally, the function
f :
]
−π

2
,
π

2

[
→ R, f(x) = tanx

Is increasing, its inverse function is calleda arctangent and is denoted by arctanx:
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arctan(x)

π
2

−π
2

Figure 3.22. Graph of the arctangent function.

We note that arctanx is defined on all R, is strictly increasing, and its values are always
between −π/2 and π/2.
Piecewise defined functions
Often it will be useful to consider piecewise defined functions, i.e. using different expressions

on different intervals: for example, we can define f : R → R as follows:

f(x) =

{
−x if x ≤ 0,
x if x ≥ 0.

Do you recognize it? this is simply the absolute value (modulo) function, whose graph is the
following:

x

f(x)=|x|

Figure 3.23. Graph of the function |x|.

Another example is the function sign of x:

sgn(x) =


+1 if x > 0

−1 if x < 0

0 if x = 0.
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x

+1

−1

•

Figure 3.24. Graph of the function sgn(x).

Example 2.1. Let a, b be two real numbers, with a < b, and let’s study the function
f(x) = |x − b| − |x − a|. This is clearly a piecewise linear function, and in fact, writing
∆ = b− a we have:

f(x) =


(b− x)− (a− x) = ∆ if x ≤ a,

(b− x)− (x− a) = b+ a− 2x = ∆− 2(x− a) if a ≤ x ≤ b,

(x− b)− (x− a) = −∆ if b ≤ x .

Its graph is the following:

x

f(x) = |x− b| − |x− a|−∆

b
a

∆ = b− a

3. Limits of functions

We now introduce the concept of limit of a function at a point. The idea is the following: if
we have defined a function f on A we know how to calculate the values f(x) corresponding
to the numbers x ∈ A. Now, imagine that we make the point x vary and move it towards
a fixed point x0, and we follow the corresponding values f(x). If we are lucky, when x
approaches x0 the values f(x) also approach a value of L; then we say that L is the limit
of f at the point x0. Note that we don’t care about the value of f exactly at that point:
we are just studying the behavior of the values f(x) as x gets close to x0. Of course we can
move x towards x0 from the right or from the left, or from both sides.
Here are the precise definitions:
Definition 3.1. Let f : ]x0, b[ → R be a function. We say that f has limit L in x0 from

the right (or f tends to L from the right in x0) if for every ε > 0 there exists δ > 0 such that
|f(x)− L| < ε for x0 < x < x0 + δ.

We write
L = lim

x→x+
0

f(x),

or also
f(x) → L as x → x+

0 .
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◦L

L+ε

L−ε

x0 x0+δ

Figure 3.25. Limit as x → x+
0 .

Definition 3.2. Let f : ]a, x0[ → R be a function. We say that f has limit L from the left
in x0 (or f tends to L from the left in x0) if for every ε > 0 there exists δ > 0 such that

|f(x)− L| < ε for x0 − δ < x < x0.

we write
L = lim

x→x−
0

f(x),

or also
f → L as x → x−

0 .

◦ L

L+ε

L−ε

x0x0−δ

Figure 3.26. Limit as x → x−
0 .

Definition 3.3. We say that f has limit L in x0 (or f tends to L in x0) if for every ε > 0
there exists δ > 0 such that

|f(x)− L| < ε for 0 < |x− x0| < δ.

We write
L = lim

x→x0

f(x),

or also
f → L as x → x0.
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◦L

L+ε

L−ε

x0 x0+δx0−δ

Figure 3.27. Limit for x → x0.

Remark 3.4. Various cases can occur: a function f can have no limits at a point x0; it
can have a limit from the right but not from the left, and vice versa; or it can have limits
both from the right and from the left. In the latter case, the two limits can be the same or
different; when they are equal, then also the limit of f in x0 exists.
In other words: saying that f tends to L in x0 is the same as saying that f tends to L both

from the right and from the left!

Remark 3.5. Warning: in the previous definitions we are not interested in knowing the
value of f at the point x0 where we calculate the limit; we are only interested in the values
f(x) for x close to x0. Let’s see a very simple example: the function

f(x) =

{
1 if x = 0

0 if x 6= 0

has value 0 in all points close to the origin, but in the origin its value is 1. So the right and
left limits of f(x) for x → 0 are equal to 0, and therefore also the limit of f(x) in 0 is equal
to 0:

lim
x→0

f(x) = 0.

However, the value of f in 0 is f(0) = 1.

Example 3.6. The function sign of x is defined as follows:

f(x) = sgn(x) =


+1 if x > 0

−1 if x < 0

0 if x = 0.

x

+1

−1

•

Figure 3.28.
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Then we have:
lim

x→0+
f(x) = 1, lim

x→0−
f(x) = −1,

therefore the right and left limits in 0 exist but they are different from each other. We
conclude that

the lim
x→0

f(x) does not exists.

Example 3.7. Let us try to calculate the limit of the function f(x) = x2 at the point
x0 = 3 (if it exists!)

lim
x→3

x2 = L =?

We want to show that the limit exists and is exactly 9. Recalling the definition, we must
show that: for every ε > 0 there exists δ > 0 such that

|x2 − 9| < ε for 0 < |x− 3| < δ.

Given ε, how should we choose δ? First of all, we take it small: if δ < 1 we have
|x− 3| < δ =⇒ |x− 3| < 1 =⇒ 2 < x < 4 =⇒ |x+ 3| < 7.

But this is still not enough; let’s take δ even smaller, for example δ = ε/8; then we can write

|x2 − 9| = |x− 3| · |x+ 3| < ε

8
· 7 < ε

and now we have succeeded in proving the thesis.
Note that in this case

lim
x→3

f(x) = 9 = f(3)

that is, the limit is exactly equal to the value of the function at that point. This is the most
common case: for most functions there is no need to do complicated reasoning to calculate
the limit at a point, but it is sufficient to calculate the value of the function at that point.

Example 3.8. With the same reasoning just made we verify that in general
lim

x→x0

xn = xn
0

for each power n ≥ 0, and indeed
lim

x→x0

P (x) = P (x0)

for every polynomial P (x): for example,
lim
x→2

(x3 − 6x− 4) = 23 − 6 · 2− 4 = −8.

A case that does not fall within the previous definitions but is very interesting is that of
vertical asymptotes: for example the function

f(x) =
1

x
has no limit for x → 0, not from the right neither from the left, as you can immediately
guess from its graph that we already know. In these cases we say that the function tends to
infinity at that point, or that it has infinite limit. The symbol used for infinity is ∞. Let’s
see the precise definition:

Definition 3.9. We say that f tends to +∞ as x → x+
0 , and we write limx→x+

0
f(x) = +∞,

if for every M there exists δ such that
f(x) > M for x0 < x < x0 + δ.

The definitions of limx→x−
0
f(x) = +∞, limx→x0 f(x) = +∞ are similar (replace with

x0 − δ < x < x0 and 0 < |x− x0| < δ respectively).
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We say that f tends to −∞ when the previous condition holds with f(x) < M in place of
f(x) > M . In all these cases we say also that the function has a vertical asymptote in the
point x = x0.

Exercise 3.5. Verify that

lim
x→0+

1

x
= +∞, lim

x→0−

1

x
= −∞

and therefore the function has no limit as x → 0 (the limits from the right and from the left
are different).
In a similar way, verify that

lim
x→0+

1

x2
= lim

x→0−

1

x2
= lim

x→0

1

x2
= +∞

To conclude with the definitions of limit, there is a last case that we have not yet considered:
it is often interesting to study the behavior of a function for very large values of x; in some
cases the function tends to a value L (horizontal asymptote), in others the function becomes
very large, and in other cases the behavior is not clear. We give the precise definitions for
this situation too:

Definition 3.10. We say that f tends to L as x → +∞, and we write limx→+∞ f(x) = L,
if for every ε there exists K such that

|f(x)− L| < ε for x > K.

(The definition of limx→−∞ f(x) = L is similar, just replace x > K with x < K.) In these
cases we say that the function has an horizontal asymptote y = L.
We say that f tends to +∞ as x → +∞, and we write limx→+∞ f(x) = L, if for every M

there exists K such that
f(x) > M for x > K.

(The definition of limx→−∞ f(x) = +∞ is similar, just replace x > K with x < K. Also
the definitions of limx→+∞ f(x) = −∞ and limx→−∞ f(x) = −∞ are similar, just replace
x > M with x < M .)

Example 3.11. Let us consider some elementary limits which immediately follow from the
properties of elementary functions and from the previous definitions. First of all the powers:
for n > 0 integer we always have

lim
x→+∞

xn = +∞

while of course
lim

x→−∞
xn = +∞ for even n, lim

x→−∞
xn = −∞ for odd n.

For negative powers the limit is zero:

lim
x→+∞

1

xn
= lim

x→−∞

1

xn
= 0 for any integer n > 0

therefore the abscissa axis is a horizontal asymptote. We also note that we always have for
n > 0 integer

lim
x→0+

1

xn
= +∞

while it is necessary to distinguish

lim
x→0−

1

xn
= +∞ for even n, lim

x→0−

1

xn
= −∞ for odd n.
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What about the powers xa with a real? The situation is simpler since in this case the
function xa is defined only for x > 0. We have only two interesting limits: x → +∞ and
x → 0+. Clearly, we must distinguish the case a > 0, in which the function xa is increasing:

a > 0 =⇒ lim
x→+∞

xa = +∞, lim
x→0+

xa = 0

and the case a < 0, in which the function xa is decreasing:
a < 0 =⇒ lim

x→+∞
xa = 0, lim

x→0+
xa = +∞.

(To visualize all these properties just examine the graphs of the elementary functions in the
previous paragraph).
The exponential function has a very clear behavior:

lim
x→+∞

ex = +∞, lim
x→−∞

ex = 0.

Even for the logarithm function, which is defined only for x > 0, we have simply
lim

x→+∞
log x = +∞, lim

x→0+
log x = −∞.

The properties of ex also extend to all ax with a > 1:
a > 1 =⇒ lim

x→+∞
ax = +∞, lim

x→−∞
ax = 0.

Instead, the properties are reversed for the decreasing case 0 < a < 1:
0 < a < 1 =⇒ lim

x→+∞
ax = 0, lim

x→−∞
ax = +∞.

For the trigonometric functions the situation is more complicated. For example, if we try
to calculate the limit for x → +∞ of sinx, we immediately discover that the limit does not
exist: in fact if there were a limit, the values of f(x) = sinx should get closer and closer to
the value L of this limit, while we know that the function continues to oscillate between +1
and −1. Similar for cosx, and for the limits as x → −∞.
One last remark: the tanx function has vertical asymptotes in the points π

2 + kπ, for
example

lim
x→π

2
−
tanx = +∞, lim

x→−π
2

+
tanx = −∞

and this behavior is repeated periodically.

Example 3.12. And how are the limits of elementary functions calculated in all other
points? For example, what is the limit

lim
x→x0

sinx

at a given point x0? The answer is very simple:
lim

x→x0

sinx = sinx0.

That is, to calculate the limit of sinx at a point x0 ∈ R just calculate the value of sinx at that
point. We will not prove this property; we limit ourselves to observe that the same property
holds for all elementary functions, and at all points x0 where the functions are defined:

lim
x→3

ex = e3; lim
x→1

tanx = tan 1;

lim
x→−2

cosx = cos(−2); lim
x→0+

√
x =

√
0 = 0.

But of course, the limits
lim

x→0−

√
x, lim

x→−6

√
x

cannot be computed because we would leave the domain of the function
√
x.
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Problems.

Exercise 3.6 (¹). Of the following functions, only one has a limit on x → +∞; indicate
which one.

√
1− x, sin(x), log(1 + cos(x)),

sin(x)

log(x)
,

1

cos(log(x))
.

4. Properties of limits

To go beyond elementary functions and compute limits of more complicated functions, we
need some more properties. First of all we can combine the limits we already know: for
example we have

lim
x→3

(ex + log x) = e3 + log 3

that is, if we have to calculate the limit of a sum, just add the limits and so on. More
precisely:

Proposition 4.1. Assume that f → L1 e g → L2 as x → x0 (or x → x+
0 , x → x−

0 ,
x → +∞, x → −∞). Then

f + g → L1 + L2, f · g → L1 · L2, and f

g
→ L1

L2
se L2 6= 0

as x → x0 (or x → x+
0 , x → x−

0 , x → +∞, x → −∞).

Proof. We prove the first property concerning the sum f + g: we know that f → L1

and g → L2, so for each ε we can find δ such that
|f(x)− L1| < ε, |g(x)− L2| < ε as 0 < |x− x0| < δ

and these inequalities can also be written like this:
L1 − ε < f(x) < L1 + ε, L2 − ε < g(x) < L2 + ε

By adding the two inequalities we obtain
L1 + L2 − 2ε < f(x) + g(x) < L1 + L2 + 2ε as 0 < |x− x0| < δ

and this means exactly f1 + f2 → L1 + L2 per x → x0. The other properties can be proved
in a similar way. �

Example 4.2. The preceding property immediately implies that for every polynomial P (x)
we have

lim
x→x0

P (x) = P (x0).

For example,
lim
x→2

(2x3 − 3x− 4) = 2 lim
x→2

(x3)− 3 lim
x→2

(x)− 4 = 6.

Furthermore, we can easily compute many limits of functions built from elementary functions:

lim
x→1

sinx+ ex

x2 − 5
=

sin 1− e1

12 − 5
=

e− sin 1

4
.

Remark 4.3. The above properties can be applied when L1 and L2 are real numbers. But
it is easy to verify that many properties also extend to the case of infinite limits. Let’s
examine the possible cases. We start with the sum:
1) if f → +∞ and g → +∞ then f + g → +∞;
2) if f → −∞ and g → −∞ then f + g → −∞;
3) if f → L and g → ±∞ then f + g → ±∞.
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We did not consider the case +∞−∞: in this case a general rule cannot be given because
the result may be different depending on the functions f and g, and in these cases we say
that

+∞−∞ is an indeterminate limit
or also that it is an indeterminate form. To understand this situation, a trivial example
is enough: the following two limits are both of the type +∞ − ∞, but the result is very
different:

lim
x→+∞

(2x)− lim
x→+∞

x = lim
x→+∞

x = +∞, lim
x→+∞

x− lim
x→+∞

(2x) = − lim
x→+∞

x = −∞.

For products of functions, we have:
1) if f → +∞ and g → +∞ then f · g → +∞;
2) if f → −∞ and g → −∞ then f · g → +∞;
3) if f → +∞ and g → −∞ then f · g → +−∞;
4) if f → L > 0 and g → ±∞ then f · g → ±∞;
5) if f → L < 0 and g → ±∞ then f · g → ∓∞.

Also for the product we find that the case
∞ · 0 is an indeterminate limit.

Finally, for the ratio of functions we have
1) if f → L and g → ±∞ then f

g → 0;
2) if f → ±∞ and g → L > 0 then f

g → ±∞;
3) if f → ±∞ and g → 0+ then f

g → ±∞;
4) if f → ±∞ and g → L < 0 then f

g → ∓∞;
5) if f → ±∞ and g → 0− then f

g → ∓∞;
in properties 3) and 5) we used the notation

g → 0+ ⇐⇒ g → 0 and g(x) > 0

and
g → 0− ⇐⇒ g → 0 and g(x) < 0.

In the case of a ratio we note that
∞
∞

and 0

0
are indeterminate limits.

The study of indeterminate limits will be resumed in the next chapter (using de l’Hôpital’s
Theorem).

Another very useful property concerns the composition of functions:

Proposition 4.4. Assume that f(x) 6= a for every x 6= x0,
lim

x→x0

f(x) = a, lim
y→a

g(y) = L.

Then, if it is possible to compose the two functions, we have
lim

x→x0

g(f(x)) = lim
y→a

g(y) = L.

Analogous properties hold in cases x → x±
0 , x → ±∞, and when a or L are ±∞.

[Omitted.].

Example 4.5. Let us see how the previous property applies: to compute
lim
x→2

sin(ex)

just set y = f(x) = ex and observe that
y = ex → e2 as x → 2
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therefore
lim
x→2

sin(ex) = lim
y→e2

sin(y) = sin(e2).

Another example:

lim
x→+∞

sin

(
1

x

)
= lim

y→0
sin(y) = 0

where we have set y = f(x) = 1/x.

Before turning to the calculation of limits, we give two more useful properties:

Proposition 4.6 (Theorem of the two Carabinieri). If f(x) and h(x) tend to the same
limit L as x → x0 and the function g(x) is between them, that is to say

f(x) ≤ g(x) ≤ h(x),

then we have also g → L as x → x0. (Analogous properties hold for right, left and infinite
limits).

Proof. From the hypothesis we know that: for every ε there exists δ such that
L− ε < f(x) < L+ ε, L− ε < h(x) < L+ ε

for 0 < |x− x0| < δ; so we also have
L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε

and in particular
L− ε < g(x) < L+ ε

for 0 < |x− x0| < δ, and this is precisely the thesis. �

For example, let us compute the limit of
√
x2 + x sin(x) for x → +∞. Since we are only

interested in the behavior of the function for large values of x it is not restrictive to suppose
x ≥ 2 and therefore,

0 ≤ x ≤ x2

2
, −x2

2
≤ −x ≤ x sin(x) ≤ x ≤ x2

2
,

x√
2
=

√
x2

2
≤
√
x2 + x sin(x) ≤

√
3x2

2
=

√
3√
2
x, x ≥ 2.

The functions 1√
2
x and

√
3√
2
x both tend to +∞ and applying the Carabeneer’s Theorem:

lim
x→+∞

√
x2 + x sin(x) = +∞ .

Proposition 4.7 (Permanence of the sign). If a function f is positive, that is f(x) ≥ 0,
and tends to a limit L for x → x0, then L ≥ 0 as well. In other words: the limit of a positive
function is positive (and, in a similar way, the limit of a negative function is negative).

Proof. Proof by contradiction: if it were L < 0, we choose ε = |L|
2 and try to apply

the definition of limit: it must exists δ such that
L− ε < f(x) < L+ ε

for 0 < |x− x0| < δ. But the second inequality implies that

f(x) < L+ ε = L+
|L|
2

< 0

and this is absurd because we know that the function is positive. �
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5. Calculation of limits

Let us quickly review the fundamental limits that follow immediately from the definitions
of the elementary functions. It is better to study them carefully by referring to the graphs
seen previously. For powers with a positive exponent we have

lim
x→+∞

x2 = lim
x→+∞

x3 = lim
x→+∞

xn = +∞, n = 1, 2, 3, . . .

and of course also
lim

x→+∞

√
x = lim

x→+∞
3
√
x = lim

x→+∞
n
√
x = +∞, n = 1, 2, 3, . . .

Also for even powers
lim

x→−∞
x2 = lim

x→−∞
x4 = lim

x→−∞
x6 = · · · = +∞,

while for the odd powers
lim

x→−∞
x = lim

x→−∞
x3 = lim

x→−∞
x5 = · · · = −∞.

We pass to the negative powers: we have immediately for every n

lim
x→±∞

x−n = 0

and also
lim

x→0+
x−n = +∞.

Moreover, for even powers
lim

x→0−
x−2 = lim

x→0−
x−4 = · · · = +∞,

while for the odd powers
lim

x→0−
x−3 = lim

x→0−
x−5 = · · · = −∞.

For the exponential we have
lim

x→+∞
ex = +∞, lim

x→−∞
ex = 0.

This is the same behavior as for all exponential functions with a base greater than one:
a > 1 =⇒ lim

x→+∞
ax = +∞, lim

x→−∞
ax = 0

while if the base is less than 1 the behavior is reversed:
0 < a < 1 =⇒ lim

x→+∞
ax = 0, lim

x→−∞
ax = +∞.

The function log x is defined only for x > 0 and we have
lim

x→+∞
log x = +∞, lim

x→0+
log x = −∞.

Finally, two trigonometric functions: the tanx function has vertical asymptotes for x = ±π
2

(and by periodicity, also for all x = kπ + π
2 ) :

lim
x→π

2
−
tanx = +∞, lim

x→π
2

+
tanx = −∞

and in a similar way
lim

x→−π
2

+
tanx = −∞, lim

x→−π
2

−
tanx = ∞.

For the inverse function arctanx we have
lim

x→+∞
arctanx =

π

2
, lim

x→−∞
arctanx = −π

2
.
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Remark 5.1. Warning: the limits of a function do not always exist! For example, the limit
lim

x→+∞
sinx

does not exist: the sinx function continues to oscillate between +1 and −1 as x increases,
without approaching any value L (if it tended towards a limit L, the function would have a
horizontal asymptote). Similarly the following limits do not exist:

lim
x→+∞

cosx, lim
x→−∞

sinx, lim
x→−∞

cosx.

Example 5.2. Many limits can calculated immediately using the rules seen so far. For
example, let us try to calculate the limits

lim
x→3

2

x3 + 2
, lim

x→+∞

2

x3 + 2
, lim

x→−∞

2

x3 + 2
.

For the first one, thanks to the proposition on operations between limits, it is sufficient to
calculate the value of the function at the point:

lim
x→3

2

x3 + 2
=

2

33 + 2
=

2

29
.

For the second it is enough to observe that the denominator
lim

x→+∞
(x3 + 2) = +∞

tends to +∞, and therefore we have immediately

lim
x→+∞

2

x3 + 2
= 0.

Finally, given that
lim

x→−∞
(x3 + 2) = −∞

we also have
lim

x→−∞

2

x3 + 2
= 0.

Example 5.3. Similarly, to calculate

lim
x→+∞

sin

(
1

x

)
it is sufficient to set y = 1

x and to note that

x → +∞ =⇒ y =
1

x
→ 0+

where y → 0+ means: y → 0 from the right, that is to say y > 0. Then the limit is
trasformed into

lim
x→+∞

sin

(
1

x

)
= lim

y→0+
sin y = 0.

Example 5.4. Given the polynomial
f(x) = −4x3 + 2x2 + 5

calculate the limits
lim
x→2

f(x), lim
x→−1

f(x), lim
x→+∞

f(x), lim
x→−∞

f(x).

The first two are very simple: the limit is equal to the value of f at the point where the
limit is taken. In fact, using the known results for limit operations,

lim
x→2

(−4x3 + 2x2 + 5) = −4 · lim
x→2

x3 + 2 · lim
x→2

x2 + 5 = −4 · 23 + 2 · 22 + 5 = 19.

Similarly
lim

x→−1
(−4x3 + 2x2 + 5) = −4 · (−1)3 + 2 · (−1)2 + 5 = 11.
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The third limit is indeterminate, in fact −4x3 → −∞ while 2x2 → +∞; but we can rewrite
the function as follows:

lim
x→+∞

(−4x3 + 2x2 + 5) = lim
x→+∞

x3

(
−4 +

2

x
+

5

x3

)
and now we see that

x3 → +∞,

(
−4 +

2

x
+

5

x3

)
→ −4

and therefore for the known rules

lim
x→+∞

(−4x3 + 2x2 + 5) = lim
x→+∞

x3

(
−4 +

2

x
+

5

x3

)
= −∞

(we got a form like (+∞)·(−4) which is no longer indeterminate!). The last limit is calculated
in the same way:

lim
x→−∞

(−4x3 + 2x2 + 5) = lim
x→−∞

x3

(
−4 +

2

x
+

5

x3

)
= +∞

(here we get a form like (−∞) · (−4)).

Example 5.5. We calculate the limit of the ratio of two polynomials:

lim
x→+∞

2x3 − 6x2 + x− 1

x3 + 2x2 + 5
.

Note that both the numerator and denominator tend to +∞, so we have an indeterminate
form. But the two infinites are “of the same order”, so the limit is finite: to see this we
factor out the maximum power of x in the numerator and denominator and simplify:

2x3 − 6x2 + x− 1

−3x3 + 2x2 + 5
=

x3

(
2− 6

x
+

1

x2
− 1

x3

)
x3

(
−3 +

2

x
+

5

x3

) =
2− 6

x
+

1

x2
− 1

x3

−3 +
2

x
+

5

x3

→ −2

3

as x → +∞.
If, on the other hand, the two polynomials have different degrees, the relationship will be

dominated by the higher degree. For example:

lim
x→+∞

x4 + x7

3x5 − x6
= lim

x→+∞

x7

(
1

x3
+ 1

)
x6

(
3

x
− 1

) = lim
x→+∞

x ·

1

x3
+ 1

3

x
− 1

= −∞

because the numerator has a higher degree. As a rule of thumb we can write:
x4 + x7

3x5 − x6
∼ x7

−x6
= −x as x → ±∞

so that
lim

x→+∞

x4 + x7

3x5 − x6
= −∞, lim

x→−∞

x4 + x7

3x5 − x6
= +∞.

Similarly, we can say that
−3x4 + 5x2

8x5 + x2
∼ −3x4

8x5
= − 3

8x
as x → ±∞

that is to say

lim
x→+∞

−3x4 + 5x2

8x5 + x2
= lim

x→−∞

−3x4 + 5x2

8x5 + x2
= 0.
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Example 5.6. Warning: the previous rule applies for x → ±∞ (the highest degree
dominates when x is large!).
In the other points the limit is calculated according to the usual rules. To calculate the limit

of a polynomial ratio for x → x0, if the denominator does not vanish in x0 just calculate
the function at x = x0. If, on the other hand, the denominator vanishes in x0 (and the
numerator does not vanish), the ratio tends to infinity, and it is enough to understand the
sign of the expression to establish if the limit is +∞ o −∞. For example:

lim
x→2+

1

x− 2
= +∞, lim

x→2−

1

x− 2
= −∞, lim

x→7

1

x− 2
=

1

5
.

lim
x→3+

1− 2x

x2 − 9
= +∞, lim

x→3−

1− 2x

x2 − 9
= −∞, lim

x→0

1− 2x

x2 − 9
= −1

9
.

If both the numerator and the denominator vanish at x0, we have an indeterminate form
0
0 ; if we know the roots of the polnomials we can simplify the fraction, otherwise we can
apply the Theorem of de l’Hôpital which we will study in the next chapter.

Example 5.7. One of the most useful methods is the change of variables method, that is,
the application of Proposition 4.4. For example the limit

lim
x→+∞

e2x

setting y = 2x and observing that
x → +∞ ⇐⇒ y → +∞

becomes
lim

x→+∞
e2x = lim

y→+∞
ey = +∞.

Similarly:
lim

x→+∞
e−5x : y = −5x → −∞ =⇒ lim

x→+∞
e−5x = lim

y→−∞
ey = 0

lim
x→0+

e
1
x : y =

1

x
→ +∞ =⇒ lim

x→0+
e

1
x = lim

y→+∞
ey = +∞

lim
x→0−

e
1
x : y =

1

x
→ −∞ =⇒ lim

x→0−
e

1
x = lim

y→−∞
ey = 0

lim
x→0−

e−
3
x : y = − 3

x
→ +∞ =⇒ lim

x→0−
e−

3
x = lim

y→+∞
ey = +∞

A few more examples concerning powers:
lim

x→+∞
(1/2)x = 0

because the base 1
2 is less than 1. Similarly

lim
x→+∞

(2x − 3x) = lim
x→+∞

3x
((

2

3

)x

− 1

)
= −∞

since (2/3)x → 0.

Example 5.8. The ratio
ex

x

as x → +∞ is an indeterminate form of the type ∞
∞

. But we can say that

lim
x→+∞

ex

x
= +∞ .

More generally, for any positive number a > 0 we have

lim
x→+∞

eax

x
= +∞
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and it is not difficult to prove this fact: it is enough to remember the inequality ex ≥ 1 + x
and write

eax =
(
e

ax
2

)2 ≥
(
1 +

ax

2

)2
and therefore

eax

x
≥ 1

x

(
1 +

ax

2

)2
=

1

x
+ a+

a2x

4
from which we get right away

lim
x→+∞

eax

x
≥ lim

x→+∞

(
1

x
+ a+

a2x

4

)
= +∞

(there is an even simpler method based on de l’Hôpital’s Theorem, which we will study in
the next chapter). We observe that this limit can be interpreted like this: when x → +∞,

ex tends to +∞ much faster than x.
The same property holds in general when we have the ratio of an exponential to a power
(and x is large, i.e. x → ±∞); the dominant quantity is always the exponential:

lim
x→+∞

ex

x3
= lim

x→+∞

ex√
x
= lim

x→+∞

ex

x100000
= +∞.

In fact, for every b > 0 we can write

lim
x→+∞

ex

xb
= lim

x→+∞

(
ex/b

x

)b

= +∞b = +∞ .

Note that instead
lim

x→−∞

ex

x
= 0

is not an indeterminate form!
If we take the reciprocal of the previous functions we get

lim
x→+∞

x

ex
= 0, lim

x→+∞

√
x

ex
= 0, lim

x→+∞

x100000

ex
= 0.

The following limit is not indeterminate:
lim

x→+∞
xex = +∞.

On the other side,
lim

x→−∞
xex

Is indeterminate of the form ∞ · 0. We can solve this immediately by changing the variable
y = −x noting that y → +∞:

lim
x→−∞

xex = lim
y→+∞

−ye−y = − lim
y→+∞

y

ey
= 0.

The following limit is similar
lim

x→+∞

log x

x
.

Using the change of variables
y = log x =⇒ y → +∞

(remember that y = log x ⇐⇒ x = ey) we get

lim
x→+∞

log x

x
= lim

y→+∞

y

ey
= 0.

Also this limit can be interpreted as follows:
x tends to +∞ much faster than log x.
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As before, we get in a similar way the limits

lim
x→+∞

x

log x
= +∞, lim

x→+∞

log x√
x

= 0.

Another limit similar to the previous ones:
lim

x→0+
x log x.

If we set
y = log x =⇒ y → −∞

and we observe that ey = x, we have immediately
lim

x→0+
x log x = lim

y→−∞
yey = 0

(already proved).
Some limits to conclude:

lim
x→+∞

(ex + x) = lim
x→+∞

ex
(
1 +

x

ex

)
= +∞

lim
x→−∞

(ex + x) = −∞

lim
x→+∞

(ex − x) = lim
x→+∞

ex
(
1− x

ex

)
= +∞

lim
x→−∞

(ex − x) = +∞

lim
x→+∞

ex + x

ex − x
= lim

x→+∞

ex
(
1 + x

ex

)
ex
(
1− x

ex

) = lim
x→+∞

1 + x
ex

1− x
ex

= 1.

Example 5.9. Of course, not all limits can be calculated with the previous methods; in
many cases ad hoc arguments are needed. For example the limit

lim
x→+∞

sinx

x

exists and is equal to zero even if it is not included in the methods seen so far. The simplest
way to prove this fact is to use the Theorem of the two Carabinieri: we observe that the
values of the sine function are always between +1 and −1, thus for x > 0 we can write

− 1

x
≤ sinx

x
≤ 1

x
;

but the first and third functions tend to zero for x → +∞, so the Theorem of the two
Carabinieri implies that

lim
x→+∞

sinx

x
= 0.

Example 5.10. The rationalization of algebraic expressions can sometimes be useful in
calculating limits, as in the following two examples:

lim
x→0

√
1 + x− 1

x
, lim

x→0

x√
4− x− 2

.

In the first case, multiplying the numerator and denominator by
√
1 + x+ 1 we obtain

lim
x→0

√
1 + x− 1

x
= lim

x→0

1 + x− 1

x(
√
1 + x+ 1)

= lim
x→0

1√
1 + x+ 1

=
1

2
.

In the second case, multiplying the numerator and denominator by
√
4− x+ 2 we obtain

lim
x→0

x√
4− x− 2

= lim
x→0

x(
√
4− x+ 2)

−x
= −4 .
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Problems.

Exercise 3.7 (¹). Calculate the following limits:

lim
x→±∞

x4 − 3x2

8x3 + x2
, lim

x→±∞

2x4 + x5

3x5 − x2
, lim

x→±∞

x4 − x5

x4 − x6
.

Exercise 3.8. Calculate the following limits:

lim
x→±∞

and lim
x→2±

of 2 + 5x

2− x

lim
x→±∞

and lim
x→1±

of 2x+ 3

x4 − 1

lim
x→±∞

and lim
x→3±

of x4 − 3x8

x5(2x3 − 18x)

lim
x→±∞

and lim
x→2±

of 4

x3 − x2 − 4

lim
x→±∞

and lim
x→1±

of (x− 1)(x+ 5)(2x+ 5)

(2x− 2)(7− 3x)

lim
x→±∞

and lim
x→−1±

of −2x4 + x2 + 3

7x3 + x6 + 6

lim
x→±∞

and lim
x→0±

of x3 + 6x2

5x2 + x3
.

Exercise 3.9. Using the procedure in Example 5.10 to calculate the following limits:

lim
x→0

√
4 + x− 2

x
, lim

x→0

x
√
2 + x−

√
2
,

lim
x→4

√
1 + 2x− 3√

x− 2
, lim

x→0

√
1 + x+ x2 − 1

x
, lim

x→0

x
√
2 + x−

√
2
.

Exercise 3.10. Calculate the limits of the following functions for x → ±∞, x → 0± (if
possibile!):

xe −x,
ex/2

x
, e−x2

, e−
1
x2 , xe

1
x , xe−

1
x ,

ex − 1

x
,

ex + x2

x3 − e−x
,

e
√
x

x5
,

e−x

x
,

1

x
e

1
x ,

ex

x2
,

e
√
x

√
x
,

√
ex, log(2x)− log x, e−x − x3

xx, ex − e3x, x2ex − xe3x, x2x − ex,

x2 log
√
x, x log(x2), e−

1
x3 , log

1

x
,

log(ex)

ex
,

1

1 + e1/x
,

1

x
e−

1
x , log(ex − 1), log(e−x − 1), x2 log x,

√
x log x,

√
x log(x10),

√
x

log x
,

√
log(x2)
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Exercise 3.11. For the following functions, determine the set of definition, which is always
a union of intervals, and then compute the limits at the ends of these intervals:

log(x2 − x), |x|, x

2x− 3
, log

1

2− x
, e

1
x , xe−

1
x ,

e
x

x+1 , e
1

x−2 ,
ex

ex − 1
,

√
x+ 1,

√
1

1− x
,√

x

x+ 1
,

√
x+ 1

x− 1
,

√
1− x2,

1√
1− x2

,

1√
2 + x2

,
x2

2− x
,

x+ 1

x2 − 1
,

ex

x− 2
, e2x

2−x3

x+ 1

ex
,

x

e
2
x

,
x2

e
1
x

, log(1− ex), log(8− 2x2),

x log
1

x
, x · log 1

x− 2
,

ex + 1

ex − 1
,

e−x − 1

ex
,

e2x

ex + 1
,

e2x−x2

,

(
1 +

1

x

)
ex,

1

ex−x2 , log(2x2 + x),

(x+ 1) log(x+ 1), log(1 +
√
x− 1), log

(
2

2x+ 3

)
,

1

log x
,

e
1
x + e−

1
x , e

1+x
1−x ,

log x√
x

, (x− 1)e
1
x ,

1

|x|
.

Exercise 3.12 (¹). Using the Theorem of the two Carabinieri, calculate the following
limits:

lim
x→+∞

x+ sinx

ex
, lim

x→−∞

esin x

x2
, lim

x→0
x · sin

(
1

x

)
.

6. Special limits

Let us now turn to some limits that require special attention: these are the limits

lim
x→0

sinx

x
= 1 e lim

x→0

ex − 1

x
= 1 .

Conside the first of the two limits. Remember the inequality

0 ≤ sinx ≤ x ≤ tanx, for 0 ≤ x <
π

2
.

From the inequalities
0 ≤ sinx ≤ x

dividing by x > 0 we get
0 ≤ sinx

x
≤ 1.

Moreover, from the inequality
x ≤ tanx =

sinx

cosx
,

dividing by x > 0 and multiplying by cosx (note that cosx > 0 in the considered area) we
obtain

cosx ≤ sinx

x
and then by writing it all together we proved that

cosx ≤ sinx

x
≤ 1 for 0 < x <

π

2
.
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By the change of variable x → −x, since cos(−x) = cosx and sin(−x)
−x = sin x

x , we obtain that
the previous inequality is also true for −π

2 ≤ x < 0. Therefore

cosx ≤ sinx

x
≤ 1 for 0 < x ≤ π

2
and for − π

2
< x < 0.

But cosx → 1 for x → 0, therefore applying the Theorem of the two Carabinieri we obtain

lim
x→0

sinx

x
= 1.

We study now the second limit: we want to show that

lim
x→0

ex − 1

x
= 1.

Recall that the exponential ex verifies the property
ex ≥ 1 + x for every x.

Hence, putting −x in place of x we obtain without effort that
e−x ≥ 1− x for every x.

If x < 1, then multiplying both sides by the positive function ex

1− x
gives

1

1− x
≥ ex for every x < 1

and then, by subtracting 1
x

1− x
=

1

1− x
− 1 ≥ ex − 1 ≥ x for every x < 1.

If x > 0, dividing both members by x we get
1

1− x
≥ ex − 1

x
≥ 1 for 1 > x > 0.

If instead we divide by x < 0 we get
1

1− x
≤ ex − 1

x
≤ 1 per x < 0.

So by the Theorem of the two Carabinieri we have

lim
x→0+

ex − 1

x
= 1, lim

x→0−

ex − 1

x
= 1

and this is equivalent to saying that

lim
x→0

ex − 1

x
= 1.

Example 6.1. Calculate the limit

lim
x→+∞

x · sin
(
1

x

)
.

It is sufficient to set y = 1/x and note that

x → +∞ =⇒ y =
1

x
→ 0

to obtain
lim

x→+∞
x · sin

(
1

x

)
= lim

y→0

sin y

y
= 1.
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Example 6.2. Calculate the limit

lim
x→0

1− cosx

x2
.

The trick is to multiply the numerator and denominator by 1 + cosx; we obtain

lim
x→0

1− (cosx)2

x2(1 + cosx)
= lim

x→0

(sinx)2

x2(1 + cosx)
=

(
lim
x→0

sinx

x

)2

lim
x→0

1

1 + cosx
= 12

1

2
=

1

2
.

Example 6.3. Calculate the limits

lim
x→0

e−x − 1

x
, lim

x→0

e2x − 1

x
.

The first limit, with the substitution y = −x becomes

lim
x→0

e−x − 1

x
= lim

y→0

ey − 1

−y
= − lim

y→0

ey − 1

y
= −1.

The second limit, with the substitution y = 2x becomes

lim
x→0

e2x − 1

x
= lim

y→0

ey − 1

y/2
= 2 lim

y→0

ey − 1

y
= 2.

The same procedure shows that for any real number a we have

lim
x→0

eax − 1

x
= a .

Example 6.4. Calculate the limits

lim
x→0

ex + x− 1

x
, lim

x→0

ex − e−x

x
.

The first limit can be written as

lim
x→0

ex + x− 1

x
= lim

x→0

ex − 1

x
+ 1 = 1 + 1 = 2 .

In the second limit, we add and subtract 1 to the numerator,
ex − e−x

x
=

ex − 1 + 1− e−x

x
=

ex − 1

x
− e−x − 1

x
and we get

lim
x→0

ex − e−x

x
= lim

x→0

ex − 1

x
− lim

x→0

e−x − 1

x
= 1− (−1) = 2.

Problems.
Exercise 3.13 (¹). Calculate the limits

lim
x→0

eπx − 1

x
, lim

x→0

2x − 1

x
, lim

x→0

sin(ax)

x
, a ∈ R.

Exercise 3.14. Calculate the limits of the following functions for x → 0.
ex − 1− x

x
,

ex + e−x − 2

x
,

ex − 1

1− e−x
,

sinx

x cosx
,

sin2 x

x2
,

sin(x2)

sin2 x
.

Exercise 3.15. Using the suggested substitutions and the special limits, calculate the
following limits:

lim
x→0

log(1 + x)

x
(x = ey − 1); lim

x→±∞
x log

(
1 +

1

x

)
(x =

1

y
);

lim
x→±∞

(
1 +

1

x

)x

(take logarithms); lim
x→±∞

(
1 +

a

x

)x
(x = ay);

lim
x→2

x2 + 3x− 10

2x2 − 5x+ 2
(x = y + 2); lim

x→π

sin2(x)

1 + cos(x)
(y = x+ π);



Calculus 87

Exercise 3.16. Calculate the following limits:

lim
x→−∞

x2 − 3x

x+ 2
√
−x

, lim
x→+∞

x12 + x4

ex
; lim

x→+∞
2−ex ;

lim
x→+∞

xx

ex
; lim

x→0+

√
1− cos(x)

x
; lim

x→0

x3

sin2(x)
;

7. Continuous functions

From the intuitive point of view, a function f : I → R, defined on an interval I, is continuous
if it is possible to draw the graph without removing the pencil from the sheet or, if you prefer,
the chalk from the blackboard. The rigorous notion of continuity is given by the following
definition.

Definition 7.1. Let f : I → R be a function defined on an interval I and let x0 be a point
of I. The function is said to continuous at x0 if the f limit for x → x0 exists and is equal
to the value of the function at that point:

lim
x→x0

f(x) = f(x0).

The function is said to be continuous on I if it is continuous at all points of I.

Example 7.2. In the previous sections we noted that all elementary functions verify the
property just defined: therefore the elementary functions are all continuous on their domain.
Furthermore, the sum, the product and the ratio (if the denominator is 6= 0) of continuous

functions are still continuous functions: this follows immediately from Proposition 4.1. For
example, to see that f + g is continuous just type

lim
x→x0

(f(x) + g(x)) = lim
x→x0

f(x) + lim
x→x0

g(x) = f(x0) + g(x0).

If instead we use the Proposition 4.4 we obtain that the composition of continuous functions
is also continuous: more precisely, if f(x) is continuous in x0, g(y) is continuous in y0 =
f(x0), and it is possible to compose the two functions, then setting y = f(x) we obtain

lim
x→x0

g(f(x)) = lim
y→y0

g(y) = g(y0) = g(f(x0))

that is, g(f(x)) is continuous in x0.

Example 7.3. The functions
sin(x2 − ex + 2x), log(

√
x), esin(x

2)+x−3, xe−
1
x

are continuous on their set of definition, since they are obtained through the sum, product,
ratio and composition of continuous functions.

Example 7.4. An example of a function that is not continuous is given by the integer
part bxc of a real number, defined as the largest integer less than or equal to x. For example,

b0c = 0, b1c = 1, b0, 2c = 0, b−0, 2c = −1, bπc = 3 b−πc = −4 .

To verify that it is not continuous, it is sufficient to note that
lim

x→1−
bxc = 0 6= b1c .

We now study some very important properties of continuous functions:

Proposition 7.5 (Permanence of the sign). Let f : I → R be a function on the open
interval I and let x0 be a point of I. Suppose that f is continuous at x0 and that f(x0) > 0.
Then f(x) > 0 for x close to x0: that is, there exists δ > 0 such that f(x) > 0 for |x−x0| < δ.
(Similar property if f(x0) < 0).



88 Piero D’Ancona, Marco Manetti

Proof. We apply the definition of limit to the function f : since f is continuous in x0,
its limit in x0 is precisely L = f(x0), so from the definition of limit we know that for every
ε there exists δ such that

f(x0)− ε < f(x) < f(x0) + ε

for 0 < |x− x0| < δ. If we now choose

ε =
f(x0)

2

(note that ε > 0), we get
f(x0)

2
< f(x) < f(x0) +

f(x0)

2
for 0 < |x− x0| < δ; the first of these inequalities tells us that f is strictly positive. �

Theorem 7.6 (Theorem of zeroes of continuous functions). Let f : [a, b] → R be a continuous
function. Suppose that f(a) ≤ 0 e f(b) ≥ 0. Then there exists a point c between a and b in
which the function f vanishes: f(c) = 0. The same result holds if f(a) ≥ 0 and f(b) ≤ 0.

Explanation. The rigorous proof is quite complicated and therefore we omit it; we give
instead an intuitive explanation which is very clear. The plane R2 is divided by the abscissa
axis into two half–planes, the upper one {(x, y) : y > 0} and the lower one {(x, y) : y < 0}.
Now try to draw the graph of f : you have to connect the point (a, f(a)), located in the lower
half plane, with the point (b, f(b)), located in the upper half plane. Since f is continuous
you cannot lift the pencil from the paper and at some point you have to cross the abscissa
axis. �

Example 7.7. We use the theorem of zeroes to prove that the polynomial of third degree
x3 + x− 1 has a root in the open interval ]0, 1[. To this end we observe that the continuous
function

f : [0, 1] → R, f(x) = x3 + x− 1,

satisfies the assumptions of Theorem 7.6 since f(0) = −1 e f(1) = 1. Therefore, there exists
a point c between 0 and 1 where the f function is equal to zero.

Theorem 7.8 (Weierstrass’ Theorem). Let f : [a, b] → R be a continuous function defined
on a closed bounded interval. Then there exist two points x1 and x2 ∈ [a, b] such that, calling
m the value of f in x1 and M the value of f into x2, we have

f(x1) = m ≤ f(x) ≤ M = f(x2) for every x ∈ [a, b] .

The proof requires the introduction of a long series of preliminary results on the properties
of real numbers that go beyond the objectives of these notes and therefore is omitted.
The two points x1 and x2 found in the previous theorem are called the point of absolute

minimum and point of absolute maximum of f on [a, b] respectively; while m and M are
called the absolute minimum value and absolute maximum value of f on [a, b] respectively.
From Weierstrass’ Theorem we know that a continuous function on a closed and bounded

interval always has a minimum m and a maximum M on the interval. Now we show that
the function also assumes all intermediate values between m and M :

Theorem 7.9 (Intermediate value theorem). Let f : [a, b] → R be a continuous function.
Let m be the minimum and M the maximum of f on [a, b]. Also, let µ be an intermediate
number between m and M :

m ≤ µ ≤ M.

Then there exists a point c between a and b in which the value of the function f is exactly
µ, that is f(c) = µ.
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Proof. Weierstrass’ Theorem ensures that the function admits a minimum point where
f(x1) = m and a maximum point where f(x2) = M . Thus, if µ = m or µ = M there is
nothing to prove.
If instead m < mu < M , we consider the function

g(x) = f(x)− µ.

This function is continuous; moreover one has
g(x1) = f(x1)− µ = m− µ < 0, g(x2) = f(x2)− µ = M − µ > 0,

and therefore by the Theorem of zeros there exists a point c between x1 and x2 in which g
vanishes:

g(c) = f(c)− µ = 0

and from here the result follows immediately. �

Problems.

Exercise 3.17. Say which of the following functions satisfy the assumptions of the theorem
of zeroes of continuous functions on the interval [−1, 1].

x2 − x− 1,
1

x
, x2 + x+ 1, ex − 1

2
, log(x2),

√
2 sin(x)− 1 .

8. Sequences and series

8.1. Sequences. A sequence is simply a function a : N → R. Then the values of a
should be written, using the usual notation, a(1), a(2), . . . , a(n), . . . . In practice it is much
more convenient to write simply

a1, a2, a3, . . . , an, . . .

and we will do so in the following. When using this notation, n is called the index of
the sequence. Also the set of values (an) = (aq, a2, a3, . . . ) will be called a sequence. Pay
attention to the fact that the order of the elements an of the sequence is important, and if
you exchange some (or infinite) an, you get a different sequence.
Let’s see some simple examples:
1) The sequence of even numbers: an = 2n. Writing it explicitly one has

(an) = (2, 4, 6, 8, 10, . . . ).

2) The sequence of squares: an = n2. We have
(an) = (1, 4, 9, 16, 25, 36, . . . ).

3) The sequence of the inverse of the integers: an = 1
n . We have

(an) =

(
1,

1

2
,
1

3
,
1

4
,
1

5
, . . .

)
.

4) The sequence of powers of 2: an = 2n. We have
(an) = (2, 4, 8, 16, 32, 64, . . . ).

5) The constant sequence which is always 0: an = 0. We have
(an) = (0, 0, 0, 0, 0, . . . ).

Of course we can consider other constant sequences: the sequence that is always 1 i.e.
(an) = (1, 1, 1, 1, . . . ), the sequence that is always π i.e. (an) = (π, π, π, . . . ), and so on.
6) The oscillating sequence: an = (−1)n, that is

(an) = (−1,+1,−1,+1,−1,+1,−1,+1, . . . ).
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7) The sequence of factorials: an = n!. This symbol simply indicates the product
n! = 1 · 2 · 3 · · · · · (n− 1) · n

for n ≥ 1. Conventionally, we set 0! = 1. It is easy to calculate the first values of this
sequence:

(an) = (1, 2, 6, 24, 120, 720, 5040, 40320, 362880, . . . )

and we see that the factorials n! grow very fast as n increases.

Definition 8.1. A sequence (an) is said to be bounded above if there exists a number M
such that an ≤ M for all indices n. We say that the sequence is bounded below if there exists
a number m such that m ≤ an for all indexes n. We say that the sequence is bounded if it
is bounded both above and below.
A sequence (an) is said to be increasing if for all the indices n we have an ≤ an+1; that is,

if you have a1 ≤ a2 ≤ a3 ≤ . . . .
A sequence (an) is said to be decreasing if for all indexes n we have an ≥ an+1; that is, if

you have a1 ≥ a2 ≥ a3 ≥ . . . .
Increasing and decreasing sequences are also called monotone sequences.

For example we see immediately that:
• The sequence an = 2n of even numbers satisfies an ≥ 2 for all indices, so it is

bounded below by m = 2, but is not bounded above and therefore is not bounded;
moreover it is an increasing sequence.

• The sequence of squares, that of powers of 2 and that of factorials are bounded
below (what is m?) but not above and therefore they are not bounded. They are
all increasing.

• The sequence an = 1
n is bounded above by M = 1 and is also bounded below by

m = 0: in fact, for each index n we have 0 < 1
n ≤ 1. It follows that the sequence

is bounded. Furthermore, the sequence is decreasing because 1
n ≥ 1

n+1 for each n.
• The constant sequence an = 0 for each n is bounded both above and below (we

can take m = M = 0) and therefore is bounded. Also, it is both increasing and
decreasing! We note that if a sequence is is both increasing and decreasing, it
must be a constant sequence: in fact by definition we have an ≤ an+1 and also
an ≥ an+1 for all n, therefore an = an+1 for all n.

• The oscillating sequence an = (−1)n satisfies −1 ≤ an ≤ +1 for every n, so it is
bounded. It is not increasing nor decreasing.

A term that is used very frequently when talking about sequences is eventually: we say
that the values of a sequence (an) verify a property eventually if the property is true starting
from a certain index (that is, it may not be true for the first few terms, but starting from a
certain index onwards it is always true). For example, the sequence an = 2n is eventually
greater than 10: in fact we have a1 = 2 < 10, a2 = 4 < 10, a3 = 8 < 10 and therefore the
first three terms are less than 10, but starting from a4 onwards all the terms of the sequence
are greater than 10: a4 = 16 > 10, a5 = 32 > 10 and so on.
The following is the fundamental definition of the theory:

Definition 8.2. A sequence (an) is said to be convergent if there exists a real number L
such that, for every ε > 0, the sequence is eventually between L− ε and L+ ε. We also say
that an converges to L or tends to L, and L is called the limit of the sequence. In this case
we write limn→+∞ an = L or simply an → L.

So “an converges to L” means: for every ε > 0 there exists an index nε starting from which
we have

L− ε < an < L+ ε, n ≥ nε.
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For example, we verify that the sequence an = 1
n tends to 0: indeed, fixed ε > 0 just take

any index nε >
1
ε and then for each ngenε we have 1

n ≤ 1
nε

< 1
ε , so that

0− ε <
1

n
< 0 +

1

ε
for every n ≥ nε.

We see that we can take L = 0 in the definition and get that

lim
n→+∞

1

n
= 0.

The constant sequence an = 0 also converges to 0. In general, if a sequence is constant
with an = c, then it converges to the limit c. (Easy verification: exercise!).
Instead, the oscillating sequence an = (−1)n does not converge to any limit. Indeed, if we

had an → L, choosing ε = 1
2 we would have

L− 1

2
< an < L+

1

2
for n ≥ nε

But then it should be true that

an+1 − an <

(
L+

1

2

)
−
(
L− 1

2

)
= 1 for n ≥ nε

while for all odd n we have an+1 − an = +1− (−1) = 2.
As for the functions, the concept of limits ±∞ is also defined for the sequences:

Definition 8.3. We say that a sequence an tends to +∞, or that it diverges to +∞, if for
each number M the sequence is eventually greater than M . We say that an tends to −∞,
or that it diverges to −∞, if for each number m the sequence is eventually less than m. In
these cases we write limn→+∞ an = ±∞ or also simply an → ±∞.

For example, the three sequences an = 2n, an = n2, an = 2n and an = n! tend to +∞.

Remark 8.4 (Reduction to limits of functions). A very effective method for calculating
the limits of sequences is given by the following observation: if there exists a function f(x)
such that f(n) = an for all indices n , and we know how to calculate the limit of f(x) for
x → +∞, then we have

lim
n→+∞

an = lim
x→+∞

f(x).

In fact, the definition for the limit of a sequence is a special case of that for the limit of a
function. Of course, the same property is valid in the case of limts of the type ±∞.
Note also that given any sequence an, we can always find a function f : [1,+∞) → R with

the above property by defining f(x) = an for n ≤ x < n+ 1, n = 1, 2, 3, . . . .

The previous observation allows us to immediately deduce from the theorems on limits of
functions similar results on the limits of sequences:

Theorem 8.5. Suppose an → L and bn → M . Then an + bn → L +M , an · bn → L ·M
and (if divisions can be done) an/bn → L/M .

Theorem 8.6. Suppose that an → L, bn → L and that you have an ≤ cn ≤ bn eventually.
Then we also have cn → L.

Remark 8.7. Note that if a sequence converges, its limit is unique. In fact, suppose we
have an → L and also an → M . Then an−an → L−L′, but an−an = 0 so that L−L′ = 0.

Recall that given a nonempty set A ⊆ R and a number M , the number M is said to be a
majorant of A if for all x ∈ A we have x ≤ M ; similarly, a minorant of A is a number m
such that m ≤ x for every x ∈ A. Then, the supremum of A is the smallest of its majorants,
while the infimum of A is the largest of its minorants. These two numbers are indicated
respectively with

supA and inf A.
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If the set A has no majorant (i.e. it is not bounded above) we say that supA = +∞;
similarly, if it has no minorant (i.e. it is not bounded below) we say that inf A = −∞.
In particular, for a sequence (an), we denote by sup an and inf an respectively the supremum

and the infimum of the set of all the values of the sequence.
We can state (without proof) a very useful result on monotone sequences:

Theorem 8.8. Let (an) be an increasing sequence. Then we have only two possibilities:
(1) the sequence is not bounded above. In this case, an → +∞.
(2) the sequence is bounded above. In this case, an → L where L = sup an.

A similar result holds if (an) is decreasing: either the sequence is not bounded below, in
which case an → −∞, or it is bounded below, in which case an → L where L = inf an.

Remark 8.4 allows us to effortlessly compute many limits of sequences, using the known
properties of the limits of functions. Let us see some examples.

(1) an = cn, where c is a fixed number. If we set f(x) = cx, we have an = f(n)
and remembering the properties of exponential functions we have immediately:
cn → +∞ if c > 1, cn → 0 if −1 < c < 1, cn → 1 if c = 1. On the other hand,
if c = −1 we obtain the oscillating sequence an = (−1)n which does not converge,
and of course it does not converge also in the casec < −1.

(2) an = np, where p is a fixed number. Putting f(x) = xp we have an = f(n).
This implies right away that np → +∞ if p > 0, n0 → 1 because in this case the
sequence is constant, and np → 0 if p < 0.

(3) If an is given by the ratio of two polynomials, we can apply the same calculation
rules found in the case of a real variable. For instance,

lim
n→+∞

3n2 − 2n− 5

7n2 + n− 2
= lim

x→+∞

3x2 − 2x− 5

7x2 + x− 2
=

3

7
.

(4) Other notable examples:

lim
n→+∞

en

n
= lim

x→+∞

ex

x
= +∞,

lim
n→+∞

(
n

en
− n

n2 + 1
+ 2

)
= lim

x→+∞

(
x

ex
− x

x2 + 1
+ 2

)
= 0− 0 + 2 = 2.

8.2. Series. A series is an “infinite sum” of real numbers
∞∑
j=1

aj = a1 + · · ·+ an + . . . .

Sometimes it is convenient to start indexes from j = 0, or from another integer number.
It should be clear to everyone that this “’definition” has some issues. For example, what

is the meaning of the following infinite sum
+1− 1 + 1− 1 + 1− 1 + . . .

whose values are alternatively +1 and 0? To define the sum of a series in a meaningful way,
we proceed as follows: we call N–th partial sum of the series the number

sN =

N∑
j=1

aj .

Then we say that
• the series

∑
aj converges, if the sequence of the partial sums sN converges to a

(finite) number , which is thencalled the sum of the series
• the series diverges to +∞ (or to −∞) if sN → +∞ (or sN → −∞)
• the series does not converge if the sequence sN does not converge
• finally, we say that the series converges absolutely if

∑
|aj | converges.
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A particularly simple case to deal with is that of series with positive terms: this means
simply that

∑
aj satisfies aj ≥ 0 for each j. Indeed, in this case sN is an increasing sequence.

Recalling Theorem 8.8, we see that we have only two possibilities:
(1) either sN is bounded above by a constant M , so that the series converges with sum

≤ M
(2) or sN is not bounded above, so that the series diverges to +∞.

Let us consider some examples.
(1) aj = 0 for every j. Clearly sN = 0 for every N and therefore the series converges

with sum 0.
(2) aj = 1 for all j. Since sN = N → +∞, we see that this series diverges to +∞.
(3) aj = (−1)j+1 which produces the series +1−1+1−1+ · · ·+ considered above. In

this case the values of sN oscillate between +1 and 0, clearly the partial sums do
not converge, and therefore we can say that the series

∑
(−1)j+1 does not converge

(and does not diverge)
(4) aj = qj , where q 6= 1 is a given number and j starts from 0. This is called the

geometric series of ratio q. In this case we can can write

sN = 1 + q + · · ·+ qN =
1− qN+1

1− q
.

To verify this, just multiply both members by 1−q and simplify. We see immediately
that if −1 < q < 1 the power qN+1 tends to 0, and therefore the geometric series
converges with sum 1

1−q ; if q ≥ 1 the series diverges to +∞; and finally if q ≤ −1

the series has an oscillating behavior and does not converge nor diverges.
There exist many criteria that can be used to prove convergence or divergence of a series,

especially in the case of a series with positive terms.

Proposition 8.9. Let
∑

aj,
∑

bj be two series with positive terms, such that aj ≥ bj for
j > j0. Then we have:

(i) if
∑

aj converges then
∑

bj converges
(ii) if

∑
bj diverges then

∑
aj diverges too (obviously, to +∞).

Proof. Suppose that
∑

aj converges. Let sN , rN be the partial sums of these series,
and let A = a1 + · · ·+ aj0 and B = b1 + · · ·+ bj0 . Then for j > j0 we have

sN = A+ aj0+1 + · · ·+ aN ≥ A−B +B + bj0+1 + · · ·+ bN = A−B + rN .

Since sN converges, it follows that sN is bounded above, thus rN lis also bounded above
and we conclude that the second series converges. The proof of (ii) is similar. �

We give now a slightly more sophisticated criterion:

Proposition 8.10. Let
∑

aj be a series with the properties aj > 0 and aj+1

aj
→ c as

j → ∞.
(i) If c < 1 then the series converges

(ii) If c > 1 then the series diverges to +∞.

Proof. Suppose c < 1 and fiz ε > 0 such that q = c+ ε < 1. Since aj+1

aj
→ c, we have

0 ≤ aj+1

aj
≤ q for j larger than some index jε, and therefore

aj+1 ≤ qaj for j ≥ jε.

This implies
aj+1 ≤ ajq ≤ aj−1q

2 ≤ · · · ≤ ajεq
j−jε = Cqj where C = ajεq

−jε .

The series
∑

Cqj converges since q < 1, and applying the previous criterion we obtain (i).
The proof of (ii) is analogous. �
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A similar criterion, which is proved with a similar argument, is the following:

Proposition 8.11. Let
∑

aj be a series with the properties aj ≥ 0 and j
√
aj → c as j → ∞.

(i) If c < 1 then the series converges
(ii) If c > 1 then the series diverges to +∞.



CHAPTER 4

Derivation

1. The derivative

The concept of derivative is very important and very natural. To have a concrete example,
think of the motion of a car: if f(t) is the function that expresses how far you have traveled
up to a certain time t, then the speed at which you are riding is precisely the derivative of
f (i.e. the speedometer shows the derivative of the odometer...).
In other words, the derivative of a function expresses the speed at which that function

increases or decreases as the point x changes. Let us study the precise definition of this
concept.

Definition 1.1. Let f : I → R be a function on the open interval I and let x0 be a point
of I. For any h 6= 0 small enough, the incremental ratio of f at x0 is the ratio

f(x0 + h)− f(x0)

h
.

x
x0

f(x0) •A

x0+h

f(x0+h) •B

Figure 4.1. The incremental ratio.

The incremental ratio has a precise geometric meaning: it expresses the slope (= the angular
coefficient) of the straight line passing through the points A = (x0, f(x0)) and B = (x0 +
h, f(x0 + h)). If we now consider ever smaller values of h, it is not difficult to guess that
the line AB gets closer and closer to the tangent line to the graph of f at the point A. The
strict definition is very simple:

Definition 1.2. f is said to be differentiable in x0 if the limit of the incremental ratio as
h → 0 exists and is finite:

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0).

95
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This limit is called the derivative of f in x0 and is denoted by f ′(x0). f is said to be
differentiable if it is differentiable at all points of its domain; the function f ′(x) is also called
the derivative (function) of f .

To say that the limit exists and is finite means in particular that f ′(x0) is a real number:
in other words, if

lim
h→0

f(x0 + h)− f(x0)

h
= ±∞ ,

then the function f is not differentiable in x0.

Remark 1.3. The geometric meaning of the derivative is clear: when we let h tend to zero,
and therefore we move the point B along the curve to the point A, the line AB gets closer
and closer to the tangent line to the graph of f in A. Hence it is natural to interpret the
value of f ′(x0) as the slope of the tangent line to the graph at the point A. If we want to
completely determine the tangent line, just observe that it must have the form y = ax+ b;
we have already noted that a = f ′(x0), moreover the line must pass through A = (x0, f(x0))
and therefore

f(x0) = f ′(x0)x0 + b =⇒ b = f(x0)− f ′(x0)x0

and in conclusion the equation of the tangent line at the point A is
y = f ′(x0)(x− x0) + f(x0).

Example 1.4. Let us study some cases in which the computation of the derivative is
immediate.
If f(x) = C is a constant function, the incremental ratio

f(x0 + h)− f(x0)

h
=

CC

h
≡ 0

is always zero, so the limit is also zero; in conclusion, a constant function is differentiable
and its derivative is the null function:

f(x) ≡ C = cost. =⇒ f ′(x) ≡ 0 (ossia C ′ = 0).
If f(x) = ax+ b, we have immediately

f(x0 + h)− f(x0)

h
=

a(x0 + h) + b− (ax0 + b)

h
≡ a

and therefore the derivative of f(x) = ax+ b is constant and equal to the angular coefficient
a:

(ax+ b)′ ≡ a.

If f(x) = x2, then
f(x0 + h)− f(x0)

h
=

(x0 + h)2 − (x0)
2

h
= 2x0 + h

and sending h to zero you get
f ′(x0) = 2x0

that is simply
(x2)′ = 2x.

If f(x) = x3, then
f(x0 + h)− f(x0)

h
=

(x0 + h)3 − (x0)
3

h
= 3x2

0 + 3x0h+ h2

and taking the limit as h tends to zero we obtain
f ′(x0) = 3x2

0, so that (x3)′ = 3x2 .

With a similar calculation we obtain that for every integer n ≥ 1

(xn)′ = nxn−1.
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Example 1.5. We compute the derivative of the function f(x) =
√
x at a point x0 > 0:

f ′(x0) = lim
h→0

√
x0 + h−√

x0

h

= lim
h→0

√
x0 + h−

√
x

h
·
√
x0 + h+

√
x0√

x0 + h+
√
x0

= lim
h→0

x0 + h− x0

h(
√
x0 + h+

√
x0)

=
1

2
√
x0

.

We can therefore write simply (
√
x)′ =

1

2
√
x

.

Example 1.6. It is not difficult to calculate the derivative of elementary functions. For
example, consider the exponential function f(x) = ex. We have

f(x0 + h)− f(x0)

h
=

ex0+h − ex0

h
=

eh − 1

h
ex0

and so if we send h to zero we get immediately
f ′(x0) = ex0

that is, we obtain the simple rule
(ex)′ = ex.

Let us now consider f(x) = sinx; the incremental ratio is equal to
f(x0 + h)− f(x0)

h
=

sin(x0 + h)− sin(x0)

h
and recalling the addition formula

sin(x0 + h) = sin(x0) cosh+ cos(x0) sinh

the ratio can be written
f(x0 + h)− f(x0)

h
=

cosh− 1

h
sin(x0) +

sinh

h
cos(x0).

We want to calculate the limit as h → 0. We know that limh→0
sinh
h = 1; and we can use

the formula

1− cosh = 2

(
sin

h

2

)2

to obtain

lim
h→0

cosh− 1

h
= − lim

h→0

2

h

(
sin

h

2

)2

= − lim
h→0

sin h
2

h
2

sin
h

2
= 0.

In conclusion, the incremental ratio tends to cos(x0) and we obtain the rule
(sinx)′ = cosx.

In a similarly way we prove that
(cosx)′ = − sinx.

Proposition 1.7. If f is differentiable in x0 then f is continuous in x0.

Proof. It it sufficient to start from the following identity:

f(x0 + h) = h · f(x0 + h)− f(x0)

h
+ f(x0).

If we compute the limit for h → 0 we get then
lim
h→0

f(x0 + h) = 0 · f ′(x0) + f(x0) = f(x0)
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and setting x = x0 + h we obtain
lim

x→x0

f(x) = f(x0)

that is, f is continuous in x0. �

Example 1.8. Not all continuous functions are differentiable! for example the function
f(x) = |x| is not differentiable at the point x0 = 0. To verify this, we write the incremental
ratio in x0 = 0:

f(x0 + h)− f(x0)

h
=

|h| − |0|
h

=
|h|
h
.

Clearly, the limit as h → 0 of this ratio does not exist: in fact the limit from the right is
equal to

lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1,

while the limit from the left is equal to

lim
h→0−

|h|
h

= lim
h→0−

−h

h
= −1.

Note, however, that |x| is differentiable both on the interval x > 0, where |x| = x and
therefore the derivative is equal to +1, and on the interval x < 0, where |x| = −x and
therefore the derivative is equal to −1.
Another example of a continuous but non differentiable function is the function defined as
g(x) =

x√
|x|

for x 6= 0, and g(0) = 0. We leave it to the reader the simple verification that

lim
x→0

g(x) = g(0), lim
h→0

g(0 + h)− g(0)

h
= +∞ .

The following properties will enable us to differentiate all functions obtained as combinations
of elementary functions:

Proposition 1.9 (Rules of differentiation). Let f and g be two differentiable functions.
Then the following rules of differentiation hold:

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′

and, where g is non-zero, (
1

g

)′

= − g′

g2
,

(
f

g

)′

=
f ′g − fg′

g2
.

Proof. Let us check only the first rule (the others can be proved in a similar way,
albeit with some longer computations): the incremental ratio of f + g at a point x0 is equal
to

f(x0 + h) + g(x0 + h)− f(x0)− g(x0)

h
=

f(x0 + h)− f(x0)

h
+

g(x0 + h)− g(x0)

h
and calculating the limit as h → 0 we get immediately

lim
h→0

f(x0 + h) + g(x0 + h)− f(x0)− g(x0)

h
= f ′(x0) + g′(x0).

�

Example 1.10. Compute the derivative of the functions 1

x
,
1

x2
, . . . ,

1

xn
, . . ., with n > 0.

Applying the previous rules we have(
1

x

)′

= − x′

x2
= − 1

x2
,

(
1

x2

)′

= − (x2)′

x4
=

−2

x3
,

(
1

xn

)′

= − (xn)′

x2n
=

−n

xn+1
.
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Example 1.11. The functions ex − e−x

2
and ex + e−x

2
are respectively called hyperbolic

sine and hyperbolic cosine and are each derivative of the other: in fact we have

(e−x)′ =

(
1

ex

)′

=
−ex

(ex)2
= −e−x,

so that (
ex − e−x

2

)′

=
(ex)′ − (e−x)′

2
=

ex + e−x

2
.(

ex + e−x

2

)′

=
(ex)′ + (e−x)′

2
=

ex − e−x

2
.

Proposition 1.12 (Derivative of the inverse function). Let f be a differentiable and
injective function, and let g be its inverse function. Then g is also differentiable and
we have the differentiation rule

g′(y) =
1

f ′(x)
, where we have set y = f(x).

[Omitted.]

Proposition 1.13 (Derivative of the composite function). If f and g are differentiable,
and it is possible to compose them, then also the composite function h(x) = g(f(x)) is
differentiable and the following rule holds:

h′(x) = g′(f(x)) · f ′(x).

[Omitted.]

Example 1.14. We are now able to differentiate almost any function. We study a few
important examples:

(tanx)′ =

(
sinx

cosx

)′

=
(sinx)′ · cosx− sinx · (cosx)′

(cosx)2
=

sin2 x+ cos2 x

cos2 x
=

1

cos2 x

using the rule for the derivative of a ratio. Note that the previous rule can also be written

(tanx)′ =
1

cos2 x
=

sin2 x+ cos2 x

cos2 x
= tan2 x+ 1.

To differentiate log x we can use the rule for the derivative of an inverse function, since
g(y) = log y is the inverse of y = ex: setting y = ex, we have

(log y)′ =
1

(ex)′
=

1

ex
≡ 1

y

which can be written more comfortably

(log x)′ =
1

x
.

With the same method, the function arctan y, inverse of y = tanx, has for derivative

(arctan y)′ =
1

(tanx)′
==

1

tan2 x+ 1
≡ 1

y2 + 1

and then we obtain the rule
(arctanx)′ =

1

x2 + 1
.

Also the function arcsin y, which is the inverse of y = sinx, has a very simple derivative:

(arcsin y)′ =
1

(sinx)′
=

1

cosx
=

1√
1− sin2 x

≡ 1√
1− y2

,
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therefore the rule is
(arcsinx)′ =

1√
1− x2

.

The rule
(arccosx)′ = − 1√

1− x2

is proved in the same way.
Finally, let us deal with powers: to differentiate the function f(x) = xa, x > 0 with a

arbitrary real number, it is sufficient to write
f(x) = xa = (elog x)a = ea log x

and then apply the rule for the derivative of a composite function:

f ′(x) = (xa)′ = (ea log x)′ = ea log x · (a log x)′ = ea log x a

x
= xa a

x
,

that is, after simplifying,
(xa)′ = axa−1

exactly as in the case of integer powers. The case of square roots is particularly interesting;
in fact it can be written

√
x = x

1
2 so that

(
√
x)′ = (x

1
2 )′ =

1

2
x

1
2−1 =

1

2
x− 1

2 =
1

2
√
x
.

On the other hand, for the exponential function f(x) = ax, a > 0, we can write
f ′(x) = (ax)′ = (ex log a)′ = ex log a(x log a)′ = ex log a log a

and we obtain the rule
(ax)′ = ax log a.

As a further application of the derivation rule for the composite function we calculate the
derivative of functions of the type ef(x), log(f(x)) and

√
f(x): in the first case, ef(x) is

composite of ey and y = f(x) and applying Proposition 1.13 we obtain

(ef(x))′ = ef(x)f ′(x),

while in the second and third cases we get

(log(f(x))′ =
f ′(x)

f(x)
,

√
f(x)

′
=

f ′(x)

2
√
f(x)

.

For example, we have:

(ex
2

)′ = ex
2

(x2)′ = 2xex
2

, (esin(x))′ = esin(x)(sin(x)′) = cos(x)esin(x),

√
x+ 1

′
=

1

2
√
x+ 1

, log(cos(x))′ =
cos(x)′

cos(x)
=

− sin(x)

cos(x)
= − tan(x) ,

log(x2 + x)′ =
(x2 + x)′

x2 + x
=

2x+ 1

x2 + x
,

√
log(x)

′
=

log(x)′

2
√
log(x)

=
1

2x
√
log(x)

.

Example 1.15.√
x2 − 1

′
=

2x

2
√
x2 − 1

=
x√

x2 − 1
,

√
x2 + 1

′
=

x√
x2 + 1

,

log(x+
√
x2 − 1)′ =

1 +
2x

2
√
x2 − 1

x+
√
x2 − 1

=

x+
√
x2 − 1√

x2 − 1

x+
√
x2 − 1

=
1√

x2 − 1
,

log(x+
√
x2 + 1)′ =

1 +
2x

2
√
x2 + 1

x+
√
x2 + 1

=

x+
√
x2 + 1√

x2 + 1

x+
√
x2 + 1

=
1√

x2 + 1
.
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We summarize in the following tables the elementary rules of derivation:

f(x) f ′(x)

costanti 0

xa axa−1

log x
1

x

ex ex

ax log a · ax

eg(x) g′(x)eg(x)

log(g(x))
g′(x)

g(x)

f(x) f ′(x)

sinx cosx

cosx − sinx

tanx
1

cos2 x

arcsinx
1√

1− x2

arccosx − 1√
1− x2

arctanx
1

x2 + 1

sin(g(x)) g′(x) cos(g(x))

Problem.

Exercise 4.1 (¹). Calculate the derivative (with respect to x) of the following functions:

6x3 + 2x2 − 2x+ 1 8x7 − 4x2 1

x
− 1

x+ 1

x+ 1

x− 1
e2x

1

x

√
x

√
2− 3x 3x xx log(cosx) arctan (5− 3x2).

Exercise 4.2. Calculate the derivative (with respect to x) of the following functions:
π

x
− log(2) log(3)

1− tan(x)

x
x sin(x)− cos(x)

x

1− cos(x)

1 + ex

1− ex
cos(x)

ex
√
x cos(x)

tan(ax) e−bx tan

(
2

x

)
sin(5x) sinx cosx (sinx)2.

Exercise 4.3. Calculate the derivative (with respect to x) of the following functions:

1

x2

1

xn
3
√
x x

1
2 x

2
3 x− 1

2
1√
x

3

√
1

x

√
x− 1

3
√
2− 3x

√
x+ 1

x− 1

5
√
x2 xex − 1 (xex − 1)2 sin2 x 2x

(sinx)x
x2 − 1

2− 3x2
arcsin

√
x

1 + 2ex

x+ 6
tan

(
1

cosx

)
log

1√
x

log
1 + x

1− x
arctan

1

x
x log x (3− 4x) log(2x+ 5)

x+ xe1/x
1

x
ex e

1
x−1 x2 log(2− 6x)

e1/x − 1

e1/x + 1√
x3 + sin(x) log(

√
x2 + 1 − x) log(2x+

√
4x2 + 1).
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2. Maxima and minima

One of the main applications of derivatives is in the study of the maxima and minima of
functions. First of all, we recall the precise terminology on maxima and minima, which can
be relative (i.e. local) or absolute (i.e. global).

Definition 2.1. Let f : I → R be a function defined on an interval I. We say that M is
the maximum of f on I, and we write

M = max
I

f

if there exists a point x0 ∈ I where the value of the function is M , and in no other point of
I the value of f is larger than M :

f(x0) = M ≥ f(x) ∀x ∈ I.

the point x0 is called absolute maximum point of f on I.
Instead, x0 is said to be a relative maximum point (or local maximum) of f if there exists
δ such that f(x0) ≥ f(x) for x such that |x − x0| < δ (i.e. if f(x0) is greater than the
values of f at points close to x0). The definitions of absolute and relative minimum point
are analogous.

f(x)

a x1 x2 x3 x4 b

Figure 4.2. Points of maximum and minimum of the function f : [a, b] → R.
Absolute maximum b; absolute minimum x2; relative maxima x1, x3, b; relative
minima a, x2, x4. Note that in the points x1, x2, x3, x4, which are interior to the
interval [a, b], the tangent line to the graph is horizontal.

Of course, an absolute maximum point is also a point of relative maximum, even if the
converse is not true in general.
The result that relates maxima, minima and derivatives of f is the following. Recall that

if [a, b] is a closed interval, a point x0 is said interior to the interval if a < x0 < b, while the
two points a and b are the extrema of the interval.

Theorem 2.2. Assume f : [a, b] → R is differentiable at a point x0 interior to the interval
[a, b]. If x0 is a point of relative maximum or minimum for f , then f ′(x0) = 0.
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Proof. Let us consider the case of a point of maximum (the other case is similar).
Then if h is small enough we have f(x0) ≥ f(x0 + h), so that the difference

f(x0 + h)− f(x0) ≤ 0

is negative (if h is small enough). Next, consider the incremental ratio: if h > 0 we have
f(x0 + h)− f(x0)

h
=

(−)

(+)
≤ 0

and therefore, applying the theorem of the permanence of the sign, we obtain

lim
h→0+

f(x0 + h)− f(x0)

h
≤ 0.

If instead we consider the h < 0, we have
f(x0 + h)− f(x0)

h
=

(−)

(−)
≥ 0

and therefore in the same way we have

lim
h→0−

f(x0 + h)− f(x0)

h
≥ 0.

In conclusion
f ′(x0) = lim

h→0

f(x0 + h)− f(x0)

h
= 0.

�

Remark 2.3. The previous theorem does not claim that if the derivative vanishes at a
poin then this point is a maximum or minimum: for example, the function f(x) = x3 has
derivative equal to zero in the origin but it is always strictly increasing.

x

x3

Figure 4.3. The derivative of x3 vanishes at 0 but the function has no maxima
and no minima.

The theorem states something different: if there is an interior point of maximum or minimum,
then the derivative must vanish in that point. This gives a hint on where the maxima and
minima might be: indeed for a differentiable function they can be found exclusively
1) at the extrema of the interval, or
2) at the interior points in which the derivative is zero.

After finding all the points where the derivative vanishes, we have to examine them one by
one to understand if they are points of maximum or minimum, or not; and one shouldn’t
forget to study what happens at the extrema of the interval.
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3. The Basic Theorems of Calculus

Recall that a continuous function on a closed bounded interval satisfies Weierstrass’ Theorem;
therefore we can always find a point where the value of f is greater than all other values, and
a point where the value of f is smalled that all other values. These two points are usually
distinct; if they coincide then the function must be flat, i.e. a constant.
If we add the hypothesis that f is differentiable we get several interesting results:

Theorem 3.1 (Rolle’s Theorem). Let f : [a, b] → R be a continuous function on [a, b],
differentiable on ]a, b[. If f(a) = f(b) then there is a point c ∈ ]a, b[ where the derivative is
zero: f ′(c) = 0.

f(a)=f(b)

a bc

f ′(c)=0

• •

Figure 4.4.

Proof. By Weierstrass’ Theorem the function admits absolute maximum and minimum
on [a, b]; let x0 be the point of maximum and x1 the point of minimum.
If one of these two points is interior to the interval [a, b], then we know that in that point

the derivative vanishes, and therefore the proof is over.
If, on the other hand, neither of these two points is interior, then both these points are at

the extrema of the interval; but the value of f at the extrema is the same, therefore it follows
that f(a) = f(b) = f(x0) = f(x1). This means that the maximum and the minimum of f
coincide i.e. the function is constant, and therefore the derivative is zero at all points. �

Theorem 3.2 (Cauchy’s Theorem). Let f, g : [a, b] → R be continuous functions on [a, b]
which are differentiable on ]a, b[. Then there exists a point c ∈]a, b[ where

f ′(c) · [g(b)− g(a)] = g′(c) · [f(b)− f(a)].

Proof. Consider the function
F (x) = f(x) · [g(b)− g(a)]− g(x) · [f(b)− f(a)].

The function F is continuous on [a, b], differentiable on ]a, b[ and its derivative is
F ′(x) = f ′(x) · [g(b)− g(a)]− g′(x) · [f(b)− f(a)].

Also we immediately see that
F (a) = F (b) = f(a)g(b)− f(b)g(a).

So we can apply Rolle’s Theorem and we get that it exists a point c ∈]a, b[ where F ′(c) = 0,
that is

F ′(c) = f ′(c) · [g(b)− g(a)]− g′(c) · [f(b)− f(a)] = 0

hence the thesis. �
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Theorem 3.3 (Lagrange, or Mean Value Theorem). Let f : [a, b] → R be a continuous
function on [a, b] which is differentiable on ]a, b[. Then there exists a point c ∈ ]a, b[ where

f ′(c) =
f(b)− f(a)

b− a
.

Proof. It is sufficient to apply the previous theorem to the functions f and g(x) = x;
the assumptions are satisfied, thus applying Cauchy’s Theorem we get a point c where

f ′(c) · [g(b)− g(a)] = g′(c) · [f(b)− f(a)];

but g(b) = b, g(a) = a, and clearly g′(x) = (x)′ = 1 at each point, so that
f ′(c) · [b− a] = f(b)− f(a)

and this implies the thesis. �

y

x
a c a

α

y=f(c)+f ′(c)(x−c)=f(c)+
f(b)−f(a)

b−a (x−c)

•A

•B

Figure 4.5. Mean Value Theorem: the tangent line in c is parallel to the
segment AB: f ′(c) = tan(α).

Remark 3.4. Recall that f ′(c) can be interpreted as the slope (the angular coefficient)
of the tangent to the graph at x = c; instead, the second member is the incremental ratio
between the points x = a and x = b, which expresses the inclination of the straight line
passing through the points A = (a, f(a)) and B = (b, f(b)). Lagrange’s Theorem states
simply that there is a point where the tangent to the graph has the same slope as the
straight line through A and B.

Lagrange’s Theorem has some consequences of the utmost importance:

Corollary 3.5. Let f : [a, b] → R be a continuous function on [a, b] which is differentiable
on ]a, b[. Then

f is constant ⇐⇒ f ′(x) = 0 ∀x ∈]a, b[.

Proof. If the function is constant, we already know that its derivative is zero at all
points.
Conversely, suppose that the derivative of f is zero at all points. We choose two arbitrary

points x1 < x2 within the interval, and we apply Lagrange’s Theorem on the interval [x1, x2]:
we obtain that there exists a point c ∈]x1, x2[ such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

Since f ′(c) = 0 for any c, we get that the ratio at the second member is equal to zero, hence
f(x1)− f(x2) = 0 and therefore f(x1) = f(x2). But then we have proved that the values of
f at any two points x1, x2 are the same, and this means that f is constant. �
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Corollary 3.6. Let f : [a, b] → R be a continuous function on [a, b] which is differentiable
on ]a, b[. Then
(i) f is increasing ⇐⇒ f ′(x) ≥ 0 ∀x ∈ ]a, b[ ;
(ii) f is decreasing ⇐⇒ f ′(x) ≤ 0 ∀x ∈ ]a, b[ .

Proof. We will prove only case (i), the second is completely analogous.
If f is increasing, the numerator and denominator of the incremental ratio have always the

same sign: when h > 0
f(x0 + h)− f(x0)

h
=

(+)

(+)
≥ 0

and when h < 0
f(x0 + h)− f(x0)

h
=

(−)

(−)
≥ 0.

Thus the incremental ratio is positive, and hence also the limit of the incremental ratio, i.e.
the derivative, must be positive.
Conversely, suppose that the derivative is always positive. Proceeding as in the previous

corollary, we choose two arbitrary points x1 < x2 in the interval, and we apply Lagrange’s
Theorem on [x1, x2]: we obtain that there exists a point c ∈]x1, x2[ such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

Since we know that f ′(c) ≥ 0 for any point, we have
f(x2)− f(x1)

x2 − x1
≥ 0

and multiplying by x2 − x1 > 0, we obtain
f(x2)− f(x1) ≥ 0 =⇒ f(x2) ≥ f(x1).

Therefore we have shown that for any two points x1 and x2,
x1 < x2 =⇒ f(x1) ≤ f(x2)

which means precisely that f is increasing. �

Example 3.7. We compute the minimum of the function f(x) = ex+e−x. The function is
always positive and limx→±∞ f(x) = +∞. The derivative is equal to ex − e−x and vanishes
when ex = e−x, i.e. when x = −x. Therefore the derivative vanishes only for x = 0 and at
this point we have f(0) = 2.
We note that from the relations ex ≥ 1 + x and e−x ≥ 1− x it follows immediately that

ex + e−x ≥ (1 + x) + (1− x) = 2 for every x .

Problems.

Exercise 4.4 (¹). Say which of the following functions satisfy the hypotheses of Rolle’s
theorem in the interval [−1, 1].

x2 − 3, x3 + x2 + 4, x2 − |x|, x2 +
1

x2
, cosx+ sin(x2), tan(πx).

Exercise 4.5. Calculate the absolute minimum of the function 2x + 2−x.
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4. De l’Hôpital’s Theorem

The use of derivatives allows in many cases to calculate with ease some indeterminate
limits. For example, the following result can be used to calculate the limits of the form 0

0 :

Theorem 4.1 (De l’Hôpital’s theorem). Let f, g : [a, b] → R be two continuous functions
on [a, b] which are differentiable on ]a, b[. Let x0 ∈ ]a, b[ be such that f(x0) = g(x0) = 0,

and assume that g′(x) 6= 0 for x 6= x0. If the limit lim
x→x0

f ′(x)

g′(x)
exists, then also the limit

lim
x→x0

f(x)

g(x)
exists, and the two limits coincide:

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Proof. We apply Cauchy’s Theorem to the two functions f and g on the interval of
extrema x0 and x; it follows that there is an intermediate point z such that

f ′(z) · [g(x)− g(x0)] = g′(z) · [f(x)− f(x0)].

Since f(x0) = g(x0) = 0 the relation simplifies:
f ′(z)g(x) = g′(z)f(x)

and dividing by g′(z) 6= 0 we get
f(x)

g(x)
=

f ′(z)

g′(z)
.

If we now calculate the limit as x → x0, and observe that also z → x0 since it is between x
and x0, we get

lim
x→x0

f(x)

g(x)
= lim

z→x0

f ′(z)

g′(z)

which is the thesis. �

Remark 4.2. The theorem holds true in many other cases:
1) for indeterminate limits of the form ∞

∞ ;
2) for limits from the right;
3) for limits from the left;
4) when x → +∞ or x → −∞.

We will not prove all cases but we will use the other variants of the theorem in all useful
situations.

Remark 4.3. We verify the special limit

lim
x→0

sinx

x
= 1.

This is an indeterminate limit of the form 0/0, and given that the limit of ratio of derivatives

lim
x→0

(sinx)′

(x)′
= lim

x→0

cosx

1
= 1

exists and is equal to 1, we conclude that also the original limit exists and is equal to 1.
Another verification:

lim
x→+∞

ex

x
= +∞.

This is an indeterminate limit of the form ∞/∞. The limit of ratio of derivatives exists:

lim
x→+∞

(ex)′

(x)′
= lim

x→+∞

ex

1
= +∞

and this proves the result.
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Remark 4.4. Sometimes an application of the theorem produces again an indeterminate
limit; but if we continue to apply the theorem, passing to the second derivatives (or thirds
etc.) in some cases we arrive at a limit which is no longer indeterminate, so that the method
can still be applied. An example: calculate the limit

lim
x→0

sinx− x

x3
.

The ratio of derivatives
cosx− 1

3x2

is again an indeterminate limit 0/0; we reapply the theorem and once again differentiate the
numerator and denominator:

− sinx

6x
;

still an indeterminate limit! (even if we know how to calculate it very well). Differentiating
one last time we get

− cosx

6
which tends to − 1

6
and in conclusion the original limit is equal to − 1

6 .

The Theorem of de l’Hôpital can also be applied to the computation of indeterminate limits
of the form 0 · ∞. For example, to calculate the limit

lim
x→0+

x log x

we can write
x log x =

log x
1
x

and in this way we have written the limit in the indeterminate form ∞
∞ ; hence differentiating

numerator and denominator

(log x)′(
1

x

)′ =

1

x

− 1

x2

= −x

the limit becomes simply
lim

x→0+
x log x = − lim

x→0+
x = 0.

Problem.

Exercise 4.6. Calculate the following limits (warning! Check first that they are actually
indeterminate limits of a suitable form; if they aren’t, you should not apply de l’Hôpital’s
Theorem!).

lim
x→0

sin(2x)

x
, lim

x→+∞

ex + x

x
, lim

x→0

ex − 1

sinx
, lim

x→+∞

ex − 1

sinx

lim
x→2

x2 − 4x+ 4

x4 − 16
lim
x→1

log x

x3 − 3x2 + 3x− 1
lim
x→1

ex−1 − x

(x− 1)2

lim
x→+∞

x3 − x2 + x

−2x3 + x
, lim

x→0

x3 − x2 + x

−2x3 + x
, lim

x→−∞

2x2 + 3x− 1

x2 + 2x

lim
x→0+

sin(x2)

x3
, lim

x→0−

sin(x2)

x3
, lim

x→0+

log(sinx)

x2
, lim

x→0

x2

ex2 − 1

lim
x→0

tanx

x
, lim

x→0

sin(x− x3)

x
, lim

x→0+

log x√
x

, lim
x→0+

log x

x

lim
x→0+

e1/x + 1

e1/x − 1
, lim

x→0−

e1/x + 1

e1/x − 1
, lim

x→π
2

+

cosx

x− π
2

, lim
x→π

2
−

cosx

x− π
2
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lim
x→2±

x− 2

x3 − 5x+ 2
, lim

x→1±

x− 2

x3 − 5x+ 2
, lim

x→0+

3x+ 2
√
x

x−
√
x

, lim
x→+∞

3x+ 2
√
x

x−
√
x

lim
x→0

e3x − 1

2x
, lim

x→0

1− e2x

x
, lim

x→0

2x2

sin(x2)
, lim

x→±∞

ex − 1

e2x + 1

lim
x→0+

e
√
x

x2 + 1
, lim

x→0

1− cosx

x2
, lim

x→0

2− 2 cosx− x2

x4
, lim

x→0±

x2 − sinx

x3
.

Exercise 4.7. Calculate the following limits:

lim
x→+∞

x sin

(
1

x

)
, lim

x→0+

√
x · log x, lim

x→0+
log x · sinx, lim

x→+0+
x log(x− x2)

5. Study of functions

At this point, we have many tools to study the behavior of a function and draw its
approximate graph. The in–depth study of a function can be very complex; but we will
consider only quite simple examples, for which the following steps provide sufficient information
to understand the behaviour of the graph. Given a function f(x) expressed as a combination
of elementary functions,

(1) establish the set of definition of the expression; usually, this set is the union of a
finite number of intervals;

(2) check if the function is even, or odd, or periodic;
(3) determine if the function has any zeros, and where it is positive and negative;
(4) calculate the limits of the function at the ends of the intervals where it is defined;
(5) at this stage it is already possible to start drawing a (very approximate) graph

which can serve as a guide in the following calculations;
(6) compute the derivative f ′ e compute (if there are any) its zeros;
(7) determine the intervals on which the derivative is positive or negative and therefore

the intervals of increase and decrease of f ;
(8) find any maxima and minima of the function;
(9) complete the graph using the elements just calculated.

Warning: for certain functions, it may happen that some of the previous properties are too
difficult to study; in such cases, one tries to understand the behavior of the function using
only the remaining information. For example, often it is very difficult to calculate the zeroes
of a function, but knowing the precise location of zeros is not essential for an approximate
study. If the function contains absolute values, it is recommended as a preliminary step,
to split the domain into zones where it is possible to resolve the absolute values, and then
study the functions thus obtained separately.
Example 5.1. Study of the function

f(x) =
1

x
e

1
x .

The expression is not defined if x = 0 but all other points present no problem; the definition
set is

D.S. = {x 6= 0}.
The function is not even or odd, moreover it does not vanish at any point. We immediately
see that the sign of the function is exactly the sign of x since the exponential is positive:

f(x) > 0 for x > 0, f(x) < 0 for x < 0.

We calculate the limits at the extrema of the definition intervals, that is, we study the limits
for x → ±∞ and x → ±0. For x → +∞ the function 1/x → 0, thus we have it right away

lim
x→+∞

1

x
e

1
x = 0 · e0 = 0
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and similarly
lim

x→−∞

1

x
e

1
x = 0 · e0 = 0.

Moreover
x → 0+ =⇒ 1

x
→ +∞

and therefore
lim

x→0+

1

x
e

1
x = +∞.

Finally,
x → 0− =⇒ 1

x
→ −∞, e

1
x → 0

and therefore we are faced with the indeterminate form (−∞) · 0; but after the change of
variable

y =
1

x
the limit becomes

lim
x→0−

1

x
e

1
x = lim

y→−∞
yey = 0.

Knowing the limits and the sign of the function, we can already draw a very rough graph:

?

?

Figure 4.6. Behavior at the extrema of the graph of 1
x
e

1
x .

Even if it is not precise, the graph suggests that the function could have a relative minimum
in a certain point x < 0. To proceed, we calculate the derivative:(

1

x
e

1
x

)′

= − 1

x2
e

1
x +

1

x
e

1
x

(
− 1

x2

)
= −x+ 1

x3
e

1
x

that is
f ′(x) = −x+ 1

x3
e

1
x .

The derivative vanishes when (x+ 1) is null, that is
f ′(x) = 0 ⇐⇒ x = −1.
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We then study the sign of f ′; the exponential is always positive, so we just study the sign of

−x+ 1

x3
.

We see that (x+ 1) is positive for x > −1 and negative for x < −1, while x3 has the same
sign as x, therefore

f ′(x) > 0 for − 1 < x < 0, f ′(x) < 0 elsewhere.
Then we conclude that

f is increasing on −1 < x < 0, decreasing on x < −1 and on x > 0

and of course
f has a minimum for x = −1.

In conclusion, we have enough elements to draw the graph:

f(x) = 1
xe

1
x

−1

Figure 4.7. Graph of the function 1
x
e

1
x

Example 5.2. Study of the function

f(x) =
x2 + 2

x2 − 9
.

The function is defined as the ratio of two polynomials; the only problem is the denominator
that could vanish. Hence the set of definition is given by the condition

x2 − 9 6= 0 ⇐⇒ x 6= ±3.

The function is even: in fact

f(−x) =
(−x)2 + 2

(−x)2 − 9
=

x2 + 2

x2 − 9
= f(x).

Hence the graph is symmetric with respect to the ordinate axis. The numerator x2+2 never
vanishes and is always strictly positive, thus the function f(x) can never be equal to zero,
and has the same sign as the denominator:

x2 − 9 > 0 ⇐⇒ x > 3 or x < −3

and therefore
f(x) > 0 ⇐⇒ x > 3 or x < −3

f(x) < 0 ⇐⇒ −3 < x < 3.

We calculate the limits at the ends of the definition intervals: since the excluded points are
x = ±3, we need to calculate six limits:

x → ±∞, x → −3±, x → 3±.
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The first two are obtained by factoring out the maximum degree:
x2 + 2

x2 − 9
=

x2
(
1 + 2

x2

)
x2
(
1− 9

x2

) =
1 + 2

x2

1− 9
x2

and therefore
lim

x→±∞
f(x) =

1

1
= 1.

We calculate the limits as x → 3±. When x → 3+ the denominator tends to 0 and is
positive, that is

x− 3 → 0+

while the numerator approaches 11, so the function tends to +∞:
lim

x→3+
f(x) = +∞.

When x → 3− the denominator tends to 0 and is negative, that is
x− 3 → 0−

while the numerator approaches 11, so the function tends to −∞:
lim

x→3−
f(x) = −∞.

Now we calculate the limits as x → −3±. When x → −3+ the denominator tends to 0 and
is negative, that is

x− 3 → 0−

while the numerator again tends to 11, so that the function tends to−∞:
lim

x→−3+
f(x) = −∞.

When x → −3− the denominator tends to 0 and is positive, that is
x− 3 → 0+

while also this time the numerator tends to 11, hence the function tends to +∞:
lim

x→−3−
f(x) = +∞.

We can draw a very rough first graph based on the limits we calculated:
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f(x)→−∞ per x→−3+,3−

f(x)→+∞ per x→−3−

f(x)→1 per x→−∞

f(x)→+∞ per x→3+

f(x)→1 per x→+∞

3

1

−3

?

? ?

Figure 4.8. Limits at the extrema of the function x2 + 2

x2 − 9
.

To check our suspicions about the shape of the graph we calculate the derivative: we obtain

f ′(x) = − 22x

(x2 − 9)2

and we see that f ′ vanishes only for x = 0, while
f ′ < 0 ⇐⇒ x > 0, f ′ > 0 ⇐⇒ x < 0,

that is
f is increasing for x < 0 and decreasing for x > 0.

In particular, we have
x = 0 Is a local maximum point.

Now we can plot the graph of f :
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3

1

−3

Figure 4.9. Graph of the function x2 + 2

x2 − 9
.

Problems.

Exercise 4.8. Study the functions listed in Exercise 3.11 and plot an approximate graph.

Exercise 4.9. Study the following functions and plot a rough graph of them.

xex, xe−x, xe1/x, e−1/x, e−x2

, x3 − x,
ex − 1

ex

2x+ |x|, xe−1/x, xx,
1

x2 − 1
,

1

e2x
,

x2

e2x
,

1

x
ex−1

√
x+ 1

x− 1
, log

(
1

2− x

)
, e

1
x−2 , e

x
x+1 , log(ex − 1)

ex
2−x, e2x

2−x3

,
x

2x− 3
,

x2

2− x
,

x+ 1

x2 − 1
,

x3 − 3x2 + 2x, (x− 1)e1/x,
x

x2 − 4
,

ex

x− 2
,

x+ 1

ex
,

x

e2/x
,

x2

e1/x
, log(1− ex), log(x2 − 2x+ 3)

x log x, log(2− 2x2), x log
1

x
, x log

(
1

x− 2

)
ex + 1

ex − 1
,

e−x − 1

ex
,

e2x + 1

ex + 1
,

1

(x+ 2)(x− 2)
,
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√
1− 2x,

1

|x|
,

1√
x
, (x− 1)2 − log x, ex+1/x,

log(x+ x2),
√
1 + x2,

√
1− e−x, log(ex + e−x)

|x|+ |x− 1|, x+ |x|, |x− 1|+ |2x+ 3|, (x+ |3− 2x|)2.
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6. Taylor’s polynomial

We have seen that if a function f : I → R defined on an interval I is differentiable at all
points of I, we can define a new function f ′ : I → R, the derivative of f . If f ′ is differentiable
at a point x, we denote this derivative with f ′′(x) (instead of writing (f ′)′(x)); this is called
the second derivative of f in x. Of course if f ′ is differentiable at all points of I we obtain
a new function f ′′, called second derivative of f . We also say that f is twice differentiable.
The procedure may to continue; the successive derivatives are indicated with f ′′′ (third
derivative), f (4) (fourth derivative: note that from 4 on we use numbers!) and so on. These
functions are called as a whole, the higher order derivatives of the function f .
For example, if f(x) = sinx, we have immediately:

f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f (4)(x) = sinx.

We see that in this case starting from the fourth derivative we get back the same series of
derivatives. If we try instead to differentiate a polynomial, for example f(x) = x3 − 3x+ 2,
we get:

f ′(x) = 3x2 − 3, f ′′(x) = 6x, f ′′′(x) = 6, f (4)(x) = 0

and all derivatives from the fourth onwards are null. Note that this phenomenon happens
for all polynomials: if f is a polynomial of degree n, then f ′ is a polynomial of degree n− 1,
f ′′ of degree n− 2 and so on, until you get f (n+1) = 0.
Successive derivatives can be used to discover further properties of the function f and its

graph. For example, the sign of f ′′ is linked to the properties of convexity of the graph of f .
Here however we focus only on one very important application of the successive derivatives,
namely the Taylor polynomial.

Definition 6.1. Suppose f : I → R is defined on the open interval I and is differentiable
n times, and let x0 ∈ I. The Taylor polynomial of f of order n at the point x0 is the
polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

For example, the Taylor polynomial P1(x) at the point x0 = 0 is given by
P1(x) = f(0) + f ′(0)x

while the Taylor polymial at x0 is
P1(x) = f(x0) + f ′(x0)(x− x0).

Note that P1(x) is precisely the tangent line to f at x0.

Example 6.2. We compute the Taylor polynomial P3(x) at the point 0 for the function
f(x) = sinx. We first observe that

f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx,

from which we obtain that
f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1.

Substituting the values thus obtained, we obtain

P3(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
= x− x3

6
.

Taylor’s polynomial is an indispensable tool to approximate the values of a function f . In
fact it is much easier to compute a polynomial than an arbitrary function (especially for a
computer!), and on the other hand the previous definition ensures that, at least if x remains
close to the point x0, the values of Pn(x) are very close to those of f(x). To measure the
distance between f(x) and Pn(x) we calculate the difference:
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Definition 6.3. Let x0, f and Pn(x) be as in the previous definition. The Taylor remainder
of f of order n in the point x0 is the difference

Rn(x) = f(x)− Pn(x).

Our hope is that the remainderRn is small (in an appropriate sense) and therefore that
the Taylor polynomial is a good approximation for f(x); if instead the remainder were big,
the approximation would be bad. We state without proof the fundamental result on Taylor
polynomials, which responds positively to our expectations.

Theorem 6.4. Suppose f : I → R is defined on the open interval I and is differentiable
n+ 1 times, and let x0 ∈ I. Then we have

lim
x→x0

Rn(x)

(x− x0)n
= 0.

This theorem shows that the remainder is very small for x close to x0 (even null if x = x0)
and increases if we move away from point x0. More precisely, we see that Rn(x) tends to 0
for x → x0 faster than (x − x0)

n. It can be proved that the Taylor polynomial is the only
polynomial of degree n with this property. In other words, if replace f(x) by Pn(x), for n
large enough and for x close enough to x0, we make a small error (which can be computed
using Rn(x)).
In many practical applications of Calculus, it is necessary to approximate quantities and

ensure that the error is not larger than a given threshold. Theorem 6.4 is still not sufficient
for this purpose, and we need a more precise estimate of the remainder Rn(x). To this end,
we state without proof the second fundamental result on Taylor polynomials.

Theorem 6.5. Suppose f : I → R is defined on the open interval I, f is differentiable n+1
times, with continuous derivatives, and x0, x ∈ I. Then there exists a point ξ between x0

and x such that
Rn(x) =

f (n+1)(ξ)(x− x0)
n+1

(n+ 1)!
.

Example 6.6. . We show how to approximate the number sin 1
10 with an error of less than

1/10000. It is convenient to use the Taylor polynomial of the function f(x) = sinx of order
n at the point x0 = 0. We observe that the function f(x) = sinx is differentiable infinite
times. Also, for any n ∈ N, we see easily that f (n+1)(x) = ± sinx or f (n+1)(x) = ± cosx. It
follows that ∣∣∣f (n+1)(x)

∣∣∣ ≤ 1, for every x ∈ R.

Using Theorem 6.5 with x0 = 0, x = 1
10 , we have therefore∣∣∣∣Rn

(
1

10

)∣∣∣∣ ≤ 1

(n+ 1)!10n+1
.

If we choose n such that (n+1)!10n+1 > 1000, the error Rn will therefore be of the required
size. We are immediately convinced that for n = 3 we have∣∣∣∣R3

(
1

10

)∣∣∣∣ ≤ 1

240000
≤ 1

10000
,

as requested. In conclusion, a good approximation of sin 1
10 is given by the polynomial of

order 3, which we calculated earlier, that is, P3(x) = x − x3/6, which in x = 1
10 returns as

a result
sin

1

10
=

1

10
− 1

6000
+ error = 599

6000
+ error = 0, 09983 + error,

with an error not greater than 1/10000. In conclusion sin 1
10 ' 0, 0998... with four correct

decimal digits.
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Problems.

Exercise 4.10. Compute the Taylor polynomial P3(x) at the point 0 for the functions
f(x) = sinx, f(x) = ex, f(x) = x3 − 3x+ 2, f(x) = log(1 + x).

Exercise 4.11. Approximate the numbers cos 1
100 , e 1

10 with error less than 1/10000.
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7. Functions of several variables

The notions seen so far, are easily extended to the case of functions of several variables,
even if of course the things are a bit more complicated. We work for simplicity with functions
of two variables; the extension to the general case of n variables is done without particular
difficulties.
First of all, R2 is the well-known vector space studied in Linear Algebra and in Section 7

whose points are pairs of real numbers x = (x2, x2). We recall that the distance between
two points x = (x2, x2) and y = (y2, y2) is the number, positive or null,

d(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2.

Another common notation is
|x− y| instead of ‖x− y‖.

In particular, the distance of the point x from the origin 0 = (0, 0) is precisely the length of
the vector from the origin to point x.
The triangle inequality states that one side of a triangle with vertices x, y, z is always

shorter than the sum of the other two. In formulas we can write
‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ for all points x, y, z ∈ R2.

The open ball with center x and radius r > 0 in R2 is a set of the type
B(x, r) = {y : ‖x− y‖ < r}.

This is of course the disk with center x and radius r, without the boundary. An open set is
a subset A ⊆ R2 with the following property:

if A contains a point x then it contains also a ball B(x, r).
It is easy to see that an open ball is an open set. Other very useful concepts when working
on R2 are the following:

• a set C is closed if its complementary (= the set of points outside C) is open
• a set is bounded if it is contained in a ball
• a set is compact if it is closed and bounded.

A real-valued function of two variables is simply a function
f : A → R, where A is a subset of R2.

The notions of limit and continuity for a function of two variables are virtually identical to
the case of a single variable:

Definition 7.1. Let f : A \ {x0} → R and x0 ∈ A. We say that f has limit L as x tends
to x0 if for any ε > 0 there exists δ > 0 such that

‖f(x)− L‖ < ε for every x ∈ A \ {x0} such that ‖x− x0‖ < δ.

We write then
lim

x→x0

f(x) = L,

or also f → L for x → x0.
If f is defined also in x0 and limx→x0

f(x) = f(x0), we say that f is continuous in x0; if f
is continuous in every point of A we say simply that f is continuous.

Also the properties of limits and continuous functions remain the same as in the case of a
single variable, and can be proved in same way:

• if f → L and g → M as x → x0, then we have also
f + g → L+M, f − g → L−M, fg → LM and (if M 6= 0) f/g → L/M

Se M 6= 0 si ha anche f/g → L/M , e se M > 0 si ha gf → ML
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• as a consequence, if f, g are continuous functions then also f + g, f − g, fg, f/g
(if g 6= 0) and gf (if g > 0) are continuous

• Weierstrass’ Theorem: if f : C → R is continuous and C is a compact subset
of R2, then f has maximum and minimum on C.

When we define derivatives, we encounter the first important difference from the case of a
single variables. For example, consider the function of two variables

f(x, y) = x2y − cos(x+ y2).

A very natural idea is to keep the variable y fixed, as if it were a constant, and differentiate
with respect to the variable x: applying the known rules, we get the function

2xy + sin(x+ y2).

But we can also keepx fixed instead, and differentiate with respect to y, obtaining
x2 + sin(x+ y2) · 2y.

The result is different; these two derivatives are indicated with
∂f

∂x
= 2xy + sin(x+ y2) and ∂f

∂y
= x2 + sin(x+ y2) · 2y.

We give a precise definition:

Definition 7.2. Let A be an open set of R2, f(x, y) : A → R a function and (x0, y0) a
point of A. The partial derivative of f with respect to x at the point (x0, y0) is the limit

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h

while the partial derivative of f with respect to y at the point (x0, y0) is the limit
∂f

∂x
(x0, y0) = lim

k→0

f(x0, y0 + k)− f(x0, y0)

k
.

When both limits exist we say that the function has partial derivatives at (x0, y0), and if
this happens at all points of A we say that f has partial derivatives.

Here the difficulties begin: in the case of several variables, knowing that a function has
partial derivatives is not as strong as in the case of a single variable: for example, it may
happen that the function is not continuous. To get results comparable to those obtained
previously we need the stronger notion of a differentiable function, which we now define.
Assume that f(x, y) has partial derivarives in a point (x0, y0) and let L be the function

defined on R2 as follows:

L(h, k) = c1h+ c2k where c1 =
∂f

∂x
(x0, y0) and c2 =

∂f

∂y
(x0, y0).

In other words, L is the scalar product of the vector (h, k) with the vector of partial
derivatives at the point (x0, y0).

Definition 7.3. We say that f is differentiable in (x0, y0) if the following limit exists and
is equal to 0:

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0, y0)− L(h, k)

‖(h, k)‖
= 0.

If this property holds at every point of A we say that f is differentiable. The map L (which
depends on the point (x0, y0)) is called the differential of f in (x0, y0).

The differential is the “true” generalization of the derivative for functions of several variables.
We list without proof some basic properties for a function f : A → R defined on an open
set A.

• If f is differentiable at a point then it is also continuous at that point
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• If f has partial continuous derivatives then f is differentiable
• Assume A is a ball. If f is differentiable and the partial derivatives arezero

everywhre, then f is a constant functions.

Problems.

Exercise 4.12. Compute the partial derivatives with respect to x and y for the functions
• f(x, y) = cos(xy) + exp(x− y) f(x, y) = exp( xy

1+x2 )

• f(x, y) = log(1 + x2 + 2y2) f(x, y) = ex−y cos(x+ 2y)
• f(x, y) = arctan y

x f(x, y) = arctan x
y

• f(x, y) = x−y
x+y f(x, y) = x2+y2

x3+y3

• f(x, y) = x
y2 − y

x2 f(x, y) = arctan(x2y) + arctan(xy2)

• f(x, y) = ex
2+xy−y2

f(x, y) = xy
x2+y2 .
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8. Complex numbers

8.1. The complex plane. The set of complex numbers C is simply R2, the set of
ordered pairs of real numbers (x, y) i.e. the “Cartesian plane”, with a new notation and an
additional operation.
The new notation is the following: we denote the vector (0, 1) by i and call it the imaginary

unit. Then a generic vector (x, y) is written z = x + iy = (x, y). The components x and y
are called real part and imaginary part of z:

z = x+ iy, x = <z, y = =z.
The sum of two vectors z1 = x1 + iy1 and z2 = x2 + iy2 in the new notations becomes

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

from which we see that <(z1 + z2) = <(z1) + <(z2) and =(z1 + z2) = =(z1) + =(z2).
Furthermore, theconjugate of z = x+ iy is the vector z = x+ iy = x− iy. We stop calling
z = (x, y) = x+ iy a vector and begin to call it a complex number.
We will always imagine that R is immersed in C in the natural way: that is, we shall

identify the real number x with the complex number (x, 0) = x+ i0 = x. Then we say that
a complex number is real if its imaginary part is zero, and that it is purely imaginary if its
real part is zero.
The new operation is the product of complex numbers, defined as follows:

z1z2 = (x+ iy1)(x+ iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1).

In particular we have i2 = i i = −1, thus in this new system of numbers there exist numbers
whose square is −1! The module of z is just the length of the vector z = (x, y):

|z| = |x+ iy| = |(x, y)| =
√
x2 + y2.

It is easy to check that
|z|2 = zz.

We know that the length of vectors allows to define a distance on C = R2 given by

d(z1, z2) = |z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2.

This distance satisfies the triangle inequality
d(z1, z3) ≤ d(z1, z2) + d(z2, z3) for all z1, z2, z3 ∈ C

which implies (writing d(z1 + z2, 0) ≤ d(z1 + z2, z2) + d(z2, 0))
|z1 + z2| ≤ |z1|+ |z2|.

We can also introduce the scalar product of two complex numbers, defined as
(z, w) = zw.

This is a bilinear form, antisymmetric (i.e. (z, w) = (w, z)), satisfying
(z, z) = |z|2 ≥ 0

and the Cauchy-Schwartz inequality

|(z, w)| ≤
√
(z, z)

√
(w,w) = |z| |w|

(actually we have |(z, w)| = |z| · |w| = |z| · |w|). The distance d is exactly the distance
corresponding to this scalar product.
For each z 6= 0, we can define the inverse of z as the unique complex number w such that
zw = 1. Explicitly we can write

z−1 =
1

z
=

z

|z|2
.

More generally, if z, w are two complex numbers and w is not zero, we can divide z by w,
setting z/w = zw−1. In this way we have defined the field of complex numbers (C,+, ·),
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endowed with the operations of sum and product, the corresponding inverse operations
(subtraction and division) and moreover endowed with a scalar product and a distance.
An alternative, very useful way to write a complex number z is via polar coordinates (ρ, θ).

The definition of ρ is very simple:
ρ = |z|

thus ρ is precisely the modulus of z. The definition of θ is more delicate; θ it is the angle
formed by the axis of abscissas and the vector z = (x, y) (the angle must be measured in
radians starting from the axis of abscissas). A precise definition is the following: given
z = x+ iy, it is always possible to determine a real number θ such that{

x = ρ cos(θ)

y = ρ sin(θ)

that is, z = ρ(cos(θ) + i sin(θ)). When z = 0 we have ρ = 0 so that any real number θ
satisfies the relations and we say that then θ is not defined. When z 6= 0 we have an infinite
number of values of θ satisfying these conditions, since sin and cos are periodic functions;
we denote the set of such values by Arg(z) (the argument of z). If θ is one of such values,
all the others are given by the formula θ + 2kπ for any k ∈ Z; however, there is only one
of these values in the interval (−π, π], and we shall call it the principal value of Arg(z) and
denote it by arg(z).
To sum up: given z ∈ C, z 6= 0, we can write

z = ρ(cos θ + i sin θ)

for a unique couple (ρ, θ) where ρ = |z| > 0 and θ = arg(z) ∈ (−π, π]. This is called the
polar representation of z.
One introduces the notation

eiθ = cos θ + i sin θ, θ ∈ R.
Then we can write

z = ρeiθ = ρ(cos θ + i sin θ), ρ = |z|, θ ∈ Arg(z).

It is easy to check that |eiθ| = 1, and for all θ1, θ2 one has

eiθ1eiθ2 = ei(θ1+θ2).

These relationships have nothing magical about them, in fact the definition just given of the
exponential of iθ can be justified in various other equivalent ways. Some examples:

1 = 1 · e
i0

= e2πi, i = e
π
2 i = e

5
2πi, −1 = eπi = e3πi, −i = e−

π
2 i = e

3
2πi,

Polar coordinates allow us to give a clear geometric meaning to the operations introduced
at the beginning. If z1 = ρ1e

iθ1 and z2 = ρ2e
iθ2 we have

z1z2 = ρ1ρ2e
iθ1eiθ2 = ρ1ρ2e

i(θ1+θ2)

which means
|z1z2| = |z1| |z2|, Arg(z1z2) = Arg(z1) + Arg(z2).

(Note that the last formula fails for arg(z) since we need to compute the angles modulo
2π). Thus multiplying two complex numbers means to multiply their moduli and add their
angles. In a similar way, for z = ρeiθ we have

z = ρe−iθ =⇒ |z| = |z|, Arg(z) = −Arg(z),

therefore for the inverse of z we have
1

z
=

z

|z|2
=

ρeiθ

ρ2
=

1

ρ
e−iθ =⇒

∣∣∣∣1z
∣∣∣∣ = 1

|z|
, Arg

(
1

z

)
= −Arg(z)
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and for the ratio
z1
z2

=
ρ1
ρ2

ei(θ1−θ2) =⇒
∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2|
, Arg

(
z1
z2

)
= Arg(z1)−Arg(z2).

Complex numbers were introduced in order to extract roots of any real number; but the
result exceeded expectations, because there is always more than one root of any nonzero
number. If n ≥ 1 is an integer, finding the n -th roots of z means finding all solutions w of
the equation wn = z. In polar coordinates w = reiφ and z = ρeiθ this equation becomes

rneinφ = ρeiθ.

In this equation, the number z = ρeiθ is given and the unknown are r and φ. Equating
rn = ρ and nφ = θ we obtain immediately that r = n

√
ρ is the positive n-th rooth of ρ in

the sense of real numbers. To compute the argument φ, as usual, we have the problem that
θ ∈ Arg(z) has an infinite number of possible values θ + 2kπ, so that

φ =
θ + 2kπ

n
, k ∈ Z.

However, these values give only n distinct solutions. Choosing for instance k = 0, . . . , n− 1
we obtain exactly n different roots of z:

z1/2 =

{
n
√
ρ e

i
(

θ+2kπ
n

)
: 0 ≤ k ≤ n− 1

}
.

This is called De Moivre’s formula (1722).

Example 8.1. Thus if n = 2 we always obtain two square roots of z = |z|eiθ:

z1/2 =
√
|z|ei θ

2 and
√

|z|ei θ
2+iπ

(provided z 6= 0). Since eiπ = −1, we can write simply

z1/2 = ±
√
|z|ei θ

2 .

In particular, if ∆ is a positive real number, we have θ = arg(∆) = 0 and hence

∆ > 0 =⇒ ∆1/2 = ±
√
∆.

On the other hand, if ∆ is a negative real number, we have θ = arg(∆) = π; since ei
π
2 = i,

we obtain
∆ < 0 =⇒ ∆1/2 = ±

√
|∆|i.

We can apply this result to give a full representation of the solutions of the second order
equation with real coefficients a, b, c ∈ R

az2 + bz + c = 0, a 6= 0.

Then the usual method of “completing the square” can be used also in the complex case
and we obtain the formula

z =
−b+∆1/2

2a
.

When ∆ ≥ 0 this gives the usual formula

z =
−b±

√
b2 − 4ac

2a
.

When ∆ < 0 we have instead

z =
−b± i

√
4ac− b2

2a
.

We see that if ∆ 6= 0 we have always two solutions, which are two complex conjucate numbers
in the “impossible” case ∆ < 0.
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8.2. Elementary functions. Previously we defined the meaning of the symbol eiθ,
using sines and cosines, and for an incredible coincidence, the new function checked the usual
calculation rules valid for the traditional exponential. Not only we have ei(θ1+θ2) = eiθ1eiθ2 ,
but one can immediately verify that if we differentiate eiθ with respect to θ we get ieiθ.
Whatever test you do it seems that our definition makes sense: eiθ seems just the “true”
exponential of an imaginary number.
Of course there is something underneath. We don’t have the tools to address the problem

in detail, but at least we can say what follows: if we have a function f(x) of a real variable
x and we would like to extend it to C,
1) this is not always possible i.e. not all f(x) extend to f(z) in a natural way;
2) whenever possible, the extension is unique.
We have already seen how the exponential eiθ is defined for a pure imaginary exponent iθ,

in a way which preserves the multiplicative properties of the exponential. The most natural
way to extend this definition to the exponential of any complex number is to set
(8.1) ez = ex+iy = exeiy = ex(cos y + i sin y).

From the previous verification it follows that we have also in this case ez+w = ezew. One
can even define the derivative in complex sense and verify that the formula (ez)′ = ez is still
true.
We now try to extend sinx and cosx. Since we have eiθ = cos θ + i sin θ we have also

e−iθ = cos θ− i sin θ (inserting −θ in the previous formula); summing and subtracting these
two formulas we see that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

This suggests the following definition (if it works, this is the only possible definition, in view
of the uniqueness property mentioned above):

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Using the relations (ez)′ = ez and ez+w = ezew one obtains easily
(sin z)′ = cos z, (cos z)′ = − sin z, (sin z)2 + (cos z)2 = 1.

Note that the functions sin z and cos z are not bounded! Indeed we can write

sin z =
ey + e−y

2
sinx+ i

ey − e−y

2
cosx,

cos z =
ey + e−y

2
cosx− i

ey − e−y

2
sinx.

Closely connected functions are the hyperbolic functions

(8.2) ch z =
ez + e−z

2
, sh z =

ez − e−z

2
,

which are called hyperbolic cosine and sine, respectively. We have the properties
sin z = −i sh(iz), cos z = ch(iz)

Exercise 4.13. For which values of z the complex tangent tan z = sin z/ cos z is defined?
How would you define the hyperbolic tangent th z? Which is the relation between z and
tan z?
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Problems.

Exercise 4.14. Compute real and imaginary part of the following numbers:
i− 1

i+ 1
, in (n ∈ Z),

(i+ 1)4

(i− 1)3
,

1

(3i− 4)4

Exercise 4.15. Compute all solutions z ∈ C of the equations:

z7 + i = 0, z11 + iz4 = 0, z6 + z6 = 0, z2 +
1

z2
= 0.

Exercise 4.16. Write all the possible values of the complex powers
(2i)−i 3i, i1, 1i, 11.



CHAPTER 5

Solutions to selected problems

Numbers in boldface refer to the number of the corresponding problem.
1.1. We can simplify the intersection by writing

[1, 10] ∩ ]4, 12] =]4, 10].

The intervals ]− 2,−1[ e [0, 5] are separate, and it is not possible to simplify their union. in
a similar way, we can not simplify [1, 2] ∪ ]3, 4[.

1.8.
• 12◦ 27′ 30′′ = 12, 458◦ = 0, 217 rad;
• 17◦ 2′ 50′′ = 17, 047◦ = 0, 297 rad;
• 30◦ 12′ 30′′ = 30, 208◦ = 0, 527 rad.

1.21.
(1 +

√
3)2 − 2

√
3 = 1 + 2

√
3 +

(√
3
)2

− 2
√
3 = 4 (integer),

(1 +
√
2)2 −

√
2 = 1 + 2

√
2 +

(√
2
)2

−
√
2 = 3 +

√
2 (non integer),

√
200√
8

=

√
8 · 52√
8

=
√
52 = 5 (integer),

(1+
√
2)(1+

4
√
2)(1− 4

√
2) = (1+

√
2)(1−(

4
√
2)2) = (1+

√
2)(1−

√
2) = 1−2 = −1 (integer).

1.36. Since
a

x
+

b

x+ 1
=

a(x+ 1) + bx

x(x+ 1)
=

(a+ b)x+ a

x2 + x
,

a necessary and sufficient condition to have
1

x2 + x
=

a

x
+

b

x+ 1

is that a+ b = 0, a = 1. We conclude a = 1, b = −1.

2.1. The second degree equation ax2 + bx + c, (a 6= 0) has only one solution if and only
if the discriminant ∆ = b2 − 4ac is equal to 0. The discriminant x2 + kx + (k2 − 1) is
∆ = k2 − 4(k2 − 1) = 4 − 3k2 and the solutions of the equation 0 = ∆ = 4 − 3k2 are
k = ±2/

√
3.

2.8.
a) no solution, b) {x ≤ 0}, c) {x = −1}.

2.10.
a) x = 5,−3, b) x = 2, c) x = 7,

13

3
.

2.14.
a) x = −2 b) no solution c) x = 2.

127
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2.19. The logarithm is defined only for positive numbers, hence the set of definition it is
given by x− 1 > 0 and 6− x > 0, that is 1 < x < 6. When 1 < x < 6 we can write

log(x− 1) + log(6− x) = log((x− 1)(6− x))

, thus we have log(x− 1) + log(6− x) ≥ 0 if and only if
(x− 1)(6− x) ≥ 1 ⇐⇒ −x2 + 7x− 6 ≥ 1 ⇐⇒ x2 − 7x+ 7 ≤ 0 .

The inequality x2−7x+7 ≤ 0 is solved as usual and we obtain 1
2 (7−

√
21) ≤ x ≤ 1

2 (7+
√
21).

To sum up, the expression log(x − 1) + log(6 − x) is defined for 1 < x < 6, vanishes for
x = 1

2 (7±
√
21) and is positive for 1

2 (7−
√
21) < x < 1

2 (7 +
√
21).

3.3.
(1) f(g(x)) =

√
x2 − 3x, g(f(x)) = |x| − 3

√
x.

(2) f(g(x)) =
1

2x− 2
, g(f(x)) =

2x− 3

2x− 4
.

(3) f(g(x)) =
2x− 2

2x− 4
, g(f(x)) =

5− x

x− 1
.

3.6. The function sin(x) has no limit because it oscillates around the abscissa axis and
never flattens out on it, that is, it is bounded but has no horizontal asymptote. The set of
definition of the functions

√
1− x, log(1+ cos(x)),

1

cos(log(x))
does not contain any interval

of the form ]J,+∞[ and for these functions it doesn’t make sense to talk about a limit as
x → +∞.
Finally, we have limx→+∞

sin(x)

log(x)
= 0. Indeed, for every fixed ε > 0 we consider K = e

1
ε

and note that for any x > K we have

−1 ≤ sin(x) ≤ 1, −ε <
sin(x)

log(x)
< ε .

3.7.
lim

x→+∞

x4 − 3x2

8x3 + x2
= +∞, lim

x→+∞

2x4 + x5

3x5 − x2
=

1

3
, lim

x→+∞

x4 − x5

x4 − x6
= 0,

lim
x→−∞

x4 − 3x2

8x3 + x2
= −∞, lim

x→−∞

2x4 + x5

3x5 − x2
=

1

3
, lim

x→−∞

x4 − x5

x4 − x6
= 0.

3.12.
lim

x→+∞

x+ sinx

ex
= 0, lim

x→−∞

esin x

x2
= 0, lim

x→0
x · sin

(
1

x

)
= 0.

3.13. In the first limit, with the substitution y = πx we find

lim
x→0

eπx − 1

x
= lim

y→0

ey − 1

y/π
= π lim

y→0

ey − 1

y
= π .

Note that we have just proved a particular case of the general formula

lim
x→0

eax − 1

x
= a, a ∈ R .

In the second limit, since 2 = elog(2), we have 2x = (elog(2))x = ex log(2) e quindi

lim
x→0

2x − 1

x
= lim

x→0

ex log(2) − 1

x
= log(2) .

In the third limit, if a = 0 then sin(ax) = 0 for every x and therefore the limit is also equal
to 0. If a 6= 0, with the change of variable y = ax we obtain

lim
x→0

sin(ax)

x
= lim

y→0

sin(y)

y/a
= a lim

y→0

sin(y)

y
= a .
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(6x3 + 2x2 − 2x+ 1)′ = 18x2 + 4x− 2, (8x7 − 4x2)′ = 56x6 − 8x,(

1

x
− 1

x+ 1

)′

=
−1

x2
+

1

(x+ 1)2
,

(
x+ 1

x− 1

)′

=
(x− 1)− (x+ 1)

(x− 1)2
=

−2

(x− 1)2
,

(e2x)′ = 2e2x,

(
1

x

)′

=
−1

x2
, (

√
x)′ =

1

2
√
x
,

(
√
2− 3x)′ =

−3

2
√
2− 3x

, (3x)′ = log 3 · 3x, (xx)′ = (log x+ 1)xx,

(log cosx)′ = − tanx, arctan (5− 3x2)
′
=

−6x

1 + (5− 3x2)2
.

4.4. The functions which DO NOT satisfy the assumptions of Rolle’s Theorem on the
interval [−1, 1] are: x3 + x2 + 4, x2 − |x|, x2 + 1

x2 and tan(πx).
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