IAS, Esercizi 8

Nome:

Cognome:

Matricola:

Regole: Voto minimo di ogni esercizio = 0. Esercizi 1-3: risposta giusta = +1, risposta non data = 0, risposta sbagliata = -1. Esercizi 4-5: punti 0-9.

Esercizio 1 Dire se i seguenti elementi di $\mathscr{D}'(\mathbb{R})$ sono distribuzioni temperate.

1. La
$$\delta_{x_0}$$
 di Dirac in $x_0 \in \mathbb{R}$ appartiene a $\mathscr{S}'(\mathbb{R})$.

V F

2. La distribuzione
$$T_u$$
 dove $u(x) = e^{\sqrt{|x|}}$ appartiene a $\mathscr{S}'(\mathbb{R})$.

V

3. La distribuzione
$$T_u$$
 dove $u(x) = e^{-\sqrt{|x|}}$ appartiene a $\mathscr{S}'(\mathbb{R})$.

/ F

F

4. Il prodotto
$$a(x)\delta_0$$
 dove $a(x) \in C_c^{\infty}(\mathbb{R})$ appartiene a $\mathscr{S}'(\mathbb{R})$.

V

Esercizio 2 Sia T una qualunque distribuzione temperata in $\mathscr{S}'(\mathbb{R})$ e $\phi(x) \in \mathscr{S}(\mathbb{R})$.

1. Il prodotto
$$e^{-x}T$$
 è ben definito

V

2. La successione
$$T_n = \frac{1}{n}\tau_n T$$
 tende a 0 in \mathscr{S}' .

V

3. La successione
$$T_n = \phi(x-n)T$$
 tende a 0 in \mathscr{S}' .

V

4. La successione
$$T_n = x^n T$$
 tende a 0 in \mathscr{S}' .

V

F

F

Esercizio 3 Sia $\{u_n\}$ una successione in $L^2(\mathbb{R})$.

1. Se
$$u_n \to u$$
 in L^2 allora $\widehat{u_n} \to \widehat{u}$ in L^2 .

 $\overline{\mathbf{v}}$

2.
$$\{\widehat{u_n}\}$$
 può essere limitata in L^2 anche se $\{u_n\}$ non è limitata in L^2 .

V

3. Per ogni
$$v \in L^2(\mathbb{R})$$
 si ha $\int v \cdot \widehat{u_n} \ dx \to 0$.

V F

4. Se
$$u_n \to u$$
 in L^2 allora $T_{u_n} \to T_u$ in \mathscr{S}' .

 $\overline{\mathbf{F}}$

Esercizio 4 Verificare che i seguenti funzionali su $\mathscr{S}(\mathbb{R})$ appartengono a $\mathscr{S}'(\mathbb{R})$ e calcolarne la trasformata di Fourier.

$$T = \delta_0 - \delta_1$$
 $T = \delta'_0 + \delta''_1$
 $T'_u \text{ dove } u(x) = \mathbf{1}_{[0,1]}(x)$ $T''_u \text{ dove } u(x) = x^2 - 2x + 3$
 $T_u \text{ dove } u(x) = (x^2 + 1)e^{2ix}$ $T_u \text{ dove } u(x) = \cos(3x + 2)$

Risposta:

Esercizio 5 Siano $T \in \mathscr{S}'$ e $f \in L^2(\mathbb{R}^3)$. Supponiamo che $\Delta T - T = T_f$. (a) Dimostrare che T è della forma $T = T_u$ per una certa $u \in L^2(\mathbb{R}^3)$.

- (b) Dimostrare che u appartiene a C_0 .
- (c) Dimostrare che se anche $T_1 \in \mathcal{S}'$ soddisfa $\Delta T_1 T_1 = f$ allora $T_1 = T_u$.
- (d) Dimostrare che se $f \in \mathcal{S}$ allora anche $u \in \mathcal{S}$.

Risposta: